JP5997398B1 - 地下空洞内の空気漏れ防止方法 - Google Patents
地下空洞内の空気漏れ防止方法 Download PDFInfo
- Publication number
- JP5997398B1 JP5997398B1 JP2016037321A JP2016037321A JP5997398B1 JP 5997398 B1 JP5997398 B1 JP 5997398B1 JP 2016037321 A JP2016037321 A JP 2016037321A JP 2016037321 A JP2016037321 A JP 2016037321A JP 5997398 B1 JP5997398 B1 JP 5997398B1
- Authority
- JP
- Japan
- Prior art keywords
- underground cavity
- filler
- water
- underground
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 44
- 230000002265 prevention Effects 0.000 title claims description 4
- 239000000945 filler Substances 0.000 claims abstract description 154
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000007667 floating Methods 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 238000002791 soaking Methods 0.000 claims description 3
- 239000006260 foam Substances 0.000 abstract description 9
- 238000004146 energy storage Methods 0.000 abstract description 4
- 238000002360 preparation method Methods 0.000 abstract description 3
- 238000003860 storage Methods 0.000 description 28
- 238000010248 power generation Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 239000011435 rock Substances 0.000 description 7
- 238000011049 filling Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 235000002639 sodium chloride Nutrition 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G5/00—Storing fluids in natural or artificial cavities or chambers in the earth
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/138—Plastering the borehole wall; Injecting into the formation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/38—Waterproofing; Heat insulating; Soundproofing; Electric insulating
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D13/00—Large underground chambers; Methods or apparatus for making them
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
- Lining And Supports For Tunnels (AREA)
- Building Environments (AREA)
Abstract
【課題】圧縮空気エネルギー貯蔵(CAES)に利用する地下空洞内の空気漏れを防止する手段において、事前の準備や現場での作業を簡易に、効率良く行い得るようにする。【解決手段】泡状をした非水溶性の充填材2を地下空洞1内へ供給する。次いで、供給した充填材を地下空洞内の底面1B及び低位壁面1Lに付着させ、内部へ浸み込ませる。引き続き、浸み込んだ充填材を硬化させる。ここで、泡状をした非水溶性の充填材を地下空洞内へ再供給するものとしても良い。さらに、地下空洞内へ水3を注入して充填材を浮き上がらせながら、浮かび上がった充填材を地下空洞内の高位壁面1H及び天面1Uに付着させ、内部へ浸み込ませる。そして、浸み込んだ充填材を硬化させる。なお、充填材を地下空洞の内面に浸み込ませる際、地下空洞内の内圧を上昇させるものとしても良い。また、充填材を硬化させる際、地下空洞内の温度を上昇させたりするものとしても良い。【選択図】図1
Description
本願発明は、地下空洞内の空気漏れを防止する方法に係り、詳しくは、圧縮空気エネルギー貯蔵(Compressed Air Energy Storage:CAES)において利用される地下空洞内の空気漏れ防止方法に関する。
人間の社会生活にはエネルギーが必要である。事実、毎日の生活には種々のエネルギーが使われている。その代表的なのは電気エネルギーである。電気エネルギーを消費する側からみると、電気の使い方(電力消費)は、一日の内でもかなりの変動がある。一方、発電する側からみると、大型の発電所は一定のレベルで連続運転を続ける方が効率良く、電力消費の細かい日内変動にいちいち同調する困難である。
また、風力や太陽光、波力、地熱などの自然エネルギーを利用しようとして種々な方法が考えられているが、自然エネルギーによる発電が人間社会の必要度と一致しない場合も多い。
このようなギャップを埋めるためには、エネルギーの貯蔵という技術が必要である。その方法の一つとして「CAES」の方法がある。
このようなギャップを埋めるためには、エネルギーの貯蔵という技術が必要である。その方法の一つとして「CAES」の方法がある。
CAESという技術は、ガスタービン発電所において、深夜の電力を使って地下空洞や海底タンクなどの貯蔵層に圧力ポテンシャルの形で高圧空気を貯蔵し、それを昼間の電力使用の高い時に使って発電を行うシステムである。
圧縮空気エネルギー貯蔵による発電システムについては、次のとおり財団法人電力中央研究所より報告されている(非特許文献1及び2を参照)。
・圧縮空気貯蔵発電(CAES)は、ドイツや米国で実現している。
・これらの国では、地下の岩塩層に圧縮空気を貯蔵している。
・岩塩層の無い我が国では、地下に空洞を掘るか、海底に貯蔵タンクを置くことを考える。
・CAESの効率は、現状では超伝導より劣るが揚水発電より優れており、将来の技術進歩によって超伝導の値に近づく可能性がある。
・CAES用空洞は、硬岩であれば現在の技術で建設可能であるが、軟岩と海底タンクは課題がある。
・硬岩空洞のCAESは、条件が良ければ揚水発電やLNG複合発電と経済的に競合可能である。
・他の貯蔵方式は、経済性を高める技術開発が必要である。
・化石燃料を使った火力発電所がすべてCAESに置き換ったとすると、現在の燃料消費量の55%を節約できる。
・大都市近郊の地下の軟岩でCAESが可能なら、送電線の敷設などに関する問題が軽減し、都市における分散型電源となる。
・圧縮空気貯蔵発電(CAES)は、ドイツや米国で実現している。
・これらの国では、地下の岩塩層に圧縮空気を貯蔵している。
・岩塩層の無い我が国では、地下に空洞を掘るか、海底に貯蔵タンクを置くことを考える。
・CAESの効率は、現状では超伝導より劣るが揚水発電より優れており、将来の技術進歩によって超伝導の値に近づく可能性がある。
・CAES用空洞は、硬岩であれば現在の技術で建設可能であるが、軟岩と海底タンクは課題がある。
・硬岩空洞のCAESは、条件が良ければ揚水発電やLNG複合発電と経済的に競合可能である。
・他の貯蔵方式は、経済性を高める技術開発が必要である。
・化石燃料を使った火力発電所がすべてCAESに置き換ったとすると、現在の燃料消費量の55%を節約できる。
・大都市近郊の地下の軟岩でCAESが可能なら、送電線の敷設などに関する問題が軽減し、都市における分散型電源となる。
・各国の圧縮空気貯蔵ガスタービン発電の計画は、平成2年において、ドイツ(旧西ドイツ)、イタリア、米国、ウクライナ(旧ソ連)、フランス、ルクセンブルク、日本などが挙げられており、場所は岩塩層が多い。しかし、我が国においては岩塩層が存在しないので、岩盤に空洞を掘ることを計画している。
・ドイツにおける運転中の例では、岩塩層に円筒型の空洞を作っており、規模は直径55m、長さ150mである。
・圧縮空気の貯蔵方法には変圧式と定圧式の2方法があり、これらの貯蔵容量は貯蔵圧力によって変化する。定圧貯蔵では貯蔵容量を減らすことが可能であり、その圧力ポテンシャルを揚水発電と比較すると、たとえば、80気圧の空気1m3は水1m3を810mの高さに上げた位置エネルギーに相当する。
・定圧貯蔵の場合において発電に必要な貯蔵容量を計算すると、たとえば、既存のガスタービンを利用して10万kWで10時間発電するためには、30気圧で貯蔵するなら14万m3の貯蔵容量が必要であり、50気圧で貯蔵するなら8.4万m3の貯蔵容量で済むことになる。
・ドイツにおける運転中の例では、岩塩層に円筒型の空洞を作っており、規模は直径55m、長さ150mである。
・圧縮空気の貯蔵方法には変圧式と定圧式の2方法があり、これらの貯蔵容量は貯蔵圧力によって変化する。定圧貯蔵では貯蔵容量を減らすことが可能であり、その圧力ポテンシャルを揚水発電と比較すると、たとえば、80気圧の空気1m3は水1m3を810mの高さに上げた位置エネルギーに相当する。
・定圧貯蔵の場合において発電に必要な貯蔵容量を計算すると、たとえば、既存のガスタービンを利用して10万kWで10時間発電するためには、30気圧で貯蔵するなら14万m3の貯蔵容量が必要であり、50気圧で貯蔵するなら8.4万m3の貯蔵容量で済むことになる。
以上より、圧縮空気を定圧で貯蔵する場合、高い気圧なら(貯蔵圧力が高いと)小さい貯蔵容量で済み有利であることが分かる。逆を言えば、空気漏れの生じる空洞では、貯蔵圧力が低下し、土木作業量が多い割に損である。海外では岩塩層に圧縮空気の貯蔵用空洞を作り実用化させているが、我が国ではそのような好条件の岩塩層はなく、むしろ断層の多い軟弱な地層である。したがって、そのような地層であっても空気漏れのない圧縮空気の貯蔵用空洞を作ることのできる技術を開発する必要がある。
そこで、地下空洞の構築において、貯蔵空間の内壁に生じた多くの亀裂等を効果的に封鎖し得る方法として、貯蔵空間に可撓性を有し、かつ水密な袋体を設置した後、この袋体と貯蔵空間の間に注入剤を供給すると共に、袋体の内部に水を加圧して供給し、袋体と貯蔵空間の間に供給した注入剤を固結させて所定厚さのシール層を貯蔵空間の内壁に沿って構築する手段が提案されている(特許文献1を参照)。
しかしながら、CAESで利用する地下空洞は非常に巨大なものであることから、この地下空洞の内部形状に適合した袋体(バルーン)を事前に製造して準備しておくことは勿論のこと、袋体を地下空洞内へ設置し、圧縮空気の貯蔵空間となる地下空洞の内壁に沿ってシール層を構築する作業は煩わしいものである。
財団法人電力中央研究所発行「電力中央研究所報告」研究報告:Y90002 圧縮空気貯蔵発電システムの利点と経済性 平成2年5月
財団法人電力中央研究所発行「電力中央研究所報告」総合報告:U31 岩盤気密方式による圧縮空気貯蔵実証実験に基づく調査・試験法の提案 平成9年1月
本発明は、上記事情に鑑みて成されたものであり、CAESに利用される地下空洞内の空気漏れを防止する方法において、事前の準備や現場での作業を簡易に、効率良く行い得ることを可能とした技術を提供することを目的とする。
本発明に係る地下空洞内の空気漏れ防止する方法は、地下空洞内へ充填材を供給する工程と、供給した充填材を地下空洞の内面に付着させる工程と、付着した充填材を地下空洞の内面に浸み込ませる工程と、内面に浸み込んだ充填材を硬化させる工程とを少なくとも有し、前記地下空洞内へ充填材を供給する工程は、泡状をした非水溶性の充填材を用いることを含み、前記充填材を地下空洞の内面に付着させる工程は、地下空洞内へ水を注入して泡状をした非水溶性の充填材を浮き上がらせながら行うことを含むことを特徴とする。
本発明において、前記充填材を地下空洞の内面に付着させる工程は、地下空洞の底面及び低位壁面に付着させる一次工程と、地下空洞の高位壁面及び天面に付着させる二次工程とを備え、泡状をした非水溶性の充填材を地下空洞内へ供給し、前記一次工程を行った後に、地下空洞内へ水を注入して前記泡状をした非水溶性の充填材を浮き上がらせながら前記二次工程を行うものとしても良い。
また、この際、前記二次工程前に、泡状をした非水溶性の充填材を地下空洞内へ再供給する工程をさらに含むものとしても良い。
また、この際、前記二次工程前に、泡状をした非水溶性の充填材を地下空洞内へ再供給する工程をさらに含むものとしても良い。
また、本発明において、前記地下空洞内へ充填材を供給する工程は、液状をした非水溶性の充填材を用いることをさらに含み、前記充填材を地下空洞の内面に付着させる工程は、地下空洞の底面及び低位壁面に付着させる一次工程と、地下空洞の高位壁面及び天面に付着させる二次工程とを備え、液状をした非水溶性の充填材を地下空洞内へ供給し、前記一次工程を行った後に、泡状をした非水溶性の充填材を地下空洞内へ供給し、さらに、地下空洞内へ水を注入して前記泡状をした非水溶性の充填材を浮き上がらせながら前記二次工程を行うものとすることもできる。
また、本発明では、充填材を地下空洞の内面、すなわち、地下空洞の底面、壁面及び天面に充填材を浸み込ませる工程は、地下空洞内の圧力を上昇させることにより行うものとすることができる。
さらに、本発明では、充填材を硬化させる工程は、地下空洞内の温度を上昇させることにより行うものとすることができる。
本発明における地下空洞内の空気漏れを防止する方法は、泡状をした非水溶性の充填材を地下空洞内へ供給し、この充填材を地下空洞の内面に付着させ、浸み込ませた後、硬化させるものである。ゆえに、袋体の製造のような事前の準備が不要であり、施工現場にて充填材を泡状にして地下空洞内へ供給するだけで簡易に、圧縮空気の貯蔵空間となる地下空洞の内壁に沿って充填材によるシール層を構築することができる。
また、本発明では、地下空洞内へ水を注入して泡状をした非水溶性の充填材を浮き上がらせながら、充填材を地下空洞の内面に付着させるものとしている。ゆえに、泡状をした充填材は、水との比重差によって浮かび上がるので、地下空洞内において水の注入量が増すことにしたがって徐々に、地下空洞の内面の低位から高位にわたって効率良く充填材が付着すると共に、天面までも確実に付着できるものとなる。しかも、充填材は非水溶性であるので、浮き上がる途中で水に溶解してしまうこともない。
以下、本発明に係る地下空洞内の空気漏れ防止方法の実施の形態の一例について、図面に基づき説明する。
なお、以下に述べる実施の形態は、本発明の好適な具体例であるため技術的に種々の限定が付されているが、本発明の範囲は、以下の説明において特に限定する旨の記載がない限り、これらの形態に限られるものではない。
なお、以下に述べる実施の形態は、本発明の好適な具体例であるため技術的に種々の限定が付されているが、本発明の範囲は、以下の説明において特に限定する旨の記載がない限り、これらの形態に限られるものではない。
まず、本発明は、地下空洞内へ充填材を供給する第一工程と、供給した充填材を地下空洞の内面に付着させる第二工程と、付着した充填材を地下空洞の内面に浸み込ませる第三工程と、内面に浸み込んだ充填材を硬化させる第四工程とを少なくとも有することを基本的な構成とするものである。また、本発明は、第一工程において、泡状をした非水溶性の充填材を用いると共に、第二工程において、地下空洞内へ水を注入して泡状をした非水溶性の充填材を浮き上がらせながら行うことを含むことも基本的な構成とするものである。
すなわち、本発明の主たる特徴は、非水溶性の充填材を用いること、この充填材を泡状にして用いること、及び泡状をした非水溶性の充填材を水との比重差を利用して浮かび上がらせることにある。また、充填材を浮かび上がらせる水は海水であっても良い。
<第1の実施の形態>
本実施の形態における地下空洞内の空気漏れ防止方法は、上述した基本的な構成において、第二工程が、地下空洞の底面及び低位壁面に泡状をした非水溶性の充填材を付着させる一次工程と、地下空洞内へ水を注入して泡状をした非水溶性の充填材を浮き上がらせながら、地下空洞の高位壁面及び天面に泡状をした非水溶性の充填材を付着させる二次工程とを備えるものとなっている。
本実施の形態における地下空洞内の空気漏れ防止方法は、上述した基本的な構成において、第二工程が、地下空洞の底面及び低位壁面に泡状をした非水溶性の充填材を付着させる一次工程と、地下空洞内へ水を注入して泡状をした非水溶性の充填材を浮き上がらせながら、地下空洞の高位壁面及び天面に泡状をした非水溶性の充填材を付着させる二次工程とを備えるものとなっている。
本実施の形態では、上記第一工程から第四工程までを、具体的に以下に示す順に行うものとする。
初めに、図1(A)に示すように、地下空洞1へ達する立て坑より、泡状をした非水溶性の充填材2を地下空洞1内へ供給する(第一工程)。
初めに、図1(A)に示すように、地下空洞1へ達する立て坑より、泡状をした非水溶性の充填材2を地下空洞1内へ供給する(第一工程)。
本発明において充填材2は、時間の経過により硬化するものであって、地下空洞1の内面に付着すると共に、この内面に存在する亀裂等(図示せず)の内部へ浸み込んで硬化する、すなわち、経時的に次第に固まることが可能であり、かつ、水よりも比重が小さい泡状となり得る、非水溶性のものであれば、特に限定されるものではない。
このような充填材2としては、たとえば、トンネルやダム等の土木工事において用いられているウレタンフォーム系岩盤固結注入材を挙げることができる。本発明では、このウレタンフォーム系岩盤固結注入材の粘度や硬化時間を適宜調整することで応用することができる。また、ガスバリア性に優れているセルロースナノファイバー(CNF)も利用可能かも知れない。
このような充填材2としては、たとえば、トンネルやダム等の土木工事において用いられているウレタンフォーム系岩盤固結注入材を挙げることができる。本発明では、このウレタンフォーム系岩盤固結注入材の粘度や硬化時間を適宜調整することで応用することができる。また、ガスバリア性に優れているセルロースナノファイバー(CNF)も利用可能かも知れない。
また、充填材2の供給方法も特に限定されるものではない。ゆえに、本発明においては、最初から泡状をした充填材2を地下空洞1内へ直接供給する方法であっても良いし、もしくは、最初は液状もしくはペースト状をした充填材を地下空洞1内へ供給し、その後直ちに発泡して泡状をした充填材2となるようにした間接的に供給される方法であっても良い。また、充填材2は、一液型であっても二液混合型であっても良い。
このような充填材2は、たとえば、充填材タンクや注入ポンプ、ホース、ミキシングユニット等を適宜備える充填装置10を用いて地下空洞内へ供給することができる。
このような充填材2は、たとえば、充填材タンクや注入ポンプ、ホース、ミキシングユニット等を適宜備える充填装置10を用いて地下空洞内へ供給することができる。
次に、図1(B)に示すように、供給した充填材2を地下空洞1の底面1B及び低位壁面1Lに付着させる(第二工程の一次工程)。ここで、充填材2を付着させるとは、空気漏れの一因となり得る隙間や孔を塞いで、地下空洞1の内面に充填材2による被覆層を形成することを意味する。
さらに、図中矢印で示すように、地下空洞1の底面1B及び低位壁面1Lに付着した充填材2を、地下空洞1の底面1B及び低位壁面1Lにおける亀裂等の内部へ浸み込ませる(第三工程)。ここで、充填材2を浸み込ませるとは、第二工程では塞ぐことのできない亀裂や、塞ぎきれなかった隙間や孔の内部へ充填材2を行き渡らせることを意味する。
本実施の形態において、充填材2を地下空洞1の内面(底面1B及び低位壁面1L)に浸み込ませる工程は、たとえば、図中白抜き矢印で示すように、地下空洞1内への空気やガスの送り込みによって内圧を上昇させることにより行うものとすることができる。すなわち、地下空洞1内を加圧することで、地下空洞1の内面に有する細かい割れ目等へ充填材2を押し込むようにし、地下空洞1の内面への充填材2の浸み込みを促進させるようにするものである。
引き続き、地下空洞1の底面1B及び低位壁面1Lに浸み込んだ充填材2を硬化させる(第四工程)。
本実施の形態において、充填材2を硬化させる工程は、たとえば、地下空洞1内への温風の送り込みによって、地下空洞1内の温度を上昇させることにより行うものとすることができる。すなわち、熱硬化型の充填材を用いて地下空洞1内を加温することで、地下空洞1の内面に浸み込んだ充填材2の硬化を促進させるようにするものである。
また、本発明において充填材2を硬化させる工程は、熱硬化型の充填材n限らず、電子線(EB)硬化型の充填材を用いて地下空洞1内への放射線の照射や、紫外線硬化型の充填材を用いて地下空洞1内への紫外線の照射によって、各充填材の硬化を促進させるようにしても良い。
本実施の形態において、充填材2を硬化させる工程は、たとえば、地下空洞1内への温風の送り込みによって、地下空洞1内の温度を上昇させることにより行うものとすることができる。すなわち、熱硬化型の充填材を用いて地下空洞1内を加温することで、地下空洞1の内面に浸み込んだ充填材2の硬化を促進させるようにするものである。
また、本発明において充填材2を硬化させる工程は、熱硬化型の充填材n限らず、電子線(EB)硬化型の充填材を用いて地下空洞1内への放射線の照射や、紫外線硬化型の充填材を用いて地下空洞1内への紫外線の照射によって、各充填材の硬化を促進させるようにしても良い。
また、本実施の形態では、図1(C)に示すように、地下空洞1内へ水3を注入して泡状をした非水溶性の充填材2を浮き上がらせながら、浮き上がった充填材2を地下空洞1の高位壁面1H及び天面1Uに付着させる(第二工程の二次工程)。すなわち、給水装置11を用いて地下空洞内へ水3を注入し、泡状をした充填材2と水3との比重差によって、泡状をした充填材2を浮き上がらせるものである。そして、浮き上がった泡状をした充填材2は、地下空洞1の高位壁面1H及び天面1Uの形状に影響されることなく確実に付着するものとなる。
その後、図中矢印で示すように、地下空洞1の高位壁面1H及び天面1Uに付着した充填材2を、地下空洞1の底面1B及び低位壁面1Lに付着した充填材2と同様に地下空洞1の内圧を上昇させることによって、地下空洞1の高位壁面1H及び天面1Uにおける亀裂等(図示せず)の内部へ浸み込ませる(第三工程)。
本発明では、この際、地下空洞1の内面への充填材2の浸み込みを促進させるための地下空洞1内の加圧によって、地下空洞1内の空気漏れの有無を確認することができる。すなわち、地下空洞1内の加圧の際に圧力を測定し、地下空洞1の加圧状態を続けても減圧が生じないのであれば、地下空洞1内の空気漏れはないものと判断することができる。一方、地下空洞1の内圧が徐々に低下するのであれば、どこかに空気漏れがあると判断されるため、上記第一工程から第三工程を繰り返し行えば良い。
そして、地下空洞1の高位壁面1H及び天面1Uに浸み込んだ充填材2を硬化させるものとする(第四工程)。この際、充填材2の硬化は、たとえば、第三工程にて、地下空洞内へ最初に冷たい空気を送り込んで内圧を上昇させ、地下空洞の内面への充填材の浸み込みを促進させた後、第四工程にて、地下空洞内へ送り込む空気の温度を上昇させて、地下空洞の内面に浸み込んだ充填材の硬化を促進させるものとしても良い。
また、本発明では、第二工程の二次工程にて、地下空洞内へ水を注入して泡状をした非水溶性の充填材を浮き上がらせる際、水に換えて温水を注入することで、浮かび上がった充填材の地下空洞の内面への付着、浸み込みと同時に、充填材の硬化を促進させるものとしても良い。勿論、地下空洞内への温水の注入と同時に、地下空洞内へ空気やガスを送り込んで加圧させることで、浮かび上がった充填材の地下空洞の内面への付着、浸み込みを一層促進させるものとしても良い。さらに、地下空洞内への温水の注入と共に、温風を送り込んで加圧させることで、浮かび上がった充填材の地下空洞の内面への付着、浸み込みと同時に、充填材の硬化を一層促進させるものとしても良い。
これにより、圧縮空気を貯蔵する地下空洞における内面に充填材が付着すると共に、地下空洞内における亀裂等に充填材が浸み込み、硬化することで、地下空洞の内面に充填材による被覆層が効率良く形成され、地下空洞内の空気漏れを防止することができるものとなる。
なお、地下空洞1内へ注入した水(もしくは温水)3は、第二工程の二次工程後に排出するものとしても良いが、地下空洞1内の加圧作業を効率良く行うために、第三工程後に排出するものとしても良い。すなわち、地下空洞1内に水3が存在することで、地下空洞1内の圧力を高めるために送り込む空気の量が少なく済むものとなる。また、地下空洞1内へ注入した水3は、最終的な第四工程後に排出するものとしても良い。
<第2の実施の形態>
また、本発明においては、第一の実施の形態において、第一工程にて供給した充填材が全て硬化してしまうことを考慮し、一次工程にて地下空洞内の底面及び低位壁面に浸み込ませた充填材を硬化させた後、二次工程にて水を注入する前に、泡状をした非水溶性の充填材を地下空洞内へ再供給する工程をさらに含むものとすることができる。すなわち、上述した第1の実施の形態とは、二次工程前に、泡状をした非水溶性の充填材を地下空洞内へ追加供給する工程をさらに含むものとする点で異なる。
なお、以下に述べる他の各実施の形態では、上述した第1の実施の形態と異なる部分を中心に説明する。したがって、第1の実施の形態と同様の構成部分は同じ符号を付してその説明は省略し、特に説明しない限り同じであるものとする。
また、本発明においては、第一の実施の形態において、第一工程にて供給した充填材が全て硬化してしまうことを考慮し、一次工程にて地下空洞内の底面及び低位壁面に浸み込ませた充填材を硬化させた後、二次工程にて水を注入する前に、泡状をした非水溶性の充填材を地下空洞内へ再供給する工程をさらに含むものとすることができる。すなわち、上述した第1の実施の形態とは、二次工程前に、泡状をした非水溶性の充填材を地下空洞内へ追加供給する工程をさらに含むものとする点で異なる。
なお、以下に述べる他の各実施の形態では、上述した第1の実施の形態と異なる部分を中心に説明する。したがって、第1の実施の形態と同様の構成部分は同じ符号を付してその説明は省略し、特に説明しない限り同じであるものとする。
本実施の形態では、上記第一工程から第四工程までを、具体的に以下に示す順に行うものとする。
初めに、充填装置10を用いて、地下空洞1へ達する立て坑より、泡状をした非水溶性の充填材を地下空洞内へ供給する(第一工程)。
次に、供給した充填材を地下空洞内の底面及び低位壁面に付着させる(第二工程の一次工程)。
さらに、地下空洞の底面及び低位壁面に付着した充填材を、地下空洞の底面及び低位壁面における亀裂等の内部へ浸み込ませる(第三工程)。
引き続き、地下空洞の底面及び低位壁面に浸み込んだ充填材を硬化させる(第四工程)。ここまでは、上述した第一の実施の形態と同様である。
初めに、充填装置10を用いて、地下空洞1へ達する立て坑より、泡状をした非水溶性の充填材を地下空洞内へ供給する(第一工程)。
次に、供給した充填材を地下空洞内の底面及び低位壁面に付着させる(第二工程の一次工程)。
さらに、地下空洞の底面及び低位壁面に付着した充填材を、地下空洞の底面及び低位壁面における亀裂等の内部へ浸み込ませる(第三工程)。
引き続き、地下空洞の底面及び低位壁面に浸み込んだ充填材を硬化させる(第四工程)。ここまでは、上述した第一の実施の形態と同様である。
本実施の形態では、ここで泡状をした非水溶性の充填材を地下空洞内へ再供給する(第一工程)。すなわち、地下空洞内の高位壁面及び天面に対して確実に充填材を付着させるために、泡状をした非水溶性の充填材を地下空洞内へ継ぎ足すように供給する。
次いで、上述した第一の実施の形態と同様に、地下空洞内へ水を注入し、追加供給した泡状をした非水溶性の充填材を浮き上がらせながら、浮き上がった充填材を地下空洞内の高位壁面及び天面に付着させる(第二工程の二次工程)。
その後、地下空洞の高位壁面及び天面に付着した充填材を、地下空洞の高位壁面及び天面における亀裂等の内部へ浸み込ませる(第三工程)。
そして、高位壁面及び天面に浸み込んだ充填材を硬化させるものとする(第四工程)。
次いで、上述した第一の実施の形態と同様に、地下空洞内へ水を注入し、追加供給した泡状をした非水溶性の充填材を浮き上がらせながら、浮き上がった充填材を地下空洞内の高位壁面及び天面に付着させる(第二工程の二次工程)。
その後、地下空洞の高位壁面及び天面に付着した充填材を、地下空洞の高位壁面及び天面における亀裂等の内部へ浸み込ませる(第三工程)。
そして、高位壁面及び天面に浸み込んだ充填材を硬化させるものとする(第四工程)。
これにより、地下空洞内の高位壁面及び天面に対して確実に充填材を付着させ、浸み込ませて、充填材の皮膜が形成させることができ、地下空洞内の空気漏れを防止することができる。
<第3の実施の形態>
また、本発明においては、充填材を地下空洞の内面に浸み込ませる工程において、充填材を効率良く浸み込ませるようにすることもできる。すなわち、上述した第1の実施の形態とは、液状をした非水溶性の充填材を地下空洞内へ供給する工程を含むものとする点で異なる。
また、本発明においては、充填材を地下空洞の内面に浸み込ませる工程において、充填材を効率良く浸み込ませるようにすることもできる。すなわち、上述した第1の実施の形態とは、液状をした非水溶性の充填材を地下空洞内へ供給する工程を含むものとする点で異なる。
本実施の形態では、上記第一工程から第四工程までを以下に示す順に行うものとする。
初めに、図2(A)に示すように、充填装置10を用いて、地下空洞1へ達する立て坑より、液状をした非水溶性の充填材12を地下空洞1内へ供給し(第一工程)、供給した充填材12を地下空洞1内の底面1Bに付着させる(第二工程の一次工程)。
初めに、図2(A)に示すように、充填装置10を用いて、地下空洞1へ達する立て坑より、液状をした非水溶性の充填材12を地下空洞1内へ供給し(第一工程)、供給した充填材12を地下空洞1内の底面1Bに付着させる(第二工程の一次工程)。
引き続き、図2(B)に示すように、液状をした非水溶性の充填材12と同様に、さらに泡状をした非水溶性の充填材2を地下空洞1内へ供給し(第一工程)、供給した充填材2を地下空洞1内の低位壁面1Lに付着させる(第二工程の一次工程)。
さらに、図2(C)にて白抜き矢印で示すように、地下空洞1内へ空気やガスを送り込んで内圧を上昇させ、図中矢印で示すように、地下空洞1の底面1Bに付着した充填材12及び低位壁面1Lに付着した充填材2を、亀裂等(図示せず)の内部へ押し込むように浸み込ませる(第三工程)。
そして、地下空洞1の底面1B及び低位壁面1Lに浸み込んだ充填材2を硬化させる(第四工程)。
そして、地下空洞1の底面1B及び低位壁面1Lに浸み込んだ充填材2を硬化させる(第四工程)。
その後、図2(D)に示すように、地下空洞1内へ水(もしくは温水)3を注入して泡状をした非水溶性の充填材2を浮き上がらせながら、浮き上がった充填材2を地下空洞1内の高位壁面1H及び天面1Uに付着させると共に、図中矢印で示すように、地下空洞1の高位壁面1H及び天面1Uにおける亀裂等(図示せず)の内部へ浸み込ませる(第二工程の二次工程、第三工程)。この際、地下空洞1内へ空気やガスを送り込んで内圧を上昇させ、地下空洞1の高位壁面1H及び天面1Uに付着した充填材2を、亀裂等の内部へ押し込むように浸み込ませるものとしても良い。
そして、地下空洞1の高位壁面1H及び天面1Uに浸み込んだ充填材2を硬化させる(第四工程)。なお、地下空洞1内へ注入した水(もしくは温水)3は、適宜排出するものとする。
これにより、上述した第1の実施の形態と同様に、地下空洞内の亀裂等に充填材が浸み込むと共に、地下空洞の内面に充填材の皮膜が形成されたものとなり、地下空洞内の空気漏れを防止することができる。
これにより、上述した第1の実施の形態と同様に、地下空洞内の亀裂等に充填材が浸み込むと共に、地下空洞の内面に充填材の皮膜が形成されたものとなり、地下空洞内の空気漏れを防止することができる。
1 地下空洞、1B 底面、1L 低位壁面、1H 高位壁面、1U 天面、2 充填材(泡状)、3 水、10 充填装置、11 注水装置、12 充填材(液状)。
Claims (6)
- 地下空洞の空気漏れを防止する方法であって、
地下空洞内へ充填材を供給する工程と、
供給した充填材を地下空洞の内面に付着させる工程と、
付着した充填材を地下空洞の内面に浸み込ませる工程と、
内面に浸み込んだ充填材を硬化させる工程と、
を少なくとも有し、
前記地下空洞内へ充填材を供給する工程は、泡状をした非水溶性の充填材を用いることを含み、
前記充填材を地下空洞の内面に付着させる工程は、地下空洞内へ水を注入して泡状をした非水溶性の充填材を浮き上がらせながら行うことを含む、
ことを特徴とする地下空洞内の空気漏れ防止方法。 - 前記充填材を地下空洞の内面に付着させる工程は、地下空洞の底面及び低位壁面に付着させる一次工程と、地下空洞の高位壁面及び天面に付着させる二次工程とを備え、
泡状をした非水溶性の充填材を地下空洞内へ供給し、前記一次工程を行った後に、地下空洞内へ水を注入して前記泡状をした非水溶性の充填材を浮き上がらせながら前記二次工程を行う、
ことを含むことを特徴とする請求項1に記載の地下空洞内の空気漏れ防止方法。 - 前記二次工程前に、泡状をした非水溶性の充填材を地下空洞内へ再供給する工程をさらに含むことを特徴とする請求項2に記載の地下空洞内の空気漏れ防止方法。
- 前記地下空洞内へ充填材を供給する工程は、液状をした非水溶性の充填材を用いることをさらに含み、
前記充填材を地下空洞の内面に付着させる工程は、地下空洞の底面及び低位壁面に付着させる一次工程と、地下空洞の高位壁面及び天面に付着させる二次工程とを備え、
液状をした非水溶性の充填材を地下空洞内へ供給し、前記一次工程を行った後に、泡状をした非水溶性の充填材を地下空洞内へ供給し、さらに、地下空洞内へ水を注入して前記泡状をした非水溶性の充填材を浮き上がらせながら前記二次工程を行う、
ことを特徴とする請求項1に記載の地下空洞内の空気漏れ防止方法。 - 前記充填材を地下空洞の内面に浸み込ませる工程は、地下空洞内の圧力を上昇させることにより行うことを特徴とする請求項1乃至4の何れか1項に記載の地下空洞内の空気漏れ防止方法。
- 前記充填材を硬化させる工程は、地下空洞内の温度を上昇させることにより行うことを特徴とする請求項1乃至5の何れか1項に記載の地下空洞内の空気漏れ防止方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016037321A JP5997398B1 (ja) | 2016-02-29 | 2016-02-29 | 地下空洞内の空気漏れ防止方法 |
DE102016011038.4A DE102016011038A1 (de) | 2016-02-29 | 2016-09-13 | Verfahren zum Verhindern von Austreten von Luft innerhalb eines unterirdischen Hohlraums |
US15/285,879 US9885238B2 (en) | 2016-02-29 | 2016-10-05 | Method of preventing leakage of air inside underground cavern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016037321A JP5997398B1 (ja) | 2016-02-29 | 2016-02-29 | 地下空洞内の空気漏れ防止方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5997398B1 true JP5997398B1 (ja) | 2016-09-28 |
JP2017155421A JP2017155421A (ja) | 2017-09-07 |
Family
ID=56997606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016037321A Active JP5997398B1 (ja) | 2016-02-29 | 2016-02-29 | 地下空洞内の空気漏れ防止方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9885238B2 (ja) |
JP (1) | JP5997398B1 (ja) |
DE (1) | DE102016011038A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04336126A (ja) * | 1991-05-14 | 1992-11-24 | Mitsui Constr Co Ltd | 貯蔵用構造物 |
JP2001140268A (ja) * | 1999-11-17 | 2001-05-22 | Shimizu Corp | 高圧気体貯蔵施設 |
JP2015036487A (ja) * | 2013-08-12 | 2015-02-23 | 国立大学法人島根大学 | 空洞充填によるトンネルの補修方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1340068A (en) * | 1970-09-22 | 1973-12-05 | Insituform Pipes & Structures | Lining of surfaces defining passageways |
HU177343B (en) * | 1977-11-08 | 1981-09-28 | Mta Termeszettu Domanyi Kutato | Process for stabilizing aquous solutions utilizable for producing hydrophyle polymere gels and for improving solidity and impermeability of granula materials and/or solide bodies,first of all defective canals and structural objects |
US4379870A (en) * | 1978-07-07 | 1983-04-12 | Mitsui Petrochemical Industries, Ltd. | Reinforcing material for hydraulic substances and method for the production thereof |
FI69503C (fi) * | 1984-03-13 | 1986-02-10 | Neste Oy | Ytbelagd bergsbehaollare eller tunnel |
ES537709A0 (es) * | 1984-11-16 | 1985-08-16 | Gordun Burillo Fernando | Un procedimiento de impermeabilizacion de superficies, de especial aplicacion a las superficies interiores de tuneles, canales y mineria |
US4940360A (en) * | 1987-07-27 | 1990-07-10 | Weholt Raymond L | Insulated tunnel liner and rehabilitation system |
US5002438B1 (en) * | 1990-01-03 | 1995-05-30 | Strong Systems Inc | Method of rehabilitating manholes by custom lining/relining. |
JPH0718998A (ja) | 1993-06-30 | 1995-01-20 | Mitsui Constr Co Ltd | 地下空洞の構築方法 |
US5480260A (en) * | 1993-07-20 | 1996-01-02 | Dames & Moore | Ground water collection method and apparatus |
US5439319A (en) * | 1993-08-12 | 1995-08-08 | Carlisle Coatings & Water Proofing, Incorporated | Tunnel barrier system and method of installing the same |
US5470178A (en) * | 1994-02-17 | 1995-11-28 | Weholt; Raymond L. | Insulating tunnel liner system |
US5645217A (en) * | 1994-04-08 | 1997-07-08 | Warren; Daniel | Two-part compound spray-application system and method |
US5879501A (en) * | 1996-12-19 | 1999-03-09 | Illinois Tool Works, Inc. | Method of sealing sewer systems |
GB9815685D0 (en) * | 1998-07-20 | 1998-09-16 | Mbt Holding Ag | Waterproofer |
GB9929123D0 (en) * | 1999-12-10 | 2000-02-02 | James Peter | Improvements relating to tunnel reinforcements |
US6663016B2 (en) * | 2001-10-03 | 2003-12-16 | Urecoats Technologies, Inc. | Applicator assembly for application of adhesives, sealants and coatings |
CA2542535C (en) * | 2003-10-28 | 2009-03-24 | Daniel Warren | Method for preparing in-ground tunnel structures |
US8342776B2 (en) * | 2007-06-07 | 2013-01-01 | Micon | Mine seal with adhesive |
CN101965427A (zh) * | 2008-01-14 | 2011-02-02 | 美康公司 | 具有粘合剂的矿井密封件 |
-
2016
- 2016-02-29 JP JP2016037321A patent/JP5997398B1/ja active Active
- 2016-09-13 DE DE102016011038.4A patent/DE102016011038A1/de active Pending
- 2016-10-05 US US15/285,879 patent/US9885238B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04336126A (ja) * | 1991-05-14 | 1992-11-24 | Mitsui Constr Co Ltd | 貯蔵用構造物 |
JP2001140268A (ja) * | 1999-11-17 | 2001-05-22 | Shimizu Corp | 高圧気体貯蔵施設 |
JP2015036487A (ja) * | 2013-08-12 | 2015-02-23 | 国立大学法人島根大学 | 空洞充填によるトンネルの補修方法 |
Also Published As
Publication number | Publication date |
---|---|
US9885238B2 (en) | 2018-02-06 |
DE102016011038A1 (de) | 2017-08-31 |
JP2017155421A (ja) | 2017-09-07 |
US20170248018A1 (en) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017408795B2 (en) | Method of utilizing downhole roadway in coal mine for compressed air energy storage | |
Slocum et al. | Ocean renewable energy storage (ORES) system: Analysis of an undersea energy storage concept | |
US7281371B1 (en) | Compressed air pumped hydro energy storage and distribution system | |
EP2464819B1 (en) | Hydraulic geofracture energy storage system | |
CN105934554B (zh) | 高压流体储罐及其构造方法 | |
CN113882900B (zh) | 一种湖泊底下人工开挖地下洞室的天然水封压气储能系统 | |
JP5997398B1 (ja) | 地下空洞内の空気漏れ防止方法 | |
CN110139815B (zh) | 具有脱盐作用的液压地质储能系统 | |
CN106049520A (zh) | 海上支撑结构的混凝土基底和钢管桩之间的结合方法 | |
KR101321929B1 (ko) | 기밀성과 안정성이 향상된 라이닝을 구비하는 압축공기 에너지 저장용 고압 유체저장조 | |
Thidemann | Design of gas storage caverns for an underground gas power plant | |
KR101263604B1 (ko) | 풍력 및 조류 복합 발전 시스템 | |
CN114542946B (zh) | 一种利用地下空间压水储能发电的方法 | |
CN111442190B (zh) | 一种利用地道储能的方法 | |
KR101400482B1 (ko) | 전력계통의 첨두부하 전력수요를 공급하는 이지에스 지열발전소 운용시스템 및 방법 | |
CN210238512U (zh) | 一种混凝土高坝全坝无仓面固结灌浆结构 | |
CN201330388Y (zh) | 抽水蓄能电站埋藏式钢岔管与围岩联合受力结构 | |
RU2377436C1 (ru) | Скважинная гидроаккумулирующая электростанция | |
CN114458380A (zh) | 利用地下废弃空间进行压缩空气储能的方法 | |
CN118188029B (zh) | 一种废弃巷道压气储能库围岩注浆加固防渗方法 | |
Steffens et al. | Review of the design methodology for the Bad Creek underground powerhouse as it would apply to a hard rock cavern design for Compressed Air Energy Storage (CAES) | |
CN117735149A (zh) | 一种利用枯竭天然气井压裂裂缝进行氢储能的方法 | |
CN207647496U (zh) | 一种风压吹孔解析装置 | |
KR20160068035A (ko) | 암반의 전단강도가 향상된 지하 고압 유체 저장조 및 이를 이용한 caes 시스템 | |
KR101701263B1 (ko) | 지하 고압 유체 저장조 및 이를 이용한 caes 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160825 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5997398 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |