JP5990994B2 - A method for producing a glass powder material and a porous vitreous membrane. - Google Patents

A method for producing a glass powder material and a porous vitreous membrane. Download PDF

Info

Publication number
JP5990994B2
JP5990994B2 JP2012095216A JP2012095216A JP5990994B2 JP 5990994 B2 JP5990994 B2 JP 5990994B2 JP 2012095216 A JP2012095216 A JP 2012095216A JP 2012095216 A JP2012095216 A JP 2012095216A JP 5990994 B2 JP5990994 B2 JP 5990994B2
Authority
JP
Japan
Prior art keywords
glass
powder material
glass powder
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012095216A
Other languages
Japanese (ja)
Other versions
JP2013220982A (en
Inventor
潤 濱田
潤 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2012095216A priority Critical patent/JP5990994B2/en
Priority to TW102112892A priority patent/TWI496753B/en
Priority to KR1020130040198A priority patent/KR20130118242A/en
Priority to CN2013101331308A priority patent/CN103373817A/en
Publication of JP2013220982A publication Critical patent/JP2013220982A/en
Priority to KR20150044436A priority patent/KR20150040838A/en
Application granted granted Critical
Publication of JP5990994B2 publication Critical patent/JP5990994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/13Deposition methods from melts

Description

本発明は、溶射法又はスプレー法によって多孔質なガラス質膜を形成するための粉末材料及び多孔質なガラス質膜の製造方法に関する。   The present invention relates to a powder material for forming a porous glassy film by a thermal spraying method or a spray method, and a method for producing a porous glassy film.

近年、半導体製造工程や有機ELディスプレイ、液晶ディスプレイの製造工程において、ドライエッチングとしてプラズマ処理等の工程を経ることが一般的となりつつあり、絶縁性や耐プラズマ性等の付与を目的としてガラス基板やセラミック基板、さらには金属基板などへ様々な機能性被膜を形成することが提案されている。   In recent years, in semiconductor manufacturing processes, organic EL displays, and liquid crystal display manufacturing processes, it is becoming common to undergo plasma processing and the like as dry etching. For the purpose of providing insulation and plasma resistance, It has been proposed to form various functional coatings on ceramic substrates, metal substrates, and the like.

基板へ被膜を形成する方法は、被膜の原料や基板の種類によって選択される。例えば、セラミックスからなる被膜を形成する技術として溶射技術が応用されている。   The method for forming a film on the substrate is selected depending on the material of the film and the type of the substrate. For example, thermal spraying technology is applied as a technology for forming a coating film made of ceramics.

特許文献1には、静電チャックに用いることが可能な耐プラズマ性を有する被膜として、セラミックスからなる溶射膜を開示している。また、特許文献2では、プラズマCVD装置の基板載置台に絶縁性のアルミナや酸化クロムからなる溶射膜を形成し、基板と載置台との接触面積を低減させ、成膜中の帯電や静電気による吸着を抑制することが開示されている。   Patent Document 1 discloses a thermal spray film made of ceramics as a plasma-resistant film that can be used for an electrostatic chuck. Further, in Patent Document 2, a thermal spray film made of insulating alumina or chromium oxide is formed on a substrate mounting table of a plasma CVD apparatus to reduce a contact area between the substrate and the mounting table, which is caused by charging or static electricity during film formation. Suppressing adsorption is disclosed.

しかし一方で、基板をプラズマ処理する際、一般的に耐プラズマ性に優れるYを金属基板に溶射した載置台が使用されるが、Yはソーダライムガラス基板やSiウエハよりも硬度が高いため、基板をY溶射膜上に真空もしくは静電チャックした際、基板に傷が発生するという問題があった。特許文献3では、フラットパネルディスプレイの製造工程で使用される基板載置台として、基板の傷付き防止のために、基板以下の硬度になるようにAlやAlNのセラミック材料に金属アルミニウムを混合した溶射膜を用いることを開示している。しかし、上記金属/セラミック複合膜では、局所的に硬度の高いセラミックが存在するため完全に傷を防止することは困難である。 However, on the other hand, when the substrate is subjected to plasma processing, a mounting table in which Y 2 O 3 having excellent plasma resistance is generally sprayed onto a metal substrate is used. However, Y 2 O 3 is more effective than a soda lime glass substrate or Si wafer. Since the hardness of the substrate is high, there is a problem that when the substrate is vacuumed or electrostatically chucked on the Y 2 O 3 sprayed film, the substrate is damaged. In Patent Document 3, as a substrate mounting table used in the manufacturing process of a flat panel display, metal aluminum is applied to an Al 2 O 3 or AlN ceramic material so as to have a hardness equal to or lower than that of the substrate in order to prevent the substrate from being damaged. The use of a mixed sprayed coating is disclosed. However, in the metal / ceramic composite film, it is difficult to completely prevent scratches due to the presence of ceramic with high hardness locally.

また、上記の被膜以外としては、絶縁性や耐プラズマ性を付与する目的でガラス質膜を形成することが提案されている(例えば特許文献4)。ガラス質膜形成の一般的な方法の一つとして、ガラス粉末材料を有機ビヒクルと混合し、ペースト状にしたものをスクリーン印刷等で基板上に塗布・焼成する方法が用いられ、緻密なガラス質膜が形成できることから有用なガラス質膜を得ることが可能である。   In addition to the above-described coating, it has been proposed to form a vitreous film for the purpose of imparting insulating properties and plasma resistance (for example, Patent Document 4). One of the common methods for forming a glassy film is a method in which a glass powder material is mixed with an organic vehicle, and a paste-like material is applied and fired on a substrate by screen printing or the like. Since a film can be formed, a useful glassy film can be obtained.

しかし、ガラス質膜を形成するためのガラス粉末材料は、基板へ焼き付けを行った後、冷却段階において発生する熱応力によるクラック、剥離を防止するため、一般的に基板よりも熱膨張係数を低くする必要がある。例えば特許文献5では、熱膨張係数が90×10−7/℃であるソーダライムガラス基板へガラス粉末材料を焼き付ける場合、熱膨張係数が70〜85×10−7/℃であるガラス粉末材料が選択されている。 However, a glass powder material for forming a glassy film generally has a lower thermal expansion coefficient than that of the substrate in order to prevent cracking and peeling due to thermal stress generated in the cooling stage after baking onto the substrate. There is a need to. For example, in Patent Document 5, when a glass powder material is baked onto a soda lime glass substrate having a thermal expansion coefficient of 90 × 10 −7 / ° C., the glass powder material having a thermal expansion coefficient of 70 to 85 × 10 −7 / ° C. Is selected.

特開2007−217774号公報JP 2007-217774 A 特開2008−156718号公報JP 2008-156718 A 特開2011−119326号公報JP 2011-119326 A 特開2007−268970号公報JP 2007-268970 A 特開2008−239396号公報JP 2008-239396 A

有機ELディスプレイや液晶ディスプレイ、半導体製造過程において、ガラス基板やSiウエハ等が用いられるが、前述したセラミックスからなる被膜は、基板に対して硬度が高いため、基板が傷付くという問題があった。   In the organic EL display, liquid crystal display, and semiconductor manufacturing processes, glass substrates, Si wafers, and the like are used. However, the above-described coating made of ceramic has a problem that the substrate is damaged because of its high hardness.

また、前述したガラス質膜の場合、Bi系ガラス、PbO系ガラス、RO系(RO=LiO、NaO、KO)ガラス、P系ガラス、V系ガラス、B−ZnO系ガラス等のガラスは軟化点が650℃以下とガラスの中では低いため、基板への焼き付け等の熱処理を行う場合に有用である。さらに、上記のガラスは硬度が低いことが知られており、セラミックス被膜のようにガラス基板やSiウエハ等の基板に傷を生じることはない。
Further, if the glass membrane described above, Bi 2 O 3 based glass, PbO-based glass, R 2 O system (R 2 O = Li 2 O , Na 2 O, K 2 O) glass, P 2 O 5 based glass Glasses such as V 2 O 5 glass and B 2 O 3 —ZnO glass have a softening point of 650 ° C. or lower and are low in the glass, and thus are useful when performing heat treatment such as baking onto a substrate. Furthermore, it is known that the glass has a low hardness, and a glass substrate or a substrate such as a Si wafer is not damaged like a ceramic coating.

しかし、一般的にこれらガラスはセラミックスやガラス基板に対する熱膨張係数が高くなり、形成したガラス質膜にクラックや剥離が生じてしまい使用に適さないという問題があった。   However, these glasses generally have a problem that the thermal expansion coefficient with respect to ceramics or a glass substrate is high, and the formed vitreous film is cracked or peeled off, which is not suitable for use.

本願発明は上記の課題を鑑みて、有機ELディスプレイや液晶ディスプレイ等の各種ディスプレイや半導体、及びそれら製造工程に好適に用いることが可能な被膜を得ることを目的とした。   In view of the above-described problems, the present invention has an object to obtain various displays and semiconductors such as an organic EL display and a liquid crystal display, and a film that can be suitably used for manufacturing processes thereof.

本発明者らは、上記課題に対して鋭意研究を行った結果、溶射法やスプレー法を用い、多孔質なガラス質膜を形成することにより、ガラス質膜を形成するセラミックや金属基板等の基板よりも熱膨張係数が高いガラス粉末材料を用いても焼き付け後にガラス質膜にクラックや剥離が生じないことを見出した。多孔質な膜質とすることにより、ガラス質膜に残留する応力に対して緩衝効果をもたらしたと推察され、さらには当該方法を用いることで、様々な基板に対してガラス質膜を形成することが可能となる。
As a result of diligent research on the above problems, the present inventors have formed a porous vitreous film using a thermal spraying method or a spray method, and thus, such as a ceramic or metal substrate that forms the vitreous film. It has been found that even when a glass powder material having a higher thermal expansion coefficient than that of the substrate is used , cracks and peeling do not occur in the vitreous film after baking. It is inferred that the porous film quality provided a buffering effect against the stress remaining in the vitreous film. Furthermore, by using this method, it is possible to form a vitreous film on various substrates. It becomes possible.

すなわち本発明は、Bi系ガラス、PbO系ガラス、SiO−B−RO系ガラス(R=Li、Na、K)、P系ガラス、V系ガラス、及びB−ZnO系ガラスからなる群から選ばれる少なくとも1つのガラス粉末材料であって、該ガラス粉末材料は平均粒子径が10〜30μm、最大粒子径が300μm以下であり、溶射法又はスプレー法によって基板上に成膜するものであることを特徴とするガラス粉末材料である。 That is, the present invention relates to Bi 2 O 3 glass, PbO glass, SiO 2 —B 2 O 3 —R 2 O glass (R = Li, Na, K), P 2 O 5 glass, V 2 O 5. system glass, and B 2 O 3 and at least one glass powder material selected from the group consisting of -ZnO-based glass, the glass powder material has an average particle diameter of 10 to 30 [mu] m, and a maximum particle diameter of 300μm or less, A glass powder material characterized by being formed on a substrate by a thermal spraying method or a spraying method.

本発明の最大粒子径及び平均粒子径は、日機装株式会社製マイクロトラックMT3000を用いて、レーザー回折・散乱法により測定を行った。測定は溶媒にガラス粉末材料を分散させた後、レーザー光を照射することで散乱・回折光を得て、その回折/散乱光の光強度分布のデータから粒子径の分布を算出した。なお、溶媒中に浮遊する粒子に光が当たって生じる散乱現象は、粒子の大きさ、屈折率、入射光の波長等で変化するが、本検討の場合、散乱光量とその発生数を計測し、その値から装置に設定されたプログラムに準じて粒子の粒子径を算出した。   The maximum particle size and the average particle size of the present invention were measured by a laser diffraction / scattering method using Microtrack MT3000 manufactured by Nikkiso Co., Ltd. In the measurement, after the glass powder material was dispersed in a solvent, laser light was irradiated to obtain scattered / diffracted light, and the particle size distribution was calculated from the light intensity distribution data of the diffracted / scattered light. Note that the scattering phenomenon that occurs when light strikes particles suspended in a solvent varies depending on the size, refractive index, wavelength of incident light, etc., but in this study, the amount of scattered light and the number of occurrences were measured. From the value, the particle size of the particles was calculated according to the program set in the apparatus.

また、平均粒子径は測定された粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。なお、平均粒子径は粒子の平均直径であり、レーザー回折・散乱法によって求めた粒度分布における積算値50%(メジアン径)での粒径を意味する。   The average particle size is obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the average particle diameter, and means the particle diameter at an integrated value of 50% (median diameter) in the particle size distribution determined by the laser diffraction / scattering method.

本発明により、有機ELディスプレイや液晶ディスプレイ等の各種ディスプレイや半導体、及びそれら製造工程に好適に用いることが可能な被膜を得ることが可能となった。   According to the present invention, it has become possible to obtain various displays such as organic EL displays and liquid crystal displays, semiconductors, and coatings that can be suitably used in those manufacturing processes.

また、溶射法又はスプレー法によって多孔質なガラス質膜にすることで、ガラス質膜を形成するセラミックや金属基板等の基板よりも熱膨張係数の高いガラス粉末材料を用いてガラス質膜を形成することが可能となった。これにより、硬度の低いガラス粉末材料をクラックや剥離なくセラミック上に焼き付けることが可能となり、その結果、ガラス基板やSiウエハなどに発生する傷を抑制することが可能となる。
Also, by forming a porous glassy film by thermal spraying or spraying, a glassy film is formed using a glass powder material having a higher thermal expansion coefficient than that of the ceramic or metal substrate that forms the glassy film. It became possible to do. Thereby, it is possible to bake a glass powder material having low hardness on the ceramic without cracking or peeling, and as a result, it is possible to suppress scratches generated on the glass substrate, the Si wafer, and the like.

本発明のガラス粉末材料は、Bi系ガラス、PbO系ガラス、SiO−B−RO系ガラス(R=Li、Na、K)、P系ガラス、V系ガラス、及びB−ZnO系ガラスからなる群から選ばれる少なくとも1つのガラス粉末材料からなる。前記ガラスは、低融点ガラスに分類され、一般的にガラスの硬度が低い。 The glass powder material of the present invention includes Bi 2 O 3 glass, PbO glass, SiO 2 —B 2 O 3 —R 2 O glass (R = Li, Na, K), P 2 O 5 glass, V 2 O 5 based glass, and consists of at least one of the glass powder material selected from the group consisting of B 2 O 3 -ZnO based glass. The glass is classified as a low-melting glass, and generally has a low glass hardness.

特にBiを主成分とするBi系ガラス、PbOを主成分とするPbO系ガラスは硬度が低いことが知られているが、環境への有害性を考慮するとBi系ガラスが好ましい。また、より好ましくはBiが40〜90質量%、Bが1〜30質量%、ZnOが1〜30質量%、さらにより硬度が低いガラスを得るためにBiを70〜90質量%としてもよい。 In particular, Bi 2 O 3 based glass mainly composed of Bi 2 O 3 and PbO based glass mainly composed of PbO are known to have low hardness. However, considering the harmfulness to the environment, Bi 2 O 3 Based glass is preferred. More preferably, Bi 2 O 3 is 40 to 90% by mass, B 2 O 3 is 1 to 30% by mass, ZnO is 1 to 30% by mass, and Bi 2 O 3 is used in order to obtain a glass having lower hardness. It is good also as 70-90 mass%.

上記以外には、PbO系ガラスとしては、PbOが40〜90質量%、SiOが0〜10質量%、Bが5〜30質量%、Alが0〜5質量%の範囲となるように各成分を含有することが好ましい。 In addition to the above, as the PbO-based glass, PbO 40 to 90 wt%, SiO 2 0 to 10 wt%, B 2 O 3 5 to 30 wt%, Al 2 O 3 is 0 to 5 wt% It is preferable to contain each component so that it may become a range.

また、SiO−B−RO系ガラス(R=Li、Na、K)としては、SiOが1〜15質量%、Bが5〜20質量%、ZnOが10〜40質量%、ROが5〜20質量%の範囲となるように各成分を含有することが好ましい。 Further, SiO 2 -B 2 O 3 -R 2 O -based glass (R = Li, Na, K ) as the, SiO 2 is 1 to 15 wt%, B 2 O 3 5 to 20 wt%, ZnO 10 40 mass%, and preferably each component as R 2 O is in the range of 5 to 20 wt%.

また、P系ガラスとしては、SiOが1〜10質量%、Alが1〜20質量%、Pが30〜55質量%の範囲なるように各成分を含有することが好ましい。 As the P 2 O 5 based glass, SiO 2 is 1 to 10 mass%, Al 2 O 3 is 1 to 20 mass%, containing each component as P 2 O 5 is the range of 30 to 55 wt% It is preferable to do.

また、V系ガラスとしては、Vが30〜50質量%、ZnOが5〜30質量%、Pが5〜30質量%の範囲となるように各成分を含有することが好ましい。 As the V 2 O 5 based glass, V 2 O 5 is 30 to 50 wt%, ZnO is 5 to 30 mass%, containing each component as P 2 O 5 is in the range of 5 to 30 mass% It is preferable to do.

また、B−ZnO系ガラスとしては、Bが20〜40質量%、ZnOが60〜80質量%の範囲となるように各成分を含有することが好ましい。 As the B 2 O 3 -ZnO based glass, B 2 O 3 is 20 to 40 wt%, and preferably each component so ZnO is in the range of 60 to 80 wt%.

前記のガラス粉末材料は、ビッカース硬度が3〜5GPaであるのが好ましい。ビッカース硬度はガラスの硬さを示す物性値であり、低い値とすることにより製造プロセスでガラス基板やSiウエハに発生する傷を抑制できる。本発明においては、ビッカース硬度はJIS−Z2244に記載された方法により、試験片にダイヤモンド圧子を押し込む方法で測定した。通常、液晶ディスプレイや有機ELディスプレイに使用されるガラス基板は無アルカリガラスが使用され、例えばEAGLE XG(コーニング社製)のビッカース硬度は6GPaである。また、半導体で使用されるSiウエハのビッカース硬度は10GPaである。これらの値よりもガラス粉末材料のビッカース硬度を低くすることでプロセスでの傷の発生を抑制することができる。また、より好ましくは3〜4GPaの範囲である。   The glass powder material preferably has a Vickers hardness of 3 to 5 GPa. The Vickers hardness is a physical property value indicating the hardness of the glass, and by setting it to a low value, it is possible to suppress scratches generated on the glass substrate or the Si wafer in the manufacturing process. In the present invention, the Vickers hardness was measured by a method in which a diamond indenter was pushed into a test piece by the method described in JIS-Z2244. Usually, non-alkali glass is used for the glass substrate used for a liquid crystal display or an organic EL display. For example, Vickers hardness of EAGLE XG (manufactured by Corning) is 6 GPa. Further, the Vickers hardness of the Si wafer used in the semiconductor is 10 GPa. By making the Vickers hardness of the glass powder material lower than these values, the occurrence of scratches in the process can be suppressed. More preferably, it is in the range of 3-4 GPa.

本発明は、平均粒子径が10〜30μm、最大粒子径が300μm以下のガラス粉末材料を用いる。スプレー法を用いてガラス質膜を形成する場合、粒子径と多孔質度には相関があり、平均粒子径が10μm未満だとガラス質膜中に発生する泡が小さくなるため、焼成後の応力緩和効果が小さくなる。その結果、焼成後のガラス質膜にクラックや剥離が発生することがある。逆に平均粒子径が30μmを超えると、ガラス質膜中の泡が大きくなりすぎるため、膜厚が不均一になる恐れがある。また、最大粒径が300μmを超えると、スプレー装置において目詰まりを起こす恐れがある。   In the present invention, a glass powder material having an average particle size of 10 to 30 μm and a maximum particle size of 300 μm or less is used. When a glassy film is formed using the spray method, there is a correlation between the particle size and the degree of porosity, and if the average particle size is less than 10 μm, bubbles generated in the glassy film become smaller, so the stress after firing The relaxation effect is reduced. As a result, cracks and peeling may occur in the vitreous film after firing. On the other hand, if the average particle diameter exceeds 30 μm, bubbles in the vitreous film become too large, and the film thickness may be nonuniform. If the maximum particle size exceeds 300 μm, clogging may occur in the spray device.

また、溶射法を用いる場合では、ガラス粉末材料をチューブなどの配管を通して溶射ガンへ搬送するため、平均粒子径が10μm未満だとガラス粉末材料の再凝集により配管内で目詰まりを起こす恐れがある。逆に平均粒子径が30μmを超えるとスプレー法と同様に、膜厚が不均一になる恐れがある。また、最大粒子径が300μmを超えると、チューブなどの配管内で目詰まりを起こす恐れがある。好ましくは、平均粒子系が10〜20μm、最大粒子系が150μm以下である。   In addition, when the thermal spraying method is used, since the glass powder material is conveyed to the thermal spray gun through a pipe such as a tube, if the average particle diameter is less than 10 μm, the glass powder material may be clogged due to re-aggregation of the glass powder material. . On the other hand, if the average particle diameter exceeds 30 μm, the film thickness may become non-uniform, similar to the spray method. If the maximum particle size exceeds 300 μm, clogging may occur in the piping such as a tube. Preferably, the average particle system is 10 to 20 μm, and the maximum particle system is 150 μm or less.

本発明のガラス粉末材料は、一般的なセラミックや金属基板に用いることが可能であり、その種類は特に限定されるものではない。また、好ましいものとしては、熱膨張係数が基板の熱膨張係数とガラス粉末材料の熱膨張係数との比が0.3以上1以下となるものである。例えば、一般的なソーダライムガラス基板(90×10−7/℃)、Al(70×10−7/℃)、Y(70×10−7/℃)、ZrO(90×10−7/℃)、SiN、SiC、AlN等のセラミック材料やアルミニウム、SUS、チタンなどの金属材料が挙げられる。尚、本発明の熱膨張係数は熱膨張計を用い、5℃/分で昇温したときの30〜300℃での伸び量から線膨張係数を求めた。 The glass powder material of the present invention can be used for general ceramics and metal substrates, and the kind thereof is not particularly limited. Moreover, it is preferable that the thermal expansion coefficient is such that the ratio of the thermal expansion coefficient of the substrate to the thermal expansion coefficient of the glass powder material is 0.3 or more and 1 or less. For example, a general soda lime glass substrate (90 × 10 −7 / ° C.), Al 2 O 3 (70 × 10 −7 / ° C.), Y 2 O 3 (70 × 10 −7 / ° C.), ZrO 2 ( 90 × 10 −7 / ° C.), ceramic materials such as SiN, SiC, and AlN, and metal materials such as aluminum, SUS, and titanium. In addition, the thermal expansion coefficient of this invention calculated | required the linear expansion coefficient from the amount of elongation in 30-300 degreeC when it heated up at 5 degree-C / min using the thermal dilatometer.

本発明のガラス粉末材料は、30℃から300℃における熱膨張係数が基板の熱膨張係数とガラス粉末材料との熱膨張係数の比が0.3以上1以下となることが好ましい。例えば、前述した低融点ガラスのうち80〜140×10−7/℃であるガラス粉末材料が挙げられる。上記範囲内であればソーダライムガラス基板やセラミック基板の熱膨張係数に制限されることなく、多孔質膜とすることでクラックや剥離を抑制することができる。上記範囲を外れると、ガラス粉末材料のビッカース硬度が高くなったり、熱膨張係数の乖離が大きくなり、多孔質層でも残留応力を緩和できずクラックが生じる恐れがある。 In the glass powder material of the present invention, the thermal expansion coefficient at 30 ° C. to 300 ° C. is preferably such that the ratio of the thermal expansion coefficient of the substrate to the glass powder material is 0.3 or more and 1 or less. For example, the glass powder material which is 80-140 * 10 < -7 > / degreeC among the low melting glass mentioned above is mentioned. If it is in the said range, a crack and peeling can be suppressed by setting it as a porous film, without being restrict | limited to the thermal expansion coefficient of a soda-lime glass substrate or a ceramic substrate. Outside the above range, the Vickers hardness of the glass powder material is increased, the difference in thermal expansion coefficient is increased, and the residual stress cannot be relaxed even in the porous layer, which may cause cracks.

本発明は、前記ガラス粉末材料を用いて、溶射法又はスプレー法によって多孔質なガラス質膜を形成するための製造方法である。本発明のガラス粉末材料及びスプレー法または溶射法による多孔質膜の製造方法は、前途したように液晶ディスプレイや有機ELディスプレイ、半導体製造プロセスにおける載置台のオーバーコート用に良好に適用することができる。   This invention is a manufacturing method for forming a porous vitreous film | membrane by the thermal spraying method or the spray method using the said glass powder material. The glass powder material of the present invention and the method for producing a porous film by spraying or spraying can be applied well for liquid crystal display, organic EL display, and mounting table overcoat in the semiconductor manufacturing process as previously described. .

溶射法は、ガラス粉末材料をチューブなどの配管を通して溶射ガンへ搬送し、燃焼炎又はプラズマ等を用いて加熱し、溶融又は半溶融状態とした後、基板表面にガスやエアーを用いて、被膜形成材料を噴射し被膜を形成するものである。一般に、溶射膜の形成方法としては、フレーム溶射、プラズマ溶射等の方法があり、本発明のガラス粉末材料は軟化点が700℃以下であり、通常使用されるセラミック材料と同等又はそれ以下の温度で使用できることから、いずれの方法でも好適に用いることが可能である。   The thermal spraying method transports a glass powder material to a thermal spray gun through piping such as a tube, heats it with a combustion flame or plasma, etc. to make a molten or semi-molten state, and then uses a gas or air on the substrate surface to form a coating. A forming material is sprayed to form a film. In general, as a method for forming a sprayed film, there are methods such as flame spraying, plasma spraying, etc., and the glass powder material of the present invention has a softening point of 700 ° C. or lower, and a temperature equal to or lower than that of a commonly used ceramic material Therefore, any method can be preferably used.

スプレー法は、有機ビヒクルにガラス粉末材料を分散させ、圧縮エアーを用いてミスト状にして基板へ成膜するものである。基板へ塗布したのち、ガラス粉末材料の軟化点以上の温度で熱処理することでガラス質膜を形成する。このときのガラス粉末材料は有機ビヒクルとの合計量に対して10〜60質量%混合するのが好ましい。上記範囲を外れるとガラス粉末材料が凝集、沈降等により分散しなくなることがある。   In the spray method, a glass powder material is dispersed in an organic vehicle, and is formed into a mist using compressed air to form a film on a substrate. After applying to the substrate, a glassy film is formed by heat treatment at a temperature equal to or higher than the softening point of the glass powder material. It is preferable to mix 10-60 mass% of glass powder materials at this time with respect to the total amount with an organic vehicle. Outside the above range, the glass powder material may not be dispersed due to aggregation, sedimentation, or the like.

有機ビヒクルは、例えば、N、N’−ジメチルホルムアミド(DMF)、α−テルピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−テルピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   Organic vehicles include, for example, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO , N- methyl-2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(多孔質膜の形成)
まず、ガラス材料を作製した。まず、ガラス材料は、表1に記載した所定組成となるように各種無機原料を秤量、混合して原料バッチを作製した。この原料バッチを白金ルツボに投入し、電気加熱炉内で1200℃、1〜2時間で加熱溶融して表1に示す組成のガラスを得た。上記ガラスは溶融状態のものを一部型に流し込み、ブロック状(50mm×50mm×10mmt)にして熱物性(熱膨張係数、軟化点)測定用、及びビッカース硬度測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とした。
(Formation of porous film)
First, a glass material was produced. First, a glass material was prepared by weighing and mixing various inorganic raw materials so as to have a predetermined composition described in Table 1. This raw material batch was put into a platinum crucible and heated and melted in an electric heating furnace at 1200 ° C. for 1 to 2 hours to obtain a glass having the composition shown in Table 1. The molten glass was partially poured into a mold and made into a block shape (50 mm × 50 mm × 10 mmt) for measurement of thermal properties (thermal expansion coefficient, softening point) and Vickers hardness measurement. The remaining glass was made into flakes with a rapid twin-roll molding machine.

前述したブロック状にした各ガラスについて、各測定を行った。   Each measurement was performed about each glass made into the block shape mentioned above.

軟化点は、熱分析装置TG―DTA(リガク(株)製)を用いて測定した。   The softening point was measured using a thermal analyzer TG-DTA (manufactured by Rigaku Corporation).

また、上記の熱膨張係数は熱膨張計を用い、5℃/分で昇温したときの30〜300℃での伸び量から線膨張係数を求めた。   Moreover, the said thermal expansion coefficient calculated | required the linear expansion coefficient from the amount of elongation at 30-300 degreeC when it heated up at 5 degree-C / min using the thermal dilatometer.

また、ビッカース硬度はJIS−Z2244に記載された方法により、試験片にダイヤモンド圧子を押し込む方法で測定した。   Further, the Vickers hardness was measured by a method in which a diamond indenter was pushed into a test piece by a method described in JIS-Z2244.

次に、上記ガラス材料を用いて、表2に記載したガラス粉末材料を作製し、それぞれ実施例1〜5、比較例1〜3とした。ガラス粉末材料は、上記で得たフレーク状ガラスをジェットミル粉砕機により所定の粒径に調整した。   Next, the glass powder material described in Table 2 was produced using the said glass material, and it was set as Examples 1-5 and Comparative Examples 1-3, respectively. As the glass powder material, the flaky glass obtained above was adjusted to a predetermined particle size by a jet mill grinder.

ガラス粉末材料の最大粒子径及び平均粒子径は、レーザー回折型粒子径測定装置(日機装株式会社製、マイクロトラック)を用いて測定した。測定は水にガラス粉末材料を分散させた後、レーザー光を照射することで散乱・回折光を得て、その光強度分布から装置に設定されたプログラムに準じてガラス粉末材料の粒子の大きさを算出し、最大粒子径及び平均粒子径を求めた。   The maximum particle size and average particle size of the glass powder material were measured using a laser diffraction type particle size measuring device (Microtrack, manufactured by Nikkiso Co., Ltd.). Measurement is performed by dispersing the glass powder material in water and then irradiating the laser beam to obtain scattered / diffracted light. From the light intensity distribution, the particle size of the glass powder material is determined according to the program set in the device. And the maximum particle size and the average particle size were determined.

次に、上記ガラス粉末材料をサンプル毎に40質量%用意し、テルピネオールとイソプロピルアルコールの混合溶剤60質量%に分散させスプレー液を調製した。得られたスプレー液をハンドガンタイプのスプレー装置を用いて0.5MPaの塗布圧力でソーダライムガラス基板(熱膨張係数90×10−7/℃、ビッカース硬度5.3Gpa)上に塗布した。その後、ガラス粉末材料の軟化点に対して20℃高い温度で焼成した。 Next, 40% by mass of the glass powder material was prepared for each sample and dispersed in 60% by mass of a mixed solvent of terpineol and isopropyl alcohol to prepare a spray liquid. The obtained spray liquid was applied onto a soda lime glass substrate (coefficient of thermal expansion 90 × 10 −7 / ° C., Vickers hardness 5.3 Gpa) at a coating pressure of 0.5 MPa using a hand gun type spray device. Thereafter, it was fired at a temperature 20 ° C. higher than the softening point of the glass powder material.

尚、比較例1については用いた基板よりも熱膨張係数が低いものであったが、ビッカース硬度が基板より高いことから、本発明には適さないとしてガラス質膜の形成を行わなかった。   In Comparative Example 1, the coefficient of thermal expansion was lower than that of the substrate used, but since the Vickers hardness was higher than that of the substrate, no vitreous film was formed because it was not suitable for the present invention.

また、実施例1と同様のスプレー液を用いて、スクリーン印刷を行ったものを参考例とした。   Moreover, what performed screen printing using the spray liquid similar to Example 1 was made into the reference example.

得られたガラス質膜について光学顕微鏡にてガラス質膜を観察し、クラックの有無を確認し、その結果を表3に示す。   The obtained glassy film was observed with an optical microscope to confirm the presence or absence of cracks, and the results are shown in Table 3.

表3における実施例1〜5に示すように、本発明の物性範囲内およびスプレー法による塗布においては、好適な物性を有しており、また焼成後のクラックも発生しなかった。   As shown in Examples 1 to 5 in Table 3, within the physical property range of the present invention and in coating by the spray method, it had suitable physical properties, and cracks after firing did not occur.

他方、比較例2は平均粒子径及び最大粒子径ともに大きいものであり、スプレー搬送時に目詰まりを起こす、及び膜厚が不均一になるという問題があった。また、比較例3は、平均粒子径及び最大粒子径ともに小さいものであり、スプレー搬送時に再凝集による目詰まりが生じ、ガラス質膜を形成することができなかった。また、参考例は焼成後にクラックが発生したことから、本発明は溶射法又はスプレー法によって成膜するのに好適なガラス粉末材料であると言える。   On the other hand, Comparative Example 2 has both a large average particle size and a maximum particle size, and there are problems that clogging occurs during spray conveyance and that the film thickness becomes uneven. In Comparative Example 3, both the average particle size and the maximum particle size were small, and clogging due to reaggregation occurred during spray conveyance, and a vitreous film could not be formed. Moreover, since the reference example has cracks after firing, it can be said that the present invention is a glass powder material suitable for film formation by a thermal spraying method or a spraying method.

Claims (7)

溶射法又はスプレー法によってセラミック又は金属基板に形成される多孔質ガラス質膜用のガラス粉末材料において、
該ガラス粉末材料は、Bi系ガラス、PbO系ガラス、SiO−B−RO系ガラス(R=Li、Na、K)、P系ガラス、V系ガラス、及びB−ZnO系ガラスからなる群から選ばれる少なくとも1つであって、
平均粒子径が10〜30μm、最大粒子径が300μm以下であり、
該ガラス粉末材料のビッカース硬度が、前記基板より低い3〜5GPaであり、
30℃から300℃における熱膨張係数において、前記基板の熱膨張係数と該ガラス粉末材料の熱膨張係数との比が0.3〜1であることを特徴とするガラス質膜用のガラス粉末材料。
In a glass powder material for a porous vitreous film formed on a ceramic or metal substrate by a thermal spraying method or a spray method,
The glass powder material is Bi 2 O 3 glass, PbO glass, SiO 2 —B 2 O 3 —R 2 O glass (R = Li, Na, K), P 2 O 5 glass, V 2 O. And at least one selected from the group consisting of 5 glass and B 2 O 3 —ZnO glass ,
The average particle size is 10-30 μm, the maximum particle size is 300 μm or less,
The glass powder material has a Vickers hardness of 3-5 GPa lower than the substrate;
A glass powder material for a vitreous film , wherein a ratio of a coefficient of thermal expansion of the substrate to a coefficient of thermal expansion of the glass powder material is 0.3 to 1 at a coefficient of thermal expansion from 30 ° C. to 300 ° C. .
30℃から300℃における熱膨張係数が80〜140×10−7/℃であることを特徴とする請求項1に記載のガラス質膜用のガラス粉末材料。 2. The glass powder material for vitreous film according to claim 1, wherein a thermal expansion coefficient at 30 ° C. to 300 ° C. is 80 to 140 × 10 −7 / ° C. 3. 前記セラミック又は金属基板は、ソーダライムガラス基板、AlThe ceramic or metal substrate is a soda lime glass substrate, Al 2 O 3 、Y, Y 2 O 3 、ZrO, ZrO 2 、SiN、SiC、AlNからなる群から選ばれるセラミック材料、アルミニウム、ステンレス鋼、チタンからなる群から選ばれる金属材料のいずれかであることを特徴とする請求項1又は2記載のガラス質膜用のガラス粉末材料。The glass material according to claim 1 or 2, wherein the glass material is any one of a ceramic material selected from the group consisting of SiN, SiC, and AlN, and a metal material selected from the group consisting of aluminum, stainless steel, and titanium. Glass powder material. 前記ガラス質膜は、液晶ディスプレイ、有機ELディスプレイ、又は半導体の製造プロセスにおけるガラス基板又はSiウエハの載置台のオーバーコートであることを特徴とする請求項1ないし3のいずれか1項に記載のガラス質膜用のガラス粉末材料。The said glassy film is a liquid crystal display, an organic EL display, or the overcoat of the mounting table of the glass substrate or Si wafer in the manufacturing process of a semiconductor, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. Glass powder material for glassy film. 前記ガラス粉末材料がBiThe glass powder material is Bi 2 O 3 系ガラスであり、該BiGlass, and the Bi 2 O 3 系ガラスは、BiGlass is Bi 2 O 3 を40〜90質量%、B40 to 90% by mass, B 2 O 3 を1〜30質量%、ZnOを1〜30質量%含むことを特徴とする請求項1ないし4のいずれか1項に記載のガラス質膜用のガラス粉末材料。The glass powder material for a vitreous film according to any one of claims 1 to 4, comprising 1 to 30% by mass of Zn and 1 to 30% by mass of ZnO. 請求項1ないし請求項5のいずれかに記載のガラス粉末材料を熱源として燃焼炎又はプラズマを用いて加熱し、該ガラス粉末材料を溶融又は半溶融させた後、高速ガス流で前記基板表面へ吹き付けることによって、基板表面にガラス質膜を形成することを特徴とする溶射法による多孔質なガラス質膜の製造方法。 The glass powder material according to any one of claims 1 to 5, and heated using a combustion flame or plasma as the heat source, was melted or semi-melting the glass powder material, the substrate surface at high velocity gas stream A method for producing a porous vitreous film by a thermal spraying method , characterized in that a vitreous film is formed on a substrate surface by spraying on the substrate. 請求項1ないし請求項5のいずれかに記載のガラス粉末材料を有機溶剤へ分散させた溶液を、スプレーを用いて前記基板表面へ塗布後、ガラス粉末材料の軟化点以上の温度で焼成することによって、基板表面にガラス質膜を形成することを特徴とするスプレー法による多孔質なガラス質膜の製造方法。
The glass powder material according to any one of claims 1 to 5, a solution obtained by dispersing an organic solvent, wherein after application to the substrate surface and calcined at a temperature higher than the softening point of the glass powder material using a spray A method for producing a porous vitreous film by a spray method , characterized in that a vitreous film is formed on a substrate surface .
JP2012095216A 2012-04-19 2012-04-19 A method for producing a glass powder material and a porous vitreous membrane. Active JP5990994B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012095216A JP5990994B2 (en) 2012-04-19 2012-04-19 A method for producing a glass powder material and a porous vitreous membrane.
TW102112892A TWI496753B (en) 2012-04-19 2013-04-11 Glass powder material and porous glassy film manufacturing method
KR1020130040198A KR20130118242A (en) 2012-04-19 2013-04-12 Glass powder material and method for producing porous glassy film
CN2013101331308A CN103373817A (en) 2012-04-19 2013-04-17 Glass powder material and method for producing porous glassy film
KR20150044436A KR20150040838A (en) 2012-04-19 2015-03-30 Glass powder material and method for producing porous glassy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095216A JP5990994B2 (en) 2012-04-19 2012-04-19 A method for producing a glass powder material and a porous vitreous membrane.

Publications (2)

Publication Number Publication Date
JP2013220982A JP2013220982A (en) 2013-10-28
JP5990994B2 true JP5990994B2 (en) 2016-09-14

Family

ID=49459713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095216A Active JP5990994B2 (en) 2012-04-19 2012-04-19 A method for producing a glass powder material and a porous vitreous membrane.

Country Status (4)

Country Link
JP (1) JP5990994B2 (en)
KR (2) KR20130118242A (en)
CN (1) CN103373817A (en)
TW (1) TWI496753B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637538C1 (en) * 2016-07-06 2017-12-05 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" Method of decoration of glassware
CN107056074A (en) * 2017-06-13 2017-08-18 大连工业大学 A kind of plasma spraying ceramic coat is modified with glass dust, preparation method and applications
JP7360085B2 (en) * 2019-06-05 2023-10-12 日本電気硝子株式会社 Powder material and powder material paste

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330958A (en) * 1992-05-27 1993-12-14 Okuno Chem Ind Co Ltd Glass composition for forming metallizing primer layer
JPH07283499A (en) * 1994-04-05 1995-10-27 Nippon Carbide Ind Co Inc Compound board for electronic parts
JP2004123534A (en) * 1995-06-16 2004-04-22 Hitachi Ltd Magnetic head and magnetic recording and reproducing device
JP4061792B2 (en) * 1999-11-05 2008-03-19 旭硝子株式会社 Lead-free low melting glass and glass frit
JP2003077390A (en) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd Manufacturing method of plasma display panel
TW200302209A (en) * 2002-01-10 2003-08-01 Matsushita Electric Ind Co Ltd Electrode coating glass composition, coating material for forming electrode coating glass and plasma display panel and manufacturing method thereof
TWI393587B (en) * 2006-02-27 2013-04-21 Toray Industries Method for producing powders by using grinding media
JP5257827B2 (en) * 2006-09-14 2013-08-07 日本電気硝子株式会社 Sealing material
JP5441343B2 (en) * 2008-03-17 2014-03-12 株式会社ナカシマ Manufacturing method of glassy film forming roll body, electrode for silent discharge of ozone generator based on the manufacturing method, and ozone generator
JP5190672B2 (en) * 2008-03-17 2013-04-24 日本電気硝子株式会社 Vanadium-based glass composition and vanadium-based material
KR20110108373A (en) * 2009-01-26 2011-10-05 아사히 가라스 가부시키가이샤 Method for producing electronic device substrate, method for manufacturing electronic device, electronic device substrate, and electronic device

Also Published As

Publication number Publication date
CN103373817A (en) 2013-10-30
JP2013220982A (en) 2013-10-28
KR20130118242A (en) 2013-10-29
TW201402504A (en) 2014-01-16
KR20150040838A (en) 2015-04-15
TWI496753B (en) 2015-08-21

Similar Documents

Publication Publication Date Title
JP5679591B2 (en) Method for producing a coated component made of quartz glass
CN100568451C (en) Its device of island-projection-decorated component and manufacture method thereof and employing
KR20160072245A (en) Methods and apparatus providing a substrate and protective coating thereon
TWI775757B (en) Sprayed member, and method for producing yttrium oxyfluoride-containing sprayed coating
JP5990994B2 (en) A method for producing a glass powder material and a porous vitreous membrane.
JP2017001166A (en) Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method
JP2021514928A (en) Undulating glass surface to reduce electrostatic charge
JP2009054984A (en) Component for film forming apparatus and its manufacturing method
KR101525972B1 (en) Anti-glare cover glass and preparing method thereof
JP2009269792A (en) Silicon melting crucible and mold release agent used for it
US20060019103A1 (en) Corrosion-resistant member and method forproducing same
US10526241B2 (en) Scratch-resistant coatings with improved cleanability, substrates with scratch-resistant coatings with improved cleanability, and methods for producing same
KR101842597B1 (en) Aerosol deposition amorphous coating materials for plasma resistant coating and manufacturing method thereof
JP4062236B2 (en) ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME
CN110621639A (en) Refractory product, composition for coating refractory product and method for manufacturing refractory product
TW201902846A (en) Alkali-free glass substrate
WO2017082311A1 (en) Glass for air-quench tempering and air-quenched tempered glass
KR101581666B1 (en) Recycling method of ceramic member using glass hard coating agent composition for recycling ceramic member
CN107721159B (en) Cover plate glass material for zirconium-containing touch screen, glass, preparation method and cover plate for touch screen
RU2522448C1 (en) Coating for space mirror workpiece
KR20210036138A (en) Glass-ceramics with Plasma Resistance and Parts for dry etching comprising the same
JP7122206B2 (en) thermal spray film
JP2023097873A (en) Halogen-resistant glass material, glass coating film, and production methods thereof
JP2004253793A (en) Corrosion-resistant material and method for producing same
JP2000100675A (en) Dummy wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5990994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250