JP5261441B2 - Elevation measurement method for bridges without live load - Google Patents

Elevation measurement method for bridges without live load Download PDF

Info

Publication number
JP5261441B2
JP5261441B2 JP2010131615A JP2010131615A JP5261441B2 JP 5261441 B2 JP5261441 B2 JP 5261441B2 JP 2010131615 A JP2010131615 A JP 2010131615A JP 2010131615 A JP2010131615 A JP 2010131615A JP 5261441 B2 JP5261441 B2 JP 5261441B2
Authority
JP
Japan
Prior art keywords
altitude
value
deflection
state
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010131615A
Other languages
Japanese (ja)
Other versions
JP2011257256A (en
Inventor
幸男 梅本
Original Assignee
復建調査設計株式会社
幸男 梅本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 復建調査設計株式会社, 幸男 梅本 filed Critical 復建調査設計株式会社
Priority to JP2010131615A priority Critical patent/JP5261441B2/en
Publication of JP2011257256A publication Critical patent/JP2011257256A/en
Application granted granted Critical
Publication of JP5261441B2 publication Critical patent/JP5261441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To find an altitude in a no-live-load state at an arbitrary point in a state in which a live load acts on a bridge. <P>SOLUTION: A total station 10 with an automatic tracking function which is installed outside a bridge measures a collimation target 11 installed at an altitude measurement point continuously for a predetermined time at small time intervals, measures any one of or both of a maximum altitude value Hmax and a minimum altitude value Hmin, and a mean altitude value Have in the measurement time, and substitutes those measured values in a calculation expression, for example, H0=Have+(Hmax-Have)*k, obtained based upon a flexure influence line, for finding an altitude H0 in the no-live-load state using any one of or both of the maximum altitude value Hmax and the minimum altitude value Hmin, the mean altitude value Have, and a constant (k), thereby finding the altitude in the no-live-load state. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、主として吊橋、斜張橋、アーチ橋、トラス橋などをはじめとする易たわみ性の長大橋梁において、活荷重載荷状態(供用状態)のまま、短時間に精度良く活荷重無載荷状態での標高(形状)を得るための標高計測方法に関する。   The present invention mainly applies to a long flexible bridge including a suspension bridge, a cable-stayed bridge, an arch bridge, a truss bridge and the like, with a live load loaded state (service state) in a short time and a live load unloaded state with high accuracy. The present invention relates to an altitude measurement method for obtaining altitude (shape) at a point.

吊橋などのたわみやすい長大橋の橋桁の健全性を判定する方法として、全体の形状測定(標高計測)を行い、活荷重無載荷状態時の形状を得て、その形状変化が許容値内であること、さらに過年度の形状と比較してもその変化量が大きくないことを確認する手法が採用されている。   As a method of judging the soundness of bridge girders such as suspension bridges that are flexible, the overall shape measurement (elevation measurement) is performed to obtain the shape when there is no live load, and the shape change is within the allowable value. In addition, a method of confirming that the amount of change is not large even when compared with the shape of the previous year is adopted.

これまでは、車両通行量が少なく温度の安定した深夜に、交通規制を行いながら、路面上を使用した水準測量が採用されてきている。しかし、水準測量では全長にわたり路面の交通規制が必要となること、計測作業には数時間を要することから深夜であっても微小温度変化は避けられずその影響を受けてしまうこと、大型車を含め車両の通行は皆無ではなくそれらのたわみの影響が含まれてしまうこと、さらに連続的に計測を繰り返す必要がある水準測量の作業上の特性から安定した計測値が得られていなかった。   Until now, leveling using the road surface has been adopted while traffic is restricted at midnight when the amount of vehicle traffic is low and the temperature is stable. However, leveling requires traffic regulation on the road surface over the entire length, and the measurement work takes several hours, so minute changes in temperature are unavoidable even at midnight. Including the traffic of the vehicles, including the influence of their deflection, and stable measurements were not obtained due to the characteristics of leveling work that required repeated measurements.

そこで下記特許文献1では、活荷重作用下のままで供用中の橋構造物の活荷重無載荷時形状を得るための計測方法であって、橋外部の固定地点に光波測距儀を設置するとともに、橋の標高計測対象位置にターゲットを設置し、このターゲットの実標高を前記光波測距儀により所定時間の間、微小時間間隔で連続的に計測し、前記所定の計測時間内における平均実標高値を得るとともに、この所定の計測時間内に橋を通過する車両群による平均タワミ値Δhを求め、前記光波測距儀による平均実標高値を前記通過車両群による平均タワミ値Δhにより補正することにより前記標高計測対象位置の活荷重無載荷時標高を求める橋構造物における活荷重無載荷時形状の計測方法が提案されている。   So, in the following patent document 1, it is a measuring method for obtaining the shape of the bridge structure in service under the active load under active load without loading, and installing a light wave rangefinder at a fixed point outside the bridge, The target is installed at the altitude measurement target position of the bridge, and the actual altitude of this target is continuously measured at a minute time interval for a predetermined time by the light wave range finder, and the average actual altitude value within the predetermined measurement time And obtaining an average deflection value Δh by the vehicle group passing through the bridge within the predetermined measurement time, and correcting the average actual elevation value by the light wave rangefinder with the average deflection value Δh by the passing vehicle group. There has been proposed a method for measuring the shape at the time of no loading of a live load in a bridge structure for obtaining the altitude at the time when the altitude measurement target position is not loaded.

特許第3340393号公報Japanese Patent No. 3340393

前記特許文献1に係る計測方法は、計測時間中に橋梁内を通行している大型車の荷重によるたわみ量相当分を計測値から除去することによって無載荷状態の標高に換算する手法(以下、大型車影響評価法という。)である。   The measurement method according to Patent Document 1 is a method of converting to an altitude in a no-load state by removing a deflection equivalent to the load of a large vehicle passing through a bridge during a measurement time from the measurement value (hereinafter, Large vehicle impact assessment method).

しかしながら、この大型車影響評価法を適用するためには計測時間内に通行する大型車の台数、走行車線位置、速度及び車両重量が必要となるため、大型車両の重量を計測するために桁に歪みゲージを貼付して歪みから重量を算出したり、ビデオカメラで撮影を行ったりするため、その分計測に多くの手間が掛かるとともに、計測後のデータ整理も膨大となり、作業費用の増大を招くなどの課題があった。   However, in order to apply this large vehicle impact assessment method, the number of large vehicles that pass within the measurement time, the lane position, the speed, and the vehicle weight are required. Since a strain gauge is attached to calculate the weight from the strain or to shoot with a video camera, it takes a lot of time for measurement and the data organization after measurement becomes enormous, resulting in an increase in work costs. There were issues such as.

そこで本発明の主たる課題は、主として吊橋、斜張橋、アーチ橋、トラス橋などをはじめとする易たわみ性の長大橋梁において、活荷重載荷状態(供用状態)のまま、更に大型車の台数、走行車線位置、速度及び車両重量などを一切無関係としながら、短時間に精度良く活荷重無載荷状態での標高(形状)を得るための標高計測方法を提供することにある。   Therefore, the main problem of the present invention is that, in the long flexible bridges including mainly suspension bridges, cable-stayed bridges, arch bridges, truss bridges, etc. It is an object to provide an altitude measurement method for obtaining altitude (shape) in a live load no-load state with high accuracy in a short period of time regardless of the travel lane position, speed, vehicle weight and the like.

前記課題を解決するために請求項1に係る本発明として、橋梁に活荷重が作用した状態で、任意点における活荷重無載荷状態の標高を得るための計測方法であって、
橋梁外に設置した自動追尾機能付きトータルステーションにより標高計測地点に設置した視準ターゲットを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これら計測値をたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求めることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法が提供される。
In order to solve the above-mentioned problem, the present invention according to claim 1 is a measurement method for obtaining an altitude of an active load unloaded state at an arbitrary point in a state where a live load is applied to a bridge,
The collimation target installed at the altitude measurement point is continuously measured at a small time interval for a predetermined time by the total station with automatic tracking function installed outside the bridge, and the maximum altitude value Hmax and the minimum altitude value Hmin within the measurement time are measured. Either or both and the average altitude value Have are measured, and these measured values are obtained based on the deflection influence line, using either or both of the maximum altitude value Hmax and the minimum altitude value Hmin, the average altitude value Have, and the constant k. Thus, there is provided an altitude measuring method in a state where there is no live load in a bridge, which is obtained by substituting into a calculation formula for obtaining an altitude H0 in a state where there is no live load and by obtaining an elevation in a state where there is no live load.

上記請求項1記載の発明は、任意点における活荷重無載荷状態の標高をトータルステーションによるターゲットの視準のみ(標高計測)によって求める手法を提案するものである。すなわち、前記トータルステーションによって、視準ターゲットを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これらの計測値を数式(活荷重無載荷状態の標高H0を求める算出式)に代入するだけで簡単に演算によって活荷重無載荷状態の標高を得るようにしたものである。   The invention described in claim 1 proposes a method for obtaining the altitude in a no-load state at an arbitrary point only by collimating the target by the total station (elevation measurement). That is, the total station continuously measures the collimation target at a small time interval for a predetermined time, and measures one or both of the maximum elevation value Hmax and the minimum elevation value Hmin and the average elevation value Have within the measurement time. Then, by simply substituting these measured values into a mathematical expression (calculation formula for obtaining the altitude H0 in the no-load state), the altitude in the no-load state is obtained by simple calculation.

先ず、橋梁の任意点におけるたわみ影響線の下で、任意の移動荷重(走行車両)が走行することを考えた場合、この荷重によって発生するたわみの最大値Ymaxと最小値Yminとは、たわみの原因(荷重)が共通しているため、何らかの相関関係(一定比率)にあることに着目し、このたわみ影響線に平均標高値Have(計測値の平均値)の概念を導入すると、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式を導くことができる。従って、トータルステーションによって計測された最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを代入するだけで簡単に活荷重無載荷状態の標高を求めることができる。   First, considering that an arbitrary moving load (traveling vehicle) travels under a deflection influence line at an arbitrary point of the bridge, the maximum value Ymax and the minimum value Ymin of the deflection generated by this load are Focusing on the fact that there is some kind of correlation (a constant ratio) because the cause (load) is common, and introducing the concept of average elevation value Have (average value of measured values) to this deflection influence line, the maximum elevation value Using either or both of Hmax and the minimum altitude value Hmin, the average altitude value Have and the constant k, a calculation formula for obtaining the altitude H0 in the state of no active load can be derived. Accordingly, it is possible to easily obtain the altitude in a state where there is no live load by simply substituting one or both of the maximum altitude value Hmax and the minimum altitude value Hmin and the average altitude value Have measured by the total station.

上記本発明方法の場合は、大型車の台数、走行車線位置、速度及び車両重量などを一切無関係としながら、短時間に精度良く活荷重無載荷状態での標高(形状)を得ることが可能となる。   In the case of the above-described method of the present invention, it is possible to obtain the altitude (shape) in a live load-free state with high accuracy in a short time while irrelevant to the number of large vehicles, travel lane position, speed and vehicle weight. Become.

請求項2に係る本発明として、橋梁に活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法であって、
視準ターゲットとなる全方向プリズムを取り付けた車両を走行させ、各標高計測地点に停車する度に、橋梁外に設置した自動追尾機能付きトータルステーションにより標高計測地点に位置している前記全方向プリズムを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これら計測値をたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求めることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法が提供される。
The present invention according to claim 2 is a measuring method for obtaining an altitude in a state in which no active load is loaded at a number of altitude measuring points set at predetermined intervals in a route direction in a state where a live load is applied to a bridge. ,
Each time a vehicle with an omnidirectional prism attached as a collimation target is run and stops at each altitude measurement point, the omnidirectional prism located at the altitude measurement point is set by a total station with an automatic tracking function installed outside the bridge. Measure continuously at a small time interval for a predetermined time, measure one or both of the maximum altitude value Hmax and minimum altitude value Hmin and the average altitude value Have within the measurement time, and use these measured values as the deflection influence line Substituting into the calculation formula for obtaining the altitude H0 in the no-load state using the maximum altitude value Hmax and / or the minimum altitude value Hmin, the average altitude value Have and the constant k, obtained based on There is provided an altitude measuring method in a state of no loading of a live load on a bridge, characterized by obtaining an altitude in a loaded state.

上記請求項2記載の発明は、前記請求項1記載の発明を応用して、活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法(第1手法)を提案するものである。   The invention according to claim 2 is an application of the invention according to claim 1 in a state where a live load is not applied at a number of elevation measurement points set at predetermined intervals in the route direction in a state where a live load is applied. A measurement method (first method) for obtaining altitude is proposed.

いわば水準測量の要領で、各標高計測地点に作業員を使ってポール状の視準ターゲットを順次設置するような作業手順では計測に多くの時間を要してしまう。従って、視準ターゲットとなる全方向プリズムを取り付けた車両を考案し、この車両を各標高計測地点に所定時間だけ停車させ、これをトータルステーションで視準して標高を得る手順を繰り返すようにすれば、多数の計測地点を短時間で連続的に計測することが可能となる。なお、計測結果は桁の標高値に換算される。   In other words, in the procedure of leveling, a work procedure in which pole-shaped collimating targets are sequentially installed using workers at each elevation measurement point requires a lot of time for measurement. Therefore, if a vehicle with an omnidirectional prism attached as a collimation target is devised, this vehicle is stopped at each elevation measurement point for a predetermined time, and this is collated at the total station to repeat the procedure of obtaining the elevation. It is possible to continuously measure a large number of measurement points in a short time. The measurement result is converted to the altitude value of the digit.

請求項3に係る本発明として、橋梁に活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法であって、
橋梁外に第1自動追尾機能付きトータルステーションと第2自動追尾機能付きトータルステーションとを設置し、橋梁内の基準格点とする標高計測地点に固定的に視準ターゲットを設けるとともに、前記第1自動追尾機能付きトータルステーションにより前記視準ターゲットを視準することにより、前記基準格点位置の活荷重無載荷状態の標高を請求項1記載の方法により予め既知とした上で、視準ターゲットとなる全方向プリズムを取り付けた車両を走行させ、各標高計測地点に停車する度に、前記第1自動追尾機能付きトータルステーションにより基準格点の視準ターゲットを視準して活荷重載荷状態の標高を得ると同時に、前記第2自動追尾機能付きトータルステーションにより前記車両の全方向プリズムを視準して活荷重載荷状態の標高を得て、
前記基準格点における活荷重載荷状態の標高と活荷重無載荷状態の標高との差分を求め、たわみ影響線から求めた前記基準格点と標高計測地点とのたわみ縦距比率を前記差分に乗算して標高計測地点の補正量を算出し、この補正量を標高計測地点の活荷重載荷状態の標高に加減算することにより標高計測地点の活荷重無載荷状態の標高を求めることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法が提供される。
The present invention according to claim 3 is a measuring method for obtaining an altitude in a no-load state at a number of altitude measuring points set at predetermined intervals in the direction of the road in a state where a live load is applied to the bridge. ,
A total station with the first automatic tracking function and a total station with the second automatic tracking function are installed outside the bridge, and a fixed collimation target is provided at the altitude measurement point as the reference rating in the bridge. By collimating the collimating target with a function-equipped total station, the altitude in the no-load state of the reference rating point is determined in advance by the method according to claim 1, and the omnidirectional target becomes the collimating target Each time a vehicle equipped with a prism is run and stops at each altitude measurement point, the total station with the first automatic tracking function collimates the collimating target of the reference rating and obtains the altitude of the live load loaded state. , The total station with the second automatic tracking function collimates the omnidirectional prism of the vehicle and To obtain a high,
The difference between the height of the live load loaded state and the height of the live load unloaded state at the reference rating is obtained, and the difference is multiplied by the deflection vertical distance ratio between the reference rating and the elevation measuring point obtained from the deflection influence line. The bridge is characterized by calculating the correction amount at the altitude measurement point, and calculating the altitude of the altitude measurement point in the no-load state by adding or subtracting this correction amount to the altitude in the active load state at the altitude measurement point. The altitude measurement method in the state of no live load is provided.

上記請求項3記載の発明は、前記請求項1記載の発明を応用して、活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法(第2手法)を提案するものである。   The invention according to claim 3 is an application of the invention according to claim 1 in a state where a live load is not applied at a number of elevation measurement points set at predetermined intervals in the route direction in a state where a live load is applied. A measurement method (second method) for obtaining altitude is proposed.

この第2手法は、同じ橋桁内の二点は同じ載荷荷重によりある一定の比率でたわみが発生することを応用したものであり、無載荷状態標高をあらかじめ求めた(または既知である)補剛桁内基準格点を任意格点の標高計測と同時にある一定時間計測した有載荷状態の標高から、任意格点の無載荷状態標高値を得る方法である。   This second method is applied to the fact that two points in the same bridge girder are deflected at a certain ratio due to the same loading load, and the unloaded state altitude is obtained in advance (or known). This is a method of obtaining an unloaded state altitude value of an arbitrary rating from an altitude of a loaded state in which an in-girder reference rating is measured at a certain time simultaneously with an altitude measurement of an arbitrary rating.

請求項4に係る本発明として、前記活荷重無載荷状態の標高H0を求める算出式は、下記手順によって求める請求項1〜3いずれかに記載の橋梁における活荷重無載荷状態時の標高計測方法が提供される。   As the present invention according to claim 4, the calculation formula for obtaining the altitude H0 in the no-load state of the live load is obtained by the following procedure, and the altitude measuring method in the no-load state of the live load in the bridge according to any one of claims 1 to 3 Is provided.

手順1:前記標高計測地点でのたわみ影響線に基づき、たわみ最大値Ymax、たわみ最小値Yminのいずれか又は両方、たわみ平均値Yave及び定数kを用いて、たわみゼロ点Y0を求めるたわみ関係式を導くとともに、既知数とされる前記たわみ最大値Ymax、たわみ最小値Yminのいずれか又は両方、たわみ平均値Yaveから未知数とされる前記定数kを算出する手順。   Procedure 1: Based on the deflection influence line at the altitude measurement point, the deflection relational expression for obtaining the deflection zero point Y0 using one or both of the deflection maximum value Ymax and the deflection minimum value Ymin, the deflection average value Yave and the constant k. And calculating the constant k, which is an unknown, from one or both of the deflection maximum value Ymax and the deflection minimum value Ymin, which are known numbers, and the deflection average value Yave.

手順2:前記たわみ関係式は、実橋レベルにおいても再現されるとの前提の下、それぞれの対応関係から、前記たわみ最大値Ymaxを最大標高値Hmax、たわみ最小値Yminを最小標高値Hmin、前記たわみ平均値Yaveを平均標高値Haveに置換した活荷重無載荷状態の標高H0を求める算出式を得る第2手順。   Procedure 2: Under the assumption that the deflection relational expression is also reproduced at the actual bridge level, the maximum deflection value Ymax is the maximum elevation value Hmax, the minimum deflection value Ymin is the minimum elevation value Hmin, A second procedure for obtaining a calculation formula for obtaining an altitude H0 in a no-load state in which the deflection average value Yave is replaced with an average altitude value Have.

以上詳説のとおり本発明によれば、主として吊橋、斜張橋、アーチ橋、トラス橋などをはじめとする易たわみ性の長大橋梁において、活荷重載荷状態(供用状態)のまま、更に大型車の台数、走行車線位置、速度及び車両重量などを一切無関係としながら、短時間に精度良く活荷重無載荷状態での標高(形状)を得ることが可能となる。   As described above in detail, according to the present invention, in a large flexible bridge mainly including a suspension bridge, a cable-stayed bridge, an arch bridge, a truss bridge, etc. It is possible to obtain the altitude (shape) in a live load-free state with high accuracy in a short period of time, regardless of the number, travel lane position, speed, vehicle weight, etc.

計測対象とした長大吊橋の側面図の一例である。It is an example of the side view of the long suspension bridge made into the measurement object. トータルステーション10による計測概念図の一例である。2 is an example of a conceptual diagram of measurement by a total station 10. FIG. トータルステーション10による計測要領図の一例である。It is an example of the measurement procedure map by the total station. Lc/2点で実際に測定された活荷重載荷状態での補剛桁の時刻歴標高変化図の一例である。It is an example of the time history elevation change figure of the stiffening girder in the live load loading state actually measured by Lc / 2 point. Lc/2点でのたわみ影響線の一例である。It is an example of the deflection influence line in Lc / 2 point. 第3発明(第2手法)により補剛桁の標高を計測した縦断形状図の一例である。It is an example of the longitudinal profile which measured the altitude of the stiffening girder by the 3rd invention (2nd method). 補正後の補剛桁の無載荷状態標高計測結果(標準温度換算値)の一例である。It is an example of the unloaded state elevation measurement result (standard temperature conversion value) of the stiffening girder after correction. 第2手法に係る二点標高評価補正法の原理説明図である。It is a principle explanatory view of the two-point elevation evaluation correction method according to the second method. 実施例1[例-1]における車両群が通行した時のLc/2点での補剛桁の標高変化図の一例である。It is an example of the elevation change figure of the stiffening girder in Lc / 2 point when the vehicle group in Example 1 [Example-1] passes. 実施例1[例-1]における理論たわみ発生量(たわみ影響線)の一例である。It is an example of the theoretical deflection generation amount (deflection influence line) in Example 1 [Example-1]. 実施例1[例-4]におけるLc/2点の標高変化図の一例である。It is an example of the elevation change figure of Lc / 2 point in Example 1 [Example-4]. 実施例2[例-1]における補剛桁内基準格点(Lc/2点)の標高計測結果の一例である。It is an example of the altitude measurement result of the stiffening girder reference grade (Lc / 2 points) in Example 2 [Example-1]. 実施例2[例-1]における任意格点(Lc/4点)の標高計測結果の一例である。It is an example of the altitude measurement result of the arbitrary rating points (Lc / 4 points) in Example 2 [Example-1].

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本形態例での測定対象とした長大吊橋の側面図である。吊橋1は、側面視で左右両側にそれぞれ主塔2,3を有するとともに、これら主塔2,3からさらに離間する位置にアンカレッジ4,5を有し、前記主塔2,3の塔頂に設置されたケーブル用サドル(図示せず)間に架け渡されたケーブル6の両端を前記アンカレッジ4,5に固定し、このケーブル6の長手方向に沿って所定の間隔をおいた位置から吊り下げられたハンガーロープ7,7…によって両アンカレッジ4,5間に横架された補剛桁8を吊持するものであり、特に長スパン橋梁に適用される橋構造である。   FIG. 1 is a side view of a long suspension bridge to be measured in this embodiment. The suspension bridge 1 has main towers 2 and 3 on both left and right sides in a side view, and has anchorages 4 and 5 at positions further away from the main towers 2 and 3, respectively. Both ends of the cable 6 spanned between cable saddles (not shown) installed in the cable are fixed to the anchorages 4 and 5, and a predetermined distance is provided along the longitudinal direction of the cable 6. The hanger ropes 7, 7... Are suspended from the anchorage 4 and 5, and the stiffening girder 8 is suspended between the two anchorages 4 and 5, and is a bridge structure particularly applied to a long span bridge.

〔第1発明〕
以下、前記長大吊橋1を対象として本発明法によって、任意点(補剛桁中央位置(以下、Lc/2点という。))の活荷重が作用した供用中の状態で、任意点における活荷重無載荷状態の標高を得るための計測方法について説明する。
[First invention]
Hereinafter, the active load at an arbitrary point in the state where the active load at an arbitrary point (the center position of the stiffening girder (hereinafter referred to as Lc / 2 point)) is applied to the long suspension bridge 1 according to the method of the present invention. A measurement method for obtaining the altitude in the unloaded state will be described.

(装置構成)
図2および図3に示されるように、吊橋1外の地上部分にターゲットに対する視準を自動的に補正する自動追尾機能付きトータルステーション10(以下、単にトータルステーションという。)を設置するとともに、標高計測地点となる前記Lc/2点にミラー11(以下、ターゲットという。)を設置し、前記トータルステーション10によってターゲット11を追尾しながら視準し、所定時間の間、距離L、鉛直角α、水平角βを小時間間隔で連続的に計測し、ターゲット11の置かれた補剛桁8天端の標高(H)を求める。前記トータルステーションは、毎秒2.5回のデータ読み取りが可能であり(実際には1秒毎の計測に設定)、読み取られたデータは、前記トータルステーション10に接続されたコンピューター12に記憶されるようになっている。なお、トータルステーション10の設置座標は予め既知とされる。
(Device configuration)
As shown in FIGS. 2 and 3, a total station 10 with an automatic tracking function (hereinafter simply referred to as a total station) that automatically corrects the collimation with respect to the target is installed on the ground portion outside the suspension bridge 1, and the altitude measurement point A mirror 11 (hereinafter referred to as a target) is installed at the Lc / 2 point, and collimated while tracking the target 11 by the total station 10, and the distance L, vertical angle α, horizontal angle β for a predetermined time. Is continuously measured at small time intervals to determine the altitude (H) of the top 8 of the stiffening girder where the target 11 is placed. The total station is capable of reading data 2.5 times per second (actually set to measure every second), and the read data is stored in the computer 12 connected to the total station 10. It has become. The installation coordinates of the total station 10 are known in advance.

本第1発明では、前記トータルステーション10によって、標高計測地点に設置した視準ターゲットを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これら計測値をたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求めるものである。   In the first aspect of the invention, the total station 10 continuously measures the collimation target installed at the altitude measurement point at a small time interval for a predetermined time, and the maximum altitude value Hmax and the minimum altitude value Hmin within the measurement time. Either or both and the average altitude value Have are measured, and these measured values are obtained based on the deflection influence line, using either or both of the maximum altitude value Hmax and the minimum altitude value Hmin, the average altitude value Have, and the constant k. Thus, the altitude H0 in the state without a live load is obtained by substituting it into the calculation formula for obtaining the height H0 in the state without a live load.

(計測原理)
図4にLc/2点で実際に測定された活荷重載荷状態での補剛桁の時刻歴標高変化を示す。図4を一見すると明らかなように、標高は時間経過と共に大きく変化しており、このグラフから活荷重無載荷状態の標高を求めるのは不可能に思える。
(Measurement principle)
FIG. 4 shows the time history elevation change of the stiffening girder in the live load loaded state actually measured at Lc / 2 point. As is apparent from FIG. 4, the altitude changes greatly with the passage of time, and it seems impossible to determine the altitude in the state without a live load from this graph.

線形化たわみ理論によれば「重ね合わせの原理」が成立することから、載荷状態の標高は無載荷状態標高に載荷荷重によるたわみを重ね合わせたものである。つまり、無載荷状態標高は載荷状態の標高から全ての活荷重(軸重)によって発生しているたわみ量相当分を除去することで理論的に求めることができる。しかし、活荷重の載荷パターンは無限に存在するとともに、時々刻々と載荷状態も変化するため、活荷重載荷状態の標高から載荷されているすべての活荷重のたわみ分を1車両毎に計算によって除去することは実際上は不可能である。   Since the “superposition principle” is established according to the linear deflection theory, the altitude in the loaded state is obtained by superimposing the deflection due to the loaded load on the unloaded elevation. That is, the no-load state altitude can be theoretically obtained by removing the amount corresponding to the deflection amount generated by all live loads (axial weight) from the altitude in the loaded state. However, the loading pattern of the live load exists infinitely and the loading state changes from moment to moment, so the deflection of all the live loads loaded from the altitude of the live load loading state is removed by calculation for each vehicle. It is practically impossible to do.

考え方の視点を変えて、たわみ影響線の下で、任意の移動荷重群(走行車両群)が走行することを考えた場合、この荷重群によって発生するたわみの最大値Ymaxと最小値Yminとは、たわみの原因(荷重群)が共通しているため、何らかの相関関係(一定比率)にあるものと考えられる。また、図4の標高変化グラフから読み取れる情報は、たわみの最大値Ymaxと、最小値Yminと、平均標高値Have(計測値の平均値)である。前記平均標高値Haveは、測定した標高を時間積分し時間で除算したものであり、標高計測値の平均値である。   When changing the viewpoint of thinking and considering that an arbitrary moving load group (running vehicle group) travels under the deflection influence line, the maximum value Ymax and the minimum value Ymin of the deflection generated by this load group are Since the cause of deflection (load group) is common, it is considered that there is some correlation (constant ratio). Also, information that can be read from the elevation change graph of FIG. 4 is a maximum value Ymax of deflection, a minimum value Ymin, and an average elevation value Have (average value of measured values). The average altitude value Have is obtained by integrating the measured altitude over time and dividing by time, and is an average value of the altitude measurement values.

そこで、図5に示されるLc/2点でのたわみ影響線(20tf線荷重を想定し、縦軸はそのたわみ量としてある)の下で、このたわみ影響線にたわみ平均値Yave(図5において、面積を時間で割って求めることででき、計測値の平均値に相当する。)の概念を導入すると、たわみ最大値Ymax、たわみ最小値Yminのいずれか又は両方、たわみ平均値Yave及び定数kを用いて、たわみゼロ点Y0を求めるたわみ関係式を導くことができる。   Therefore, under the deflection influence line at Lc / 2 shown in FIG. 5 (assuming a 20 tf line load, the vertical axis is the deflection amount), the deflection average value Yave (in FIG. 5) If the concept of the average value of the measured values is introduced), one or both of the maximum deflection value Ymax and the minimum deflection value Ymin, the deflection average value Yave and the constant k are introduced. Can be used to derive a deflection relational expression for obtaining the deflection zero point Y0.

図5のたわみ影響線からは、たわみゼロ点Yoの標高を求める、次のような3つのたわみ関係式が成立する。   From the deflection influence line in FIG. 5, the following three deflection relational expressions for obtaining the elevation of the deflection zero point Yo are established.

第一式…たわみ最大値Ymaxとたわみ平均値Yaveからたわみゼロ点Yoを算出するたわみ関係式
Yo=Yave+(Ymax−Yave)*k1 …(1)
第二式…たわみ最大値Ymax、たわみ最小値Ymin及びたわみ平均値Yaveからたわみゼロ点Yoを算出するたわみ関係式
Yo=Yave+(Ymax−Ymin)*k2 …(2)
第三式…たわみ最小値Yminとたわみ平均値Yaveからたわみゼロ点Yoを算出するたわみ関係式
Yo=Yave+(Yave−Ymin)*k3 …(3)
ここで、Yave、Ymax及びYminは、20tf線荷重を想定した場合、理論上次のような値となる。
First equation: Deflection relational equation for calculating the deflection zero point Yo from the deflection maximum value Ymax and the deflection average value Yave
Yo = Yave + (Ymax-Yave) * k1 (1)
Second equation: Deflection relational equation for calculating deflection zero point Yo from deflection maximum value Ymax, deflection minimum value Ymin and deflection average value Yave
Yo = Yave + (Ymax-Ymin) * k2 (2)
Third equation: Deflection relational expression for calculating the deflection zero Yo from the deflection minimum value Ymin and deflection average value Yave
Yo = Yave + (Yave-Ymin) * k3 (3)
Here, Yave, Ymax, and Ymin theoretically have the following values assuming a 20 tf line load.

Yave(たわみ平均値)=−0.0135m
Ymax(たわみ最大値)=+0.0059m
Ymin(たわみ最小値)=−0.0678m
また、k1、k2及びk3(以下、k値と呼ぶ)は構造物の影響線によって決まる(すなわち構造物によって決まる)定数とする。これらのk値は発生たわみ量から計算で下記のように求めることができる。ただし、Yoはたわみゼロ点のたわみ量(無載荷状態の時のたわみ量)でありYo=0となる。
Yave (average deflection) = -0.0135m
Ymax (maximum deflection) = + 0.0059m
Ymin (minimum deflection) = -0.0678m
Further, k1, k2 and k3 (hereinafter referred to as k value) are constants determined by the influence line of the structure (that is, determined by the structure). These k values can be calculated from the amount of deflection generated as follows. However, Yo is the deflection amount at the deflection zero point (the deflection amount when there is no load), and Yo = 0.

k1=(Yo−Yave)/(Ymax−Yave)=(0+0.0135)/(0.0059+0.0135)=0.6959
k2=(Yo−Yave)/(Ymax−Ymin)=(0+0.0135)/(0.0059+0.0678)=0.1832
k3=(Yo−Yave)/(Yave−Ymin)=(0+0.0135)/(-0.0135+0.0678)=0.2486
前記たわみ関係式は、実橋レベルにおいても再現されるはずであるから、それぞれの対応関係から、前記たわみ最大値Ymaxを最大標高値Hmax、たわみ最小値Yminを最小標高値Hmin、前記たわみ平均値Yaveを平均標高値Haveに置換すると活荷重無載荷状態の標高H0を求める算出式は下式となる。
k1 = (Yo−Yave) / (Ymax−Yave) = (0 + 0.0135) / (0.0059 + 0.0135) = 0.6959
k2 = (Yo−Yave) / (Ymax−Ymin) = (0 + 0.0135) / (0.0059 + 0.0678) = 0.1832
k3 = (Yo−Yave) / (Yave−Ymin) = (0 + 0.0135) / (− 0.0135 + 0.0678) = 0.2486
Since the deflection equation should be reproduced even at the actual bridge level, the maximum deflection value Ymax is the maximum elevation value Hmax, the minimum deflection value Ymin is the minimum elevation value Hmin, and the deflection average value is based on the corresponding relationship. When Yave is replaced with the average altitude value Have, the calculation formula for obtaining the altitude H0 in the state where there is no live load is as follows.

第一式 H0=Have+(Hmax−Have)*k1 …(1)’
第二式 H0=Have+(Hmax−Hmin)*k2 …(2)’
第三式 H0=Have+(Have−Hmin)*k3 …(3)’
理論上は、上記第一式〜第三式のいずれを用いても良いことになるが、誤差要因の出方によって、誤差に変動が生じる。後述の実施例1に示されるように、標高計測地点がLc/2点の場合は、第一式が誤差が最も小さくなる。第一式が誤差の変動幅が小さくなる理由は、荷重の大きさ(重量)によって発生する最小たわみ(正)は大きく変動するものの、最大たわみ(負)及び平均たわみの変動幅は小さく、結果として最大たわみと平均たわみとの差から導いている第一式の結果が最も安定しており誤差の変動が小さくなっていることによるものと思われる。
First formula H0 = Have + (Hmax-Have) * k1 (1) '
Second formula H0 = Have + (Hmax-Hmin) * k2 (2) '
Third formula H0 = Have + (Have-Hmin) * k3 (3) '
Theoretically, any of the first to third formulas may be used, but the error varies depending on how the error factors are generated. As shown in Example 1 described later, when the altitude measurement point is Lc / 2, the error in the first equation is the smallest. The reason why the fluctuation range of the error in the first equation is small is that the minimum deflection (positive) caused by the size of the load (weight) varies greatly, but the fluctuation range of the maximum deflection (negative) and the average deflection is small. This is probably because the result of the first equation derived from the difference between the maximum deflection and the average deflection is the most stable and the fluctuation of the error is small.

トータルステーション10による計測時間は、計測原理から考えると、少なくとも荷重(車両)が橋に進入してから通過し終える時間(t)は必要である。好ましくは、渋滞や徐行、不確定な誤差要因、精度向上等を考慮すると、その3倍(3*t)程度以上の時間を設定するのが望ましい。   Considering the measurement principle, the measurement time by the total station 10 needs at least the time (t) for the load (vehicle) to finish passing after entering the bridge. Preferably, it is desirable to set a time that is about three times (3 * t) or more in consideration of traffic jams, slow driving, uncertain error factors, accuracy improvement, and the like.

〔第2発明〕
上記第1発明の核として、この方法を利用し、活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法(第1手法)を説明する。
[Second invention]
As a core of the first aspect of the invention, this method is used to obtain an altitude in a state in which no live load is loaded at a number of altitude measurement points set at predetermined intervals in the route direction in a state where a live load is applied. (First method) will be described.

本第1手法は、視準ターゲットとなる全方向プリズムを取り付けた車両を走行させ、各標高計測地点に停車する度に、橋梁外に設置した自動追尾機能付きトータルステーションにより標高計測地点に位置している前記全方向プリズムを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これらをたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求めるようにするものである。   In this first method, every time a vehicle equipped with an omnidirectional prism as a collimation target is run and stops at each elevation measurement point, it is located at an elevation measurement point by a total station with an automatic tracking function installed outside the bridge. The omnidirectional prism is continuously measured at a small time interval for a predetermined time, and the maximum altitude value Hmax and / or the minimum altitude value Hmin within the measurement time and the average altitude value Have are measured. Substitute into the calculation formula to find the altitude H0 in the no-load state using the maximum altitude value Hmax and / or the minimum altitude value Hmin, the average altitude value Have and the constant k obtained based on the deflection influence line. The altitude in a state where no live load is loaded is obtained.

この計測法は、補剛桁の計測格点が数十点以上と多数ある場合の補剛桁の形状測定あるいは路面の縦断線形の確認作業において極めて有利であり、従来採用されてきた固定点を計測する方法または水準測量に比べより短時間で連続的に計測することが可能である。またこの方法は、作業箇所付近だけの部分的な交通規制だけでも作業が可能である。   This measurement method is extremely advantageous in measuring the shape of a stiffening girder when there are many measurement points of stiffening girder, such as tens or more, or for confirming the vertical alignment of the road surface. It is possible to measure continuously in a shorter time than the measuring method or leveling. In addition, this method can be performed only by partial traffic restriction only in the vicinity of the work location.

なお、全方向プリズムとは、ほぼ同じ平面内であればあらゆる方向から視準が可能であるプリズムであり、これを車両の上部に取り付ける。   The omnidirectional prism is a prism that can be collimated from all directions within a substantially same plane, and is attached to the upper part of the vehicle.

全方向プリズムを取り付けた車両(以下、MAT車「Movable-Auto-Tracking(動体自動追尾)」と呼ぶ。)が補剛桁の格点ごとに停止して、Lc/2点と同様に補剛桁の標高を計測する。   A vehicle equipped with an omnidirectional prism (hereinafter referred to as a MAT car “Movable-Auto-Tracking”) stops at each stiffening girder and stiffens like the Lc / 2 point. Measure the altitude of the digit.

〔第3発明〕
上記第1発明を利用し、活荷重が作用した供用中の状態で、橋梁上に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法(第2手法)を説明する。
[Third invention]
Utilizing the first invention, a measurement method for obtaining an altitude in a state in which no live load is loaded at a number of altitude measurement points set at predetermined intervals on a bridge in a state where a live load is applied (second method) (Method) will be described.

格点ごとに無載荷状態標高を算出するためには、前述の第1手法を適用すれば求めることは可能であるが、この計測法は路面の標高を計測するため、これを補剛桁の標高に換算する必要もあるとともに、計測地点毎にある程度の時間、MAT車を停止させることが条件となるため計測に時間が掛かる。   In order to calculate the no-load state altitude for each rating point, it can be obtained by applying the above-mentioned first method, but this measurement method measures the altitude of the road surface. It is necessary to convert to altitude, and it takes time to measure because it is a condition that the MAT vehicle is stopped for a certain period of time at each measurement point.

そこで、橋梁外に第1自動追尾機能付きトータルステーションと第2自動追尾機能付きトータルステーションとを設置し、橋梁内の基準格点とする標高計測地点に固定的に視準ターゲットを設けるとともに、前記第1自動追尾機能付きトータルステーションにより前記視準ターゲットを視準することにより、前記基準格点位置の活荷重無載荷状態の標高を請求項1記載の方法により予め既知とした上で、視準ターゲットとなる全方向プリズムを取り付けた車両を走行させ、各標高計測地点に停車する度に、前記第1自動追尾機能付きトータルステーションにより基準格点の視準ターゲットを視準して活荷重載荷状態の標高を得ると同時に、前記第2自動追尾機能付きトータルステーションにより前記車両の全方向プリズムを視準して活荷重載荷状態の標高を得て、
前記基準格点における活荷重載荷状態の標高(平均標高値Have)と活荷重無載荷状態の標高(平均標高値Have)との差分を求め、たわみ影響線から求めた前記基準格点と標高計測地点とのたわみ縦距比率を前記差分に乗算して標高計測地点の補正量を算出し、この補正量を標高計測地点の活荷重載荷状態の標高に加減算することにより標高計測地点の活荷重無載荷状態の標高を求めるようにする(以下、「二点標高評価補正法」ともいう)。
Therefore, a total station with a first automatic tracking function and a second total station with a second automatic tracking function are installed outside the bridge, and a fixed collimation target is provided at an altitude measurement point as a reference rating point in the bridge. By collimating the collimating target with a total station with an automatic tracking function, the altitude of the reference rating position in a live load-unloaded state is previously known by the method according to claim 1 and becomes a collimating target. Each time a vehicle equipped with an omnidirectional prism is run and stops at each altitude measurement point, the total target with the first automatic tracking function is used to collimate the collimation target of the reference rating to obtain the altitude of the live load loaded state. At the same time, the total station with the second automatic tracking function collimates the omnidirectional prism of the vehicle and loads a live load. To obtain the elevation of the state,
The difference between the height of the live load loaded state (average elevation value Have) and the height of the live load unloaded state (average elevation value Have) at the reference grade is obtained, and the reference grade and elevation measurement obtained from the deflection influence line are obtained. Calculate the correction amount at the altitude measurement point by multiplying the above-mentioned difference by the deflection longitudinal distance ratio with the point, and add / subtract this correction amount to the altitude of the live load loading state at the altitude measurement point to eliminate the live load at the altitude measurement point. The altitude of the loaded state is obtained (hereinafter also referred to as “two-point altitude evaluation correction method”).

本第2手法では、基準格点のたわみとの相対差で任意格点の活荷重無載荷の標高を求めるため任意格点の標高が異常値となる可能性を回避し易いなどの利点を有する。   This second method has an advantage that it is easy to avoid the possibility that the altitude of the arbitrary rating point becomes an abnormal value because the altitude of the unloaded live load of the arbitrary rating point is obtained by the relative difference from the deflection of the reference rating. .

上記計測手法により車両の全方向プリズムを視準して活荷重載荷状態の標高を得た結果を図6に示す。この計測例では、車両によるたわみ発生が大きい中央径間では停止時間を長く(60sec間)とり、たわみ発生の影響が小さい側径間では停止時間を短く(30sec間)したが、全75格点の計測を53分間で終えている。計測は全体を4分割で行っており、橋台〜主塔、主塔〜Lc/2点、Lc/2点〜主塔及び主塔〜橋台で行ったデータを合成したものである。このように4分割をしなくとも計測は可能であるが、主塔やLc/2点のセンターステーにより一時的に視準がさえぎられることやデータの確実な取得とバックアップ保管をするためこのような手法をとった。   FIG. 6 shows a result obtained by collimating the omnidirectional prism of the vehicle by the above measurement method and obtaining an altitude in a live load state. In this measurement example, the stop time is longer (60 seconds) between the central diameters where the deflection caused by the vehicle is large, and the stop time is shortened (30 seconds) between the side diameters where the effect of deflection is small. Measurement is completed in 53 minutes. The whole measurement is performed in four divisions, and data obtained by abutment to main tower, main tower to Lc / 2 point, Lc / 2 point to main tower, and main tower to abutment is synthesized. Measurements are possible without dividing into four in this way, but this is because the collimation is temporarily interrupted by the main tower and the center stay of Lc / 2 points, and the data is reliably acquired and backed up. I took this technique.

階段状に見える各ステップは本来レベルとなるはずであるが、大型車が通過した場合には補剛桁の標高が大きく変化するため凸凹状を呈している部分も何箇所か見受けられるが(同図の拡大図参照)、「二点標高評価補正法」によりその影響を無くすことが可能である。このようにして求めた補剛桁の無載荷状態の標高計測結果(標準温度換算値)を図7に示す。   Each step that looks like a staircase should be a level originally, but when a large vehicle passes, the elevation of the stiffening girder changes greatly, so there are some parts that are uneven (the same The influence can be eliminated by the “two-point altitude evaluation correction method”. FIG. 7 shows the altitude measurement result (standard temperature conversion value) of the stiffening girder thus obtained in the unloaded state.

この「二点標高評価補正法」は、同じ橋桁内の二点は同じ載荷荷重によりある一定の比率でたわみが発生することを応用したものであり、無載荷状態標高をあらかじめ求めた(または既知である)補剛桁内基準格点を任意格点の標高計測と同時にある一定時間計測した有載荷状態の標高から、任意格点の無載荷状態標高値を得る方法である。   This “two-point altitude evaluation correction method” is an application of the fact that two points in the same bridge girder are deflected at a certain ratio due to the same loading load. This is a method of obtaining an unloaded state altitude value of an arbitrary rating from an altitude of a loaded state in which a reference rating in the stiffening girder is measured at a certain time simultaneously with an altitude measurement of an arbitrary rating.

図8に示されるように、ある1台の車両だけが本橋を通行したものと仮定する。この時、Lc/2点にはその車両に見合ったたわみが発生し、そのたわみの平均値がΔWL/2であったとする。 As shown in FIG. 8, it is assumed that only one vehicle has passed the main bridge. At this time, it is assumed that a deflection corresponding to the vehicle occurs at the point Lc / 2, and the average value of the deflection is ΔWL / 2 .

一方、Lc/4点には同じ荷重によりたわみが発生するが、Lc/2点のたわみ平均値に対するLc/4点のたわみ平均値の比率をgとすれば、Lc/4点に発生するたわみの値はg*ΔWL/2となる。この比率g(縦距比率)は構造物特有の値でありたわみ影響線から算出できる。 On the other hand, deflection occurs at the Lc / 4 point due to the same load, but if the ratio of the deflection average value at the Lc / 4 point to the deflection average value at the Lc / 2 point is g, the deflection occurs at the Lc / 4 point. The value of is g * Δ WL / 2 . This ratio g (vertical distance ratio) is a value specific to the structure and can be calculated from a deflection influence line.

従って、下式(4)により、任意格点の無載荷状態の標高Hjを求めることができる。   Therefore, the altitude Hj in an unloaded state at an arbitrary rating can be obtained by the following equation (4).

Hj=H0−g*Δave …(4)
ここで、Hj:任意格点(j)の無載荷状態標高(m)
H0:基準格点(0)の無載荷状態標高(m)
g :任意格点の基準格点に対する平均たわみ量比率(縦距比率)
Δave:基準格点の平均たわみ量(差分)
この「二点標高評価補正方法」は原理説明図(図8)で述べているように、1台の大型車が完全に通行した場合に成立する方法である。したがって多くの車両が連続して通行するような場合や通過途中の車両があれば、当然補正誤差が発生する。その発生誤差を小さくするには、後述する〔実施例2〕[例-2]より、格点毎の計測時間を約3分(180sec)以上とすればよい。但し、大型車が通行している場合で二点(基準格点、任意格点)ともその大型車が補正対象に完全に含まれるならば、短時間でも発生誤差を小さくすることが可能である。
Hj = H0−g * Δave (4)
Where Hj: altitude (m) with no rating (j)
H0: Elevation without load of standard grade (0) (m)
g: Average deflection ratio of arbitrary rating to reference rating (vertical distance ratio)
Δave: Average deflection of the reference rating (difference)
This “two-point altitude evaluation correction method” is a method that is established when one large vehicle passes completely, as described in the principle explanatory diagram (FIG. 8). Therefore, if many vehicles pass continuously or if there are vehicles in the middle of passing, a correction error naturally occurs. In order to reduce the generated error, the measurement time for each rating may be set to about 3 minutes (180 sec) or more from [Example 2] [Example-2] described later. However, if a large vehicle is passing and if the large vehicle is completely included in the correction target for both two points (reference rating, optional rating), the error can be reduced even in a short time. .

〔実施例1〕
前記〔第1発明〕の欄では、20tfの単一線荷重を載荷したが、複数の異なる荷重が連行載荷する場合は上式中のYmax,Yymin及びYaveが単一の線荷重載荷の場合と異なるため、k値は上記の値とは異なり任意の値をとることが予想される。従って、複数の車両が連行した場合について、仮想シミュレーションを行い、計測誤差及びk値のバラツキ程度などについて検討した。
[Example 1]
In the [first invention] column, a single line load of 20 tf was loaded. However, when multiple different loads are entrained, Ymax, Yymin and Yave in the above equation are different from the case of a single line load. Therefore, the k value is expected to take an arbitrary value unlike the above value. Therefore, when a plurality of vehicles were taken, a virtual simulation was performed to examine the measurement error and the k value variation.

[例-1]
無載荷状態標高(Ho=40.000m)が既知である補剛桁上を、5分間の計測時間内に任意の車両(線荷重)8台が通行した場合について、無載荷状態標高を算出した例を示す。重量は4〜28tfとし、橋梁内の通過所要時間は低速車(60sec)及び超低速車(120sec)とした(表-1)。

Figure 0005261441
[Example-1]
Example of calculating the no-load state altitude when 8 arbitrary vehicles (line loads) pass within the measurement time of 5 minutes on the stiffening girder where the no-load state altitude (Ho = 40.000m) is known. Indicates. The weight was 4 to 28 tf, and the time required to pass through the bridge was a low-speed vehicle (60 sec) and a super-low-speed vehicle (120 sec) (Table 1).
Figure 0005261441

これらの車両群が通行した時のLc/2点での補剛桁の標高変化図は図9のようである。図9に示した標高図は、各車両によって発生するたわみを無載荷状態の補剛桁(Ho=40.000m)に重ね合わせたものである。図9は無載荷状態標高を40.000mとして設定したものではあるが、この図からは無載荷状態標高がどれほどであるかは皆目見当がつかない。   The elevation change diagram of the stiffening girder at the point Lc / 2 when these vehicle groups pass is as shown in FIG. The elevation map shown in FIG. 9 is obtained by superimposing the deflection generated by each vehicle on a stiffening girder (Ho = 40.000 m) in an unloaded state. Although FIG. 9 shows that the no-load state altitude is set to 40.000 m, it is not clear from this figure how much the no-load state altitude is.

そこで、〔第1発明〕を適用して、図9から得られた計測値(Hmax、Have及びHmin)だけから本来不明である無載荷状態標高の算出を試みる。ここで全車両による図10のたわみ量(たわみ影響線)から平均値、最大値及び最小値を算出すると表2のようになり、この値からk値は表3のように算出できる。

Figure 0005261441
Figure 0005261441
Therefore, by applying [First Invention], an attempt is made to calculate an unloaded state altitude that is originally unknown from only the measured values (Hmax, Have, and Hmin) obtained from FIG. Here, when the average value, the maximum value, and the minimum value are calculated from the deflection amount (deflection influence line) of FIG. 10 for all the vehicles, it is as shown in Table 2. From this value, the k value can be calculated as shown in Table 3.
Figure 0005261441
Figure 0005261441

これらのk値と図9に示す標高の計測結果(表4)をもとに無載荷状態標高を算出する。

Figure 0005261441
The no-load state altitude is calculated based on these k values and the altitude measurement results shown in FIG. 9 (Table 4).
Figure 0005261441

第一式による無載荷状態標高の算出
Yo=39.9732+(40.0115-39.9732)*0.7003=Ho(=40.000m)
第二式による無載荷状態標高の算出
Yo=39.9732+(40.0115-39.9079)*0.2586=Ho(=40.000m)
第三式による無載荷状態標高の算出
Yo=39.9732+(39.9732-39.9079)*0.4101=Ho(=40.000m)
この結果、第一式〜第三式とも無載荷状態標高が当初仮定して設定していたHo=40.000mに等しくなり、無載荷状態標高の推定が可能であることが立証できた。
Calculation of the no-load state elevation by the first formula
Yo = 39.9732 + (40.0115-39.9732) * 0.7003 = Ho (= 40.000m)
Calculation of the no-load state elevation by the second equation
Yo = 39.9732 + (40.0115-39.9079) * 0.2586 = Ho (= 40.000m)
Calculation of the no-load state altitude using the third equation
Yo = 39.9732 + (39.9732-39.9079) * 0.4101 = Ho (= 40.000m)
As a result, it was proved that the unloaded state altitude was equal to Ho = 40.000m, which was initially set in the first to third formulas, and it was possible to estimate the unloaded state altitude.

[例-2]
前例において荷重の大きさを任意に変えた場合について無載荷状態標高を算出した例を示す。車両重量は0〜28tfとした全25ケースである(表5)。

Figure 0005261441
[Example-2]
The example which calculated the no-load state altitude about the case where the magnitude | size of a load is changed arbitrarily in a previous example is shown. The vehicle weight is a total of 25 cases with 0 to 28tf (Table 5).
Figure 0005261441

この表5において各ケースごとに算出されたk値を使用すれば無載荷状態標高は全て40.000mとなる。しかし、例えばk1では0.55〜0.80に変化しておりこのようにk値が変動するとなると無載荷状態標高の算出の一般式化は容易ではない。   If the k value calculated for each case in Table 5 is used, the unloaded altitude is 40.000m. However, for example, k1 changes from 0.55 to 0.80, and when the k value fluctuates in this way, it is not easy to formulate a general formula for calculating the no-load state altitude.

そこで、0.55〜0.80に変化しているk1を0.70(単一線荷重載荷状態の場合のk1=0.6959を丸めた値と同値とした)に、0.10〜0.29に変化しているk2を0.18(同k2=0.1832を丸めた値と同値)に、さらに0.12〜0.48に変化しているk3を0.25(同k3=0.2486を丸めた値と同値)にそれぞれ仮定して、それらの値を使用して算出した無載荷状態標高の計算値が当初仮定した無載荷状態標高Ho=40.000mとどれだけ差があるかを確認した(表6)。

Figure 0005261441
Therefore, k1 changing from 0.55 to 0.80 is changed to 0.70 (k1 = 0.6959 in the case of single-line load loading), and k2 changing from 0.10 to 0.29 is set to 0.18 (same k2 = 0.1832 rounded to the same value) and k3 changing from 0.12 to 0.48 was assumed to be 0.25 (same as the rounded value of k3 = 0.2486), and calculated using those values. It was confirmed how much the calculated value of unloaded state elevation was different from the initially assumed unloaded state elevation Ho = 40.000m (Table 6).
Figure 0005261441

この結果、第一式ではk1=0.70と仮定したとしても±4mm以内に収まることが確認できたものの、第二式、第三式において(単一線荷重載荷状態の場合のk2,k3とした場合には)、15mm程度の誤差は免れないことが確認できた。   As a result, even though it was assumed that k1 = 0.70 in the first formula, it was confirmed that it would be within ± 4mm, but in the second and third formulas (when k2 and k3 in the case of single-line load loading state) It was confirmed that an error of about 15mm was inevitable.

このようにk1値を用いた推定式がどのような載荷状態であっても安定して誤差の変動幅が小さくなる理由は、荷重の大きさ(重量)によって発生する最小たわみ(正)は大きく変動するものの、最大たわみ(負)及び平均たわみの変動幅は小さく、結果として最大たわみと平均たわみとの差から導いている第一式の結果が最も安定しており誤差の変動が小さくなっていることによる(図5参照)。   The reason why the fluctuation range of the error is stable regardless of the loading condition of the estimation formula using the k1 value is that the minimum deflection (positive) caused by the load (weight) is large. Although it fluctuates, the fluctuation range of the maximum deflection (negative) and the average deflection is small, and as a result, the result of the first formula derived from the difference between the maximum deflection and the average deflection is the most stable, and the fluctuation of the error is small. (See FIG. 5).

図5は20tf線荷重を載荷した時のLc/2点のたわみ影響線であるが、この図のYmax,Yave及びYminは荷重0tf(無載荷)との差(荷重20tfによる違い)をも表しており、これからYmax,Yaveの値から推定する第一式は変動幅が少なく安定したものになることが理解できる。   Fig. 5 shows the deflection effect line at Lc / 2 when 20tf load is loaded. Ymax, Yave and Ymin in this figure also represent the difference from 0tf (no load) (difference due to load 20tf). From this, it can be understood that the first equation estimated from the values of Ymax and Yave has a small fluctuation range and is stable.

これより、載荷状態の標高から無載荷状態標高を算出する方法として、第一式(標高平均値と標高最大値を利用して求める算出式)が極めて有効であることがわかる。なお、これはLc/2点の場合であり、計測地点毎にたわみ影響線の形状が異なるため、第一式はすべてのケースで誤差が最小となるわけではない。   From this, it can be seen that the first formula (calculation formula obtained using the altitude average value and the altitude maximum value) is extremely effective as a method for calculating the no-load-state altitude from the altitude of the loaded state. Note that this is the case of Lc / 2 points, and since the shape of the deflection influence line differs at each measurement point, the first equation does not minimize the error in all cases.

[例-3]
これまでは大型車について全て線荷重として取り扱ってきた。そこで、ここでは多軸車両が通過した場合の影響を検討した。また、計測時間は5分間と固定していたがこれより短時間でも誤差が小さければ問題ないはずであり、計測時間の影響についても検討した。
[Example-3]
So far, all large vehicles have been handled as line loads. Therefore, here, the effect when a multi-axis vehicle passes is examined. Although the measurement time was fixed at 5 minutes, there should be no problem if the error is small even in a shorter time than this, and the influence of the measurement time was also examined.

なお車両重量は任意とし、橋梁内の通過時間が極めて短い高速車(30sec)、中速車(40sec)及び低速車(60sec)の3種類と仮定した。   It is assumed that the vehicle weight is arbitrary and that there are three types: a high-speed vehicle (30 sec), a medium-speed vehicle (40 sec), and a low-speed vehicle (60 sec) with a very short transit time.

検討の結果を表7と表8に示す。仮定したk値で算出した無載荷状態の標高計算値は第一式の場合が最も誤差が小さくなった。また、標高値の差は±2mmと小さく、計測時間については、30sec(表7)と短くても300sec(表8)と長くてもほとんど変わらない結果であった。なお、表中の(無)は無載荷状態標高値を、(平)は平均標高値を、(大)は最大標高値をまた(小)は最小標高値を示す。   Tables 7 and 8 show the results of the study. The altitude calculation value in the no-load state calculated with the assumed k value had the smallest error in the case of the first equation. Also, the difference in altitude value was as small as ± 2 mm, and the measurement time was almost the same whether it was as short as 30 sec (Table 7) or as long as 300 sec (Table 8). In the table, (none) indicates the no-load state elevation value, (flat) indicates the average elevation value, (large) indicates the maximum elevation value, and (small) indicates the minimum elevation value.

計測時間30secの時間設定は、高速車が橋を通過するのに要する最小時間として設定されたものであるが、表7の計測結果は、計測時間帯が深夜であり、1台の高速車が通過した場合であったため、このような結果になったものと予測される。従って、渋滞や徐行、不確定要素(外乱)、精度向上を考慮すると、その3倍(3*t)程度以上の時間を設定するのが望ましい。

Figure 0005261441
Figure 0005261441
[例-4]
図11は、実計測結果の無載荷状態標高からk値を算出したものである。Lc/2点の標高変化からもわかるように全く標高が変化していない無載荷状態標高が計測でも得られている(○部分)。この例の無載荷状態標高からk値を算出する(表9)。
Figure 0005261441
The time setting of 30 seconds is set as the minimum time required for a high-speed vehicle to pass through the bridge. However, the measurement results in Table 7 show that the measurement time zone is midnight and one high-speed vehicle is Since it was a case of passing, it is predicted that such a result was obtained. Therefore, in consideration of traffic jams, slow speeds, uncertainties (disturbances), and accuracy improvements, it is desirable to set a time that is about three times (3 * t) or more.
Figure 0005261441
Figure 0005261441
[Example-4]
FIG. 11 shows the k value calculated from the no-load state altitude of the actual measurement result. As can be seen from the elevation change at the Lc / 2 point, the no-load elevation where no elevation has changed at all is also obtained from the measurement (circled portion). The k value is calculated from the no-load state altitude in this example (Table 9).
Figure 0005261441

無載荷状態標高を図11の標高がほとんど変化していない時間帯の標高47.8278mと一致させるためのk1値を求めるとk1=0.64となる。   When the k1 value for matching the unloaded state altitude with the altitude of 47.8278 m in the time zone in which the altitude in FIG. 11 hardly changes is obtained, k1 = 0.64.

このk1は、本橋のたわみ影響線の理論値から求めるならば、前述のように0.70となるはずである。しかるにこの値が0.64となりわずかに異なるが、この理由は実構造物のたわみ影響線が必ずしも理論値通りではない結果と考えることができる。   If k1 is calculated from the theoretical value of Motohashi's deflection influence line, it should be 0.70 as described above. However, this value is 0.64, which is slightly different. The reason for this can be considered as a result that the deflection influence line of the actual structure is not necessarily the theoretical value.

なお、k1=0.70として算出した標高は47.8290mであり上記の値(47.828m)との差は1mmであり、形状結果を評価する上では問題となる値ではない。   The altitude calculated as k1 = 0.70 is 47.8290 m, and the difference from the above value (47.828 m) is 1 mm, which is not a problem value when evaluating the shape result.

〔実施例2〕
[例-1]
本実施例2では、上記〔第3発明〕によって、超大型車が載荷した条件におけるLc/4点の無載荷状態標高を求めた。補剛桁内基準格点であるLc/2点と任意格点であるLc/4点を同時計測し、Lc/2点の無載荷状態の標高値(第1発明によって求めた。)及び載荷活荷重によるたわみ影響線を用いて算出する。
[Example 2]
[Example-1]
In the present Example 2, the above-mentioned [3rd invention] calculated | required the unloaded state altitude of Lc / 4 point in the conditions which the super-large-sized vehicle loaded. The Lc / 2 point, which is the standard rating point within the stiffening girder, and the Lc / 4 point, which is an arbitrary rating point, are simultaneously measured, and the elevation value (obtained by the first invention) and loading of the Lc / 2 point are measured. Calculated using the deflection influence line due to live load.

補剛桁内基準格点であるLc/2点の標高計測結果を図12に示す。また、第1発明によって求めた無載荷時の標高を同図に示す。   FIG. 12 shows the altitude measurement result of Lc / 2 point, which is the reference grade within the stiffening girder. Moreover, the altitude at the time of no loading calculated | required by 1st invention is shown in the same figure.

上記時間帯におけるLc/2点の載荷状態平均標高値と無載荷状態標高は下記のようである。   The loaded state average elevation value and the unloaded state elevation at Lc / 2 points in the above time zone are as follows.

(載荷状態平均標高値)=47.819m
(無載荷状態標高値) =47.828m
これより、この時間帯に作用していた活荷重によるたわみの影響値は次のように算出できる。
(Loaded state average altitude value) = 47.819m
(No load state altitude value) = 47.828m
From this, the influence value of the deflection due to the live load acting on this time zone can be calculated as follows.

(活荷重によるたわみの影響値)=(無載荷状態標高値)−(載荷状態平均標高値)
=47.828−47.819
=0.009m
次に、Lc/4点の標高計測結果図(図13)より、Lc/2点の計測と同じ時間帯の標高値は46.249mである。
(Influence value of deflection due to live load) = (No load state altitude value)-(Load state average altitude value)
= 47.828-47.819
= 0.009m
Next, from the elevation measurement result diagram of Lc / 4 point (FIG. 13), the elevation value in the same time zone as the measurement of Lc / 2 point is 46.249 m.

一方、Lc/2点及びLc/4点のたわみ平均値は各々のたわみ影響線(理論値)から次の値であり、たわみ縦距比率gは下記のような値となる。   On the other hand, the deflection average values at the Lc / 2 point and the Lc / 4 point are the following values from the respective deflection influence lines (theoretical values), and the deflection vertical distance ratio g is as follows.

(Lc/2点のたわみ平均値)=0.01350m
(Lc/4点のたわみ平均値)=0.00967m
(Lc/4点のたわみ縦距比率)g= 0.716
これより、Lc/4点の補正無載荷状態標高値は下記式により算出できる。
(Lc/4点の補正無載荷状態標高値)=(載荷状態の平均標高値)+(荷重によるたわみ影響値)
=46.249+0.716*0.009
=46.255m
求められた補正無載荷状態標高値を図13に図示しているが、この値は同図の0:28:42〜0:29:00間に出現している大型車が無載荷時寒帯の標高値(46.2545〜46.2548)に同じとなり、この方法の正しさが確認できた。
(Lc / 2 point deflection average value) = 0.01350m
(Lc / 4 point deflection average value) = 0.00967m
(Lc / 4 point deflection length ratio) g = 0.716
From this, the corrected unloaded state elevation value at Lc / 4 point can be calculated by the following equation.
(Lc / 4 point corrected no-load state altitude value) = (average altitude value in the loaded state) + (deflection effect value due to load)
= 46.249 + 0.716 * 0.009
= 46.255m
The calculated corrected no-load state altitude value is shown in FIG. 13, and this value indicates that the large vehicle appearing between 0:28:42 and 0:29:00 in the figure is It was the same as the altitude value (46.2545-46.2548), confirming the correctness of this method.

[例-2]
〔第3発明〕に係る「二点標高評価補正方法」は、原理説明図(図8)で述べているように、1台の大型車が完全に通行した場合に成立する方法である。したがって多くの車両が連続して通行するような場合や通過途中の車両があれば、当然補正誤差が発生する。ここではその発生誤差とそれを小さくする手法を併せて検討した。
[Example-2]
The “two-point elevation evaluation correction method” according to the “third invention” is a method that is established when one large vehicle passes completely as described in the principle explanatory diagram (FIG. 8). Therefore, if many vehicles pass continuously or if there are vehicles in the middle of passing, a correction error naturally occurs. Here, we examined the generation error and a method to reduce it.

一般には計測時間を長くすれば誤差は小さくなることは予想できるが、計測時間が長くなるほど全体作業時間も長くなり予期せぬ温度変化の影響も含まれてしまう。
そこで、全体の計測時間(0:22:00〜0:29:00)のデータを利用して、全計測時間(7分間)を15sec〜420secに任意に細分化して、それぞれの計算で求めた補正無載荷状態標高値(H)と単独で得ている無載荷状態標高(Ho)を比べ発生する誤差を求め、これから最適な計測時間を検討した。
In general, if the measurement time is lengthened, the error can be expected to be small. However, the longer the measurement time, the longer the overall work time becomes, and the influence of an unexpected temperature change is included.
Therefore, using the data of the entire measurement time (0:22:00 to 0:29:00), the total measurement time (7 minutes) was arbitrarily subdivided into 15 seconds to 420 seconds, and obtained by each calculation. An error was calculated by comparing the corrected unloaded elevation (H) with the unloaded elevation (Ho) obtained independently, and the optimum measurement time was studied.

検討は図13に示した Lc/4点における標高計測結果で行ったもので、無載荷状態標高(Ho)は46.255mである。その結果を表10に示す。

Figure 0005261441
The investigation was conducted based on the altitude measurement result at Lc / 4 point shown in FIG. 13, and the no-load state altitude (Ho) is 46.255 m. The results are shown in Table 10.
Figure 0005261441

表10より、検討結果はおよそ以下のようになる。
(1)計測時間を長くするほど発生誤差を小さく抑えることが可能である。
(2)発生誤差量を数mm程度に抑えるためには約3分(180sec)以上が必要である。
(3)3分(180sec)以下の計測時間では、極端に誤差が大きくなることがある。
(4)特に大型車が通行している場合は、二点(基準格点、任意格点)ともその大型車が補正対象に完全に含まれるならば、短時間でも発生誤差を小さくすることが可能である。
(5)計測時間を比較的長くとっても、大型車が完全に補正対象に含まれていないと誤差が大きくなることもある。
From Table 10, the examination results are as follows.
(1) The longer the measurement time, the smaller the error that can occur.
(2) About 3 minutes (180 sec) or more is required to reduce the amount of generated error to a few millimeters.
(3) In the measurement time of 3 minutes (180 sec) or less, the error may become extremely large.
(4) Especially when a large vehicle is passing, if the large vehicle is completely included in the correction target for both the two points (reference rating and arbitrary rating), the error can be reduced even in a short time. Is possible.
(5) Even if the measurement time is relatively long, the error may increase if a large vehicle is not completely included in the correction target.

〔他の形態例〕
(1)上記〔発明を実施するための形態〕の説明では、温度に対する補正については行っていないが、基準温度(ex.20℃)における活荷重無載荷時の標高とするには、基準温度に対する差分温度だけ温度補正を行うようにすればよい。一般的には、温度と標高とは一次線形の関係で表すことができるため、予め単位温度当たりの標高補正量を算出しておけば、簡単に温度分を補正することが可能である。
[Other examples]
(1) In the above description of [Mode for Carrying Out the Invention], correction for temperature is not performed, but in order to obtain an altitude when there is no live load at a reference temperature (ex. 20 ° C.), the reference temperature It is only necessary to perform temperature correction by the difference temperature with respect to. Generally, since temperature and altitude can be expressed by a linear relationship, if the altitude correction amount per unit temperature is calculated in advance, the temperature can be easily corrected.

1…吊橋、2・3…主塔、4・5…アンカレッジ(橋台)、6…ケーブル、7…ハンガーロープ、8…補剛桁、10…トータルステーション、11…ターゲット、12…コンピュータ   DESCRIPTION OF SYMBOLS 1 ... Suspension bridge, 2.3 ... Main tower, 4.5 ... Anchorage (bridge), 6 ... Cable, 7 ... Hanger rope, 8 ... Stiffening girder, 10 ... Total station, 11 ... Target, 12 ... Computer

Claims (4)

橋梁に活荷重が作用した状態で、任意点における活荷重無載荷状態の標高を得るための計測方法であって、
橋梁外に設置した自動追尾機能付きトータルステーションにより標高計測地点に設置した視準ターゲットを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これら計測値をたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求めることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法。
In a state where a live load is applied to a bridge, a measurement method for obtaining an altitude of a no-load state at any point,
The collimation target installed at the altitude measurement point is continuously measured at a small time interval for a predetermined time by the total station with automatic tracking function installed outside the bridge, and the maximum altitude value Hmax and the minimum altitude value Hmin within the measurement time are measured. Either or both and the average altitude value Have are measured, and these measured values are obtained based on the deflection influence line, using either or both of the maximum altitude value Hmax and the minimum altitude value Hmin, the average altitude value Have, and the constant k. A method for measuring an altitude when a bridge is not loaded with a live load, wherein the altitude H0 is calculated by calculating an altitude H0 of a load without a live load, and calculating an altitude when the load is not loaded with a live load.
橋梁に活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法であって、
視準ターゲットとなる全方向プリズムを取り付けた車両を走行させ、各標高計測地点に停車する度に、橋梁外に設置した自動追尾機能付きトータルステーションにより標高計測地点に位置している前記全方向プリズムを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これら計測値をたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求めることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法。
In a state where a live load is applied to a bridge, it is a measurement method for obtaining an altitude in a state where there is no live load at a number of altitude measurement points set at predetermined intervals in the route direction,
Each time a vehicle with an omnidirectional prism attached as a collimation target is run and stops at each altitude measurement point, the omnidirectional prism located at the altitude measurement point is set by a total station with an automatic tracking function installed outside the bridge. Measure continuously at a small time interval for a predetermined time, measure one or both of the maximum altitude value Hmax and minimum altitude value Hmin and the average altitude value Have within the measurement time, and use these measured values as the deflection influence line Substituting into the calculation formula for obtaining the altitude H0 in the no-load state using the maximum altitude value Hmax and / or the minimum altitude value Hmin, the average altitude value Have and the constant k, obtained based on An altitude measurement method for a bridge in a state where no live load is applied, characterized by obtaining an altitude in a loaded state.
橋梁に活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法であって、
橋梁外に第1自動追尾機能付きトータルステーションと第2自動追尾機能付きトータルステーションとを設置し、橋梁内の基準格点とする標高計測地点に固定的に視準ターゲットを設けるとともに、前記第1自動追尾機能付きトータルステーションにより前記視準ターゲットを視準することにより、前記基準格点位置の活荷重無載荷状態の標高を請求項1記載の方法により予め既知とした上で、視準ターゲットとなる全方向プリズムを取り付けた車両を走行させ、各標高計測地点に停車する度に、前記第1自動追尾機能付きトータルステーションにより基準格点の視準ターゲットを視準して活荷重載荷状態の標高を得ると同時に、前記第2自動追尾機能付きトータルステーションにより前記車両の全方向プリズムを視準して活荷重載荷状態の標高を得て、
前記基準格点における活荷重載荷状態の標高と活荷重無載荷状態の標高との差分を求め、たわみ影響線から求めた前記基準格点と標高計測地点とのたわみ縦距比率を前記差分に乗算して標高計測地点の補正量を算出し、この補正量を標高計測地点の活荷重載荷状態の標高に加減算することにより標高計測地点の活荷重無載荷状態の標高を求めることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法。
In a state where a live load is applied to a bridge, it is a measurement method for obtaining an altitude in a state where there is no live load at a number of altitude measurement points set at predetermined intervals in the route direction,
A total station with the first automatic tracking function and a total station with the second automatic tracking function are installed outside the bridge, and a fixed collimation target is provided at the altitude measurement point as the reference rating in the bridge. By collimating the collimating target with a function-equipped total station, the altitude in the no-load state of the reference rating point is determined in advance by the method according to claim 1, and the omnidirectional target becomes the collimating target Each time a vehicle equipped with a prism is run and stops at each altitude measurement point, the total station with the first automatic tracking function collimates the collimating target of the reference rating and obtains the altitude of the live load loaded state. , The total station with the second automatic tracking function collimates the omnidirectional prism of the vehicle and To obtain a high,
The difference between the height of the live load loaded state and the height of the live load unloaded state at the reference rating is obtained, and the difference is multiplied by the deflection vertical distance ratio between the reference rating and the elevation measuring point obtained from the deflection influence line. The bridge is characterized by calculating the correction amount at the altitude measurement point, and calculating the altitude of the altitude measurement point in the no-load state by adding or subtracting this correction amount to the altitude in the active load state at the altitude measurement point. Altitude measurement method when no live load is applied.
前記活荷重無載荷状態の標高H0を求める算出式は、下記手順によって求める請求項1〜3いずれかに記載の橋梁における活荷重無載荷状態時の標高計測方法。
手順1:標高計測地点でのたわみ影響線に基づき、たわみ最大値Ymax、たわみ最小値Yminのいずれか又は両方、たわみ平均値Yave及び定数kを用いて、たわみゼロ点Y0を求めるたわみ関係式を導くとともに、既知数とされる前記たわみ最大値Ymax、たわみ最小値Yminのいずれか又は両方、たわみ平均値Yaveから未知数とされる前記定数kを算出する手順。
手順2:前記たわみ関係式は、実橋レベルにおいても再現されるとの前提の下、それぞれの対応関係から、前記たわみ最大値Ymaxを最大標高値Hmax、たわみ最小値Yminを最小標高値Hmin、前記たわみ平均値Yaveを平均標高値Haveに置換した活荷重無載荷状態の標高H0を求める算出式を得る第2手順。
The calculation formula for obtaining the altitude H0 in the no-load state of the live load is an altitude measuring method in a no-load state of a live load in the bridge according to any one of claims 1 to 3, which is obtained by the following procedure.
Procedure 1: Based on the deflection influence line at the altitude measurement point, the deflection relational expression for obtaining the deflection zero point Y0 is obtained by using one or both of the deflection maximum value Ymax and the deflection minimum value Ymin, the deflection average value Yave and the constant k. A procedure for calculating the constant k, which is an unknown, from the deflection maximum value Ymax, the deflection minimum value Ymin, or the deflection average value Yave, which is a known number.
Procedure 2: Under the assumption that the deflection relational expression is also reproduced at the actual bridge level, the maximum deflection value Ymax is the maximum elevation value Hmax, the minimum deflection value Ymin is the minimum elevation value Hmin, A second procedure for obtaining a calculation formula for obtaining an altitude H0 in a no-load state in which the deflection average value Yave is replaced with an average altitude value Have.
JP2010131615A 2010-06-09 2010-06-09 Elevation measurement method for bridges without live load Expired - Fee Related JP5261441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131615A JP5261441B2 (en) 2010-06-09 2010-06-09 Elevation measurement method for bridges without live load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131615A JP5261441B2 (en) 2010-06-09 2010-06-09 Elevation measurement method for bridges without live load

Publications (2)

Publication Number Publication Date
JP2011257256A JP2011257256A (en) 2011-12-22
JP5261441B2 true JP5261441B2 (en) 2013-08-14

Family

ID=45473580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131615A Expired - Fee Related JP5261441B2 (en) 2010-06-09 2010-06-09 Elevation measurement method for bridges without live load

Country Status (1)

Country Link
JP (1) JP5261441B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914430B2 (en) * 2013-08-12 2016-05-11 復建調査設計株式会社 Elevation measurement method for bridges without live load
CN103808292B (en) * 2014-01-23 2017-01-25 孟云 Continuous measuring method for vertical relative displacement of large-span bridge structure
CN105136109B (en) * 2015-08-06 2017-07-11 中交四公局第二工程有限公司 Highway bridges and culverts sinking deformation monitoring system
CN108534764B (en) * 2018-03-20 2020-05-15 中铁上海工程局集团有限公司 Method for quickly measuring main arch rib section of inward-inclined steel box arch bridge
CN108920766B (en) * 2018-06-05 2020-07-28 厦门大学 Bridge influence line identification method based on basis function representation and sparse regularization
CN110777636A (en) * 2019-10-21 2020-02-11 中铁第四勘察设计院集团有限公司 Method for laying CP III control points on railway cable-stayed bridge and railway cable-stayed bridge
CN111174771A (en) * 2020-01-19 2020-05-19 中国十七冶集团有限公司 Method for measuring verticality of stand column
CN111354035B (en) * 2020-03-17 2023-09-05 陕西高速机械化工程有限公司 Automatic bridge dynamic load detection and inversion system and method
CN111695261B (en) * 2020-06-12 2021-01-01 哈尔滨工业大学 Method for quickly extracting influence line of mid-span displacement of three-axle vehicle slowly passing through continuous beam bridge
CN113155063B (en) * 2021-01-26 2022-04-15 北京讯腾智慧科技股份有限公司 Method and device for determining track bridge deformation data during train passing through bridge
CN113358087B (en) * 2021-04-22 2022-04-22 民航机场建设工程有限公司 Total station reflection sheet type steel beam deflection measurement method
CN116186833B (en) * 2022-12-15 2024-05-07 哈尔滨工业大学 Machine learning method for identifying and diagnosing vertical deformation related modes of cable-supported bridge girder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764679B2 (en) * 1993-06-25 1998-06-11 株式会社橘高工学研究所 Hume pipe burial method by propulsion excavation and self-propelled device for automatic surveying used in this method
JPH11118484A (en) * 1997-10-15 1999-04-30 Nippon Sharyo Seizo Kaisha Ltd Bridge shape measuring method
JP3340393B2 (en) * 1998-09-03 2002-11-05 日本道路公団 Measuring method of bridge structure without live load
JP4010694B2 (en) * 1999-03-03 2007-11-21 株式会社Ihi Automatic deflection monitoring method for in-service bridges

Also Published As

Publication number Publication date
JP2011257256A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5261441B2 (en) Elevation measurement method for bridges without live load
US20210302222A1 (en) Measurement Method, Measurement Device, Measurement System, And Measurement Program
JP7400566B2 (en) Measurement method, measurement device, measurement system and measurement program
US11881102B2 (en) Measurement method, measurement device, measurement system, and measurement program
WO2021036751A1 (en) Bearing reaction influence line curvature-based continuous beam damage identification method
JP6086486B2 (en) Passing vehicle weight analysis processing apparatus and method
US20210293605A1 (en) Measurement Method, Measurement Device, Measurement System, And Measurement Program
JP5914430B2 (en) Elevation measurement method for bridges without live load
US11714021B2 (en) Measurement method, measurement device, measurement system, and measurement program
US20220291078A1 (en) Measurement Method, Measurement Device, Measurement System, And Measurement Program
JP2014074685A (en) Non-contact displacement measurement method of bridge
JP3340393B2 (en) Measuring method of bridge structure without live load
JP6000840B2 (en) Non-contact measuring method and apparatus for dynamic deflection of PC girder
JP2006317413A (en) Preservation system of vehicle traffic structure, and preservation method of vehicle traffic structure
JP7447586B2 (en) Measurement method, measurement device, measurement system and measurement program
Kovács et al. Loading Test of the Rákóczi Danube Bridge in Budapest
CN110489919A (en) The girder construction damnification recognition method of Suo Li influence line curvature
Xiao et al. Multi-direction bridge model updating using static and dynamic measurement
RU2239798C2 (en) Method of weighing vehicle
Boronenko et al. New Approach Measuring the Wheel/Rail Interaction Loads
RU2276216C2 (en) Method of measuring horizontal irregularities (levering) and curvature in plan of rail lines
JP3660655B2 (en) Plane position adjustment amount calculation device for reference device
Zhang et al. Process monitoring and terminal verification of π–section girder cable-stayed bridge
JP2023006426A (en) Measuring method, measuring device, measuring system, and measuring program
Maruyama et al. Uncertainty quantification of axle weight estimated by Bayesian bridge weigh-in-motion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees