JP6000840B2 - Non-contact measuring method and apparatus for dynamic deflection of PC girder - Google Patents

Non-contact measuring method and apparatus for dynamic deflection of PC girder Download PDF

Info

Publication number
JP6000840B2
JP6000840B2 JP2012281481A JP2012281481A JP6000840B2 JP 6000840 B2 JP6000840 B2 JP 6000840B2 JP 2012281481 A JP2012281481 A JP 2012281481A JP 2012281481 A JP2012281481 A JP 2012281481A JP 6000840 B2 JP6000840 B2 JP 6000840B2
Authority
JP
Japan
Prior art keywords
girder
deflection
contact
measurement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012281481A
Other languages
Japanese (ja)
Other versions
JP2014126390A (en
Inventor
文昭 上半
文昭 上半
慎太郎 箕浦
慎太郎 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2012281481A priority Critical patent/JP6000840B2/en
Publication of JP2014126390A publication Critical patent/JP2014126390A/en
Application granted granted Critical
Publication of JP6000840B2 publication Critical patent/JP6000840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、PC(プレストレスコンクリート)桁の動的たわみの非接触測定方法及びその装置に関するものである。   The present invention relates to a noncontact measurement method and apparatus for dynamic deflection of PC (prestressed concrete) girders.

従来、桁のたわみ測定は、一般的には桁にピアノ線を取り付け、それを地上に設置したリング式変位計に取り付けることで計測している。しかしながらこの方法は桁下が道路や河川の場合計測が困難となる。   Conventionally, deflection measurement of a girder is generally performed by attaching a piano wire to the girder and attaching it to a ring displacement meter installed on the ground. However, this method is difficult to measure when the digit is road or river.

このような状況の中で、最近ではレーザードップラー速度計 (LDV) などを用いた非接触の計測手法が使われるようになってきている。   Under such circumstances, a non-contact measurement method using a laser Doppler velocimeter (LDV) or the like has recently been used.

そこで、本願の発明者らも、LDVなど非接触センサを用いた計測手法の開発を重ねて提案を行っている(下記特許文献1,2参照)。   Therefore, the inventors of the present application have also proposed a measurement method using a non-contact sensor such as LDV (see Patent Documents 1 and 2 below).

また、携帯に適したマーキングボール発射装置が提案されている下記特許文献3参照)。   Also, a marking ball launching device suitable for carrying has been proposed (see Patent Document 3 below).

かかるLDVなど非接触センサを用いた計測手法は、従来手法より効率よく安全に計測ができるというメリットがある。   Such a measurement method using a non-contact sensor such as an LDV has an advantage that the measurement can be performed more efficiently and safely than the conventional method.

特開2004−184377号公報JP 2004-184377 A 特開2008−281422号公報JP 2008-281422 A 特開2006−038445号公報JP 2006-038445 A

西山 裕之,中西 功,畑中 達彦,上半 文昭,『「Uドップラー」によるPC桁たわみ測定時の補正手法について』、土木学会第67回年次学術講演会,平成24年9月Hiroyuki Nishiyama, Isao Nakanishi, Tatsuhiko Hatanaka, Fumiaki Kamihan, “Correction Method when Measuring PC Girder Deflection Using“ U Doppler ””, 67th Annual Conference of Japan Society of Civil Engineers, September 2012

しかしながら、これまでのLDVのような一軸の速度や変位のみを計測できるセンサを用いて水平変位の大きい桁のたわみを計測する場合、センサの計測方向と測定対象の振動方向が一致していないとセンサによる計測では誤差が大きくなり、正確なたわみが計測できないという問題があった(上記非特許文献1参照)。   However, when measuring the deflection of a digit with a large horizontal displacement using a sensor that can measure only the uniaxial speed and displacement like the conventional LDV, the measurement direction of the sensor and the vibration direction of the measurement object do not match. In the measurement by the sensor, an error becomes large, and there is a problem that an accurate deflection cannot be measured (see the above-mentioned Non-Patent Document 1).

本発明は、かかる状況に鑑みて、容易で正確な計測ができる1台もしくは複数台のセンサを用いたPC桁の動的たわみの計測ができる、PC桁の動的たわみの非接触測定方法及びその装置を提供することを目的とする。   In view of such circumstances, the present invention provides a non-contact measuring method for dynamic deflection of a PC girder that can measure dynamic deflection of a PC girder using one or a plurality of sensors that can be easily and accurately measured. An object is to provide such a device.

本発明は、上記目的を達成するために、
〔1〕PC桁の動的たわみの非接触測定方法において、水平変位のあるPC桁の鉛直方向のたわみの誤差を補正するに際して、前記PC桁の水平変位の計測を可動支承部で行い、前記PC桁のたわみを非接触センサを用いて行い、その計測結果と誤差を修正するための誤差表を用いて前記たわみを修正するPC桁の動的たわみの非接触測定方法であって、前記誤差表がノモグラムであり、実際の鉛直たわみdy方向と非接触センサで測定される変位u方向とのなす測定角度と水平変位による誤差の関係をまとめたグラフであることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the non-contact measuring method of the dynamic deflection of the PC girders, when correcting the vertical deflection error of the PC girders with horizontal displacement, the horizontal displacement of the PC girders is measured by the movable support portion, A non-contact measuring method for dynamic deflection of a PC digit, wherein the deflection of the PC digit is performed using a non-contact sensor, and the deflection is corrected using an error table for correcting the measurement result and error. The table is a nomogram, and is characterized in that it is a graph summarizing the relationship between the measurement angle between the actual vertical deflection dy direction and the displacement u direction measured by the non-contact sensor and the error due to the horizontal displacement .

〔2〕上記〔1〕記載のPC桁の動的たわみの非接触測定方法において、前記非接触センサがLDVであることを特徴とする。   [2] In the non-contact measurement method for dynamic deflection of a PC girder described in [1] above, the non-contact sensor is an LDV.

〕上記〔〕記載のPC桁の動的たわみの非接触測定方法において、前記非接触センサを2台用いて計測する場合、前記ノモグラムは中央を基準として、固定支持部側からの測定、可動支持部側から測定した場合を示したものであることを特徴とする。 [ 3 ] In the non-contact measurement method for dynamic deflection of a PC girder described in [ 1 ] above, when the two non-contact sensors are used for measurement, the nomogram is measured from the fixed support portion side with respect to the center. The case of measuring from the movable support side is shown.

〔4〕2個の非接触センサと、この2個の非接触センサに接続されるデータ集録装置と、このデータ集録装置に接続されるデータ記録・解析装置を備え、水平変位のあるPC桁の鉛直方向のたわみの誤差を補正するに際して、前記PC桁の水平変位の計測を可動支承部で行い、前記PC桁のたわみを計測し、その計測結果と誤差を修正するに用いる誤差表を具備するPC桁の動的たわみの非接触測定装置であって、前記誤差表がノモグラムであり、実際の鉛直たわみdy方向と非接触センサで測定される変位u方向とのなす測定角度と水平変位による誤差の関係をまとめたグラフであることを特徴とする。 [4 ] Two non-contact sensors, a data acquisition device connected to the two non-contact sensors, and a data recording / analysis device connected to the data acquisition device. When correcting the deflection error in the vertical direction, the horizontal displacement of the PC girder is measured by the movable support portion, the deflection of the PC girder is measured, and the measurement result and an error table used for correcting the error are provided. A non-contact measuring apparatus for dynamic deflection of a PC girder, wherein the error table is a nomogram, and an error caused by a measurement angle and a horizontal displacement between an actual vertical deflection dy direction and a displacement u direction measured by a non-contact sensor. It is a graph that summarizes the relationship between

〕上記〔〕記載記載のPC桁の動的たわみの非接触測定装置において、前記非接触センサがLDVであることを特徴とする。 [ 5 ] The non-contact measuring apparatus for dynamic deflection of a PC girder according to [ 4 ] above, wherein the non-contact sensor is an LDV.

〕上記〔〕記載のPC桁の動的たわみの非接触測定装置において、前記非接触センサを2台用いて計測する場合、前記ノモグラムは中央を基準として、固定支持部側からの測定、可動支持部側から測定した場合を示したものであることを特徴とする。 [ 6 ] In the non-contact measuring apparatus for dynamic deflection of a PC girder described in [ 4 ] above, when the two non-contact sensors are used for measurement, the nomogram is measured from the fixed support portion side with respect to the center. The case of measuring from the movable support side is shown.

本発明によれば、水平変位の大きいPC桁のたわみ測定においても、LDVなどの非接触センサを用いて、PC桁下から正確かつ簡単にたわみを計測することができる。   According to the present invention, even when measuring the deflection of a PC girder with a large horizontal displacement, it is possible to accurately and easily measure the deflection from the bottom of the PC girder using a non-contact sensor such as an LDV.

本発明にかかるPC桁の水平変位の説明図である。It is explanatory drawing of the horizontal displacement of the PC girder concerning this invention. 実際の水平変位、実際の鉛直たわみの説明図である。It is explanatory drawing of an actual horizontal displacement and an actual vertical deflection. 本発明の実施例を示す計測フローチャートである。It is a measurement flowchart which shows the Example of this invention. 本発明に係るノモグラフを示す図である。It is a figure which shows the nomograph which concerns on this invention. 本発明の実施例を示すPC桁のたわみを補正する装置を示す図である。It is a figure which shows the apparatus which correct | amends the bending of the PC girder which shows the Example of this invention. 本発明の実施例を示す2台のセンサによる計測を示す図である。It is a figure which shows the measurement by two sensors which show the Example of this invention.

本発明のPC桁の動的たわみの非接触測定方法において、水平変位のあるPC桁の鉛直方向のたわみの誤差を補正するに際して、前記PC桁の水平変位の計測を可動支承部で行い、前記PC桁のたわみを非接触センサを用いて行い、その計測結果と誤差を修正するための誤差表を用いて前記たわみを修正するPC桁の動的たわみの非接触測定方法であって、前記誤差表がノモグラムであり、実際の鉛直たわみdy方向と非接触センサで測定される変位u方向とのなす測定角度と水平変位による誤差の関係をまとめたグラフであるIn the non-contact measuring method for dynamic deflection of a PC girder according to the present invention, when correcting an error in deflection in a vertical direction of a PC girder having a horizontal displacement, the horizontal displacement of the PC girder is measured by a movable bearing, A non-contact measuring method for dynamic deflection of a PC digit, wherein the deflection of the PC digit is performed using a non-contact sensor, and the deflection is corrected using an error table for correcting the measurement result and error. The table is a nomogram, and is a graph summarizing the relationship between the measurement angle between the actual vertical deflection dy direction and the displacement u direction measured by the non-contact sensor and the error due to the horizontal displacement .

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、LDVなどの非接触センサを用いた計測において、水平変位のあるPC桁の鉛直方向のたわみの誤差を補正する方法を提案することで、桁の正確なたわみを算出する。   The present invention calculates an accurate deflection of a digit by proposing a method for correcting an error of deflection in a vertical direction of a PC digit having a horizontal displacement in measurement using a non-contact sensor such as an LDV.

図1は本発明にかかるPC桁の水平変位の説明図である。   FIG. 1 is an explanatory diagram of horizontal displacement of a PC girder according to the present invention.

この図において、1は上向きのそり(キャンバー)があるPC桁(橋梁)、2はPC桁1の固定支承部、3はPC桁1の可動支承部、4は列車荷重を示している。   In this figure, 1 is a PC girder (bridge) with an upward sled (camber), 2 is a fixed bearing part of the PC girder 3, 3 is a movable bearing part of the PC girder 4, and 4 is a train load.

図1に示すように、PC桁1の水平変位は、PC桁1に上向きのそり(キャンバー)があることにより発生し、列車荷重4がかかることで変形し、鉛直方向のたわみと同時に可動支承部3で水平変位を生じる。そのため鉛直方向と水平変位の動揺は同位相となり、またPC桁1の中央部の水平変位は可動支承部3での水平変位の半分(1/2)dxとなる。   As shown in FIG. 1, the horizontal displacement of the PC girder 1 is generated when the PC girder 1 has an upward warp (camber), and is deformed when a train load 4 is applied. A horizontal displacement occurs in the part 3. Therefore, the fluctuation in the vertical direction and the horizontal displacement are in phase, and the horizontal displacement at the central portion of the PC girder 1 is half (1/2) dx of the horizontal displacement in the movable support portion 3.

(1)基本的にはPC桁1の水平変位の計測を可動支承部3のダイヤルゲージや他のセンサなどで行い、PC桁1のたわみをLDVなどの非接触センサを用いて行う。そして、計測結果と誤差を修正するためのノモグラムを用いてたわみを修正する。ノモグラムは測定角度と水平変位による誤差の関係をまとめたものであり、以下に示すような計算により作成される。   (1) Basically, the horizontal displacement of the PC girder 1 is measured with a dial gauge or other sensor of the movable support 3 and the deflection of the PC girder 1 is performed with a non-contact sensor such as an LDV. Then, the deflection is corrected using the nomogram for correcting the measurement result and the error. The nomogram summarizes the relationship between the measurement angle and the error due to the horizontal displacement, and is created by the following calculation.

u=dy´cosθ
u=dycosθ+dxsinθ
dycosθ=dy´cosθ−dxsinθ
dy/dy´=1−(dx/dy´)tanθ
ここで、dx:実際の水平変位、dy:実際の鉛直たわみ、u:非接触センサで測定される変位、dy’:水平変位がない場合の測定角度補正後の鉛直たわみ、θ:測定角度である(図2参照)。
u = dy′cos θ
u = dycos θ + dxsin θ
dycos θ = dy′cos θ−dxsin θ
dy / dy ′ = 1− (dx / dy ′) tan θ
Where dx: actual horizontal displacement, dy: actual vertical deflection, u: displacement measured by a non-contact sensor, dy ′: vertical deflection after correction of the measurement angle when there is no horizontal displacement, θ: measurement angle Yes (see FIG. 2).

図3は本発明の実施例を示す計測フローチャートである。   FIG. 3 is a measurement flowchart showing an embodiment of the present invention.

図4は本発明に係るノモグラフを示す図であり、横軸に測定角度θ(°)、縦軸に正規化たわみ、%は(水平変位/垂直たわみ)×100%、A矢印は固定支持側から測定、B矢印は可動支持側から測定した場合を示している。   FIG. 4 is a diagram showing a nomograph according to the present invention, wherein the horizontal axis represents the measurement angle θ (°), the vertical axis represents normalized deflection,% represents (horizontal displacement / vertical deflection) × 100%, and the arrow A represents the fixed support side. Measured from B, arrow B shows the case measured from the movable support side.

ここでは、PC桁が計測対象となり水平方向に変位がある。   Here, the PC girder is a measurement target and there is a displacement in the horizontal direction.

〔A〕まず、センサ1台を使用する場合は、
(1)PC桁の水平振動の計測方法を選択する(ステップS1)。
(2)第1にダイヤルゲージなどによるPC桁の支承部などの水平振動の計測する(ステップS2)。
(3)PC桁のたわみの計測を行う(ステップS3)。
(4)第2に非接触センサによる水平振動の計測(車両荷重や速度が一定の場合)を行う(ステップS4)。
(5)PC桁のたわみの計測を行う(ステップS5)。
(6)補正装置の有無をチェックする(ステップS6)。
(7)補正装置がない場合には、ノモグラムによる補正のみを行う(ステップS7)。
(8)補正装置がある場合には、補正装置による補正を行う(ステップ8)。
(9)次に、PC桁のたわみ制限値に照合して評価する(ステップS9)。
[A] First, when using one sensor,
(1) A measurement method for horizontal vibration of a PC digit is selected (step S1).
(2) First, horizontal vibration of a support portion of a PC girder or the like is measured by a dial gauge or the like (step S2).
(3) The deflection of the PC digit is measured (step S3).
(4) Secondly, horizontal vibration is measured by a non-contact sensor (when the vehicle load and speed are constant) (step S4).
(5) The PC digit deflection is measured (step S5).
(6) The presence or absence of a correction device is checked (step S6).
(7) If there is no correction device, only correction by nomogram is performed (step S7).
(8) If there is a correction device, correction by the correction device is performed (step 8).
(9) Next, the PC digit deflection limit value is collated and evaluated (step S9).

〔B〕次に、センサ2台を使用する場合は、
(1)固定支承部側と可動支承部側の両方からの測定が可能か否かをチェックする(ステップS11)。
(2)ステップS11でNOの場合には、1台でPC桁のたわみを計測し、もう1台で可動支承部などの水平振動を計測する(ステップS12)。
(3)次に、補正装置の有無についてチェックする(ステップS13)。
(4)ステップS13において、補正装置がない場合には、ノモグラムによる補正のみを行う(ステップS7)。
(5)ステップS11でYESの場合には、センサを固定支承部側と可動支承部側に設置してたわみを計測する(ステップS14)。
(6)次に、補正装置の有無についてチェックする(ステップS15)。
(7)ステップS15においてYESの場合には、補正装置による補正を行う(ステップ8)。
(8)次に、たわみ制限値に照合して評価する(ステップS9)。
(9)ステップS15において、補正装置がない場合には、平均を求めて補正する(ステップS16)。
(10)次に、たわみ制限値に照合して評価する(ステップS9)。
[B] Next, when using two sensors,
(1) It is checked whether measurement from both the fixed support part side and the movable support part side is possible (step S11).
(2) In the case of NO at step S11, one unit measures the deflection of the PC girder, and the other unit measures horizontal vibration of the movable support portion (step S12).
(3) Next, the presence / absence of a correction device is checked (step S13).
(4) If there is no correction device in step S13, only correction by nomogram is performed (step S7).
(5) If YES in step S11, the sensors are installed on the fixed support portion side and the movable support portion side to measure the deflection (step S14).
(6) Next, the presence or absence of a correction device is checked (step S15).
(7) If YES in step S15, correction by the correction device is performed (step 8).
(8) Next, evaluation is performed by collating with the deflection limit value (step S9).
(9) If there is no correction device in step S15, the average is obtained and corrected (step S16).
(10) Next, evaluation is performed by collating with the deflection limit value (step S9).

このように、計測は図3に示すフローチャートに従って行われる。センサが1台の場合(ステップS1〜ステップS9)は、たわみ計測と同時にダイヤルゲージなどによって水平振動も計測する。その後、計測した水平振動がセンサで計測した鉛直たわみの何%になるかを求め、図4のノモグラムから正規化たわみを求め、その値をセンサで計測したたわみに掛けることで実際のたわみを求める。ダイヤルゲージなどによる水平振動の計測が困難で、かつ通過する列車の荷重や速度がほぼ一定の場合は、水平振動の計測も同じセンサで違う列車を対象に行い補正する。この場合の補正もノモグラムまたは図5に示すような装置を用いて行う。   Thus, the measurement is performed according to the flowchart shown in FIG. When there is one sensor (steps S1 to S9), horizontal vibration is also measured by a dial gauge or the like simultaneously with the deflection measurement. After that, the percentage of the vertical deflection measured by the sensor is calculated as the percentage of the vertical deflection measured, the normalized deflection is obtained from the nomogram of FIG. 4, and the actual deflection is obtained by multiplying the value by the deflection measured by the sensor. . If it is difficult to measure horizontal vibration using a dial gauge, etc., and the load and speed of the passing train are almost constant, the horizontal vibration measurement is also corrected for the different trains using the same sensor. Correction in this case is also performed using a nomogram or an apparatus as shown in FIG.

図5は本発明の実施例を示すたわみを補正する装置を示す模式図、図6は本発明の実施例を示す2台のセンサによる計測例を示す図である。   FIG. 5 is a schematic diagram showing an apparatus for correcting deflection according to an embodiment of the present invention, and FIG. 6 is a diagram showing an example of measurement by two sensors showing the embodiment of the present invention.

図5において、11は第1のセンサ、12は第2のセンサ、13はデータ集録装置、14はデータ記録・解析装置である。   In FIG. 5, 11 is a first sensor, 12 is a second sensor, 13 is a data acquisition device, and 14 is a data recording / analysis device.

図6において、31,51は第1のセンサ、32,52は第2のセンサ、21,41はPC桁(橋梁)、22,42はPC桁の固定支承部、23,43はPC桁の可動支承部である。   In FIG. 6, 31 and 51 are first sensors, 32 and 52 are second sensors, 21 and 41 are PC girders (bridges), 22 and 42 are fixed support portions of PC girders, and 23 and 43 are PC girders. It is a movable bearing part.

(2) 2台のセンサを用いる場合、PC桁の固定支承部側と可動支承部側から同じ測定角度で計測を行い、たわみの変位のうち水平方向の成分を取り除く。PC桁の固定支承部側と可動支承部側で測定した場合には、誤差の絶対値が同じで符号が逆になるので、両者を平均することにより水平成分を取り除くことができる。平均化は装置でも行えるようにし、測定中に2台のセンサをこの装置に接続することにより自動で平均化を行う。   (2) When two sensors are used, measurement is performed at the same measurement angle from the fixed support part side and the movable support part side of the PC girder, and the horizontal component is removed from the deflection displacement. When the measurement is performed on the fixed support portion side and the movable support portion side of the PC girder, since the error has the same absolute value and the sign is reversed, the horizontal component can be removed by averaging both. The averaging can be performed by the apparatus, and the averaging is automatically performed by connecting two sensors to the apparatus during the measurement.

(3) PC桁の固定支承部側と可動支承部側に測定角度が等しくなるようにセンサを設置することが困難である場合には、2台のセンサのうち1台を用いてPC桁中央部の変位を計測し、もう1台でPC桁の可動支承部の水平変位を計測する。計測の際に2台のセンサと誤差を補正するための装置を接続し、補正結果を示す。装置ではノモグラムを作成した時と同様の計算を行い、たわみの補正を行う。なお、支承部においても鉛直方向の振動があり、水平振動の計測結果にも誤差は含まれる。しかしながら支承部の鉛直振動は橋脚の沈下によるものであり水平振動に比べて小さいと考えられ、また計測する際のセンサの角度を小さくすることで誤差を小さくすることが可能である。   (3) If it is difficult to install the sensor so that the measurement angle is equal on the fixed support part side and the movable support part side of the PC girder, use one of the two sensors to center the PC girder. The displacement of the part is measured, and the horizontal displacement of the movable support part of the PC girder is measured with the other unit. When measuring, two sensors and a device for correcting the error are connected, and the correction result is shown. The device performs the same calculation as when creating the nomogram and corrects the deflection. Note that the bearing portion also has vertical vibrations, and errors are included in the horizontal vibration measurement results. However, the vertical vibration of the bearing is due to the sinking of the pier and is considered to be smaller than the horizontal vibration, and the error can be reduced by reducing the angle of the sensor at the time of measurement.

(4) 東海道新幹線のように橋梁を渡る列車の速度や荷重にほとんど変化がないような場合には、列車通過時のPC桁中央部のたわみと、違う列車による可動支承部の水平振動を1台のセンサで計測し、誤差の補正を行うことも可能である。装置に水平変位とたわみを記録させ、その記録されたデータより上記(3) と同様にたわみの補正を行う。   (4) When there is almost no change in the speed and load of the train crossing the bridge, as in the Tokaido Shinkansen, the deflection of the central part of the PC girder when passing through the train and the horizontal vibration of the movable bearing part due to a different train are 1 It is also possible to perform error correction by measuring with a sensor on the table. The apparatus records the horizontal displacement and deflection, and the deflection is corrected from the recorded data in the same manner as in (3) above.

センサが2台使用可能な場合には、図6 (a) のように固定支承部22側と可動支承部23側の測定角度が同じとなるように計測する。2台のセンサ31,32を装置に接続し、計測した値を装置で平均することで水平成分を取り除く。センサ31,32が橋軸方向に合わせて設置できない場合には図6 (b) のように設置することで橋軸直角方向の変位を取り除く。センサが2台使用できるが測定角度をそろえて設置することが困難である場合、図6 (c) のように1台のセンサ51でたわみ、もう1台のセンサ52で水平振動を測る。センサ2台51,52を装置に接続して測定を行い、たわみの補正を行う。たわみ補正用の装置がない場合には、2台のセンサ51,52をそれぞれの結果からノモグラムを用いて補正する。   When two sensors can be used, measurement is performed so that the measurement angles on the fixed support portion 22 side and the movable support portion 23 side are the same as shown in FIG. Two sensors 31, 32 are connected to the apparatus, and the horizontal component is removed by averaging the measured values with the apparatus. If the sensors 31 and 32 cannot be installed in the direction of the bridge axis, the displacement in the direction perpendicular to the bridge axis is removed by installing as shown in FIG. When two sensors can be used but it is difficult to install them at the same measurement angle, the one sensor 51 bends and the other sensor 52 measures horizontal vibration as shown in FIG. Measurement is performed by connecting two sensors 51 and 52 to the apparatus, and deflection is corrected. When there is no device for correcting deflection, the two sensors 51 and 52 are corrected by using nomograms from the respective results.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明のPC桁の動的たわみの非接触測定方法及びその装置は、容易で正確な計測ができる1台もしくは複数台のセンサを用いたPC桁の動的たわみの計測ができる、PC桁の動的たわみの非接触測定方法及びその装置として利用可能である。   The non-contact measuring method and apparatus for dynamic deflection of a PC girder according to the present invention is a PC girder capable of measuring the dynamic deflection of a PC girder using one or more sensors capable of easy and accurate measurement. It can be used as a non-contact measurement method and apparatus for dynamic deflection.

1,21,41 上向きのそり(キャンバー)があるPC桁(橋梁)
2,22,42 PC桁の固定支承部
3,23,43 PC桁の可動支承部
4 列車荷重
11,31,51 第1のセンサ
12,32,52 第2のセンサ
13 データ集録装置
14 データ記録・解析装置
1, 21, 41 PC girder (bridge) with upward sled (camber)
2, 22, 42 PC girder fixed support part 3, 23, 43 PC girder movable support part 4 Train load 11, 31, 51 First sensor 12, 32, 52 Second sensor 13 Data acquisition device 14 Data recording・ Analysis equipment

Claims (6)

水平変位のあるPC桁の鉛直方向のたわみの誤差を補正するに際して、前記PC桁の水平変位の計測を可動支承部で行い、前記PC桁のたわみを非接触センサを用いて行い、その計測結果と誤差を修正するための誤差表を用いて前記たわみを修正するPC桁の動的たわみの非接触測定方法であって、前記誤差表がノモグラムであり、実際の鉛直たわみdy方向と非接触センサで測定される変位u方向とのなす測定角度と水平変位による誤差の関係をまとめたグラフであることを特徴とするPC桁の動的たわみの非接触測定方法。 When correcting the vertical deflection error of a PC girder with horizontal displacement, the horizontal displacement of the PC girder is measured by a movable bearing, and the deflection of the PC girder is performed using a non-contact sensor. A non-contact measuring method of dynamic deflection of a PC girder for correcting the deflection using an error table for correcting an error, wherein the error table is a nomogram, and an actual vertical deflection dy direction and a non-contact sensor A non-contact measurement method for dynamic deflection of a PC girder, characterized in that the graph is a graph summarizing the relationship between the measurement angle formed by the displacement u direction measured in step 1 and the error due to horizontal displacement . 請求項1記載のPC桁の動的たわみの非接触測定方法において、前記非接触センサがLDVであることを特徴とするPC桁の動的たわみの非接触測定方法。   2. The non-contact measuring method for dynamic deflection of a PC girder according to claim 1, wherein the non-contact sensor is an LDV. 請求項記載のPC桁の動的たわみの非接触測定方法において、前記非接触センサを2台用いて計測する場合、前記ノモグラムは中央を基準として、固定支持部側からの測定、可動支持部側から測定した場合を示したものであることを特徴とするPC桁の動的たわみの非接触測定方法。 2. The non-contact measuring method for dynamic deflection of a PC girder according to claim 1 , wherein when the two non-contact sensors are used for measurement, the nomogram is measured from the fixed support portion side with respect to the center, and the movable support portion. A non-contact measuring method for dynamic deflection of a PC girder, characterized by showing a case of measurement from the side. 2個の非接触センサと、該2個の非接触センサに接続されるデータ集録装置と、該データ集録装置に接続されるデータ記録・解析装置を備え、水平変位のあるPC桁の鉛直方向のたわみの誤差を補正するに際して、前記PC桁の水平変位の計測を可動支承部で行い、前記PC桁のたわみを計測し、その計測結果と誤差を修正するに用いる誤差表を具備するPC桁の動的たわみの非接触測定装置であって、前記誤差表がノモグラムであり、実際の鉛直たわみdy方向と非接触センサで測定される変位u方向とのなす測定角度と水平変位による誤差の関係をまとめたグラフであることを特徴とするPC桁の動的たわみの非接触測定装置。 Two non-contact sensors, a data acquisition device connected to the two non-contact sensors, and a data recording / analysis device connected to the data acquisition device When correcting the deflection error, the horizontal displacement of the PC girder is measured by the movable bearing, the deflection of the PC girder is measured, and the measurement result and the PC girder having an error table used for correcting the error are measured . This is a non-contact measuring device for dynamic deflection, wherein the error table is a nomogram, and shows the relationship between the measurement angle formed by the actual vertical deflection dy direction and the displacement u direction measured by the non-contact sensor and the error due to horizontal displacement. A non-contact measuring device for dynamic deflection of PC girders, characterized in that it is a summarized graph . 請求項記載のPC桁の動的たわみの非接触測定装置において、前記非接触センサがLDVであることを特徴とするPC桁の動的たわみの非接触測定装置。 5. The non-contact measuring apparatus for dynamic deflection of a PC girder according to claim 4 , wherein the non-contact sensor is an LDV. 請求項記載のPC桁の動的たわみの非接触測定装置において、前記非接触センサを2台用いて計測する場合、前記ノモグラムは中央を基準として、固定支持部側からの測定、可動支持部側から測定した場合を示したものであることを特徴とするPC桁の動的たわみの非接触測定装置。 5. The non-contact measuring apparatus for dynamic deflection of a PC girder according to claim 4 , wherein when the two non-contact sensors are used for measurement, the nomogram is measured from the fixed support part side with respect to the center, and the movable support part. A non-contact measuring device for dynamic deflection of a PC girder, characterized in that it shows a case of measurement from the side.
JP2012281481A 2012-12-25 2012-12-25 Non-contact measuring method and apparatus for dynamic deflection of PC girder Expired - Fee Related JP6000840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281481A JP6000840B2 (en) 2012-12-25 2012-12-25 Non-contact measuring method and apparatus for dynamic deflection of PC girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281481A JP6000840B2 (en) 2012-12-25 2012-12-25 Non-contact measuring method and apparatus for dynamic deflection of PC girder

Publications (2)

Publication Number Publication Date
JP2014126390A JP2014126390A (en) 2014-07-07
JP6000840B2 true JP6000840B2 (en) 2016-10-05

Family

ID=51406017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281481A Expired - Fee Related JP6000840B2 (en) 2012-12-25 2012-12-25 Non-contact measuring method and apparatus for dynamic deflection of PC girder

Country Status (1)

Country Link
JP (1) JP6000840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006979B (en) * 2008-02-28 2017-02-22 全耐塑料公司 Method for making a structural part for an automobile and part thus obtained

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145577A (en) * 2014-02-03 2015-08-13 公益財団法人鉄道総合技術研究所 Conversion method of static deflection in railroad bridge, and calculation method of impact coefficient
JP7382604B2 (en) 2018-09-27 2023-11-17 パナソニックIpマネジメント株式会社 Detection device and detection method
CN113089495B (en) * 2021-04-30 2022-06-28 太原科技大学 Method for detecting effective prestress under prestressed concrete simply supported bridge anchor
CN113701968B (en) * 2021-07-12 2023-10-13 北京建筑大学 Bridge dynamic deflection monitoring system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028909B2 (en) * 1994-04-08 2000-04-04 防衛庁技術研究本部長 Emergency bridge
JP2002257545A (en) * 2001-03-05 2002-09-11 Takenaka Komuten Co Ltd Simplified measuring method and measuring device of vertical displacement or the like
JP4912949B2 (en) * 2007-05-10 2012-04-11 公益財団法人鉄道総合技術研究所 Non-contact measurement system for vibration characteristics of structures
JP5680476B2 (en) * 2011-04-28 2015-03-04 公益財団法人鉄道総合技術研究所 Method and apparatus for measuring vibration and dimensions of structures by non-contact measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006979B (en) * 2008-02-28 2017-02-22 全耐塑料公司 Method for making a structural part for an automobile and part thus obtained

Also Published As

Publication number Publication date
JP2014126390A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6000840B2 (en) Non-contact measuring method and apparatus for dynamic deflection of PC girder
US9417154B2 (en) Monitoring a response of a bridge based on a position of a vehicle crossing the bridge
Hou et al. Using inclinometers to measure bridge deflection
KR101695323B1 (en) Measure Apparatus For Safety Check-Up Of Bridge
Moreu et al. Reference-free displacements for condition assessment of timber railroad bridges
ES2928178T3 (en) Method to determine the structural integrity of an infrastructure element
JP7375637B2 (en) Measurement method, measurement device, measurement system and measurement program
WO2021036751A1 (en) Bearing reaction influence line curvature-based continuous beam damage identification method
JP5261441B2 (en) Elevation measurement method for bridges without live load
US20220291078A1 (en) Measurement Method, Measurement Device, Measurement System, And Measurement Program
JP2015145577A (en) Conversion method of static deflection in railroad bridge, and calculation method of impact coefficient
JP2015051674A (en) Railroad state-measuring method, and business vehicle capable of measuring railroad state
Laura et al. Static and dynamic testing of highway bridges: A best practice example
Sekiya et al. Visualization system for bridge deformations under live load based on multipoint simultaneous measurements of displacement and rotational response using MEMS sensors
JP6050152B2 (en) Non-contact evaluation method for damage to bearing parts of railway bridges
JP2017223007A (en) Track correction device and track correction method
JP2015141049A (en) Displacement acquiring apparatus, displacement acquiring method, and program
JP6432057B2 (en) Overhead amount correction method, overhead amount correction device, and program
Klaus et al. Determination of model parameters for a dynamic torque calibration device
Cai et al. Bridge deck load testing using sensors and optical survey equipment
JP2011102527A (en) Horizontal load testing method of pile
KR100579008B1 (en) Bending Beam Type Weight-In-Motion
US11428590B2 (en) Method for estimating a bearing load using strain parameters to account for contact angle variation
JP2011158372A (en) Method for measurement of curvature and curve radius in railroad track
Kim et al. Numerical model validation for a prestressed concrete girder bridge by using image signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6000840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees