JP5914430B2 - Elevation measurement method for bridges without live load - Google Patents

Elevation measurement method for bridges without live load Download PDF

Info

Publication number
JP5914430B2
JP5914430B2 JP2013167251A JP2013167251A JP5914430B2 JP 5914430 B2 JP5914430 B2 JP 5914430B2 JP 2013167251 A JP2013167251 A JP 2013167251A JP 2013167251 A JP2013167251 A JP 2013167251A JP 5914430 B2 JP5914430 B2 JP 5914430B2
Authority
JP
Japan
Prior art keywords
altitude
elevation
measurement
bridge
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013167251A
Other languages
Japanese (ja)
Other versions
JP2015036620A (en
Inventor
幸男 梅本
幸男 梅本
Original Assignee
復建調査設計株式会社
幸男 梅本
幸男 梅本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 復建調査設計株式会社, 幸男 梅本, 幸男 梅本 filed Critical 復建調査設計株式会社
Priority to JP2013167251A priority Critical patent/JP5914430B2/en
Publication of JP2015036620A publication Critical patent/JP2015036620A/en
Application granted granted Critical
Publication of JP5914430B2 publication Critical patent/JP5914430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、主として吊橋、斜張橋、アーチ橋、トラス橋などをはじめとする易たわみ性の長大橋梁において、活荷重載荷状態(供用状態)のまま、短時間に精度良く活荷重無載荷状態での標高(形状)を得るための標高計測方法に関する。   The present invention mainly applies to a long flexible bridge including a suspension bridge, a cable-stayed bridge, an arch bridge, a truss bridge and the like, with a live load loaded state (service state) in a short time and a live load unloaded state with high accuracy. The present invention relates to an altitude measurement method for obtaining altitude (shape) at a point.

吊橋などのたわみやすい長大橋の橋桁の健全性を判定する方法として、全体の形状測定(標高計測)を行い、活荷重無載荷状態時の形状を得て、その形状変化が許容値内であること、さらに過年度の形状と比較してもその変化量が大きくないことを確認する手法が採用されている。   As a method of judging the soundness of bridge girders such as suspension bridges that are flexible, the overall shape measurement (elevation measurement) is performed to obtain the shape when there is no live load, and the shape change is within the allowable value. In addition, a method of confirming that the amount of change is not large even when compared with the shape of the previous year is adopted.

これまでは、車両通行量が少なく温度の安定した深夜に、交通規制を行いながら、路面上を使用した水準測量が採用されてきている。しかし、水準測量では全長にわたり路面の交通規制が必要となること、計測作業には数時間を要することから深夜であっても時間帯によっては温度変化は避けられずその影響を受けてしまうこと、大型車を含め車両の通行は皆無ではなくそれらのたわみの影響が含まれてしまうこと、さらに連続的に計測を繰り返す必要がある水準測量の作業上の特性から安定した計測値が得られていなかった。   Until now, leveling using the road surface has been adopted while traffic is restricted at midnight when the amount of vehicle traffic is low and the temperature is stable. However, leveling requires traffic regulation on the road surface over the entire length, and since the measurement work takes several hours, temperature changes are inevitable depending on the time zone even at midnight, Stable measurement values are not obtained from the characteristics of leveling work that requires the measurement to be repeated continuously, and that there is no traffic, including large vehicles, and that the effects of such deflection are included. It was.

そこで下記特許文献1では、活荷重作用下のままで供用中の橋構造物の活荷重無載荷時形状を得るための計測方法であって、橋外部の固定地点に光波測距儀を設置するとともに、橋の標高計測対象位置にターゲットを設置し、このターゲットの実標高を前記光波測距儀により所定時間の間、微小時間間隔で連続的に計測し、前記所定の計測時間内における平均実標高値を得るとともに、この所定の計測時間内に橋を通過する車両群による平均タワミ値Δhを求め、前記光波測距儀による平均実標高値を前記通過車両群による平均タワミ値Δhにより補正することにより前記標高計測対象位置の活荷重無載荷時標高を求める橋構造物における活荷重無載荷時形状の計測方法が提案されている。この計測方法は、計測時間中に橋梁内を通行している大型車の荷重によるたわみ量相当分を計測値から除去することによって無載荷状態の標高に換算する手法(以下、大型車影響評価法という。)である。   So, in the following patent document 1, it is a measuring method for obtaining the shape of the bridge structure in service under the active load under active load without loading, and installing a light wave rangefinder at a fixed point outside the bridge, The target is installed at the altitude measurement target position of the bridge, and the actual altitude of this target is continuously measured at a minute time interval for a predetermined time by the light wave range finder, and the average actual altitude value within the predetermined measurement time And obtaining an average deflection value Δh by the vehicle group passing through the bridge within the predetermined measurement time, and correcting the average actual elevation value by the light wave rangefinder with the average deflection value Δh by the passing vehicle group. There has been proposed a method for measuring the shape at the time of no loading of a live load in a bridge structure for obtaining the altitude at the time when the altitude measurement target position is not loaded. This measurement method is a method that converts the amount of deflection due to the load of a large vehicle passing through the bridge during the measurement time to an altitude of no load by removing it from the measured value (hereinafter referred to as the large vehicle impact assessment method). It is said.)

しかしながら、この大型車影響評価法を適用するためには計測時間内に通行する大型車の台数、走行車線位置、速度及び車両重量が必要となるため、大型車両の重量を計測するために桁に歪みゲージを貼付して歪みから重量を算出したり、ビデオカメラで撮影を行ったりするため、その分計測に多くの手間が掛かるとともに、計測後のデータ整理も膨大となり、作業費用の増大を招くなどの課題があった。   However, in order to apply this large vehicle impact assessment method, the number of large vehicles that pass within the measurement time, the lane position, the speed, and the vehicle weight are required. Since a strain gauge is attached to calculate the weight from the strain or to shoot with a video camera, it takes a lot of time for measurement and the data organization after measurement becomes enormous, resulting in an increase in work costs. There were issues such as.

そこで、本出願人等は、活荷重載荷状態(供用状態)のまま、更に大型車の台数、走行車線位置、速度及び車両重量などを一切無関係としながら、短時間に精度良く活荷重無載荷状態での標高(形状)を得るため、下記特許文献2において、橋梁に活荷重が作用した状態で、路線方向に所定間隔で設定された多数の標高計測地点の活荷重無載荷状態の標高を得るための計測方法であって、視準ターゲットとなる全方向プリズムを取り付けた車両(以下、MAT車(Movable-Auto-Tracking)という。)を走行させ、各標高計測地点に停車する度に、橋梁外に設置した自動追尾機能付きトータルステーションにより標高計測地点に位置している前記全方向プリズムを所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これら計測値をたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数k(k1〜k3)を用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求める橋梁における活荷重無載荷状態時の標高計測方法を提案した。   Therefore, the present applicants, etc., in a live load loaded state (in-service state), with no relation to the number of large vehicles, travel lane position, speed, vehicle weight, etc., and with no live load loaded in a short time with high accuracy. In order to obtain the altitude (shape) at the above, in Patent Document 2 below, the height of the active load unloaded state at a number of altitude measurement points set at predetermined intervals in the route direction is obtained in a state where the live load is applied to the bridge. Each time a vehicle equipped with an omnidirectional prism as a collimation target (hereinafter referred to as a MAT vehicle (Movable-Auto-Tracking)) is driven and stopped at each elevation measurement point. The omnidirectional prism located at the altitude measurement point is continuously measured at a small time interval for a predetermined time by a total station with automatic tracking function installed outside, and the maximum altitude value Hmax and minimum altitude value within the measurement time Hmin Either or both and the average elevation value Have are measured, and these measurement values are obtained based on the deflection influence line, and one or both of the maximum elevation value Hmax and the minimum elevation value Hmin, the average elevation value Have and the constant k (k1). ~ 3) was substituted into the calculation formula for calculating the height H0 in the no-load state of the live load, and a method for measuring the altitude in the no-load state of the active load in the bridge was proposed.

特許第3340393号公報Japanese Patent No. 3340393 特開2011−257256号公報JP 2011-257256 A

しかしながら、上記特許文献2に係る標高計測方法の場合、計測格点数が多い場合には、全体の計測にきわめて長時間を要してしまうという問題点があった。例えば、安定した無載荷状態標高の計測値を得るためには1格点につき少なくとも3分程度の停車時間が必要であることから、計測時間は移動時間等を含めると1点当たり約5分を要してしまうことになる。その結果、計測格点数が仮に150点である橋梁に要する全計測時間は、5分×150点=750分<約13時間>と長時間となってしまうことになる。   However, in the case of the altitude measurement method according to Patent Document 2, when the number of measurement ratings is large, there is a problem that it takes a very long time for the entire measurement. For example, in order to obtain a stable measured value of unloaded state elevation, it is necessary to have a stop time of at least about 3 minutes per rating point. It will be necessary. As a result, the total measurement time required for a bridge having a measurement rating of 150 points will be as long as 5 minutes × 150 points = 750 minutes <about 13 hours>.

また、特にケーブルを構成要素とする吊橋、斜張橋等の場合、ケーブルの温度変化が橋梁の標高に与える影響が大きく、計測時間が長時間に亘ると、計測時間中にも無載荷状態標高が徐々に変化する兆候が見られるという問題が発生していた。前記特許文献2に係る標高計測方法の場合、式中の最大標高値Hmax、最小標高値Hmin、平均標高値Haveでケーブル温度変化に伴う標高への影響を間接的に考慮してはいるものの、計測時間が長くなってしまうと本来変わることのない無載荷状態標高も時刻とともに変化が結果として計算されてしまうことになり計測結果が安定した値とならないという問題点があった。   In particular, in the case of suspension bridges and cable-stayed bridges, etc., where cable is a component, the influence of cable temperature on the bridge elevation is significant. There was a problem that there were signs that gradually changed. In the case of the altitude measurement method according to Patent Document 2, although the maximum altitude value Hmax, the minimum altitude value Hmin, and the average altitude value Have in the equation are indirectly considered, the influence on the altitude due to the cable temperature change is considered. As the measurement time becomes longer, there is a problem that the unloaded state altitude, which does not change originally, is calculated as a result with time, and the measurement result does not become a stable value.

そこで本発明の主たる課題は、主として吊橋、斜張橋、アーチ橋、トラス橋などをはじめとする易たわみ性の長大橋梁において、活荷重載荷状態(供用状態)のまま、MAT車を計測格点に停車させることなく移動状態を維持したままで、従来方法に比べて極めて短時間に精度良く活荷重無載荷状態での標高(形状)を得るための標高計測方法を提供することにある。   Therefore, the main problem of the present invention is that a MAT vehicle is measured in a lively loaded state (in service state) in a long flexible bridge such as a suspension bridge, a cable stayed bridge, an arch bridge, a truss bridge and the like. It is intended to provide an altitude measuring method for obtaining altitude (shape) in a live load no-loading state with higher accuracy and in a very short time compared with the conventional method while maintaining the moving state without stopping.

前記課題を解決するために請求項1に係る本発明として、橋梁に活荷重が載荷された状態で、路線方向に沿った活荷重無載荷状態の標高形状線を得るための計測方法であって、
視準ターゲットとなる全方向プリズムを取り付けた移動体を路線方向に移動させながら、前記全方向プリズムを橋梁外に設置した自動追尾機能付きトータルステーションにより小時間間隔で連続的に計測して前記移動体に取り付けた全方向プリズムの連続した多点での標高計測値(Hj)を得る第1手順と、
前記多点での標高計測値(Hj)に基づいて多項式近似曲線に描き、任意点で標高近似値(Hm)を得ることができるようにする第2手順と、
活荷重無載荷状態の標高計測点として設定された多数の任意点において、前記標高計測値(Hj)と前記標高近似値(Hm)とを対比して、
標高計測値(Hj)≧標高近似値(Hm)であるならば、下式(1)により活荷重無載荷状態の計算標高(Ho1)を求め、

Figure 0005914430
In order to solve the above-mentioned problem, the present invention according to claim 1 is a measurement method for obtaining an elevation shape line in a state where a live load is not loaded along a route direction in a state where a live load is loaded on a bridge. ,
While moving a moving object equipped with an omnidirectional prism as a collimation target in the route direction, the moving object is continuously measured at small time intervals by a total station with an automatic tracking function in which the omnidirectional prism is installed outside the bridge. A first procedure for obtaining altitude measurement values (Hj) at consecutive multiple points of the omnidirectional prism attached to
A second procedure for drawing an approximated polynomial curve based on the measured elevation values (Hj) at the multiple points and obtaining an approximated elevation value (Hm) at an arbitrary point;
At a number of arbitrary points set as elevation measurement points in a live load-unloaded state, the elevation measurement value (Hj) and the elevation approximation value (Hm) are compared,
If the measured altitude (Hj) ≥ approximate altitude (Hm), calculate the calculated altitude (Ho1) in the no-load state with the following formula (1)
Figure 0005914430

標高計測値(Hj)<標高近似値(Hm)であるならば、下式(2)により活荷重無載荷状態の計算標高(Ho3)を求め、

Figure 0005914430
If the measured altitude (Hj) <approximate altitude (Hm), calculate the calculated altitude (Ho3) without a live load using the following formula (2):
Figure 0005914430

前記活荷重無載荷状態の計算標高(Ho1)と計算標高(Ho3)とから全体の活荷重無載荷状態の多項式近似曲線(標高形状線)を得る第3手順とからなることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法が提供される。   A bridge characterized by comprising a third procedure for obtaining a polynomial approximation curve (elevation shape line) of the whole live load no-load state from the calculated height (Ho1) and the calculated altitude (Ho3) in the no-load state. The altitude measurement method in the state of no live load is provided.

上記請求項1記載の発明は、橋梁に活荷重が載荷された状態で、路線方向に沿った活荷重無載荷状態の標高形状線を得るための計測方法である。本出願人が特開2011-257256号公報(特許文献2)において提案した計測方法は、計測格点毎に全方向プリズムを搭載した車両を停止させ、この停止した全方向プリズムをトータルステーションで所定時間の間、計測するものであるが、本願発明は、前記特許文献2の基本的な計測原理を応用しながら、前記移動体を停止させることなく移動させた状態のままで標高計測を行い、極めて短時間に精度良く活荷重無載荷状態での標高(形状)を得るための標高計測方法を提供するものである。   The invention described in claim 1 is a measuring method for obtaining an altitude shape line in a state in which a live load is not loaded along a route direction in a state where a live load is loaded on a bridge. In the measurement method proposed by the present applicant in Japanese Patent Laid-Open No. 2011-257256 (Patent Document 2), a vehicle equipped with an omnidirectional prism is stopped for each measurement rating point, and the stopped omnidirectional prism is stopped at a total station for a predetermined time. While the invention of the present application applies the basic measurement principle of Patent Document 2 above, the altitude measurement is performed while the moving body is moved without being stopped. The present invention provides an altitude measuring method for obtaining altitude (shape) in a state where no live load is loaded accurately and in a short time.

先ず、視準ターゲットとなる全方向プリズムを取り付けた移動体を路線方向に移動させながら、前記全方向プリズムを橋梁外に設置した自動追尾機能付きトータルステーションにより小時間間隔で連続的に計測して前記移動体に取り付けた全方向プリズムの連続した多点での標高計測値(Hj)を得るようにする。前記移動体は停止させることなく、橋梁方向に沿って低速度で移動させた状態のままとし、移動体に設けた全方向プリズムを橋梁外に設置したトータルステーションによって標高計測値(Hj)を得るようにする。   First, while moving the movable body attached with the omnidirectional prism as a collimation target in the route direction, the omnidirectional prism is continuously measured at small time intervals by a total station with an automatic tracking function installed outside the bridge. Elevated measurement values (Hj) at consecutive multiple points of the omnidirectional prism attached to the moving body are obtained. The moving body is kept at a low speed along the bridge direction without stopping, and the altitude measurement value (Hj) is obtained by a total station in which the omnidirectional prism provided on the moving body is installed outside the bridge. To.

次に、前記多点での標高計測値(Hj)に基づいて多項式近似曲線を描き、任意点で標高近似値(Hm)を得ることができるにする。   Next, a polynomial approximation curve is drawn based on the measured elevation values (Hj) at the multiple points, and an elevation approximation value (Hm) can be obtained at an arbitrary point.

その後に、活荷重無載荷状態の標高計測点として設定された多数の任意点において、前記標高計測値(Hj)と前記標高近似値(Hm)とを対比して、
標高計測値(Hj)≧標高近似値(Hm)であるならば、下式(1)により活荷重無載荷状態の計算標高(Ho1)を求め、

Figure 0005914430
Then, at a number of arbitrary points set as elevation measurement points in a live load-unloaded state, the elevation measurement value (Hj) and the elevation approximation value (Hm) are compared,
If the measured altitude (Hj) ≥ approximate altitude (Hm), calculate the calculated altitude (Ho1) in the no-load state with the following formula (1)
Figure 0005914430

標高計測値(Hj)<標高近似値(Hm)であるならば、下式(2)により活荷重無載荷状態の計算標高(Ho3)を求め、

Figure 0005914430
If the measured altitude (Hj) <approximate altitude (Hm), calculate the calculated altitude (Ho3) without a live load using the following formula (2):
Figure 0005914430

前記活荷重無載荷状態の計算標高(Ho1)と計算標高(Ho3)とから全体の活荷重無載荷状態の多項式近似曲線(標高形状線)を得るようにする。   A polynomial approximation curve (elevation shape line) of the whole live load unloaded state is obtained from the calculated altitude (Ho1) and the calculated altitude (Ho3) of the live load unloaded state.

前記特許文献2記載の発明において、橋梁の任意点におけるたわみ影響線の下で、任意の移動荷重(走行車両)が走行することを考えた場合、この荷重によって発生するたわみの最大値Ymaxと最小値Yminとは、たわみの原因(荷重)が共通しているため、何らかの相関関係(一定比率)にあることに着目し、このたわみ影響線に平均標高値Have(計測値の平均値)の概念を導入すると、最大標高値Hmax、最小標高値Hminのいずれか又は両方、標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式を導くことができる(基本計測原理)。   In the invention described in Patent Document 2, when it is considered that an arbitrary moving load (traveling vehicle) travels under a deflection influence line at an arbitrary point of the bridge, the maximum value Ymax and the minimum value of the deflection generated by this load are considered. Since the cause (load) of the deflection is common to the value Ymin, it is noted that there is some correlation (a constant ratio), and the concept of the average elevation value Have (average value of the measured value) is shown in this deflection influence line. Can be used to derive a formula to calculate the altitude H0 without a live load using either or both of the maximum altitude value Hmax and minimum altitude value Hmin, altitude value Have and constant k (basic measurement principle) .

前記たわみ影響線は、ある任意点ごとに描かれる曲線であるが、上記基本計測原理を橋軸方向に展開した場合、それは基本計測原理の「束」と考えられるため、その関係は維持されると考えることができる。従って、前記基本計測原理は、前記移動体に取り付けた全方向プリズムの連続した多点での標高計測値(Hj)に対しても同様に適用することができると考えることができる。   The deflection influence line is a curve drawn for each arbitrary point. However, when the basic measurement principle is developed in the direction of the bridge axis, it is considered as a “bundle” of the basic measurement principle, so the relationship is maintained. Can be considered. Therefore, it can be considered that the basic measurement principle can be similarly applied to altitude measurement values (Hj) at continuous multipoints of the omnidirectional prism attached to the moving body.

しかしながら、上記基本計測原理を橋軸方向へ展開した場合には、橋梁の各標高計測点では、移動荷重による「最大値Ymax」及び「最小値Ymin」の両方の数値を持つことはできず、一つの標高計測値(Hj)のみであるから、前記基本計測原理をそのまま適用することはできない。   However, when the above basic measurement principle is developed in the direction of the bridge axis, each elevation measurement point of the bridge cannot have both the “maximum value Ymax” and “minimum value Ymin” values due to the moving load. Since there is only one elevation measurement value (Hj), the basic measurement principle cannot be applied as it is.

そこで本発明では、前記多点での標高計測値(Hj)の生データは、橋梁の基本形状ラインを基本線として、この基本線を交差するようにジグザグ状に描かれることに着目して、前記標高計測値(Hj)に基づいて、例えば最小二乗法により多項式近似曲線を描き、任意点で標高近似値(Hm)を得ることができるようにすれば、前記標高計測値(Hj)及び前記標高近似値(Hm)、定数kをパラメータとして、活荷重無載荷状態の標高(H01,H03)を求める算出式を導くことができる。   Therefore, in the present invention, paying attention to the fact that the raw data of the elevation measurement values (Hj) at multiple points is drawn in a zigzag shape so as to cross the basic line, with the basic shape line of the bridge as the basic line, Based on the altitude measurement value (Hj), for example, if a polynomial approximate curve is drawn by the least square method and the altitude approximation value (Hm) can be obtained at an arbitrary point, the altitude measurement value (Hj) and the above Using the altitude approximate value (Hm) and the constant k as parameters, a calculation formula for obtaining the altitude (H01, H03) in a state where there is no live load can be derived.

前記計算標高(H01,H03)は点の集合体であるため、これら計算標高(Ho1)と計算標高(Ho3)とから全体の活荷重無載荷状態の多項式近似曲線を得るようにすれば、その曲線は橋梁の活荷重無載荷状態の標高形状線となる。   Since the calculated altitude (H01, H03) is a collection of points, if a polynomial approximation curve of the whole live load unloaded state is obtained from these calculated altitude (Ho1) and calculated altitude (Ho3), The curve is the elevation shape line of the bridge with no live load.

本発明に係る標高計測方法の場合は、移動車が橋梁を通過に要する時間分だけの時間で計測を終えることができるため、従来方法に比べて極めて短時間に精度良く活荷重無載荷状態での標高(形状)を得ることが可能となる。例えば、橋長1000mの場合、移動車が時速10kmで走行すると仮定した場合、6分で標高計測を終えることができることになる。   In the case of the altitude measurement method according to the present invention, the measurement can be completed in a time required for the mobile vehicle to pass through the bridge. It is possible to obtain the altitude (shape). For example, in the case of a bridge length of 1000 m, if it is assumed that the moving vehicle travels at a speed of 10 km per hour, the altitude measurement can be completed in 6 minutes.

請求項2に係る本発明として、前記移動体は、橋梁に常設されている検査車、橋面上を低速で走行させる走行車両、カート車、或いは自転車である請求項1記載の橋梁における活荷重無載荷状態時の標高計測方法が提供される。   According to a second aspect of the present invention, the moving body is an inspection vehicle that is permanently installed on the bridge, a traveling vehicle that travels on the bridge surface at a low speed, a cart, or a bicycle. An altitude measurement method in a no-load state is provided.

上記請求項2記載の発明は、前記移動体として使用可能な具体例を列記したものである。具体的に、長大橋梁の場合は橋桁に設けられたレールに沿って移動可能とされる検査車が常設されているためこの検査車を使うことができる。また、橋面上を低速で走行させる走行車両、カート車、或いは自転車を使用することができる。   The invention according to claim 2 lists specific examples that can be used as the moving body. Specifically, in the case of a long bridge, an inspection vehicle that is movable along a rail provided on the bridge girder is permanently installed, and this inspection vehicle can be used. In addition, a traveling vehicle, a cart, or a bicycle that travels on the bridge surface at a low speed can be used.

以上詳説のとおり本発明によれば、主として吊橋、斜張橋、アーチ橋、トラス橋などをはじめとする易たわみ性の長大橋梁において、活荷重載荷状態(供用状態)のまま、前記MAT車を計測格点に停車させることなく移動状態を維持したままで、従来方法に比べて極めて短時間に精度良く活荷重無載荷状態の標高(形状)を得ることが可能となる。   As described above in detail, according to the present invention, the MAT vehicle is mounted in a lively loaded state (in service state) in an easily flexible long bridge mainly including a suspension bridge, a cable-stayed bridge, an arch bridge, a truss bridge, and the like. It is possible to obtain an altitude (shape) in a state without a live load with high accuracy in a very short time as compared with the conventional method while maintaining the moving state without stopping at the measurement rating point.

計測対象とした長大吊橋の側面図の一例である。It is an example of the side view of the long suspension bridge made into the measurement object. トータルステーション10による計測概念図の例(その1)である。It is the example (the 1) of the measurement conceptual diagram by the total station. トータルステーション10による計測概念図の例(その2)である。It is the example (the 2) of the measurement conceptual diagram by the total station. Lc/2点で実際に測定された活荷重載荷状態での補剛桁の時刻歴標高変化図の一例である。It is an example of the time history altitude change figure of the stiffening girder in the live load loading state actually measured by Lc / 2 point. Lc/2点でのたわみ影響線の一例である。It is an example of the deflection influence line in Lc / 2 point. 実施例1においてゼロ点標高評価補正法による標高計測に用いた134格点(Lc/2点)の計測標高図である。It is a measurement elevation map of 134 rating points (Lc / 2 points) used for elevation measurement by the zero point elevation evaluation correction method in Example 1. 実施例1において近似ゼロ点標高評価補正法による標高計測に用いた134格点(Lc/2点)の計測標高図(その1)である。It is the measurement altitude map (the 1) of 134 rating points (Lc / 2 points) used for the altitude measurement by the approximate zero point altitude evaluation correction method in Example 1. 実施例1において近似ゼロ点標高評価補正法による標高計測に用いた134格点(Lc/2点)の計測標高図(その2)である。It is the measurement altitude map (the 2) of 134 rating points (Lc / 2 points) used for the altitude measurement by the approximate zero point altitude evaluation correction method in Example 1. 実施例1においてゼロ点標高評価補正法と近似ゼロ点標高評価補正法による134格点(Lc/2点)の無載荷状態の標高図である。In Example 1, it is the elevation figure of the no-load state of 134 rating points (Lc / 2 points) by the zero point elevation evaluation correction method and the approximate zero point elevation evaluation correction method. 実施例2においてゼロ点標高評価補正法と近似ゼロ点標高評価補正法による117格点(Lc/4点)の無載荷状態の標高図である。In Example 2, it is the altitude map of the unloaded state of 117 rating points (Lc / 4 points) by the zero point altitude evaluation correction method and the approximate zero point altitude evaluation correction method. 実施例2において活荷重のたわみデータを示す図である。It is a figure which shows the deflection data of a live load in Example 2. FIG. 実施例2において用いた仮想MAT-J標高データを示す図である。It is a figure which shows the virtual MAT-J elevation data used in Example 2. 実施例2において近似ゼロ点標高評価補正法による無載荷状態の標高図(一部)である。In Example 2, it is an elevation figure (part) of the no-load state by the approximate zero point elevation evaluation correction method. 実施例2において用いた定数k1、k3算出のための近似式を示す図である。It is a figure which shows the approximation formula for the constants k1 and k3 used in Example 2. FIG.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本形態例で測定対象とした長大吊橋の側面図である。吊橋1は、側面視で左右両側にそれぞれ主塔2,3を有するとともに、これら主塔2,3からさらに離間する位置にアンカレッジ4,5を有し、前記主塔2,3の塔頂に設置されたケーブル用サドル(図示せず)間に架け渡されたケーブル6の両端を前記アンカレッジ4,5に固定し、このケーブル6の長手方向に沿って所定の間隔をおいた位置から吊り下げられたハンガーロープ7,7…によって両アンカレッジ4,5間に横架された補剛桁8を吊持するものであり、特に長スパン橋梁に適用される橋構造である。   FIG. 1 is a side view of a long suspension bridge to be measured in this embodiment. The suspension bridge 1 has main towers 2 and 3 on both left and right sides in a side view, and has anchorages 4 and 5 at positions further away from the main towers 2 and 3, respectively. Both ends of the cable 6 spanned between cable saddles (not shown) installed in the cable are fixed to the anchorages 4 and 5, and a predetermined distance is provided along the longitudinal direction of the cable 6. The hanger ropes 7, 7... Are suspended from the anchorage 4 and 5, and the stiffening girder 8 is suspended between the two anchorages 4 and 5, and is a bridge structure particularly applied to a long span bridge.

以下、前記長大吊橋1を対象として本発明法によって、活荷重載荷状態(供用状態)のまま、MAT車9を計測格点に停車させることなく移動状態を維持したままで、従来方法に比べて極めて短時間に精度良く活荷重無載荷状態での標高(形状)を得るための標高計測方法について説明する。   Hereinafter, according to the method of the present invention with the long suspension bridge 1 as a target, the MAT vehicle 9 is maintained in a moving state without stopping at the measurement rating while being in a live load state (in-service state), compared to the conventional method. An altitude measurement method for obtaining altitude (shape) in a state where no live load is loaded with high accuracy in an extremely short time will be described.

(装置構成)
図2および図3に示されるように、吊橋1外の地上部分などにターゲットに対する視準を自動的に補正する自動追尾機能付きトータルステーション10(以下、単にトータルステーションという。)を設置するとともに、視準ターゲットとなる全方向プリズム11を取り付けた移動体(MAT車)9を前記トータルステーション10によって前記全方向プリズム11を追尾しながら視準し、距離L、鉛直角α、水平角βを小時間間隔で連続的に計測する。前記トータルステーション10は、毎秒2.5回のデータ読み取りが可能であり(後述の実施例では、毎秒2回の計測)、読み取られたデータは、前記トータルステーション10に接続されたコンピューター12に記憶されるようになっている。なお、トータルステーション10の設置座標は予め既知とされる。
(Device configuration)
As shown in FIGS. 2 and 3, a total station 10 with an automatic tracking function (hereinafter simply referred to as a total station) that automatically corrects the collimation of the target is installed on the ground portion outside the suspension bridge 1. A moving body (MAT car) 9 to which a target omnidirectional prism 11 is attached is collimated while tracking the omnidirectional prism 11 by the total station 10, and a distance L, a vertical angle α, and a horizontal angle β are set at small time intervals. Measure continuously. The total station 10 is capable of reading data 2.5 times per second (in the embodiment described later, measurement is performed twice per second), and the read data is stored in the computer 12 connected to the total station 10. It is like that. The installation coordinates of the total station 10 are known in advance.

(計測手順)
本発明に係る橋梁における活荷重無載荷状態時の標高計測方法は、下記の手順(1)〜(3)による。
(Measurement procedure)
The altitude measurement method in the state of no loading of live load in the bridge according to the present invention is based on the following procedures (1) to (3).

(1)移動体(MAT車)を路線方向に移動させながら、前記全方向プリズム11を橋梁外に設置した自動追尾機能付きトータルステーション10により小時間間隔で連続的に計測して前記移動体9に取り付けた全方向プリズム11の連続した多点での標高計測値(Hj)を得る第1手順。 (1) While moving the moving body (MAT car) in the direction of the route, the omnidirectional prism 11 is continuously measured at a small time interval by the total station 10 with an automatic tracking function installed outside the bridge. A first procedure for obtaining altitude measurement values (Hj) at consecutive multiple points of the attached omnidirectional prism 11.

前記移動体9としては、長大橋梁の場合は、橋桁に設けられたレールに沿って移動可能とされる検査車が常設されているためこの検査車を使うことができる。また、図3に示したように橋面上を低速で走行させる走行車両や、或いはカート車、自転車などを使用することができる。   As the movable body 9, in the case of a long bridge, an inspection vehicle that is movable along a rail provided on the bridge girder is provided permanently, and this inspection vehicle can be used. Also, as shown in FIG. 3, a traveling vehicle that travels on a bridge surface at a low speed, a cart, a bicycle, or the like can be used.

(2)前記多点での標高計測値(Hj)に基づいて多項式近似曲線を描き、任意点で標高近似値(Hm)を得ることができるにする第2手順。 (2) A second procedure in which a polynomial approximation curve is drawn based on the elevation measurement values (Hj) at the multiple points, and an elevation approximation value (Hm) can be obtained at an arbitrary point.

前記多項式近似曲線で表すことの数学的な意味は、ぞれぞれの元データの傾向に比較的沿ったものでかつ元データとの差の二乗値が最小となるような曲線で示すということである。前記多点での標高計測値(Hj)は、橋梁の基本形状ラインを基本線として、この基本線を交差するようにジグザグ状に描かれるが、最小二乗法により多項式近似曲線により数式で表すようにすれば、任意点における標高近似値(Hm)を計算によって簡単に得ることができるようになる。また、前記多項式近似曲線は、後述する「たわみ平均値」に対応する概念のものであるが、たわみ平均値は、大型重量車の通行によって変動することになるが、多項式近似曲線で表した場合は数値が安定する利点がある。   The mathematical meaning of representing the polynomial approximation curve is that the curve is relatively in line with the trend of the original data and the square of the difference from the original data is minimized. It is. The elevation measurement values (Hj) at the multipoints are drawn in a zigzag shape with the basic shape line of the bridge as a basic line and intersecting this basic line. Then, the altitude approximation (Hm) at an arbitrary point can be easily obtained by calculation. In addition, the polynomial approximate curve is a concept corresponding to a “deflection average value” to be described later, but the deflection average value varies depending on the passage of a large heavy vehicle. Has the advantage of stable values.

(3)活荷重無載荷状態の標高計測点として設定された多数の任意点において、前記標高計測値(Hj)と前記標高近似値(Hm)とを対比して、
標高計測値(Hj)≧標高近似値(Hm)であるならば、下式(1)により活荷重無載荷状態の計算標高(Ho1)を求め、

Figure 0005914430
(3) At a number of arbitrary points set as elevation measurement points in a live load-unloaded state, the elevation measurement value (Hj) is compared with the elevation approximation value (Hm),
If the measured altitude (Hj) ≥ approximate altitude (Hm), calculate the calculated altitude (Ho1) in the no-load state with the following formula (1)
Figure 0005914430

標高計測値(Hj)<標高近似値(Hm)であるならば、下式(2)により活荷重無載荷状態の計算標高(Ho3)を求め、

Figure 0005914430
If the measured altitude (Hj) <approximate altitude (Hm), calculate the calculated altitude (Ho3) without a live load using the following formula (2):
Figure 0005914430

前記活荷重無載荷状態の計算標高(Ho1)と計算標高(Ho3)とから全体の活荷重無載荷状態の多項式近似曲線(標高形状線)を得る第3手順。   A third procedure for obtaining a polynomial approximation curve (elevation shape line) of the whole live load no load state from the calculated altitude (Ho1) and the calculated altitude (Ho3) in the no live load state.

(計測原理)
[基本計測原理]
先ず、本発明の計測原理は前記特許文献2記載の発明の計測原理を基礎として、橋軸方向に展開するものであるため、先ず前記特許文献2の発明の計測原理から説明する。
(Measurement principle)
[Basic measurement principle]
First, since the measurement principle of the present invention is developed in the bridge axis direction based on the measurement principle of the invention described in Patent Document 2, the measurement principle of the invention of Patent Document 2 will be described first.

前記特許文献2に係る発明は、前記トータルステーション10によって、標高計測地点に設置した視準ターゲット11を所定時間の間、小時間間隔で連続的に計測し、計測時間内の最大標高値Hmax、最小標高値Hminのいずれか又は両方及び平均標高値Haveを計測し、これら計測値をたわみ影響線に基づき得られた、最大標高値Hmax、最小標高値Hminのいずれか又は両方、平均標高値Have及び定数kを用いて活荷重無載荷状態の標高H0を求める算出式に代入して、活荷重無載荷状態の標高を求めるものである。   In the invention according to Patent Document 2, the total station 10 continuously measures the collimation target 11 installed at the altitude measurement point at a small time interval for a predetermined time, and the maximum altitude value Hmax within the measurement time, the minimum One or both of the elevation values Hmin and the average elevation value Have are measured, and these measurement values are obtained based on the deflection influence line, and either or both of the maximum elevation value Hmax and the minimum elevation value Hmin, the average elevation value Have, and By substituting into the calculation formula for obtaining the altitude H0 in the no-load state with the constant k using the constant k, the altitude in the no-load state is obtained.

図4にLc/2点で実際に測定された活荷重載荷状態での補剛桁の時刻歴標高変化を示す。図4を一見すると明らかなように、標高は時間経過と共に大きく変化しており、このグラフから活荷重無載荷状態の標高を求めるのは不可能に思える。   FIG. 4 shows the time history elevation change of the stiffening girder in the live load loaded state actually measured at Lc / 2 point. As is apparent from FIG. 4, the altitude changes greatly with the passage of time, and it seems impossible to determine the altitude in the state without a live load from this graph.

線形化たわみ理論によれば「重ね合わせの原理」が成立することから、載荷状態の標高は無載荷状態標高に載荷荷重によるたわみを重ね合わせたものである。つまり、無載荷状態標高は載荷状態の標高から全ての活荷重(軸重)によって発生しているたわみ量相当分を除去することで理論的に求めることができる。しかし、活荷重の載荷パターンは無限に存在するとともに、時々刻々と載荷状態も変化するため、活荷重載荷状態の標高から載荷されているすべての活荷重のたわみ分を1車両毎に計算によって除去することは実際上は不可能である。   Since the “superposition principle” is established according to the linear deflection theory, the altitude in the loaded state is obtained by superimposing the deflection due to the loaded load on the unloaded elevation. That is, the no-load state altitude can be theoretically obtained by removing the amount corresponding to the deflection amount generated by all live loads (axial weight) from the altitude in the loaded state. However, the loading pattern of live loads exists infinitely, and the loading state changes from moment to moment, so the deflection of all the live loads loaded from the elevation of the live load loading state is removed by calculation for each vehicle. It is practically impossible to do.

考え方の視点を変えて、たわみ影響線の下で、任意の移動荷重群(走行車両群)が走行することを考えた場合、この荷重群によって発生するたわみの最大値Ymaxと最小値Yminとは、たわみの原因(荷重群)が共通しているため、何らかの相関関係(一定比率)にあるものと考えられる。また、図4の標高変化グラフから読み取れる情報は、たわみの最大値Ymaxと、最小値Yminと、平均標高値Have(計測値の平均値)である。前記平均標高値Haveは、測定した標高を時間積分し時間で除算したものであり、標高計測値の平均値である。   When changing the viewpoint of thinking and considering that an arbitrary moving load group (running vehicle group) travels under the deflection influence line, the maximum value Ymax and the minimum value Ymin of the deflection generated by this load group are Since the cause of deflection (load group) is common, it is considered that there is some correlation (constant ratio). Also, information that can be read from the elevation change graph of FIG. 4 is a maximum value Ymax of deflection, a minimum value Ymin, and an average elevation value Have (average value of measured values). The average altitude value Have is obtained by integrating the measured altitude over time and dividing by time, and is an average value of the altitude measurement values.

そこで、図5に示されるLc/2点でのたわみ影響線(20tf線荷重を想定し、縦軸はそのたわみ量としてある)の下で、このたわみ影響線にたわみ平均値Yave(図5において、面積を時間で割って求めることででき、計測値の平均値に相当する。)の概念を導入すると、たわみ最大値Ymax、たわみ最小値Yminのいずれか又は両方、たわみ平均値Yave及び定数kを用いて、たわみゼロ点Y0を求めるたわみ関係式を導くことができる。   Therefore, under the deflection influence line at Lc / 2 shown in FIG. 5 (assuming a 20 tf line load, the vertical axis is the deflection amount), the deflection average value Yave (in FIG. 5) If the concept of the average value of the measured values is introduced), one or both of the maximum deflection value Ymax and the minimum deflection value Ymin, the deflection average value Yave and the constant k are introduced. Can be used to derive a deflection relational expression for obtaining the deflection zero point Y0.

図5のたわみ影響線からは、たわみゼロ点Yoの標高を求める、次のような3つのたわみ関係式が成立する。   From the deflection influence line in FIG. 5, the following three deflection relational expressions for obtaining the elevation of the deflection zero point Yo are established.

第一式…たわみ最大値Ymaxとたわみ平均値Yaveからたわみゼロ点Yoを算出するたわみ関係式
Yo=Yave+(Ymax−Yave)*k1 …(1)
第二式…たわみ最大値Ymax、たわみ最小値Ymin及びたわみ平均値Yaveからたわみゼロ点Yoを算出するたわみ関係式
Yo=Yave+(Ymax−Ymin)*k2 …(2)
第三式…たわみ最小値Yminとたわみ平均値Yaveからたわみゼロ点Yoを算出するたわみ関係式
Yo=Yave+(Yave−Ymin)*k3 …(3)
ここで、Yave、Ymax及びYminは、20tf線荷重を想定した場合、理論上次のような値となる。
First equation: Deflection relational equation for calculating the deflection zero point Yo from the deflection maximum value Ymax and the deflection average value Yave
Yo = Yave + (Ymax-Yave) * k1 (1)
Second equation: Deflection relational equation for calculating deflection zero point Yo from deflection maximum value Ymax, deflection minimum value Ymin and deflection average value Yave
Yo = Yave + (Ymax-Ymin) * k2 (2)
Third equation: Deflection relational expression for calculating the deflection zero Yo from the deflection minimum value Ymin and deflection average value Yave
Yo = Yave + (Yave-Ymin) * k3 (3)
Here, Yave, Ymax, and Ymin theoretically have the following values assuming a 20 tf line load.

Yave(たわみ平均値)=−0.0135m
Ymax(たわみ最大値)=+0.0059m
Ymin(たわみ最小値)=−0.0678m
また、k1、k2及びk3(以下、k値と呼ぶ)は、標高計測点毎に構造物のたわみ影響線によって決まる(すなわち構造物によって決まる)定数とする。これらのk値は発生たわみ量から計算でそれぞれ下式によって求めることができる。すなわち、Yoはたわみゼロ点のたわみ量(無載荷状態の時のたわみ量)でありYo=0となるため、前記k1はたわみ影響線におけるたわみ最大値と平均値から求めることができ、前記k2はたわみ影響線におけるたわみ最大値と最小値から求めることができ、前記k3はたわみ影響線におけるたわみ最小値と平均値から求めることができる。
Yave (average deflection) = -0.0135m
Ymax (maximum deflection) = + 0.0059m
Ymin (minimum deflection) = -0.0678m
Further, k1, k2 and k3 (hereinafter referred to as k values) are constants determined by the deflection influence line of the structure at each elevation measurement point (that is, determined by the structure). These k values can be calculated from the amount of deflection generated by the following equations. That is, Yo is a deflection amount at a deflection zero point (a deflection amount in a no-load state), and Yo = 0, so that k1 can be obtained from a maximum deflection value and an average value in a deflection influence line, and k2 Can be obtained from the maximum value and the minimum value of the deflection in the deflection effect line, and k3 can be obtained from the minimum value and the average value in the deflection effect line.

k1=(Yo−Yave)/(Ymax−Yave)=(0+0.0135)/(0.0059+0.0135)=0.6959
k2=(Yo−Yave)/(Ymax−Ymin)=(0+0.0135)/(0.0059+0.0678)=0.1832
k3=(Yo−Yave)/(Yave−Ymin)=(0+0.0135)/(-0.0135+0.0678)=0.2486
前記たわみ関係式は、実橋レベルにおいても再現されるはずであるから、それぞれの対応関係から、前記たわみ最大値Ymaxを最大標高値Hmax、たわみ最小値Yminを最小標高値Hmin、前記たわみ平均値Yaveを平均標高値Haveに置換すると活荷重無載荷状態の標高H0を求める算出式は下式となる。
k1 = (Yo−Yave) / (Ymax−Yave) = (0 + 0.0135) / (0.0059 + 0.0135) = 0.6959
k2 = (Yo−Yave) / (Ymax−Ymin) = (0 + 0.0135) / (0.0059 + 0.0678) = 0.1832
k3 = (Yo−Yave) / (Yave−Ymin) = (0 + 0.0135) / (− 0.0135 + 0.0678) = 0.2486
Since the deflection equation should be reproduced even at the actual bridge level, the maximum deflection value Ymax is the maximum elevation value Hmax, the minimum deflection value Ymin is the minimum elevation value Hmin, and the deflection average value is based on the corresponding relationship. When Yave is replaced with the average altitude value Have, the calculation formula for obtaining the altitude H0 in the state where there is no live load is as follows.

第一式 H0=Have+(Hmax−Have)*k1 …(1)’
第二式 H0=Have+(Hmax−Hmin)*k2 …(2)’
第三式 H0=Have+(Have−Hmin)*k3 …(3)’
First formula H0 = Have + (Hmax-Have) * k1 (1) '
Second formula H0 = Have + (Hmax-Hmin) * k2 (2) '
Third formula H0 = Have + (Have-Hmin) * k3 (3) '

[応用計測原理]
上記基本計測原理を、MAT車9を計測格点に停車させることなく移動状態を維持したままで計測を行うようにして橋軸方向への展開を試みた場合、計測格点で計測できる標高計測値(Hj)は1つの数値だけであり、「最大値Ymax」及び「最小値Ymin」の両方の数値を持つことはできない。図4は時刻歴を横軸として所定時間の間、継続的に計測して得られるグラフであるが、MAT車9を停止させない本発明の場合、計測する点は図4のグラフの内のいずれかの1点の数値ということになる。
[Applied measurement principle]
Elevation measurement that can be measured at the measurement grade when the basic measurement principle is used in the direction of the bridge axis by making the measurement while maintaining the moving state without stopping the MAT car 9 at the measurement grade. The value (Hj) is only one numerical value, and cannot have both the “maximum value Ymax” and the “minimum value Ymin”. FIG. 4 is a graph obtained by continuously measuring for a predetermined time with the time history as the horizontal axis. In the present invention in which the MAT vehicle 9 is not stopped, the points to be measured are any of the graphs in FIG. That is a numerical value of one point.

そこで、上記基本計測原理を橋軸方向に展開させるに当たり、計測原理の拡大を試みる。すなわち、図5のたわみ影響線の下で、たわみ影響線がたわみ平均値よりも上側のゾーンの領域では上記第一式が共通的に適用でき、たわみ影響線がたわみ平均値よりも下側のゾーンの領域では前記第三式が共通的に適用できると仮定すると、MAT車9を停止させないで計測した標高計測値(Hj)について、活荷重無載荷状態の標高を求める算出式を導くことができる。   Therefore, in developing the basic measurement principle in the direction of the bridge axis, we will try to expand the measurement principle. That is, under the deflection influence line in FIG. 5, the above-mentioned first formula can be commonly applied in the zone region where the deflection influence line is higher than the deflection average value, and the deflection influence line is lower than the deflection average value. Assuming that the third equation can be commonly applied in the zone region, a calculation formula for obtaining the altitude in the state of no active load can be derived for the altitude measurement value (Hj) measured without stopping the MAT vehicle 9. it can.

具体的には、標高計測値(Hj)の生データは、橋梁の基本形状ラインを基本線として、この基本線を交差するようにジグザグ状に描かれるため、先ず最初に前記多点での標高計測値(Hj)に基づいて最小二乗法により多項式近似曲線に描き、任意点で標高近似値(Hm)を得ることができるようにする。前記多項式近似曲線は前記たわみ影響線での下での「たわみ平均値」に相当する概念のものであるが、前記標高計測値(Hj)が前記多項式近似曲線(標高近似値(Hm))よりも大きい場合は、前記第一式に対応する下式(1)により活荷重無載荷状態の計算標高(Ho1)を求めるようにし、

Figure 0005914430
Specifically, the raw elevation data (Hj) is drawn in a zigzag shape with the basic shape line of the bridge as the basic line and intersecting this basic line. Based on the measured value (Hj), a polynomial approximate curve is drawn by the least square method so that an altitude approximate value (Hm) can be obtained at an arbitrary point. The polynomial approximate curve is a concept corresponding to the “deflection average value” under the deflection influence line, but the elevation measurement value (Hj) is more than the polynomial approximation curve (altitude approximation value (Hm)). Is larger, the calculated altitude (Ho1) in the state of no live load is obtained by the following formula (1) corresponding to the first formula,
Figure 0005914430

前記標高計測値(Hj)が前記多項式近似曲線(標高近似値(Hm))よりも小さい場合は、前記第三式に対応する下式(2)により活荷重無載荷状態の計算標高(Ho3)を求めるようにする。

Figure 0005914430
When the altitude measurement value (Hj) is smaller than the polynomial approximation curve (elevation approximation value (Hm)), the calculated altitude (Ho3) in the state of no active load is obtained by the following equation (2) corresponding to the third equation. To ask.
Figure 0005914430

そして、前記計算標高(H01,H03)は点の集合体であるため、これら計算標高(Ho1)と計算標高(Ho3)とから全体の活荷重無載荷状態の多項式近似曲線を得るようにすれば、その曲線は橋梁の活荷重無載荷状態の標高形状線となる。   Since the calculated altitude (H01, H03) is a set of points, a polynomial approximation curve of the whole live load unloaded state can be obtained from these calculated altitude (Ho1) and calculated altitude (Ho3). The curve becomes the elevation shape line of the bridge with no live load.

本発明は、移動体9を路線方向に移動させながら、全方向プリズム11を橋梁外に設置した自動追尾機能付きトータルステーションによ10り小時間間隔で連続的に計測して前記移動体9に取り付けた全方向プリズム11の連続した多点での標高計測値(Hj)を得て、このデータ群から活荷重無載荷状態での標高近似値を計算によって得る方法であるが、前記特許文献2で提案した計測方法に比べて誤差が若干大きくなることは予想されるが、その誤差がどの程度のものであるか検証を行った。   In the present invention, while moving the moving body 9 in the route direction, the omnidirectional prism 11 is continuously measured at small time intervals by a total station with an automatic tracking function in which the omnidirectional prism 11 is installed outside the bridge, and is attached to the moving body 9. In this method, the altitude measurement values (Hj) at continuous multipoints of the omnidirectional prism 11 are obtained, and the altitude approximate value in the state of no active load is obtained by calculation from this data group. Although the error is expected to be slightly larger than that of the proposed measurement method, the extent of the error was verified.

なお、便宜上、本発明に係る計測方法を「近似ゼロ点標高補正法」と呼び、前記特許文献2に係る計測方法を「ゼロ点標高評価補正法」と呼ぶ。また、本発明に係る計測値データを「MAT-J」(Jは徐行の意味)と呼び、前記特許文献2に係る計測値データを「MAT-S」(Sはストップの意味)と呼ぶ。   For convenience, the measurement method according to the present invention is referred to as “approximate zero point altitude correction method”, and the measurement method according to Patent Document 2 is referred to as “zero point altitude evaluation correction method”. Further, the measurement value data according to the present invention is referred to as “MAT-J” (J means slow travel), and the measurement value data according to Patent Document 2 is referred to as “MAT-S” (S means stop).

〔実施例1〕(任意固定点の計測値への適用)
近似ゼロ点標高補正法は、固定点の計測値(MAT-S)に対しても当然適用できる。この例として、既設の吊橋の134格点(Lc/2点)および117格点(Lc/4点)の計測値をもとに無載荷状態標高を算出し、「ゼロ点標高評価補正法」にて求めた無載荷状態標高と比較し考察する。
[Example 1] (Application to measurement values of arbitrary fixed points)
The approximate zero point elevation correction method can naturally be applied to the measurement value (MAT-S) of a fixed point. As an example of this, the no-load elevation is calculated based on the measured values of 134 grades (Lc / 2 points) and 117 grades (Lc / 4 points) of the existing suspension bridge. Compared with the no-load state altitude obtained in (1) above.

<134格点(Lc/2点)における比較>
(1)ゼロ点標高評価補正法
図6は、1:09:00〜1:19:00間の計測結果を図化したものであり、この時間中の最大値を太い破線で、最小値を点線で、また平均値を細い破線で示している。時刻1:19:00における最大値は75.9240、最小値は75.7787、また平均値は75.8837であることがわかる。これらの値から、時刻1:19:00における無載荷状態標高は下記のように算出できる。
(第一式) Ho1=75.8837+(75.9240-75.8837)*0.5079=75.9042m
(第二式) Ho2=75.8837+(75.9240-75.7787)*0.1188=75.9010m
(第三式) Ho1=75.8837+(75.8837-75.7787)*0.1551=75.9000m
<Comparison at 134 grades (Lc / 2 points)>
(1) Zero point altitude evaluation correction method Figure 6 shows the measurement results between 1:09:00 and 1:19:00. The maximum value during this time is indicated by a thick broken line and the minimum value is indicated. The dotted line and the average value are indicated by a thin broken line. It can be seen that the maximum value at time 1:19:00 is 75.9240, the minimum value is 75.7787, and the average value is 75.8837. From these values, the no-load state altitude at time 1:19:00 can be calculated as follows.
(First formula) Ho1 = 75.8837 + (75.9240-75.8837) * 0.5079 = 75.9042m
(2nd formula) Ho2 = 75.8837 + (75.9240-75.7787) * 0.1188 = 75.9010m
(3rd formula) Ho1 = 75.8837 + (75.8837-75.7787) * 0.1551 = 75.9000m

(2)近似ゼロ点標高補正法
まず、図7に示すように、計測値の全データ(MAT-J)から多項式近似直線(Hm=1.5828t+78.8024)を求める。この近似直線は、右上がりの傾向を示す直線となり、計測開始時刻からの平均値の経時変化を示している。この近似直線はゼロ点標高評価補正法で算出した平均値(点線)とほぼ同じ様な値で変化しているものの、平均値(点線)は橋桁のたわみの影響によって大きく変動しているのに対して、安定していることが確認できる。
(2) Approximate Zero Point Elevation Correction Method First, as shown in FIG. 7, a polynomial approximate straight line (Hm = 1.5828t + 78.8024) is obtained from all measured data (MAT-J). This approximate straight line is a straight line showing a tendency of rising to the right, and shows a change with time of the average value from the measurement start time. Although this approximate line changes with a value almost the same as the average value (dotted line) calculated by the zero point elevation evaluation correction method, the average value (dotted line) varies greatly due to the influence of the deflection of the bridge girder. On the other hand, it can be confirmed that it is stable.

次に、前記標高計測値(Hj)と前記標高近似値(Hm)とを対比して、標高計測値(Hj)≧標高近似値(Hm)であるならば、式(1)により活荷重無載荷状態の計算標高(Ho1)を求め(k1=0.5079)、標高計測値(Hj)<標高近似値(Hm)であるならば、式(2)により活荷重無載荷状態の計算標高(Ho3)を求め(k3=0.1551)、前記活荷重無載荷状態の計算標高(Ho1)と計算標高(Ho3)とから全体の活荷重無載荷状態の多項式近似曲線(標高形状線:H0=1.5747t+75.8105)を得るようにする。計算結果を下表1に示すとともに、図8に示す。

Figure 0005914430
Next, if the measured altitude (Hj) and the approximate altitude (Hm) are compared with each other and the measured altitude (Hj) ≥ approximate altitude (Hm), Calculate the calculated altitude (Ho1) of the loaded state (k1 = 0.5079), and if the measured altitude (Hj) <approximate altitude (Hm), then calculate the altitude (Ho3) with no live load using Equation (2) (K3 = 0.1551), and a polynomial approximation curve of the whole live load unloaded state (altitude shape line: H0 = 1.5747t + 75.8105) ). The calculation results are shown in Table 1 below and shown in FIG.
Figure 0005914430

(3)両者の対比
図9に、ゼロ点標高評価補正法において、第一〜第三式から求めた無載荷状態標高(無載荷H1,無載荷H2および無載荷H3)を示すとともに、近似ゼロ点標高補正法によって求めた無載荷状態標高を示す。ただし、近似ゼロ点標高補正法の場合は、無載荷状態標高として最終計測時刻である1:19:00の値を抽出した。
(3) Comparison of both Fig. 9 shows the no-load state altitude (no-load H1, no-load H2 and no-load H3) obtained from the first to third formulas in the zero-point elevation correction method, and approximate zero The no-load state elevation obtained by the point elevation correction method is shown. However, in the case of the approximate zero point elevation correction method, the value of 1:19:00, which is the last measurement time, was extracted as the no-load state elevation.

下表2に示すように、ゼロ点標高評価補正法による無載荷状態標高値は、それぞれ75.904(第一式)、75.901(第二式)および75.900(第三式)であるのに対して、近似ゼロ点標高補正法によれば75.897(太実線)となり、ゼロ点標高評価補正法との値差は最大でも7mm(第一式との差)であり、大きな差は発生していない。

Figure 0005914430
As shown in Table 2 below, the unloaded elevation values by the zero point elevation evaluation correction method are 75.904 (first formula), 75.901 (second formula) and 75.900 (third formula), respectively. According to the approximate zero point altitude correction method, it is 75.897 (thick solid line), and the value difference from the zero point altitude evaluation correction method is 7 mm at the maximum (difference from the first formula), and there is no big difference.
Figure 0005914430

<117格点(Lc/4点)における比較>
同様に、117格点(Lc/4点)について、ゼロ点標高評価補正法と近似ゼロ点標高補正法とにより、無載荷状態標高を計算した結果を図10に示す。
<Comparison at 117 rating (Lc / 4 points)>
Similarly, with respect to 117 rating points (Lc / 4 points), the result of calculating the no-load state altitude by the zero point altitude evaluation correction method and the approximate zero point altitude correction method is shown in FIG.

図10より、1:09:00〜1:19:00間の計測における最終計測時刻(1:19:00)における無載荷状態標高値は、ゼロ点標高評価補正法によればそれぞれ75.039(第一式)、75.041(第二式)および75.0420(第三式)であるのに対して、近似ゼロ点標高補正法によれば75.040となり、ゼロ点標高評価補正法との差は最大でも2mm(第三式との差)であり、ほとんど同値となっていることがわかる。   From FIG. 10, the no-load state altitude value at the last measurement time (1:19:00) in the measurement from 1:09:00 to 1:19:00 is 75.039 (the first) according to the zero point altitude evaluation correction method. 1 set), 75.041 (2nd formula) and 75.0420 (3rd formula), but according to the approximate zero point elevation correction method, it is 75.040, and the difference from the zero point elevation evaluation correction method is 2 mm at maximum ( It is a difference from the third formula), which shows that the values are almost the same.

〔実施例2〕(仮想MAT−J計測値への適用)
次に、近似ゼロ点標高補正法の検証例として、仮想MAT-J計測値をもとに無載荷状態標高を求めることを試みる。対象は仮想の計画高(UFL=-2.8425E-5x2+76.131)をもつ既設の吊橋(中央径間:L=712m)であり、ここに仮想の活荷重たわみを発生させた時の標高値を計測したものとし、これをもとに無載荷状態標高を求め、当初設定した計画高と比較する。両者の差が小さければ、「近似ゼロ点標高補正法により、無載荷状態標高を求めることができる」ことを意味している。
[Example 2] (Application to virtual MAT-J measurement value)
Next, as an example of verification of the approximate zero point elevation correction method, we attempt to obtain the no-load state elevation based on the virtual MAT-J measurement values. The target is an existing suspension bridge (center span: L = 712m) with a virtual planned height (UFL = -2.8425E-5x2 + 76.131), where the elevation value when a virtual live load deflection is generated Based on this, the no-load state altitude is obtained and compared with the initially set planned height. If the difference between the two is small, it means that “the unloaded elevation can be obtained by the approximate zero point elevation correction method”.

橋桁の標高値に加算するたわみは、図11に示した、MAT車(実際は橋梁検査車)がこの径間内を移動している時に発生したものであり、x座標を橋桁の計画形状線図に合わせている。   The deflection added to the elevation value of the bridge girder occurred when the MAT car (actually the bridge inspection car) moves within the span shown in Fig. 11, and the x coordinate is the planned shape diagram of the bridge girder. To match.

橋桁に仮想のたわみを発生させた結果は図12のようになる。この図は2次放物線の橋桁の計画高(UFL)に、図11に示す活荷重たわみを加算したものである。   The result of generating the virtual deflection in the bridge girder is as shown in FIG. In this figure, the deflection of the live load shown in FIG. 11 is added to the planned height (UFL) of the secondary parabola bridge girder.

図12に示された仮想MAT−J標高のデータに基づいて、近似ゼロ点標高補正法により、活荷重無載荷状態の標高を計算する。計算結果を下表3に示すとともに、図13(一部)に示す。なお、計算に用いる定数k1、k3は、図14に示す近似式により求めた。

Figure 0005914430
Based on the data of the virtual MAT-J elevation shown in FIG. 12, the altitude in the no-load state is calculated by the approximate zero point elevation correction method. The calculation results are shown in Table 3 below and shown in FIG. 13 (part). Note that the constants k1 and k3 used for the calculation were obtained by the approximate expression shown in FIG.
Figure 0005914430

本実施例2では、2次放物線形状を有する橋桁(UFL)に仮想の活荷重たわみ(L)を加算した値をMAT-J計測で得た標高値として、この値から橋桁の無載荷状態標高(Ho)を「近似ゼロ点標高補正法」で算出した。その結果、無載荷状態標高Hoは表2のAV列のようになり、計画高との差(Ho-UFL)は表2のAW列に示すように、最大値で0.00003mと極めて小さく、算出で得た無載荷状態標高(Ho)は仮想活荷重たわみを載荷させる前の橋桁形状(UFL)と同じとなった。   In Example 2, the value obtained by adding a virtual live load deflection (L) to a bridge girder (UFL) having a secondary parabola shape is used as an altitude value obtained by MAT-J measurement. (Ho) was calculated by the “approximate zero point elevation correction method”. As a result, the no-load state elevation Ho is as shown in the AV column of Table 2, and the difference from the planned height (Ho-UFL) is extremely small at 0.00003m as shown in the AW column of Table 2. The unloaded elevation (Ho) obtained in step 1 is the same as the bridge girder shape (UFL) before loading the virtual live load deflection.

この結果、近似ゼロ点標高補正法はMAT-J計測値をもとに無載荷状態標高を算出することが可能であると言える。   As a result, it can be said that the approximate zero point elevation correction method can calculate the no-load state elevation based on the MAT-J measurement values.

〔他の形態例〕
(1)上記〔発明を実施するための形態〕の説明では、温度に対する補正については行っていないが、基準温度(ex.20℃)における活荷重無載荷時の標高とするには、基準温度に対する差分温度だけ温度補正を行うようにすればよい。一般的には、温度と標高とは一次線形の関係で表すことができるため、予め単位温度当たりの標高補正量を算出しておけば、簡単に温度分を補正することが可能である。
[Other examples]
(1) In the above description of [Mode for Carrying Out the Invention], correction for temperature is not performed, but in order to obtain an altitude when there is no live load at a reference temperature (ex. 20 ° C.), the reference temperature It is only necessary to perform temperature correction by the difference temperature with respect to. Generally, since temperature and altitude can be expressed by a linear relationship, if the altitude correction amount per unit temperature is calculated in advance, the temperature can be easily corrected.

1…吊橋、2・3…主塔、4・5…アンカレッジ、6…ケーブル、7…ハンガーロープ、8…補剛桁、9…移動体(MAT車)、10…トータルステーション、11…全方向プリズム、12…コンピュータ   DESCRIPTION OF SYMBOLS 1 ... Suspension bridge, 2.3 ... Main tower, 4.5 ... Anchorage, 6 ... Cable, 7 ... Hanger rope, 8 ... Stiffening girder, 9 ... Mobile (MAT car), 10 ... Total station, 11 ... All directions Prism, 12 ... computer

Claims (2)

橋梁に活荷重が載荷された状態で、路線方向に沿った活荷重無載荷状態の標高形状線を得るための計測方法であって、
視準ターゲットとなる全方向プリズムを取り付けた移動体を路線方向に移動させながら、前記全方向プリズムを橋梁外に設置した自動追尾機能付きトータルステーションにより小時間間隔で連続的に計測して前記移動体に取り付けた全方向プリズムの連続した多点での標高計測値(Hj)を得る第1手順と、
前記多点での標高計測値(Hj)に基づいて多項式近似曲線に描き、任意点で標高近似値(Hm)を得ることができるようにする第2手順と、
活荷重無載荷状態の標高計測点として設定された多数の任意点において、前記標高計測値(Hj)と前記標高近似値(Hm)とを対比して、
標高計測値(Hj)≧標高近似値(Hm)であるならば、下式(1)により活荷重無載荷状態の計算標高(Ho1)を求め、
Figure 0005914430
標高計測値(Hj)<標高近似値(Hm)であるならば、下式(2)により活荷重無載荷状態の計算標高(Ho3)を求め、
Figure 0005914430
前記活荷重無載荷状態の計算標高(Ho1)と計算標高(Ho3)とから全体の活荷重無載荷状態の多項式近似曲線(標高形状線)を得る第3手順とからなることを特徴とする橋梁における活荷重無載荷状態時の標高計測方法。
In a state where a live load is loaded on a bridge, it is a measurement method for obtaining an elevation shape line in a state where there is no live load along the route direction,
While moving a moving object equipped with an omnidirectional prism as a collimation target in the route direction, the moving object is continuously measured at small time intervals by a total station with an automatic tracking function in which the omnidirectional prism is installed outside the bridge. A first procedure for obtaining altitude measurement values (Hj) at consecutive multiple points of the omnidirectional prism attached to
A second procedure for drawing an approximated polynomial curve based on the measured elevation values (Hj) at the multiple points and obtaining an approximated elevation value (Hm) at an arbitrary point;
At a number of arbitrary points set as elevation measurement points in a live load-unloaded state, the elevation measurement value (Hj) and the elevation approximation value (Hm) are compared,
If the measured altitude (Hj) ≥ approximate altitude (Hm), calculate the calculated altitude (Ho1) in the no-load state with the following formula (1)
Figure 0005914430
If the measured altitude (Hj) <approximate altitude (Hm), calculate the calculated altitude (Ho3) without a live load using the following formula (2):
Figure 0005914430
A bridge characterized by comprising a third procedure for obtaining a polynomial approximation curve (elevation shape line) of the whole live load no-load state from the calculated height (Ho1) and the calculated altitude (Ho3) in the no-load state. Altitude measurement method when no live load is applied.
前記移動体は、橋梁に常設されている検査車、橋面上を低速で走行させる走行車両、カート車、或いは自転車である請求項1記載の橋梁における活荷重無載荷状態時の標高計測方法。   The altitude measuring method in a state where no live load is applied to the bridge according to claim 1, wherein the moving body is an inspection vehicle permanently installed on the bridge, a traveling vehicle that travels on the bridge surface at a low speed, a cart, or a bicycle.
JP2013167251A 2013-08-12 2013-08-12 Elevation measurement method for bridges without live load Expired - Fee Related JP5914430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167251A JP5914430B2 (en) 2013-08-12 2013-08-12 Elevation measurement method for bridges without live load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167251A JP5914430B2 (en) 2013-08-12 2013-08-12 Elevation measurement method for bridges without live load

Publications (2)

Publication Number Publication Date
JP2015036620A JP2015036620A (en) 2015-02-23
JP5914430B2 true JP5914430B2 (en) 2016-05-11

Family

ID=52687181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167251A Expired - Fee Related JP5914430B2 (en) 2013-08-12 2013-08-12 Elevation measurement method for bridges without live load

Country Status (1)

Country Link
JP (1) JP5914430B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525496A (en) * 2017-07-27 2017-12-29 中铁大桥局集团有限公司 Ultra-Long Spans galvanized wire for suspension bridge sag measurement apparatus and its measuring method
CN110593076A (en) * 2019-09-29 2019-12-20 广西路桥工程集团有限公司 Steel pipe concrete tied arch bridge hunch seat horizontal displacement monitoring and control system
CN111041987A (en) * 2019-11-22 2020-04-21 中铁大桥局集团第二工程有限公司 Auxiliary tool for positioning and installing steel anchor beam of cable-stayed bridge and use method of auxiliary tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680103B (en) * 2018-05-02 2020-06-09 中铁大桥局集团有限公司 Rapid and precise positioning measurement method for cable-stayed bridge ultrahigh bridge tower pier anchoring structure
WO2020157973A1 (en) * 2019-02-01 2020-08-06 日本電気株式会社 Image processing device
CN111287093A (en) * 2020-03-12 2020-06-16 中铁大桥局集团第五工程有限公司 Cable strand embedded pipe axis positioning device and using method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4010694B2 (en) * 1999-03-03 2007-11-21 株式会社Ihi Automatic deflection monitoring method for in-service bridges
JP5261441B2 (en) * 2010-06-09 2013-08-14 復建調査設計株式会社 Elevation measurement method for bridges without live load
CN102645173A (en) * 2011-02-16 2012-08-22 张文杰 Multi-vision-based bridge three-dimensional deformation monitoring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525496A (en) * 2017-07-27 2017-12-29 中铁大桥局集团有限公司 Ultra-Long Spans galvanized wire for suspension bridge sag measurement apparatus and its measuring method
CN107525496B (en) * 2017-07-27 2019-12-31 中铁大桥局集团有限公司 Device and method for measuring sag of cable of ultra-large span suspension bridge
CN110593076A (en) * 2019-09-29 2019-12-20 广西路桥工程集团有限公司 Steel pipe concrete tied arch bridge hunch seat horizontal displacement monitoring and control system
CN111041987A (en) * 2019-11-22 2020-04-21 中铁大桥局集团第二工程有限公司 Auxiliary tool for positioning and installing steel anchor beam of cable-stayed bridge and use method of auxiliary tool

Also Published As

Publication number Publication date
JP2015036620A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5914430B2 (en) Elevation measurement method for bridges without live load
JP5261441B2 (en) Elevation measurement method for bridges without live load
KR101976655B1 (en) Method for Determining the Fatigue Capital of a Cable
US10392035B2 (en) Method and apparatus to determine structural parameters of a railway track
US20180143017A1 (en) Versine trolley-type equipment for inspecting track irregularity
US20210302222A1 (en) Measurement Method, Measurement Device, Measurement System, And Measurement Program
JP5153572B2 (en) Measurement method of live load of bridge
CN103644843B (en) Rail transit vehicle motion attitude detection method and application thereof
JP6512588B2 (en) Track state measurement method and sales vehicle capable of track state measurement
CN102251478B (en) Control method for synchronous construction survey of pylons and beams of cable-stayed bridge
US20140180609A1 (en) Method of establishing the deflection and/or the stiffness of a supporting structure
CN112118994A (en) Method for determining the actual position of a rail of a track
CN103253286B (en) A kind of orbital-elements measurement method
Aceituno et al. An alternative procedure to measure railroad track irregularities. Application to a scaled track
CN107386125A (en) The construction method that a kind of Steel Box Girder of Self-Anchored Suspension beam closes up
Jiang et al. Assessment of pantograph-catenary interaction in a railway overlap section via a novel optical-based method
CN113609565B (en) Acceptance method and device for static long wave irregularity of railway bridge track
JP2006317413A (en) Preservation system of vehicle traffic structure, and preservation method of vehicle traffic structure
JP3340393B2 (en) Measuring method of bridge structure without live load
WO2024170463A1 (en) Systems and methods for assessing track condition
CN105568797A (en) Steel-rail detection device
JP2011174351A (en) Measurement management method for confirming safety of train travel
Connor et al. Results of field monitoring prototype floorbeam connection retrofit details on the Birmingham Bridge
RU2239798C2 (en) Method of weighing vehicle
JP6933968B2 (en) A vehicle having a regulated wind speed determination method, a regulated speed determination method, and a regulated speed determination means for the vehicle.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees