JP4062236B2 - ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME - Google Patents

ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME Download PDF

Info

Publication number
JP4062236B2
JP4062236B2 JP2003372754A JP2003372754A JP4062236B2 JP 4062236 B2 JP4062236 B2 JP 4062236B2 JP 2003372754 A JP2003372754 A JP 2003372754A JP 2003372754 A JP2003372754 A JP 2003372754A JP 4062236 B2 JP4062236 B2 JP 4062236B2
Authority
JP
Japan
Prior art keywords
island
shaped
film
protrusion
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003372754A
Other languages
Japanese (ja)
Other versions
JP2004172607A (en
Inventor
小弥太 高橋
雅則 向後
修 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003372754A priority Critical patent/JP4062236B2/en
Publication of JP2004172607A publication Critical patent/JP2004172607A/en
Application granted granted Critical
Publication of JP4062236B2 publication Critical patent/JP4062236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、半導体等の製造における成膜装置、プラズマ処理装置(プラズマエッチング装置、プラズマクリーニング装置)に用いる島状突起修飾部品に係り、これらの装置に用いた場合に当該部品からの脱ガスが少なく発塵がないものを提供するものである。   The present invention relates to an island-shaped projection modified part used in a film forming apparatus and a plasma processing apparatus (plasma etching apparatus, plasma cleaning apparatus) in the manufacture of semiconductors and the like, and when used in these apparatuses, degassing from the part is prevented. It provides something that does not generate much dust.

半導体等の製造において、ポリシリコン、酸化珪素、窒化珪素などのCVD成膜には、耐熱性に優れ、かつ加工し易いガラス部品、例えば石英ガラスや耐熱ガラス製の反応管やベルジャーが主に用いられている。これらの成膜では、目的とする成膜基板だけでなく反応管、ベルジャー等の部品に膜状物質が付着していた。その結果、成膜操作を重ねることにより反応管、ベルジャーに付着した膜状物質が厚くなり、当該物質と石英ガラスの熱膨張率の差により、反応管、ベルジャーにひびが入ったり膜状物質が剥離して発塵となり、成膜基板を汚染するという問題があった。また、窒化チタンや窒化タンタル等のPVD成膜では、金属やセラミック製のシールド部品が用いられており、成膜操作を重ねることによりシールド部品に付着した膜状物質が厚くなり、剥離して発塵となり、成膜基板を汚染するという問題があった。また、プラズマエッチング装置やプラズマクリーニング装置においても、装置部品に付着した膜状物質が厚くなり、剥離して発塵となり、処理基板を汚染するという問題があった。   In the production of semiconductors, etc., CVD parts such as polysilicon, silicon oxide, and silicon nitride are mainly used for glass parts that are excellent in heat resistance and easy to process, such as reaction tubes and bell jars made of quartz glass or heat-resistant glass. It has been. In these film formations, film-like substances are attached not only to the target film formation substrate but also to parts such as reaction tubes and bell jars. As a result, as the film forming operation is repeated, the film-like substance attached to the reaction tube and the bell jar becomes thick, and the reaction tube and the bell jar are cracked or the film-like substance is formed due to the difference in thermal expansion coefficient between the substance and quartz glass. There was a problem that it peeled off to generate dust and contaminated the film formation substrate. In PVD film formation of titanium nitride, tantalum nitride, etc., shield parts made of metal or ceramic are used, and as the film formation operation is repeated, the film-like substance attached to the shield parts becomes thicker and peels off. There was a problem of becoming dust and contaminating the film formation substrate. Also in the plasma etching apparatus and the plasma cleaning apparatus, there is a problem that the film-like substance adhering to the apparatus parts becomes thick, peels off and generates dust, and contaminates the processing substrate.

この様な問題を解決する方法として、例えば被処理体に負のバイアスをかけてプラズマクリーニングを施す装置が提案されている。(例えば、特許文献1参照)しかしこのようなプラズマクリーニング装置でも、被処理体のエッチングにより飛散した粒子が装置内に膜状に付着し、処理数の増加とともに堆積した膜状物質は剥離して処理製品の汚染原因となっていた。   As a method for solving such a problem, for example, an apparatus for performing a plasma cleaning by applying a negative bias to an object to be processed has been proposed. (For example, refer to Patent Document 1) However, even in such a plasma cleaning apparatus, particles scattered by etching of the object to be processed adhere to the apparatus in a film shape, and the deposited film-like substance peels off as the number of processes increases. It was a cause of contamination of processed products.

膜状物質の保持性を向上する方法として、部品の表面にMo、W、Al、WCなどのプラズマ溶射膜を形成することにより、付着した膜状物質の内部応力の分散と接着面の増大を図り、膜状物質の剥離を防止する方法が提案されている。(例えば、特許文献2、3参照)さらに石英ガラス部品の表面に石英よりもプラズマに対して高い耐食性を有する絶縁膜を施す、特に爆発溶射により緻密なアルミナ系セラミックスを形成することが開示されている。(例えば、特許文献4参照)しかし石英ガラス部品に石英ガラス以外の皮膜(Mo、W、Al、WC、アルミナ等)を被覆したものでは、石英ガラスと皮膜の熱膨張率の違いから皮膜自身が剥離し易いという問題があった。   As a method of improving the retention of the film-like substance, by forming a plasma sprayed film of Mo, W, Al, WC, etc. on the surface of the component, it is possible to disperse the internal stress of the attached film-like substance and increase the adhesion surface. There have been proposed methods for preventing peeling of film-like substances. (For example, refer to Patent Documents 2 and 3) Further, it is disclosed that an insulating film having a higher corrosion resistance against plasma than quartz is applied to the surface of a quartz glass part, and in particular, dense alumina ceramics are formed by explosive spraying. Yes. (For example, refer to Patent Document 4) However, when a quartz glass component is coated with a coating other than quartz glass (Mo, W, Al, WC, alumina, etc.), the coating itself is caused by the difference in thermal expansion coefficient between quartz glass and the coating. There was a problem of easy peeling.

一方、成膜装置やプラズマエッチング装置、プラズマクリーニング装置の部材に付着した膜状物質の剥離問題を解決する方法として、ブラスト処理による粗面化をした石英ガラス部品、或いはブラスト処理後に酸エッチング処理を施した石英ガラス部品が提案されている(例えば、特許文献5参照)。しかし、ブラスト法で処理された石英ガラス部品は加工された粗面下にマイクロクラックが発生し、かけらが装置内で塵芥(異物)となるという問題があった。また、マイクロクラックの入った部品は機械的強度が低下しており、部品の短寿命化という問題があった。さらにマイクロクラック内へ不純物が浸入すると部品が失透するという問題もあった。かけらによる塵芥(異物)の問題は、ブラスト処理後に酸エッチング処理を行い、さらに熱による表面溶融処理を行うことによりある程度は低減されるが、まだ十分とはいえなかった(例えば、特許文献6、7参照)。またブラスト処理をした石英ガラス部品は、付着した膜状物質を除去するために硝フッ酸洗浄等を繰り返すと、部品表面の粗面がなだらかになり、この様な表面に付着した膜状物質は容易に剥離してパーティクルとなるという問題があった。   On the other hand, quartz glass parts roughened by blasting or acid etching after blasting can be used as a method to solve the problem of peeling off film-like substances attached to members of film forming equipment, plasma etching equipment, and plasma cleaning equipment. Proposed quartz glass parts have been proposed (see, for example, Patent Document 5). However, the quartz glass parts processed by the blast method have a problem that microcracks are generated under the processed rough surface, and the fragments become dust (foreign matter) in the apparatus. In addition, the microcracked part has a problem that the mechanical strength is lowered and the life of the part is shortened. Furthermore, there is also a problem that parts are devitrified when impurities enter the microcracks. The problem of dust (foreign matter) due to shards is reduced to some extent by performing acid etching treatment after blast treatment and further performing surface melting treatment with heat, but it has not been sufficient yet (for example, Patent Document 6, 7). Also, quartz glass parts that have been subjected to blasting process will have a rough surface on the surface if they are repeatedly washed with hydrofluoric acid to remove the attached film-like substances. There was a problem that it peeled easily and became particles.

他に、石英ガラス部品表面の粗面(凹凸)形状を機械加工によらない化学的処理のみで形成する方法が提案されている。(例えば、特許文献8,9参照)化学的処理法では、部品表面にマイクロクラックが入らないためそれに起因する汚染はないが、得られる表面の凹凸が小さく、付着した膜状物質の剥離防止には不十分であった。また、化学処理法では、処理回数の増加に伴って処理薬剤の性能が経時変化するため、当該部品を安定的に製造することが困難であった。   In addition, there has been proposed a method for forming a rough surface (concave / convex) shape on the surface of a quartz glass component only by chemical treatment without using machining. (For example, refer to Patent Documents 8 and 9) In the chemical treatment method, microcracks do not enter the surface of the component, so there is no contamination resulting from it, but the resulting surface has small irregularities and prevents peeling of the attached film-like substance. Was insufficient. Further, in the chemical treatment method, the performance of the treatment chemical changes with time as the number of treatments increases, and thus it is difficult to stably manufacture the part.

またガラスの表面形状として、ガラスの表面に幅が70〜1000μm、高さが10〜100μmの小突起物が均一に分布するガラス冶具が提案されている。(例えば、特許文献10参照)当該方法で得られる表面形状は、突起物の表面に亀裂があり、見かけ上大きな突起物の表面に小さな突起物が形成されているものしか得られていなかった。この様な突起物はフッ酸を含む酸による溶解の化学処理法によって形成されたものであったため、大きな突起自体がなだらかなものとなり易く、付着した膜状物質の剥離防止には必ずしも十分ではなかった。また突起物表面にある微小突起、或いは突起物の亀裂がプラズマの電界集中、或いは脱離の原因となるため、それ自身がパーティクルの原因となり易かった。特に、使用後に酸洗浄して再利用する際に、微小突起部分がエッチングされて剥離し、洗浄を繰り返すほどその剥離物によるパーティクル発生の問題があった。   As a glass surface shape, a glass jig has been proposed in which small protrusions having a width of 70 to 1000 μm and a height of 10 to 100 μm are uniformly distributed on the surface of the glass. (For example, refer to Patent Document 10) As for the surface shape obtained by the method, only the surface of the projection having cracks and the appearance of the small projection on the surface of the large projection was obtained. Since such protrusions were formed by a chemical treatment method of dissolution with an acid containing hydrofluoric acid, the large protrusions themselves tend to be gentle, and are not necessarily sufficient for preventing the attached film-like substance from peeling off. It was. In addition, since minute protrusions on the surface of the protrusions or cracks of the protrusions cause plasma electric field concentration or desorption, they themselves are likely to cause particles. In particular, when the acid is washed after use and reused, the microprojection portion is etched and peeled off, and the problem of generation of particles due to the peeled material increases as the washing is repeated.

米国特許第5460689号US Pat. No. 5,460,689

特開昭60−120515号公報JP-A-60-120515 特開平4−268065号公報JP-A-4-268065 特開平8−339895号公報JP-A-8-339895 特開平10−59744号公報JP-A-10-59744 特開平09−202630号公報JP 09-202630 A 特開2003−212598号公報JP 2003-212598 A 特開平11−106225号公報JP-A-11-106225 特開2002−068766号公報JP 2002-068766 A 特開2002―110554号公報Japanese Patent Laid-Open No. 2002-110554

成膜装置、或いはプラズマ処理装置の使用において、装置内の部品に付着した膜状物質の剥離による塵芥(異物)、パーティクルの発生を防止することは本発明の技術領域で極めて重要な課題であった。本発明は、成膜やプラズマ処理において、膜状物質の剥離並びにパーティクル発生の防止に優れ、脱ガスが少なく加熱による基材からの剥がれがない溶射膜で修飾した部品及びその製造方法、並びにそれを用いた装置に関するものである。   In the use of a film forming apparatus or a plasma processing apparatus, it is an extremely important issue in the technical field of the present invention to prevent generation of dust (foreign matter) and particles due to peeling of a film-like substance attached to components in the apparatus. It was. The present invention is excellent in prevention of film-like substance peeling and particle generation in film formation and plasma treatment, a part modified with a sprayed film that is less degassed and does not peel off from a substrate by heating, a method for producing the same, and The present invention relates to a device using the.

本発明者は、上述のような現状に鑑み、鋭意検討を行った結果、基材上に、ガラスからなる島状突起を有する島状突起修飾部品で、特にプラズマ溶射法によって形成した島状突起物で、島状突起の球状または釣鐘状である島状突起ガラス修飾部品では、該突起物から脱ガスが少なく、加熱により該突起物の基材からの剥がれがなく、パーティクルの発生がなく、ガラス部品表面に堆積した膜状物質の保持性が高められることを見出した。さらに当該部品は、部品の使用後に酸洗浄処理しても、表面の突起状態が保たれ、パーティクル発生の抑制並びに膜状物質の保持効果が維持されることを見出した。またこの様な島状突起ガラス修飾部品は、プラズマ溶射法によって供給するガラス原料を基材表面積に対して20mg/cm以下とすることによって得られることを見出した。 As a result of intensive studies in view of the above situation, the present inventor is an island-shaped protrusion modified part having an island-shaped protrusion made of glass on a base material, particularly an island-shaped protrusion formed by a plasma spraying method. In the island-shaped projection glass modified parts that are spherical or bell-shaped island-shaped projections, there is little degassing from the projections, there is no peeling from the base material of the projections by heating, there is no generation of particles, It has been found that the retention of the film-like substance deposited on the glass part surface is improved. Further, the present inventors have found that even if the parts are subjected to an acid cleaning treatment after use, the surface protrusion state is maintained, and the generation of particles and the retention effect of the film-like substance are maintained. Moreover, it discovered that such an island-like projection glass modification part was obtained by making the glass raw material supplied by a plasma spraying method into 20 mg / cm < 2 > or less with respect to a substrate surface area.

さらに本発明者は、基材上に、セラミック及び又は金属からなる島状突起修飾部品で、溶射法によって形成した島状突起物で、突起形状が釣鐘状である島状突起修飾部品では、該突起物から脱ガスが少なく、加熱により該突起物の基材からの剥がれがなく、パーティクルの発生がなく、部材表面に堆積した膜状物質の保持性が高められることを見出した。またこの様な島状突起修飾部品は、溶射粉末を半溶融状態で該基材上へ衝突させること、あるいは、溶射粉末を融点の小さい材料が融点の大きい材料を包み込む様に形成し、溶射時には融点の小さい材料を完全に溶融させ、融点の大きい材料を未溶融又は半溶融状態で該基材上へ衝突させることによって得られることを見出した。   Further, the present inventor is an island-shaped protrusion modified part made of ceramic and metal on a base material, and is an island-shaped protrusion formed by a thermal spraying method. It has been found that there is little degassing from the protrusions, the protrusions do not peel off from the substrate by heating, no particles are generated, and the retention of the film-like substance deposited on the member surface is improved. In addition, such island-shaped protrusion-modified parts are formed by causing the thermal spray powder to collide with the base material in a semi-molten state, or forming the thermal spray powder so that a material having a low melting point wraps a material having a high melting point. It has been found that a material having a low melting point is completely melted, and a material having a high melting point is collided onto the substrate in an unmelted or semi-molten state.

加えて本発明の島状突起修飾部品を用いた成膜装置、プラズマエッチング装置、プラズマクリーニング装置では、パーティクルの発生が防止されることを見出し、本発明を完成するに至ったものである。   In addition, in the film forming apparatus, the plasma etching apparatus, and the plasma cleaning apparatus using the island-shaped projection modified part of the present invention, it has been found that generation of particles is prevented, and the present invention has been completed.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

本発明の島状突起修飾部品は、基材上に島状突起を有する島状突起修飾部品、或いはガラスの溶射膜が形成された基材上に、島状突起を有することを特徴とする島状突起修飾部品である。   The island-shaped protrusion modified component of the present invention is an island characterized by having an island-shaped protrusion on an island-shaped protrusion-modified component having an island-shaped protrusion on a substrate or a substrate on which a glass sprayed film is formed. It is a protrusion-modified part.

図1及び図4に基材上にガラスからなる島状突起を有するガラス修飾部品の模式図を示す。本発明の島状突起修飾部品は、平滑なガラス基材10、又は40に、ガラスからなる球状の島状突起、或いは釣鐘状の突起を有するものである。本発明ではこれらの突起は島状に夫々独立したものであり、幾つかの島状突起が重なっていても良いが、球状、或いは釣鐘状の突起が相互に繋がることによって全体として膜となっていないものである。   1 and 4 are schematic views of a glass modified part having an island-shaped protrusion made of glass on a base material. The island-shaped protrusion-modified part of the present invention has a spherical glass-shaped protrusion or a bell-shaped protrusion made of glass on a smooth glass substrate 10 or 40. In the present invention, these protrusions are independent from each other in the form of islands, and several island-like protrusions may be overlapped, but a spherical or bell-shaped protrusion is connected to each other to form a film as a whole. There is nothing.

ここで球状の島状突起とは、厳密な球形状に限定されず、図1の12に示す球が欠けた形状、半球状、丸みを帯びた変形した形状を指し、またこれら幾つかが重なったものを含む。また釣鐘状の島状突起も図4の42に例示する様に、上部が半球状で底部の幅が上部より広い山形の形状や、これら幾つかが重なったものを指す。また、本発明ではこれらの球状、或いは釣鐘状の島状突起が混在しても、重なっていても良いが、これらの幾つかが重なることによって閉ざされた空洞が無い方が好ましい。   Here, the spherical island-shaped protrusions are not limited to a strict spherical shape, but indicate a shape lacking a sphere, a hemispherical shape, or a rounded deformed shape shown in FIG. 1, and some of them overlap. Including things. The bell-shaped island-like protrusions also indicate a mountain shape having a hemispherical upper part and a wider bottom part than the upper part, as shown in FIG. Further, in the present invention, these spherical or bell-shaped island-shaped projections may be mixed or overlapped, but it is preferable that there are no cavities closed by overlapping some of these.

本発明の球状、釣鐘状の島状突起は、その形状全体が丸みを帯びているものであり、より好ましくは、鋭角部分がないものである。突起の形状に鋭角部分があると、プラズマ中の電界が鋭角部分に集中して選択的にエッチングされ、パーティクルの発生原因となるからである。   The spherical and bell-shaped island-shaped projections of the present invention are rounded as a whole, and more preferably have no acute angle portion. This is because if the protrusion has an acute angle portion, the electric field in the plasma is concentrated on the acute angle portion and is selectively etched to cause generation of particles.

本発明の島状突起1個あたりの大きさは、幅5〜300μm、高さ2〜200μmの範囲であることが好ましい。幅が5μmおよび高さが2μm未満の低くつぶれた突起物では、付着物の保持性が低下する。一方、幅が300μmおよび高さが200μmを越えると付着物の保持性は向上するが、当該部分がプラズマによって部分的にエッチングされ、パーティクルが発生し易くなる。以上のことから、島状突起の特に好ましい大きさは、突起1個当たりの大きさが、幅10〜150μm、高さ5〜100μmの範囲、さらに好ましくは、幅10〜80μm、高さ5〜100μmの範囲である。ここで、幅は、真上から見た島状突起を楕円とみなした時の短軸の長さとする。また、高さは、底部から頂上までの高さとする。   The size of each island-like protrusion of the present invention is preferably in the range of 5 to 300 μm in width and 2 to 200 μm in height. In the case of a crushed protrusion having a width of 5 μm and a height of less than 2 μm, the retention of the deposit is reduced. On the other hand, when the width exceeds 300 μm and the height exceeds 200 μm, the retention of deposits is improved, but the portion is partially etched by plasma, and particles are easily generated. In view of the above, the particularly preferable size of the island-shaped protrusion is such that the size per protrusion is in the range of 10 to 150 μm in width and 5 to 100 μm in height, more preferably 10 to 80 μm in width and 5 to 5 in height. The range is 100 μm. Here, the width is the length of the short axis when the island-like protrusion viewed from directly above is regarded as an ellipse. The height is the height from the bottom to the top.

本発明の島状突起の数は、1mm単位面積当たりの個数が20〜5000個の範囲であり、特に50〜1000個/mmであることが好ましい。20個/mm未満では付着物の保持性が低下し、5000個/mmを超えると、島状突起が重なって膜となり、閉気孔が生じ易く、よって、パーティクルが発生し易くなる。 The number of island-shaped protrusions of the present invention is in the range of 20 to 5000 per 1 mm 2 unit area, and preferably 50 to 1000 / mm 2 . If it is less than 20 pieces / mm 2 , the retention of adhered matter is lowered, and if it exceeds 5000 pieces / mm 2 , island-like protrusions are overlapped to form a film, and closed pores are easily generated, and thus particles are easily generated.

本発明の島状突起による表面層の突起は、例えば特開2003−212598号公報や特開平11−106225号公報に開示されるような化学処理によって得られる凹凸に比べて高低差が大きいため、部品を酸洗浄しても表面の凹凸が維持され易く、付着物の保持性を低下させることなく再利用が可能である。従来の化学処理によって得られる突起物、例えば特開2002−68766号公報等の表面には、微細な小突起或いは亀裂があり、それ自身がパーティクルの発生原因となったが、本発明の島状突起はその表面に微小突起がないため、パーティクルの発生が著しく低減される。   Since the protrusions on the surface layer due to the island-shaped protrusions of the present invention have a large difference in height compared to the unevenness obtained by chemical treatment as disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-212598 and Japanese Patent Application Laid-Open No. 11-106225, Even if the parts are acid cleaned, the surface irregularities are easily maintained and can be reused without deteriorating the retention of deposits. Protrusions obtained by conventional chemical treatment, for example, Japanese Unexamined Patent Publication No. 2002-68766, etc. have fine small protrusions or cracks, which themselves cause generation of particles. Since the protrusion has no micro protrusion on the surface, generation of particles is remarkably reduced.

本発明の突起の形、大きさ、突起表面の状態は、ガラス修飾部品の断面または上部を走査型電子顕微鏡などによって確認することができる。   The shape, size, and state of the protrusion surface of the protrusion of the present invention can be confirmed by a scanning electron microscope or the like on the cross section or upper part of the glass-modified part.

また、本発明のもうひとつの島状突起修飾部品は、基材の表面にガラスの下地層を形成し、その上に上述の島状突起物を形成したものである。図7に模式図を示す。基材70上に、ガラスからなる下地層71が形成され、さらに前記下地層の上に島状突起による表面修飾層72が形成されている。この様に基材表面にガラス下地層を形成すると、基材からの不純物拡散が防止でき、また基材表面に損傷がある場合には、前記下地層が穴埋めして平滑にすることにより、パーティクルの発生をさらに防止することができる。   Further, another island-shaped projection modified part of the present invention is obtained by forming a glass underlayer on the surface of a base material, and forming the above-mentioned island-shaped projections thereon. FIG. 7 shows a schematic diagram. A base layer 71 made of glass is formed on the base material 70, and a surface modification layer 72 made of island-shaped protrusions is further formed on the base layer. By forming a glass underlayer on the surface of the substrate in this way, impurity diffusion from the substrate can be prevented, and when the surface of the substrate is damaged, the underlayer is filled and smoothed to form particles. Can be further prevented.

下地のガラス層の膜厚は100〜1000μmであり、特に緻密で100μm以上の空洞がなく、平滑であることが好ましい。下地表面の平滑性が低いと、その上に形成する島状突起によって形成する高低差が下地の凹凸によって吸収される場合がある。下地表面の平滑性としては、例えば表面粗さRaで1〜5μmの範囲であることが好ましい。   The film thickness of the underlying glass layer is 100 to 1000 μm, and it is particularly preferable that the glass layer is dense and has no cavity of 100 μm or more and is smooth. If the smoothness of the underlying surface is low, the height difference formed by the island-shaped protrusions formed thereon may be absorbed by the unevenness of the underlying surface. As the smoothness of the base surface, for example, the surface roughness Ra is preferably in the range of 1 to 5 μm.

本発明における基材はガラスであっても良いが、金属、セラミック等も用いることが出来る。本発明の部品で、特に基材の上にガラス溶射膜による下地層を形成しているものでは、基材からの不純物混入の問題がなく、ガラス基材と同等の性能を発揮することができる。   Although the base material in this invention may be glass, a metal, a ceramic, etc. can also be used. In the component of the present invention, in particular, a base layer made of a glass sprayed film is formed on a base material, there is no problem of impurity contamination from the base material, and performance equivalent to that of a glass base material can be exhibited. .

本発明の島状突起修飾部品に用いるガラス材料としては、石英ガラス、バイコール(登録商標)、アルミノ珪酸ガラス、ほう珪酸ガラスなどの無アルカリガラスなどの耐熱ガラス、及びシリカに2a、3a族元素などを添加したプラズマ耐性ガラス等を用いることができる。特に本発明の島状突起修飾部品を用いる技術領域では、耐熱衝撃性、高純度が要求されるため、熱膨張率が5×10−6/K以下のガラス、また高純度な石英ガラスを用いることが好ましい。 Examples of the glass material used for the island-shaped protrusion modified parts of the present invention include heat-resistant glass such as quartz glass, Vycor (registered trademark), aluminosilicate glass, non-alkali glass such as borosilicate glass, and silica, 2a, 3a group elements, etc. Plasma resistant glass to which is added can be used. In particular, in the technical area where the island-shaped protrusion modified parts of the present invention are used, thermal shock resistance and high purity are required. Therefore , a glass having a thermal expansion coefficient of 5 × 10 −6 / K or less, or high-purity quartz glass is used. It is preferable.

島状突起、下地層、基材は同じ材質であっても良いが、それぞれ異なる材質でも良い。ここで異なる材質を用いる場合、熱衝撃による割れを抑制するために夫々の材質の熱膨張率の差が5×10−6/K以内であることが好ましい。 The island-shaped protrusions, the base layer, and the base material may be the same material, but may be different materials. When different materials are used here, the difference in thermal expansion coefficient between the materials is preferably within 5 × 10 −6 / K in order to suppress cracking due to thermal shock.

さらに本発明の島状突起修飾部品は、基材上にセラミック及び/又は金属からなる島状突起を有し、当該島状突起が釣鐘状であることを特徴とする島状突起修飾部品である。   Furthermore, the island-shaped projection modified part of the present invention is an island-shaped projection modified part having island-shaped projections made of ceramic and / or metal on a base material, wherein the island-shaped projections are bell-shaped. .

図10に本発明の島状突起修飾部品の模式図を示す。本発明の島状突起修飾部品は、基材100に、セラミック及び又は金属からなる釣鐘状の突起を有するものである。本発明ではこれらの突起は島状に夫々独立したものであり、幾つかの島状突起が重なっていても良いが、釣鐘状の突起が相互に繋がることによって全体として膜となっていないものである。このようにすることで島状突起に閉ざされた空孔をほとんど無くすことができるため、連続的な溶射膜に比べて脱ガスが大幅に少なくなる。また、加熱した場合でも島状突起が夫々独立しているため、加熱による線膨張の基材との差は島状突起の大きさの範囲で留まるため、基材から剥がれにくい。   FIG. 10 shows a schematic diagram of the island-shaped projection modified component of the present invention. The island-shaped projection modified component of the present invention has a bell-shaped projection made of ceramic and / or metal on the base material 100. In the present invention, these protrusions are independent from each other in the form of islands, and several island-like protrusions may overlap, but the bell-shaped protrusions are not connected to each other to form a film. is there. By doing so, it is possible to eliminate almost all the holes closed by the island-shaped protrusions, and therefore, degassing is greatly reduced as compared with the continuous sprayed film. Further, even when heated, the island-shaped protrusions are independent from each other, and therefore, the difference from the linear expansion base material due to heating remains within the range of the size of the island-shaped protrusions, so that it is difficult to peel off from the base material.

ここで釣鐘状の島状突起とは図10(a)に例示する様に上部が半球状で底部の幅が上部より広い山形の形状、図10(b)に例示する様に上部が丸みを帯びて突き出ており底部の幅が上部より広い山形の形状、並びにこれら幾つが重なったものを指す。   Here, the bell-shaped island-shaped protrusion is a mountain shape whose upper part is hemispherical and whose bottom is wider than the upper part as illustrated in FIG. 10A, and whose upper part is rounded as illustrated in FIG. 10B. It refers to the shape of a mountain that protrudes and has a wider bottom than the top, as well as some of these overlapping.

本発明において種々の材料で形成される島状突起の高さ104と幅103の比については、その平均値が0.3以上1.5以下であることが好ましい。0.3未満では付着物の保持性が低下し、1.5を超えると島状突起の基材への密着性が低下する。高さと幅の比は島状突起が20〜200個含まれる領域で測定して平均して得られた値であり、さらに、この測定を3箇所以上の領域で実施して平均化する。測定にはレーザー共焦点顕微鏡や走査型電子顕微鏡等の画像の観察と幅・高さの計測が同時に可能な装置を用いることができる。ここで、幅は、真上から見た島状突起を楕円とみなした時の短軸の長さとする。また、高さは、底部から頂上までの高さとする。   In the present invention, the average value of the ratio between the height 104 and the width 103 of the island-shaped protrusions formed of various materials is preferably 0.3 or more and 1.5 or less. If it is less than 0.3, the retention of the deposits is lowered, and if it exceeds 1.5, the adhesion of the island-shaped protrusions to the substrate is lowered. The ratio between the height and the width is a value obtained by averaging in a region including 20 to 200 island-shaped protrusions, and this measurement is performed in three or more regions and averaged. For the measurement, an apparatus such as a laser confocal microscope or a scanning electron microscope capable of simultaneously observing an image and measuring the width and height can be used. Here, the width is the length of the short axis when the island-like protrusion viewed from directly above is regarded as an ellipse. The height is the height from the bottom to the top.

本発明の島状突起の下地となる基材表面は、表面粗さRaが5μm以下で粗さのスキューネスが負であることが好ましい。粗さのスキューネスの測定は、JIS又はANSIの表面粗さの測定規格に従った長さで表面粗さ計を用いて基材の粗さプロファイルを測定して、RMS表面粗さR及び、各測定点の高さと中心線高さの差を3乗した値の測定範囲での平均値をRtpとすると、スキューネスRskは以下の式1で表される。 It is preferable that the surface of the base material serving as the base of the island-shaped protrusions of the present invention has a surface roughness Ra of 5 μm or less and a negative roughness skewness. The roughness skewness is measured by measuring the roughness profile of the substrate using a surface roughness meter with a length in accordance with the surface roughness measurement standard of JIS or ANSI, and RMS surface roughness R q and When the average value in the measurement range of the value obtained by cubeing the difference between the height of each measurement point and the center line height is R tp , the skewness Rsk is expressed by the following formula 1.

Rsk=Rtp/R (式1)
ここで、一般的にスキューネスが正の場合は山が狭く谷が広いので滑り性が悪く、スキューネスが負の場合は谷よりも山の部分が広くなだらかで滑り性が良好である。図12に模式図を示すが、スキューネスが負になるようにすることにより、溶射の過程で溶融した溶射粉末が基材上で滑らかに広がり、周囲が滑らかな円盤状で中央部が盛り上がった釣鐘状の島状突起121となる。表面粗さRaが5μmより大きい、またはスキューネスが正の場合、図13に模式図を示すように、溶射の過程で溶融した溶射粉末が基材上で広がる時に弾け飛んだり(132)、周囲がぎざぎざとなって気孔133を含んだ島状突起となりやすい。
Rsk = R tp / R q 3 (Formula 1)
In general, when the skewness is positive, the mountain is narrow and the valley is wide, so that the slipperiness is poor. When the skewness is negative, the mountain portion is wider and gentler than the valley, and the slipperiness is good. FIG. 12 shows a schematic diagram. By making the skewness negative, the sprayed powder melted in the process of spraying spreads smoothly on the base material, and the bell is smooth and disk-shaped around the base. The island-shaped protrusion 121 becomes a shape. When the surface roughness Ra is larger than 5 μm or the skewness is positive, as shown in the schematic diagram of FIG. 13, when the sprayed powder melted in the process of spraying spreads on the base material (132), It tends to be jagged and become island-like protrusions including pores 133.

本発明における基材はガラス、金属、セラミック等、いかなる物でも用いることができる。島状突起、基材は同じ材質であっても良いが、それぞれ異なる材質でも良い。   As the substrate in the present invention, any material such as glass, metal and ceramic can be used. The island-shaped protrusions and the base material may be the same material, but may be different materials.

本発明の島状突起を構成する金属またはセラミックの材料としては、金属においてはAl、Ti、Cu、Mo、W等、セラミックにおいてはアルミナ、ジルコニア、チタニア、スピネル、ジルコン等いかなる材料でも良いが、融点が高い材料の方が、溶射過程で高さと幅の比の制御が容易である。   The metal or ceramic material constituting the island-shaped protrusions of the present invention may be any material such as Al, Ti, Cu, Mo, W, etc. for metals, alumina, zirconia, titania, spinel, zircon, etc. for ceramics, A material with a higher melting point is easier to control the height to width ratio during the thermal spraying process.

本発明のもうひとつの島状突起修飾部品は、島状突起を融点の小さい材料が融点の大きい材料を包み込む様な構造とすることにより島状突起を釣鐘状とすることができる。図14に模式図を示す。基材140上に、融点の小さい材料142が融点の大きい材料141を包み込む様な構造の島状突起143が形成されている。融点の小さい材料142と融点の大きい材料141の融点の差は400℃以上あることが好ましい。このようにすることで融点の大きい材料141の高さにより島状突起143の高さが制御できるため、島状突起をより再現性よく形成できる。融点の小さい材料と融点の大きい材料の組み合わせの例としては、金属の場合AlとMo、CuとW等が、セラミックの場合アルミナとジルコニア、コーディエライトとアルミナ等が挙げられる。また、金属とセラミックを組み合わせても良く、Alと窒化ホウ素、Coと炭化タングステンのような組み合わせでも良い。   In another island-shaped protrusion-modifying part of the present invention, the island-shaped protrusion can be formed into a bell shape by making the island-shaped protrusion have a structure in which a material having a low melting point wraps a material having a high melting point. FIG. 14 shows a schematic diagram. An island-like protrusion 143 having a structure in which a material 142 having a low melting point wraps a material 141 having a high melting point is formed on the substrate 140. The difference in melting point between the material 142 having a low melting point and the material 141 having a high melting point is preferably 400 ° C. or higher. By doing so, the height of the island-shaped protrusions 143 can be controlled by the height of the material 141 having a high melting point, so that the island-shaped protrusions can be formed with higher reproducibility. Examples of a combination of a material having a low melting point and a material having a high melting point include Al and Mo, Cu and W in the case of metal, and alumina and zirconia, cordierite and alumina in the case of ceramic. Further, a metal and ceramic may be combined, or a combination such as Al and boron nitride, Co and tungsten carbide may be used.

次に本発明のガラス島状突起修飾部品の製造方法を説明する。   Next, the manufacturing method of the glass island-like projection modified part of the present invention will be described.

本発明の島状突起修飾部品は、プラズマ溶射法で基材上に島状突起を形成する方法において、用いる原料ガラスの種類によって最適値は異なるが、ガラス原料供給量を基材の表面積に対して1〜20mg/cmとすることによって製造することが出来る。 In the method of forming island-shaped protrusions on the base material by plasma spraying, the optimum value of the island-shaped protrusion modified part of the present invention varies depending on the type of raw glass used, but the glass raw material supply amount with respect to the surface area of the base material 1 to 20 mg / cm 2 .

プラズマ溶射法において、基材の表面積に対する原料供給が20mg/cmを超えた場合、島状突起が重なり、本発明の形状とは異なる膜が形成され易い。一方、1mg/cm未満の原料供給では、得られる島状突起が小さく、またその形成速度が遅いため好ましくない。原料供給としては、特に5〜10mg/cmの範囲であることが好ましい。 In the plasma spraying method, when the raw material supply with respect to the surface area of the substrate exceeds 20 mg / cm 2 , island-shaped protrusions overlap and a film different from the shape of the present invention is easily formed. On the other hand, when the raw material is supplied at a concentration of less than 1 mg / cm 2 , the island-like protrusions obtained are small and the formation speed is slow, which is not preferable. As the raw material feed is preferably in the range particularly 5 to 10 mg / cm 2.

島状突起の形成は、基材に対して何回かに分けて溶射可能であるが、1回の溶射で形成することが好ましい。何回に分けて溶射すると、島状突起が重なり合って膜となり易いため、1回の場合より粉末供給速度を小さくする必要がある。一方、島状突起を形成した後で、表面の付着微粒子を除去するため、或いは島状突起の基材への密着性を向上する目的で、原料を供給しないでプラズマジェットを基材表面に照射することが好ましい。   The formation of the island-shaped protrusions can be performed by spraying several times on the base material, but it is preferable to form by one spraying. When spraying several times, island-like protrusions overlap and easily form a film. Therefore, it is necessary to lower the powder supply rate than in the case of once. On the other hand, after forming the island-shaped protrusions, the surface of the substrate is irradiated with a plasma jet without supplying raw materials in order to remove adhered fine particles on the surface or to improve the adhesion of the island-shaped protrusions to the substrate. It is preferable to do.

本発明における島状突起修飾部品の島状突起形成は、フレーム溶射法、プラズマ溶射法等の各種溶射法で可能であるが、プラズマ溶射法を用い、プラズマジェットにより基材又は基材上のガラス下地層の表面を溶融する条件で製造することが好ましい。基材又はガラス下地層の表面を溶融させながら原料粉末を供給して溶射を行うことにより、島状突起の基材或いはガラス下地層への密着性を向上することが出来る。また、一旦島状突起を形成した後に、引き続きプラズマジェットを照射して当該表面を溶融すると、島状突起の基材への密着性を高める効果がある。   Formation of island-like projections of the island-like projection modified part in the present invention can be performed by various spraying methods such as flame spraying and plasma spraying, but the plasma spraying method is used, and the substrate or glass on the substrate by plasma jet is used. It is preferable to manufacture under the condition that the surface of the underlayer is melted. By supplying the raw material powder and performing thermal spraying while melting the surface of the base material or the glass underlayer, the adhesion of the island-shaped protrusions to the base material or the glass underlayer can be improved. In addition, once the island-shaped protrusions are formed and subsequently the surface is melted by irradiating the plasma jet, there is an effect of improving the adhesion of the island-shaped protrusions to the base material.

プラズマジェットを基材に照射するプラズマガンと基材の距離は、用いる装置によって異なるが、例えば図8に示すような通常のプラズマ溶射装置の場合、基材と溶射ガン先端にある粉末供給口の溶射距離は50mm程度、溶射パワーを35kW以上とするような条件が例示できる。一方、減圧プラズマ溶射法を用いれば、プラズマジェットの形状が長くなる為、基材と溶射ガンの距離が100mm以上であってもよい。   The distance between the plasma gun that irradiates the plasma jet onto the substrate and the substrate differs depending on the apparatus used. For example, in the case of a normal plasma spraying apparatus as shown in FIG. Examples of the conditions include a spraying distance of about 50 mm and a spraying power of 35 kW or more. On the other hand, if the reduced pressure plasma spraying method is used, the shape of the plasma jet becomes long, so the distance between the substrate and the spray gun may be 100 mm or more.

特に大型のガラス修飾部品を製造する場合、プラズマ溶射法の中でも複トーチ型プラズマ溶射装置(特公平6−22719、溶射技術 Vol.11,No.1,p.1〜8(1991年)他参照)を用いて層流のプラズマジェットで溶射することが好ましい。図9に複トーチ型プラズマ溶射装置の概要を示す。複トーチ型プラズマ溶射装置では、長さが数百mmの層流炎プラズマ(通常は乱流状態で50mm程度)が形成出来るため、溶射距離が100mm以上でも本発明の島状突起を形成することが出来る。   In particular, when manufacturing large glass-modified parts, among other plasma spraying methods, refer to the double torch type plasma spraying apparatus (Japanese Patent Publication No. 6-22719, spraying technology Vol. 11, No. 1, p. 1-8 (1991), etc.) ) Is preferably used for thermal spraying with a laminar plasma jet. FIG. 9 shows an outline of a double torch type plasma spraying apparatus. In the double torch type plasma spraying apparatus, a laminar flow plasma having a length of several hundred mm (usually about 50 mm in a turbulent state) can be formed, so that the island-like projections of the present invention can be formed even when the spraying distance is 100 mm or more. I can do it.

島状突起の製造に用いるガラス、セラミックス又は金属等の粉末の粒径は、平均粒径10μm以上100μm以下であることが好ましく、平均粒径10μm以上50μm以下であることがさらに好ましい。平均粒径10μm未満では原料粉末自身に十分な流動性がないためプラズマ中に原料を均一に導入することが難しい。一方、平均粒径が100μmを超えると、溶射粒子の溶融が不均一となり、得られる島状突起の基材に対する密着性が悪くなり易い。また、溶射に用いる粒子の大きさはできるだけ揃っていることが、島状突起の形状を均一にして付着膜の保持性を高めることができる。   The particle diameter of the powder of glass, ceramics, metal, or the like used for manufacturing the island-shaped protrusions is preferably an average particle diameter of 10 μm to 100 μm, and more preferably an average particle diameter of 10 μm to 50 μm. If the average particle size is less than 10 μm, it is difficult to uniformly introduce the raw material into the plasma because the raw material powder itself does not have sufficient fluidity. On the other hand, when the average particle size exceeds 100 μm, the sprayed particles are not uniformly melted, and the adhesion of the obtained island-shaped protrusions to the base material tends to deteriorate. Further, the size of the particles used for thermal spraying is as uniform as possible, so that the shape of the island-shaped protrusions can be made uniform and the retention of the adhesion film can be improved.

本発明では基材表面の温度をあらかじめ予熱することが好ましい。基材表面をあらかじめ予熱することは、基材との密着性の高い島状突起を得るために有効である。基材を予熱しないと島状突起の密着強度が低下し、使用後に付着物を酸エッチング液で除去する際に、島状突起が剥離し易い。予熱温度は用いる基材の種類によっても異なるが、例えば石英ガラス基材の場合700〜1500℃、特に800〜1200℃の範囲が好ましい。予熱温度を上げすぎるとガラスが結晶化して失透したり形状が変化するため好ましくない。   In the present invention, it is preferable to preheat the temperature of the substrate surface in advance. Preheating the substrate surface in advance is effective for obtaining island-like protrusions with high adhesion to the substrate. If the substrate is not preheated, the adhesion strength of the island-shaped protrusions is lowered, and the island-shaped protrusions are easily peeled off when the deposit is removed with an acid etching solution after use. Although the preheating temperature varies depending on the type of the substrate used, for example, in the case of a quartz glass substrate, a range of 700 to 1500 ° C., particularly 800 to 1200 ° C. is preferable. An excessively high preheating temperature is not preferable because the glass crystallizes and devitrifies or changes its shape.

本発明の島状突起修飾部品は、基材の上にガラスの下地層を形成したものでも良い。ガラスの下地層を形成する基材は、ガラス基材だけでなく、金属、セラミックの基材でも良い。この様な下地層の形成方法は、特に限定されないが、ここでもプラズマ溶射法が適用できる。   The island-shaped protrusion-modified component of the present invention may be a glass base layer formed on a substrate. The base material on which the glass underlayer is formed may be not only a glass base material but also a metal or ceramic base material. A method for forming such an underlayer is not particularly limited, but a plasma spraying method can also be applied here.

プラズマ溶射法による下地層の形成方法としては、例えば図8、又は図9に例示した装置並びに条件で、原料粉末の供給量を20mg/cm以上とし、溶射を何回か繰り返すこと以外は上述の島状突起形成と同様の溶射条件で形成することが出来る。下地層の表面は平滑な方が好ましいため、下地層を形成した後、原料粉末を供給しないでプラズマジェットを照射し、下地層表面を溶融処理することが好ましい。 As a method for forming the underlayer by the plasma spraying method, for example, with the apparatus and conditions illustrated in FIG. 8 or FIG. 9, the supply amount of the raw material powder is set to 20 mg / cm 2 or more and the spraying is repeated several times. It can be formed under the same thermal spraying conditions as the formation of island-shaped protrusions. Since the surface of the underlayer is preferably smooth, it is preferable that after forming the underlayer, the surface of the underlayer is melted by irradiation with a plasma jet without supplying the raw material powder.

また、島状突起の形成方法として、シリコンのアルコキシド溶液を用いたゾルゲル法とプラズマ溶射法を組合わせて行っても良い。例えば、シリコンのアルコキシド溶液に数μmから数百μmのシリカ粒子を分散することによりシリカの下地層と島状突起を予備形成した後、プラズマ溶射法のプラズマジェットを当該表面に照射することにより、同様のガラス修飾表面を得ることができる。角張ったシリカ粒子を用いた場合、プラズマ溶射法による照射をすることは必須である。なぜならば、照射をしないと本発明に特徴的な球状又は釣鐘状の島状突起、すなわち突起自身の表面が丸みを帯びている、鋭角でない突起とはならないからである。また、球状のシリカ粒子を用いた場合においても、プラズマ溶射法による照射をすることにより、島状突起の基材への密着性を十分高いものとすることができる。   Further, as a method for forming island-shaped protrusions, a sol-gel method using a silicon alkoxide solution and a plasma spraying method may be combined. For example, by preliminarily forming a silica underlayer and island-shaped protrusions by dispersing silica particles of several to several hundred μm in a silicon alkoxide solution, the surface is irradiated with a plasma jet of a plasma spraying method, Similar glass modified surfaces can be obtained. When square silica particles are used, it is essential to perform irradiation by plasma spraying. This is because, without irradiation, the spherical or bell-shaped island-shaped projections characteristic of the present invention, that is, the projections themselves are not rounded and the projections are not acute angles. Even when spherical silica particles are used, the adhesion of the island-shaped protrusions to the base material can be made sufficiently high by irradiation by plasma spraying.

本発明の島状突起修飾部品は、島状突起形成後に酸洗浄することにより付着した微小粒子を除去しても良い。本発明のガラス修飾部品の島状突起は、プラズマ溶射法の操作によって島状突起自身の表面に微小な突起物をなく形成することが出来るが、プラズマ溶射の操作だけでは目には見えにくい微小な付着物が島状突起の表面に残ることがある。その様な微小付着物が残存したままでは、部品の使用中にそれらが脱落し、パーティクル、異物の原因となることがある。そこでプラズマ溶射法によって島状突起を形成した後で、酸で洗浄すれば、その様な付着物を完全に除去することが出来る。ここで酸洗浄は、フッ酸や硝酸の洗浄液で行うことが好ましい。   The island-shaped protrusion-modified part of the present invention may remove attached fine particles by acid cleaning after the formation of the island-shaped protrusion. The island-shaped protrusions of the glass-modified part of the present invention can be formed without any fine protrusions on the surface of the island-shaped protrusions themselves by the plasma spraying operation. Deposits may remain on the surface of the island-like projections. If such minute deposits remain, they may fall off during use of the part, causing particles and foreign matters. Then, after forming island-like protrusions by plasma spraying and washing with acid, such deposits can be completely removed. The acid cleaning is preferably performed with a cleaning solution of hydrofluoric acid or nitric acid.

さらに本発明の島状突起修飾部品は溶射法により基材上への島状突起を形成することで製造できるが、島状突起製造のためには、島状突起が重なり合って連続膜とならないように、通常の溶射より溶射粉末の供給量を少なくする。さらに、溶射時に溶射粉末を半溶融状態で該基材上へ衝突させることによって周囲が円盤状で中央部が盛り上がった釣鐘状の島状突起を製造することが出来る。用いる溶射法は、プラズマ溶射法、フレーム溶射法等が挙げられるが、溶射時に溶射粉末を半溶融状態、つまり溶射パワー、フレームの火力等を調整することで図15に示すように粉末の中心付近が未溶融(153)で周囲が溶融状態(154)となるようにする。ここで、溶射パワー、フレームの火力を強くすると、溶射粉末全体が溶融して、図11に示すようなディスク状の島状突起111が形成され、付着膜の保持性が低下する。   Furthermore, the island-shaped protrusion modified parts of the present invention can be manufactured by forming island-shaped protrusions on a substrate by a thermal spraying method. However, for the manufacture of island-shaped protrusions, the island-shaped protrusions do not overlap to form a continuous film. Furthermore, the amount of sprayed powder supplied is less than that of normal spraying. Further, by causing the sprayed powder to collide with the base material in a semi-molten state at the time of thermal spraying, it is possible to manufacture bell-shaped island-shaped protrusions having a disk-like periphery and a raised central portion. The thermal spraying method to be used includes plasma spraying method, flame spraying method, etc., but during spraying, the thermal spray powder is in a semi-molten state, that is, by adjusting the spraying power, flame power, etc., as shown in FIG. Is not melted (153) and the surroundings are in a molten state (154). Here, when the thermal spray power and the flame thermal power are increased, the entire thermal spray powder is melted to form the disk-shaped island-shaped projections 111 as shown in FIG. 11, and the retention of the adhesion film is lowered.

本発明のもうひとつの島状突起修飾部品の製造方法としては、溶射粉末を融点の小さい材料が融点の大きい材料を包み込む様に形成し、溶射時には融点の小さい材料を完全に溶融させ、融点の大きい材料は未溶融又は半溶融状態で該基材上へ衝突させることである。   As another method for manufacturing the island-shaped projection modified part of the present invention, the sprayed powder is formed so that the material having a low melting point wraps the material having a high melting point, and the material having a low melting point is completely melted during spraying. Larger material is impinged on the substrate in an unmelted or semi-molten state.

前述のように、本発明の島状突起の下地となる基材表面は、表面粗さRaが5μm以下でスキューネスが負であることが好ましい。表面粗さRaが5μm以下でスキューネスを負とするには、粗めの研磨剤を用いてグラインダー、研磨機などで研磨するか、平滑に研磨した基材にブラスト法を用いて軽く凹凸を形成するか、ブラスト法を用いて凹凸を形成後、中心線から著しく飛び出した突起を無くすためグラインダー、研磨機などで軽く研磨することで達成される。   As described above, it is preferable that the surface of the base material serving as the base of the island-shaped protrusions of the present invention has a surface roughness Ra of 5 μm or less and a negative skewness. In order to make the skewness negative when the surface roughness Ra is 5 μm or less, a rough abrasive is used to grind with a grinder, a grinder, etc., or a smooth ground substrate is lightly formed using a blast method Alternatively, it is achieved by forming the irregularities using the blast method, and then lightly polishing with a grinder, a polishing machine or the like in order to eliminate the protrusions protruding significantly from the center line.

基材の表面粗さは粗い方が島状突起の基材に対する密着性が高まるが、前述のように溶射の過程で溶融した溶射粉末が基材上で広がる時に弾け飛んだり、周囲がぎざぎざとなって気孔を含んだ島状突起となりやすい。基材表面をあらかじめ予熱することにより、溶射の過程で溶融した溶射粉末が滑らかに広がり易くなり、島状突起の基材に対する密着性も高まる。予熱温度は用いる基材の種類、溶射材料によっても異なるが、例えばステンレス基材に金属を溶射する場合100〜500℃、特に200〜4000℃の範囲が好ましい。予熱温度を上げすぎると基材が歪んだり、割れることがあるため好ましくない。   The rougher the surface roughness of the base material, the better the adhesion of the island-shaped protrusions to the base material. However, as described above, when the sprayed powder melted during the thermal spraying process spreads over the base material, It tends to become island-like projections containing pores. By preheating the substrate surface in advance, the sprayed powder melted in the process of spraying tends to spread smoothly, and the adhesion of the island-shaped protrusions to the substrate is also increased. The preheating temperature varies depending on the type of base material used and the thermal spray material, but for example, when metal is sprayed on a stainless steel base material, a range of 100 to 500 ° C., particularly 200 to 4000 ° C. is preferable. An excessively high preheating temperature is not preferable because the base material may be distorted or cracked.

溶射法により基材上へ島状突起を形成後、熱処理することが好ましい。このようにすること、表面粗さが小さく平滑な基材に対して密着性の高い島状突起を有する島状突起修飾部品を製造することができる。熱処理の温度は基材の耐熱温度、島状突起の融点を超えない範囲でできるだけ高い温度とすることが好ましい。   It is preferable to heat-treat after forming island-shaped protrusions on the substrate by a thermal spraying method. By doing so, it is possible to manufacture an island-shaped protrusion-modified part having island-shaped protrusions with high adhesion to a smooth base material having a small surface roughness. The heat treatment temperature is preferably as high as possible within a range not exceeding the heat-resistant temperature of the substrate and the melting point of the island-shaped protrusions.

さらに本発明では、上記に示した島状突起修飾部品を用いた成膜装置を提案するものである。   Furthermore, the present invention proposes a film forming apparatus using the above-described island-shaped protrusion modifying component.

本発明でいう成膜装置の成膜方法は限定しないが、CVD法(Chemical Vapor Deposition)、スパッタ法等が例示できる。島状突起修飾部品の使用方法としては、当該装置内で成膜する製品基板以外で、膜状物質が堆積する部分に用いる部品として用いることが好ましい。例えば反応管または、ベルジャーとして用いることが挙げられる。特にポリシリコン、酸化珪素、窒化珪素などを600〜1000℃の高温で成膜するCVD成膜装置において、本発明の表面修飾層や下地層を石英ガラスで形成した石英製の反応管或いはベルジャーを使用すれば、基材の石英ガラスと下地層、修飾層の熱膨張率差による割れや剥がれがなく、付着した膜状物質の剥離によるパーティクルの発生がなく、長時間の連続成膜が可能な装置となり得る。   The film forming method of the film forming apparatus in the present invention is not limited, but examples thereof include a CVD method (Chemical Vapor Deposition), a sputtering method, and the like. As a method of using the island-shaped protrusion modified component, it is preferable to use it as a component used for a portion where a film-like substance is deposited, other than a product substrate on which film formation is performed in the apparatus. For example, it can be used as a reaction tube or a bell jar. In particular, in a CVD film forming apparatus for forming polysilicon, silicon oxide, silicon nitride or the like at a high temperature of 600 to 1000 ° C., a quartz reaction tube or bell jar in which the surface modification layer and the underlayer of the present invention are formed of quartz glass is used. If used, there is no cracking or peeling due to the difference in thermal expansion coefficient between the quartz glass of the base material, the base layer, and the modification layer, and there is no generation of particles due to peeling of the attached film-like substance, enabling continuous film formation for a long time. It can be a device.

また、本発明では、上記に示したガラス表面修飾層を有する島状突起修飾部品を用いたプラズマエッチング装置とプラズマクリーニング装置を提案するものである。島状突起修飾部品の使用方法は、これらの装置の中で膜状物質が付着する部位、或いはプラズマと接触して部品表面が剥離し易い部位に用いることが好ましく、例えばリング状フォーカス部品またはベルジャーとして用いることが挙げられる。   In addition, the present invention proposes a plasma etching apparatus and a plasma cleaning apparatus using the island-shaped protrusion modified part having the glass surface modification layer described above. It is preferable to use the island-shaped protrusion-modified component in a site where a film-like substance adheres in these devices or a site where the component surface is easily peeled by contact with plasma. For example, a ring-shaped focus component or a bell jar It can be used as.

さらに島状突起修飾部品の使用方法としては、当該装置内で成膜する製品基板以外で、膜状物質が堆積する部分に用いる部品として用いることが好ましい。例えばベルジャーまたは、シールドとして用いることが挙げられる。特にタングステンやチタンのCVD成膜装置や窒化チタンのスパッタ装置において、本発明の島状突起修飾層をベルジャーやシールドに使用すれば、基材と修飾層の熱膨張率差による割れや剥がれがなく、付着した膜状物質の剥離によるパーティクルの発生がなく、長時間の連続成膜が可能な装置となり得る。   Furthermore, as a method for using the island-shaped projection modified component, it is preferable to use it as a component used for a portion where a film-like substance is deposited other than a product substrate on which film formation is performed in the apparatus. For example, it can be used as a bell jar or a shield. In particular, in tungsten or titanium CVD film deposition equipment or titanium nitride sputtering equipment, if the island-like protrusion modification layer of the present invention is used for a bell jar or shield, there is no cracking or peeling due to the difference in thermal expansion coefficient between the base material and the modification layer. Thus, there is no generation of particles due to separation of the attached film-like substance, and the apparatus can be used for continuous film formation for a long time.

また、本発明では、上記に示した島状突起修飾層を有する島状突起修飾部品を用いたプラズマエッチング装置とプラズマクリーニング装置を提案するものである。島状突起修飾部品の使用方法は、これらの装置の中で膜状物質が付着する部位、或いはプラズマと接触して部品表面が剥離し易い部位に用いることが好ましく、例えばリング状クランプ部品またはシールドとして用いることが挙げられる。   Further, the present invention proposes a plasma etching apparatus and a plasma cleaning apparatus using the island-shaped protrusion modifying part having the island-shaped protrusion modifying layer described above. It is preferable to use the island-shaped protrusion-modified part in a part where a film-like substance adheres in these devices, or a part where the part surface is easily peeled by contact with plasma. For example, a ring-shaped clamp part or shield It can be used as.

プラズマエッチング装置、プラズマクリーニング装置とは、装置内に設置した製品にプラズマを照射し、製品の表面を剥離、或いは清浄化する装置である。   A plasma etching apparatus or a plasma cleaning apparatus is an apparatus that irradiates a product installed in the apparatus with plasma and peels or cleans the surface of the product.

ここでプラズマエッチング装置で膜が堆積する部分とは、プラズマエッチング装置内で製品にプラズマを照射し、製品表面を剥離した際、剥離された物質が飛散して装置内に付着する部分のことである。本発明でいうプラズマによりエッチングされる部分とは、装置内の製品以外の部分でプラズマが接触してエッチングされる部分をさす。本来これらの装置ではプラズマを製品に照射して当該製品表面を剥離するものであるが、当該プラズマを製品だけに選択的に照射することは困難であり、装置内の製品周辺の装置部品にもプラズマが接触し、当該部分の表面が剥離される。そういう部分の部品に、本発明の部品を用いれば、プラズマによるエッチングがされ難く、パーティクルの発生が少ない。   Here, the part where the film is deposited in the plasma etching apparatus is the part where the peeled material scatters and adheres to the apparatus when the product surface is irradiated with plasma in the plasma etching apparatus and the product surface is peeled off. is there. The portion etched by plasma in the present invention refers to a portion etched by contact with plasma in a portion other than the product in the apparatus. Originally, these devices irradiate the product with plasma and peel off the surface of the product. However, it is difficult to selectively irradiate only the product with the plasma. The plasma comes into contact and the surface of the part is peeled off. If the component of the present invention is used for such a part, it is difficult to perform etching by plasma and the generation of particles is small.

次にプラズマクリーニング装置で膜が堆積する部分とは、プラズマクリーニング装置内で製品にプラズマを照射して逆スパッタ、即ち製品表面を清浄化した際、清浄化で除去された物質が飛散して装置内に付着する部分のことである。ここでプラズマクリーニング装置でもプラズマエッチング装置でも、製品表面をプラズマで剥離する原理は基本的に同じものである。本発明でいうプラズマクリーニングにより逆スパッタされる部分とは、製品以外の部品にプラズマが接触して逆スパッタ(エッチングによる清浄化)される部分をさす。本来これらの装置ではプラズマを製品に照射して当該製品表面を清浄化するものであるが、当該プラズマを製品だけに選択的に照射することは困難であり、装置内の製品周辺の装置部品にもプラズマが接触し、当該部分の表面も清浄化される。   Next, the part where the film is deposited in the plasma cleaning device is the device in which plasma is irradiated to the product in the plasma cleaning device and reverse sputtering, that is, when the product surface is cleaned, the material removed by the cleaning is scattered. It is the part that adheres inside. Here, in both the plasma cleaning apparatus and the plasma etching apparatus, the principle of peeling the product surface with plasma is basically the same. The portion reversely sputtered by plasma cleaning in the present invention refers to a portion that is reverse sputtered (cleaned by etching) when plasma comes into contact with a part other than the product. Originally, these devices are intended to clean the product surface by irradiating the product with plasma, but it is difficult to selectively irradiate only the product with the plasma. The plasma comes into contact and the surface of the part is also cleaned.

本発明の島状突起修飾部品を用いた装置は、初期パーティクルの発生がなく、プラズマ処理により堆積した付着物の保持性を高め、付着物の剥離によるパーティクルを減らし、装置の連続使用期間を長くする事ができる。   The device using the island-shaped protrusion modified parts of the present invention does not generate initial particles, improves the retention of deposits deposited by plasma treatment, reduces particles due to peeling of the deposits, and extends the continuous use period of the device. I can do it.

本発明の島状突起修飾部品、及びそれを用いた装置は、以下の効果を有する。
(1)部品上に堆積する付着物の保持性が高いため、成膜装置、プラズマ処理装置に使用した際、付着物の剥離がなく、発塵、パーティクルの発生がない。
(2)部品上の島状突起が球状又は釣鐘状であるため、成膜装置、プラズマ処理装置に使用した場合、当該部品へのプラズマ電界集中によるパーティクルの発生がない。
(3)ガラス部品上のガラスからなる島状突起上に微小突起がないため、部品の酸洗浄後にも、表面の突起物の剥離によるパーティクル発生がなく、なおかつ形状が保たれ易く、何回も繰り返し使用が出来る。
(4)部品上の島状突起は各々基材上で孤立しているため、部品に熱負荷がかかった場合に、島状突起と基材の熱膨張率の差による応力が小さく剥離しない、また閉気孔が殆どないため脱ガスも少ない。
The island-shaped projection modified part of the present invention and the apparatus using the same have the following effects.
(1) Since the deposits deposited on the parts are highly retained, there is no peeling of the deposits and no generation of dust or particles when used in a film forming apparatus or a plasma processing apparatus.
(2) Since the island-shaped protrusions on the part are spherical or bell-shaped, when used in a film forming apparatus or a plasma processing apparatus, there is no generation of particles due to plasma electric field concentration on the part.
(3) Since there are no micro-projections on the glass island-like projections on the glass component, there is no generation of particles due to peeling of the projections on the surface even after acid cleaning of the component, and the shape is easily maintained, and many times Can be used repeatedly.
(4) Since the island-like protrusions on the part are isolated on the base material, when a thermal load is applied to the part, the stress due to the difference in thermal expansion coefficient between the island-like protrusions and the base material is small and does not peel off. Also, since there are almost no closed pores, there is little degassing.

本発明を実施例に基づき更に詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。   The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
図9に示すような複ト−チ型プラズマ溶射装置を用いて、プラズマガス92として窒素を5SLM(Standard Litter per Minute)流し、粉末93を供給する事無く、溶射距離94を80mmとし、溶射ガンを80mm/秒の速度で移動させながら、20kWのパワーで熱プラズマを生成し、平滑な石英ガラス基材面95を1回予熱した。ここで、熱プラズマの長さは300mm程度でプラズマは層流状態であった。プラズマ加熱直後の予熱温度は820℃であった。次に、平均粒径が50μmの石英ガラス粉末の粉末供給量を1g/分とし、速度を100mm/秒、ピッチ4mmで溶射ガンを移動させながら1回溶射し、島状突起物を有する表面層を形成した。この場合の基材表面に対する原料粉末の供給量は5mg/cm相当であった。その後形成した島状突起上に石英ガラス粉末を供給する事無く溶射ガンを120mm/秒の速度で1回溶射し、島状突起と基材表面を溶融し、島状突起表面の付着物の再溶融、並びに島状突起の石英ガラス基材への密着性を向上した。次に、フッ酸5%の水溶液に30分間浸漬し、その後超純水で洗浄し、クリーンオーブンで乾燥した。顕微鏡で表面を観察した結果、図2及び図3に示すように表面層には球状の島状突起が認められ、突起1個当たりの大きさは幅5〜50μm、高さは5〜60μmで、高さと幅の比の平均値は1.0で、突起の数は180個/mmであった。また、触針式の表面粗さ計で測った表面粗さはRaは12μmであった。
Example 1
Using a multiple torch type plasma spraying apparatus as shown in FIG. 9, 5 SLM (Standard Litter per Minute) is flowed as the plasma gas 92, the spraying distance 94 is set to 80 mm without supplying the powder 93, and the spraying gun. Was moved at a speed of 80 mm / sec, thermal plasma was generated at a power of 20 kW, and the smooth quartz glass substrate surface 95 was preheated once. Here, the length of the thermal plasma was about 300 mm, and the plasma was in a laminar flow state. The preheating temperature immediately after plasma heating was 820 ° C. Next, a surface layer having island-shaped projections is sprayed once while the spraying gun is moved at a speed of 100 mm / second and a pitch of 4 mm with a powder supply amount of quartz glass powder having an average particle size of 50 μm being 1 g / min. Formed. In this case, the amount of raw material powder supplied to the substrate surface was equivalent to 5 mg / cm 2 . After that, a spray gun is sprayed once at a speed of 120 mm / second without supplying quartz glass powder onto the formed island-shaped projections, the island-shaped projections and the substrate surface are melted, and the deposits on the island-shaped projections are re-applied. Improved adhesion of fused and island-like protrusions to the quartz glass substrate. Next, it was immersed in an aqueous solution of 5% hydrofluoric acid for 30 minutes, then washed with ultrapure water and dried in a clean oven. As a result of observing the surface with a microscope, spherical island-like protrusions were observed on the surface layer as shown in FIG. 2 and FIG. 3, and the size per protrusion was 5 to 50 μm in width and 5 to 60 μm in height. The average value of the ratio of height to width was 1.0, and the number of protrusions was 180 / mm 2 . The surface roughness Ra measured by a stylus type surface roughness meter was 12 μm.

実施例2
平均粒径が20μmの石英ガラス粉末を用いたこと以外は実施例1と同条件で行った。顕微鏡で表面を観察した結果、表面層には球状の島状突起が認められ、突起1個当たりの大きさは幅5〜20μm、高さは2〜40μmで、突起の数は3000個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは5μmであった。
Example 2
The same conditions as in Example 1 were used except that quartz glass powder having an average particle size of 20 μm was used. As a result of observing the surface with a microscope, spherical surface protrusions were observed on the surface layer, the size per protrusion was 5 to 20 μm in width, the height was 2 to 40 μm, and the number of protrusions was 3000 / mm. 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 5 μm.

実施例3
研削加工した石英ガラス基材を850℃に予熱後、石英ガラス粉末の粉末供給量を2g/分とし、溶射距離を80mmで速度を80mm/秒、ピッチ4mmで溶射ガンを移動させ、6回繰り返し溶射することによって石英ガラス基材の上に石英ガラス溶射膜の下地層を形成した。
Example 3
After pre-heating the ground quartz glass substrate to 850 ° C, the quartz glass powder is supplied at a rate of 2 g / min, the spraying distance is 80 mm, the speed is 80 mm / sec, the spray gun is moved at a pitch of 4 mm, and repeated 6 times. By spraying, an underlayer of a quartz glass sprayed film was formed on the quartz glass substrate.

次に溶射ガンを80mm/秒の速度で石英ガラス粉末を供給する事無く1回溶射し、下地層の表面を再溶融し、表面が平滑で膜厚約300μmの石英溶射膜とした。この平滑な下地層の上に、粉末供給量を2g/分とし、表面層溶射後の再溶融条件として溶射ガンを100mm/秒の速度で行ったこと以外は実施例1と同条件で、島状突起を有する表面層を形成した。   Next, the spray gun was sprayed once without supplying quartz glass powder at a speed of 80 mm / second, and the surface of the underlayer was remelted to obtain a quartz sprayed film having a smooth surface and a film thickness of about 300 μm. On this smooth underlayer, the same amount as that of Example 1 except that the powder supply rate was 2 g / min and the spray gun was run at a speed of 100 mm / second as the remelting condition after the surface layer spraying. A surface layer having protrusions was formed.

この場合の基材表面に対する原料粉末の供給量は下地層形成で60mg/cm相当、島状突起形成で10mg/cm相当であった。顕微鏡で表面を観察した結果、図5及び図6に示すように表面層には多数の球状および釣鐘状の突起が混在した表面層が認められ、突起1個当たりの大きさは幅10〜150μm、高さは10〜100μmで、高さと幅の比の平均値は0.6で、突起の数は150個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは20μmであった。 In this case, the amount of the raw material powder supplied to the substrate surface was equivalent to 60 mg / cm 2 for the underlayer formation and 10 mg / cm 2 for the island-shaped protrusion formation. As a result of observing the surface with a microscope, as shown in FIGS. 5 and 6, a surface layer in which a large number of spherical and bell-shaped protrusions are mixed is recognized in the surface layer, and the size per protrusion is 10 to 150 μm in width. The height was 10 to 100 μm, the average value of the ratio of height to width was 0.6, and the number of protrusions was 150 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 20 μm.

実施例4
基材としてジルコン(ZrO・SiO)を用いた以外は、実施例3と同様の方法で石英ガラス下地層及び島状突起を形成した。顕微鏡で表面を観察した結果、下地の膜厚は280μmであった。また表面層には多数の球状および釣鐘状の突起が混在した表面層が認められ、突起1個当たりの大きさは幅10〜150μm、高さは10〜100μmで、高さと幅の比の平均値は0.7で、突起の数は170個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは25μmであった。
Example 4
A quartz glass underlayer and island-shaped protrusions were formed in the same manner as in Example 3 except that zircon (ZrO 2 · SiO 2 ) was used as the substrate. As a result of observing the surface with a microscope, the film thickness of the underlayer was 280 μm. In addition, a surface layer in which a large number of spherical and bell-shaped protrusions are mixed is observed in the surface layer, and the size per protrusion is 10 to 150 μm in width and 10 to 100 μm in height, and the average ratio of height to width is The value was 0.7, and the number of protrusions was 170 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 25 μm.

実施例5
基材としてステンレス板を用いた以外は、実施例3と同様の方法で石英ガラス下地層及び島状突起を形成した。顕微鏡で表面を観察した結果、下地の膜厚は320μmであった。また表面層には多数の球状および釣鐘状の突起が混在した表面層が認められ、突起1個当たりの大きさは幅20〜160μm、高さは20〜100μmで、高さと幅の比の平均値は0.6で、突起の数は200個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは23μmであった。
Example 5
A quartz glass underlayer and island projections were formed in the same manner as in Example 3 except that a stainless steel plate was used as the substrate. As a result of observing the surface with a microscope, the film thickness of the base was 320 μm. In addition, a surface layer in which a large number of spherical and bell-shaped protrusions are mixed is observed in the surface layer, the size per protrusion is 20 to 160 μm, the height is 20 to 100 μm, and the average ratio of the height to the width The value was 0.6, and the number of protrusions was 200 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 23 μm.

実施例6
ガラス基材および溶射粉末材として、バイコールガラスを用いたこと以外は実施例1と同条件で行った。顕微鏡で表面を観察した結果、表面層には球状の島状突起が認められ、突起1個当たりの大きさは幅5〜50μm、高さは5〜55μmで、高さと幅の比の平均値は1.1で、突起の数は200個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは10μmであった。
Example 6
The same conditions as in Example 1 were used except that Vycor glass was used as the glass substrate and the thermal spray powder material. As a result of observing the surface with a microscope, spherical island-like protrusions were observed on the surface layer, the size per protrusion was 5 to 50 μm in width, the height was 5 to 55 μm, and the average value of the ratio of height to width 1.1 and the number of protrusions was 200 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 10 μm.

実施例7
ガラス基材および溶射粉末材として、アルミノ珪酸ガラスを用いて、表面層の溶射条件として、粉末を供給する事無く、溶射距離120mmとし、速度を100mm/秒、ピッチ4mmで溶射ガンを移動させながら、20kWのパワーで熱プラズマを生成し、平滑なアルミノ珪酸ガラス基材面を1回予熱した。プラズマ加熱直後の予熱温度は500℃であった。
Example 7
Using aluminosilicate glass as the glass substrate and thermal spray powder material, as the thermal spraying condition of the surface layer, without supplying powder, the spraying distance is 120 mm, the speed is 100 mm / second, and the spray gun is moved at a pitch of 4 mm. Thermal plasma was generated with a power of 20 kW, and the smooth aluminosilicate glass substrate surface was preheated once. The preheating temperature immediately after plasma heating was 500 ° C.

次に、平均粒径が50μmのアルミノ珪酸ガラス粉末の粉末供給量を1g/分とし、120mm/秒の速度で溶射ガンを移動させながら1回溶射し、島状突起を形成した。その後、溶射ガンを140mm/秒の速度でアルミノ珪酸ガラス粉末を供給する事無く1回溶射し、基材及び島状突起の表面を再溶融した。次にフッ酸5%の水溶液に30分間浸漬し、その後超純水で洗浄し、クリーンオーブンで乾燥した。顕微鏡で表面を観察した結果、表面層には球状および釣鐘状の突起が混在した表面層が認められ、突起1個当たりの大きさは幅5〜30μm、高さは5〜40μmで、高さと幅の比の平均値は1.0で、突起の数は140個/1mmであった。また、触針式の表面粗さ計で測った表面粗さはRaは8μmであった。 Next, the powder supply amount of the aluminosilicate glass powder having an average particle size of 50 μm was set to 1 g / min, and sprayed once while moving the spray gun at a speed of 120 mm / sec to form island-shaped projections. Thereafter, the spray gun was sprayed once without supplying the aluminosilicate glass powder at a speed of 140 mm / sec, and the surfaces of the base material and the island-shaped protrusions were remelted. Next, it was immersed in an aqueous solution of 5% hydrofluoric acid for 30 minutes, then washed with ultrapure water, and dried in a clean oven. As a result of observing the surface with a microscope, a surface layer in which spherical and bell-shaped protrusions are mixed is recognized in the surface layer, and the size per protrusion is 5 to 30 μm in width and 5 to 40 μm in height. The average value of the width ratio was 1.0, and the number of protrusions was 140/1 mm 2 . The surface roughness Ra measured by a stylus type surface roughness meter was 8 μm.

実施例8
平滑な石英ガラス基材表面に、ゾル−ゲル法で島状突起を予備成形し、プラズマ溶射法にて加熱溶融し、当該予備成形突起物を平滑な球状または釣鐘状とした。まず、シリコンのアルコキシド−Si(OC254、アルコール−C25OH、水−H2O、塩酸−HClの混合液を調合した。この混合溶液に溶液の重量に対して5%重量の平均粒径30μmの石英粉末を良く混ぜ撹拌し静置した。粘度が15センチポイズとなった時点でさらに撹拌し、石英粉末を均等に分散させた。次に、石英ガラス基材をこの溶液に浸漬させ、2mm/秒の速度で引き上げ乾燥させた。基材表面上には石英粉末が均等に分散した状態で付着していた。この基材表面を同様のプラズマ溶射装置を用いて、粉末を供給する事無く、溶射距離が80mmで、溶射ガンの速度を100mm/秒、ピッチ4mmで移動させながら、20kWのパワーで熱プラズマを生成し、石英ガラス基材面上を2回照射した。次にフッ酸5%の水溶液に30分間浸漬し、その後超純水で洗浄し、クリーンオーブンで乾燥した。表面層の膜厚は40μmであった。顕微鏡で表面を観察した結果、表面には多数の球状および釣鐘状の突起が混在した表面層が認められ、突起1個当たりの大きさは幅5〜50μm、高さは5〜40μmで、高さと幅の比の平均値は0.9で、1mm単位面積当たりの個数が250個であった。また、触針式の表面粗さ計で測った表面粗さはRaは8μmであった。
Example 8
Island-like projections were preformed by a sol-gel method on a smooth quartz glass substrate surface and heated and melted by a plasma spraying method, and the preformed projections were made into a smooth spherical shape or bell shape. First, a mixed solution of silicon alkoxide-Si (OC 2 H 5 ) 4 , alcohol-C 2 H 5 OH, water-H 2 O, and hydrochloric acid-HCl was prepared. To this mixed solution, 5% by weight of the quartz powder having an average particle diameter of 30 μm with respect to the weight of the solution was well mixed and stirred and allowed to stand. When the viscosity reached 15 centipoise, the mixture was further stirred to disperse the quartz powder uniformly. Next, the quartz glass substrate was immersed in this solution and pulled up and dried at a rate of 2 mm / second. On the surface of the base material, the quartz powder adhered in an evenly dispersed state. Using the same plasma spraying device, the surface of the base material is heated at a power of 20 kW while the spraying distance is 80 mm, the spray gun speed is 100 mm / second, and the pitch is 4 mm without supplying powder. The quartz glass substrate surface was irradiated twice. Next, it was immersed in an aqueous solution of 5% hydrofluoric acid for 30 minutes, then washed with ultrapure water, and dried in a clean oven. The film thickness of the surface layer was 40 μm. As a result of observing the surface with a microscope, a surface layer in which a large number of spherical and bell-shaped protrusions were mixed was observed on the surface, the size per protrusion was 5 to 50 μm, the height was 5 to 40 μm, and the height was high. The average ratio of width to width was 0.9, and the number per 1 mm 2 unit area was 250. The surface roughness Ra measured by a stylus type surface roughness meter was 8 μm.

比較例1
研磨石英ガラス基板表面をホワイトアルミナ#60のグリットを用いて0.5MPaの圧力でブラストし、その後、フッ酸5%の水溶液に30分間浸漬し、超純水で洗浄し、クリーンオーブンで乾燥した。顕微鏡で表面を観察した結果、角張った粗面が確認され、断面観察ではマイクロクッラが多数認められた。また、触針式の表面粗さ計で測った表面粗さRaは13μmであった。
Comparative Example 1
The surface of the polished quartz glass substrate was blasted with white alumina # 60 grit at a pressure of 0.5 MPa, then immersed in an aqueous solution of 5% hydrofluoric acid for 30 minutes, washed with ultrapure water, and dried in a clean oven. . As a result of observing the surface with a microscope, an angular rough surface was confirmed, and a number of micro-cullers were observed in the cross-sectional observation. The surface roughness Ra measured with a stylus type surface roughness meter was 13 μm.

比較例2
ガラス基材として、バイコールガラス、アルミノ珪酸ガラスを用いたこと以外は比較例1と同条件で行った。顕微鏡で表面を観察した結果、比較例1同様の角張った粗面及びマイクロクッラが確認された。触針式の表面粗さ計で測った表面粗さRaは15μmであった。
Comparative Example 2
The same conditions as in Comparative Example 1 were used except that Vycor glass and aluminosilicate glass were used as the glass substrate. As a result of observing the surface with a microscope, an angular rough surface and a micro-culler similar to Comparative Example 1 were confirmed. The surface roughness Ra measured by a stylus type surface roughness meter was 15 μm.

比較例3
フッ化水素水溶液、フッ化アンモニウム、酢酸水溶液を混合させた処理液に表面を研削加工した石英ガラス基材を浸漬処理した。薬液処理した石英ガラスの表面粗さRaは1.5μmであった。表面を観察した結果、マイクロクラックは認められなかった。
Comparative Example 3
A quartz glass substrate whose surface was ground was immersed in a treatment liquid in which an aqueous hydrogen fluoride solution, an ammonium fluoride solution, and an acetic acid aqueous solution were mixed. The surface roughness Ra of the quartz glass treated with the chemical solution was 1.5 μm. As a result of observing the surface, no microcracks were observed.

実施例9
次に得られた試料の付着物に対する保持性を評価するため、スパッタ法を用いて実施例1から8及び、比較例1から3の試料に窒化珪素膜を直接成膜して付着性について試験を行った。到達真空5×10−5Paまで真空に引いた後、珪素のターゲットを用いてアルゴンガスと窒素ガスの混合ガスを0.3Paの圧力まで導入し、室温で窒化珪素の膜厚を150μm形成した。成膜後、大気に戻して1日放置後に各試料を顕微鏡で検査したところ、実施例1から8では剥離やパーティクルの発生は全く見られなかったが、比較例1から3の試料では剥離が認められた。
Example 9
Next, in order to evaluate the retention of the obtained sample against the deposit, a silicon nitride film was directly formed on the samples of Examples 1 to 8 and Comparative Examples 1 to 3 using a sputtering method, and the adhesion was tested. Went. After evacuating to an ultimate vacuum of 5 × 10 −5 Pa, a mixed gas of argon gas and nitrogen gas was introduced to a pressure of 0.3 Pa using a silicon target, and a silicon nitride film thickness of 150 μm was formed at room temperature. . After film formation, the sample was returned to the atmosphere and allowed to stand for one day. Each sample was examined under a microscope. No peeling or particle generation was observed in Examples 1 to 8, but peeling was not observed in the samples of Comparative Examples 1 to 3. Admitted.

実施例10
実施例1から3および実施例6から8、並びに比較例1から3の条件にて、堆積膜が付着するLPCVD成膜装置の石英管内壁および、プラズマエッチング装置のフォーカスリング、プラズマクリーニング装置の石英製のベルジャーを試作し、成膜並びにプラズマ処理に使用した。比較例1から3の条件で試作したベルジャーを使用した場合、処理開始初期からパーティクルが認められ、特に比較例3では使用中に付着物の剥離が認められた。一方、実施例1から3、及び6から8の条件では200時間以上の連続使用でも付着物の剥離、パーティクルの発生は見られなかった。
Example 10
The quartz tube inner wall of the LPCVD film forming apparatus to which the deposited film adheres, the focus ring of the plasma etching apparatus, and the quartz of the plasma cleaning apparatus under the conditions of Examples 1 to 3, Examples 6 to 8, and Comparative Examples 1 to 3. A prototype bell jar was made and used for film formation and plasma treatment. In the case of using a bell jar that was prototyped under the conditions of Comparative Examples 1 to 3, particles were observed from the beginning of the treatment, and in particular, in Comparative Example 3, peeling of deposits was observed during use. On the other hand, in the conditions of Examples 1 to 3 and 6 to 8, no delamination of particles and generation of particles were observed even after continuous use for 200 hours or more.

実施例11
実施例1から3、及び比較例1から3の試料について、耐酸洗浄の評価を行った。硝酸(濃度61%)とフッ化水素酸(濃度46%)を1:1に混合した硝フッ酸洗浄液に実施例1から3および、比較例1から3の試料を浸漬させた。3時間後、実施例1から3の試料では溶射膜表面が中心にエッチングされたが、表面の凹凸は浸漬前と同様のレベルに保たれた。比較例1、2の試料は表面がなだらかになった。比較例3の試料では表面粗さRaが1.0μmに低下した。
Example 11
The samples of Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated for acid resistance cleaning. The samples of Examples 1 to 3 and Comparative Examples 1 to 3 were immersed in a nitric hydrofluoric acid cleaning solution in which nitric acid (concentration 61%) and hydrofluoric acid (concentration 46%) were mixed 1: 1. After 3 hours, in the samples of Examples 1 to 3, the surface of the sprayed film was etched mainly, but the unevenness on the surface was kept at the same level as before the immersion. The samples of Comparative Examples 1 and 2 had a smooth surface. In the sample of Comparative Example 3, the surface roughness Ra was lowered to 1.0 μm.

次に、同様の条件で処理した石英管、フォーカスリング及び石英ベルジャーをLPCVD成膜装置の石英管内壁、プラズマエッチング装置のフォーカスリング、プラズマクリーニング装置の石英製のベルジャーとして実際使用した。比較例1、2の条件で作製したものは開始初期からパーティクルが認められ、比較例3の条件では付着物が堆積する部分で付着物の保持性が低下し、剥離によるパーティクルが認められた。実施例1から3の条件では200時間以上の連続使用でも付着物の剥離、パーティクルの発生は見られなかった。   Next, the quartz tube, focus ring, and quartz bell jar treated under the same conditions were actually used as the quartz tube inner wall of the LPCVD film forming apparatus, the focus ring of the plasma etching apparatus, and the quartz bell jar of the plasma cleaning apparatus. In the samples prepared under the conditions of Comparative Examples 1 and 2, particles were observed from the beginning, and under the conditions of Comparative Example 3, the retention of the adhered material was reduced at the portion where the adhered material was deposited, and particles due to peeling were observed. Under the conditions of Examples 1 to 3, no peeling of deposits or generation of particles was observed even during continuous use for 200 hours or more.

実施例12
図8に示すようなプラズマ溶射装置を用いて、プラズマガス82としてアルゴンを35SLM(Standard Litter per Minute)、水素を10SLM流し、粉末83を供給する事無く、溶射距離84を100mmとし、溶射ガンを400mm/秒の速度、4mmピッチで溶射ガンを移動させながらで移動させながら、25kWのパワーで熱プラズマを生成し、予め研磨で表面粗さが0.5μm、スキューネスが−0.3に調整したアルミナセラミック基材85を2回予熱した。プラズマ加熱直後の予熱温度は200℃であった。次に、平均粒径が20μmのアルミナ粉末の粉末供給量を8g/分とし、速度を400mm/秒、ピッチ4mmで溶射ガンを移動させながら25kWのパワーで1回溶射し、島状突起物を有する表面層を形成した。溶射後、基材を熱処理炉に入れて1300℃、1時間加熱した。ここで表面層は、熱処理前はピンセットで押すことにより剥がれたが、熱処理後は剥がれず良好に密着していた。出来上がった試料を純水で超音波洗浄し、乾燥後、顕微鏡で表面を観察した結果、表面層には釣鐘状の島状突起が認められ、突起1個当たりの大きさは幅10〜40μm、高さは4〜30μmで、高さと幅の比の平均値は0.4で、突起の数は1800個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは4μmであった。島状突起の断面を研磨して偏光顕微鏡で観察したところ大部分の島状突起の中央部には核のようなものが見られ、溶射粉末の周辺部が溶融し、中心部が未溶融のまま溶射されていることがわかった。
Example 12
Using a plasma spraying apparatus as shown in FIG. 8, 35 SLM (Standard Litter per Minute) is used as the plasma gas 82, 10 SLM is supplied with hydrogen, and the spraying distance 84 is set to 100 mm without supplying the powder 83. While moving the spray gun at a speed of 400 mm / second and a pitch of 4 mm, a thermal plasma was generated with a power of 25 kW, and the surface roughness was adjusted to 0.5 μm and the skewness to −0.3 in advance by polishing. The alumina ceramic substrate 85 was preheated twice. The preheating temperature immediately after plasma heating was 200 ° C. Next, the amount of alumina powder having an average particle diameter of 20 μm was set to 8 g / min, sprayed once at a power of 25 kW while moving the spray gun at a speed of 400 mm / second and a pitch of 4 mm, and island-shaped projections were formed. A surface layer was formed. After spraying, the substrate was placed in a heat treatment furnace and heated at 1300 ° C. for 1 hour. Here, the surface layer was peeled off by pressing with tweezers before the heat treatment, but was not peeled off after the heat treatment and was in good contact. The finished sample was ultrasonically washed with pure water, dried, and then observed on the surface with a microscope. As a result, bell-shaped island-shaped protrusions were observed on the surface layer, and the size per protrusion was 10 to 40 μm in width. The height was 4 to 30 μm, the average value of the ratio of height to width was 0.4, and the number of protrusions was 1800 pieces / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 4 μm. When the cross-section of the island-shaped protrusions was polished and observed with a polarizing microscope, the center of most of the island-shaped protrusions was seen as a nucleus, the periphery of the sprayed powder was melted, and the center was unmelted It was found that it was sprayed as it was.

比較例4
溶射パワーを35kW、予熱温度を250℃とした以外は実施例12と同条件で表面層を形成した。顕微鏡で表面を観察した結果、表面層には偏平な島状突起が認められ、突起1個当たりの大きさは幅15〜80μm、高さは2〜20μmで、高さと幅の比の平均値は0.1で、突起の数は3500個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは3μmであった。島状突起の断面を研磨して偏光顕微鏡で観察したところ大部分の島状突起には核が見られず、溶射粉末が中心まで溶融して溶射されていることがわかった。
Comparative Example 4
A surface layer was formed under the same conditions as in Example 12 except that the thermal spraying power was 35 kW and the preheating temperature was 250 ° C. As a result of observing the surface with a microscope, flat island-like protrusions were observed on the surface layer, the size per protrusion was 15 to 80 μm, the height was 2 to 20 μm, and the average value of the ratio of height to width Was 0.1 and the number of protrusions was 3500 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 3 μm. When the cross-section of the island-shaped protrusions was polished and observed with a polarizing microscope, most of the island-shaped protrusions showed no nuclei, and it was found that the sprayed powder was melted and sprayed to the center.

比較例5
アルミナ粉末の粉末供給量を30g/分とし、25kWのパワーで2回溶射した以外は実施例12と同条件で溶射して、膜厚140μmの連続的な溶射膜を形成した。溶射後、基材を熱処理炉に入れて1300℃、1時間加熱したところ、溶射膜に歪みが生じ、一部に大きなクラックが入った。
Comparative Example 5
A continuous sprayed film having a thickness of 140 μm was formed by spraying under the same conditions as in Example 12 except that the amount of alumina powder supplied was 30 g / min and sprayed twice at a power of 25 kW. After spraying, the substrate was placed in a heat treatment furnace and heated at 1300 ° C. for 1 hour. As a result, the sprayed film was distorted and large cracks were partially formed.

実施例13
溶射パワーを30kWとして予熱温度を220℃、平均粒径が60μmのアルミナ粉末を用いたこと以外は実施例12と同条件で試料を作製した。顕微鏡で表面を観察した結果、表面層には釣鐘状の島状突起が認められ、突起1個当たりの大きさは幅30〜100μm、高さは20〜120μmで、高さと幅の比の平均値は1.0で、突起の数は300個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは10μmであった。島状突起の断面を研磨して偏光顕微鏡で観察したところ大部分の島状突起の中央部には核のようなものが見られ、溶射粉末の中心部が未溶融のまま溶射されていることがわかった。
Example 13
A sample was prepared under the same conditions as in Example 12 except that the spraying power was 30 kW, the preheating temperature was 220 ° C., and alumina powder having an average particle size of 60 μm was used. As a result of observing the surface with a microscope, bell-shaped island-shaped projections were observed on the surface layer, the size of each projection was 30 to 100 μm in width, the height was 20 to 120 μm, and the average ratio of height to width The value was 1.0 and the number of protrusions was 300 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 10 μm. When the cross-section of the island-shaped protrusions is polished and observed with a polarizing microscope, the central part of most island-shaped protrusions is seen as a nucleus, and the center of the sprayed powder is sprayed without being melted. I understood.

実施例14
グラインダーにより表面粗さRaが1μm、スキューネスが−0.5に仕上げたステンレス基材上に溶射パワーを27kWとして予熱温度を200℃、平均粒径が30μmのジルコン粉末を用いたこと以外は実施例12と同条件で試料を作製した。顕微鏡で表面を観察した結果、表面層には釣鐘状の島状突起が認められ、突起1個当たりの大きさは幅15〜60μm、高さは6〜45μmで、高さと幅の比の平均値は0.5で、突起の数は900個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは6μmであった。島状突起の断面を研磨して偏光顕微鏡で観察したところ大部分の島状突起の中央部には核のようなものが見られ、溶射粉末の中心部が未溶融のまま溶射されていることがわかった。
Example 14
Example except that a zircon powder having a thermal power of 27 kW, a preheating temperature of 200 ° C., and an average particle size of 30 μm was used on a stainless steel base material having a surface roughness Ra of 1 μm and a skewness of −0.5 by a grinder. A sample was prepared under the same conditions as in No. 12. As a result of observing the surface with a microscope, bell-shaped island-shaped protrusions were observed on the surface layer, the size of each protrusion was 15-60 μm in width, the height was 6-45 μm, and the average ratio of height to width The value was 0.5 and the number of protrusions was 900 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 6 μm. When the cross-section of the island-shaped protrusions is polished and observed with a polarizing microscope, the central part of most island-shaped protrusions is seen as a nucleus, and the center of the sprayed powder is sprayed without being melted. I understood.

実施例15
図8に示すようなプラズマ溶射装置を用いて、プラズマガス82としてアルゴンを50SLM流し、粉末83を供給する事無く、溶射距離84を100mmとし、溶射ガンを400mm/秒の速度、4mmピッチで溶射ガンを移動させながらで移動させながら、20kWのパワーで熱プラズマを生成し、予め研磨で表面粗さが0.3μm、スキューネスが−0.2に調整したステンレス基材面85を2回予熱した。プラズマ加熱直後の予熱温度は170℃であった。次に、平均粒径が40μmのモリブデン粉末の粉末供給量を10g/分とし、速度を400mm/秒、ピッチ4mmで溶射ガンを移動させながら20kWのパワーで1回溶射し、島状突起物を有する表面層を形成した。溶射後、基材を熱処理炉に入れて600℃、1時間加熱した。出来上がった試料を純水で超音波洗浄し、乾燥後、顕微鏡で表面を観察した結果、表面層には釣鐘状の島状突起が認められ、突起1個当たりの大きさは幅30〜80μm、高さは10〜70μmで、高さと幅の比の平均値は0.7で、突起の数は800個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは6μmであった。島状突起の断面を研磨して偏光顕微鏡で観察したところ大部分の島状突起の中央部には核のようなものが見られ、溶射粉末の中心部が未溶融のまま溶射されていることがわかった。
Example 15
Using a plasma spraying apparatus as shown in FIG. 8, 50 SLM of argon is flowed as plasma gas 82, powder 83 is not supplied, spraying distance 84 is 100 mm, and spray gun is sprayed at a speed of 400 mm / sec and a pitch of 4 mm. While moving the gun, a thermal plasma was generated with a power of 20 kW, and the stainless steel substrate surface 85 that had been previously polished and adjusted to have a surface roughness of 0.3 μm and a skewness of −0.2 was preheated twice. . The preheating temperature immediately after plasma heating was 170 ° C. Next, the powder supply amount of molybdenum powder having an average particle size of 40 μm is set to 10 g / min, sprayed once at a power of 20 kW while moving the spray gun at a speed of 400 mm / second and a pitch of 4 mm, and the island-shaped projections are formed. A surface layer was formed. After spraying, the substrate was placed in a heat treatment furnace and heated at 600 ° C. for 1 hour. The finished sample was ultrasonically cleaned with pure water, dried, and observed on the surface with a microscope. As a result, bell-shaped island-shaped protrusions were observed on the surface layer, and the size per protrusion was 30 to 80 μm, The height was 10 to 70 μm, the average value of the ratio of height to width was 0.7, and the number of protrusions was 800 pieces / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 6 μm. When the cross-section of the island-shaped protrusions is polished and observed with a polarizing microscope, the central part of most island-shaped protrusions is seen as a nucleus, and the center of the sprayed powder is sprayed without being melted. I understood.

比較例6
溶射パワーを30kW、予熱温度を200℃とした以外は実施例15と同条件で表面層を形成した。顕微鏡で表面を観察した結果、表面層には偏平な島状突起が認められ、突起1個当たりの大きさは幅50〜150μm、高さは5〜15μmで、高さと幅の比の平均値は0.1で、突起の数は1200個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは3μmであった。島状突起の断面を研磨して偏光顕微鏡で観察したところ大部分の島状突起には核が見られず、溶射粉末が中心まで溶融して溶射されていることがわかった。
Comparative Example 6
A surface layer was formed under the same conditions as in Example 15 except that the thermal spraying power was 30 kW and the preheating temperature was 200 ° C. As a result of observing the surface with a microscope, flat island-like protrusions were observed on the surface layer, the size per protrusion was 50 to 150 μm, the height was 5 to 15 μm, and the average value of the ratio of height to width Was 0.1, and the number of protrusions was 1200 / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 3 μm. When the cross-section of the island-shaped protrusions was polished and observed with a polarizing microscope, most of the island-shaped protrusions showed no nuclei, and it was found that the sprayed powder was melted and sprayed to the center.

比較例7
モリブデン粉末の粉末供給量を30g/分とし、20kWのパワーで2回溶射して以外は実施例15と同条件で溶射して、膜厚160μmの連続的な溶射膜を形成した。
Comparative Example 7
A continuous sprayed film having a film thickness of 160 μm was formed by spraying under the same conditions as in Example 15 except that the amount of molybdenum powder supplied was 30 g / min and sprayed twice at a power of 20 kW.

実施例16
図8に示すようなプラズマ溶射装置を用いて、プラズマガス82としてアルゴンを50SLM流し、粉末83を供給する事無く、溶射距離84を80mmとし、溶射ガンを400mm/秒の速度、4mmピッチで溶射ガンを移動させながらで移動させながら、25kWのパワーで熱プラズマを生成し、予め研磨で平滑にした(表面粗さ0.1μm)ステンレス基材面85を2回予熱した。プラズマ加熱直後の予熱温度は200℃であった。
Example 16
Using a plasma spraying apparatus as shown in FIG. 8, argon is flowed at 50 SLM as the plasma gas 82, the spraying distance 84 is set to 80 mm without supplying the powder 83, and the spraying gun is sprayed at a speed of 400 mm / second and a pitch of 4 mm. While moving the gun, a thermal plasma was generated at a power of 25 kW, and the stainless steel substrate surface 85 previously smoothed by polishing (surface roughness 0.1 μm) was preheated twice. The preheating temperature immediately after plasma heating was 200 ° C.

次に、平均粒径が30μmの炭化タングステン球状焼結粒子の周りに20wt%のCoを塗した粉末を用い、粉末供給量を10g/分とし、速度を400mm/秒、ピッチ4mmで溶射ガンを移動させながら22kWのパワーで1回溶射し、島状突起物を有する表面層を形成した。溶射後、基材を熱処理炉に入れて600℃、1時間加熱した。出来上がった試料を純水で超音波洗浄し、乾燥後、顕微鏡で表面を観察した結果、表面層には釣鐘状の島状突起が認められ、突起1個当たりの大きさは幅30〜90μm、高さは15〜90μmで、高さと幅の比の平均値は0.8で、突起の数は600個/mmであった。また、触針式の表面粗さ計で測った表面粗さRaは7μmであった。島状突起の断面を研磨して偏光顕微鏡で観察したところ大部分の島状突起の中央部には核のようなものが見られ、溶射粉末の中心部の炭化タングステン粒子が未溶融のまま溶射されていることがわかった。 Next, a powder coated with 20 wt% Co around tungsten carbide spherical sintered particles having an average particle size of 30 μm was used, the powder supply rate was 10 g / min, the speed was 400 mm / sec, and the spray gun was applied at a pitch of 4 mm. While being moved, thermal spraying was performed once at a power of 22 kW to form a surface layer having island-shaped protrusions. After spraying, the substrate was placed in a heat treatment furnace and heated at 600 ° C. for 1 hour. The finished sample was ultrasonically cleaned with pure water, dried, and observed on the surface with a microscope. As a result, bell-shaped island-shaped protrusions were observed on the surface layer, and the size per protrusion was 30 to 90 μm in width. The height was 15 to 90 μm, the average value of the ratio of height to width was 0.8, and the number of protrusions was 600 pieces / mm 2 . The surface roughness Ra measured with a stylus type surface roughness meter was 7 μm. When the cross-section of the island-shaped protrusions was polished and observed with a polarizing microscope, the core of most of the island-shaped protrusions was seen as a nucleus, and the tungsten carbide particles in the center of the sprayed powder were sprayed without melting. I found out.

実施例17
次に得られた試料の付着物に対する保持性を評価するため、スパッタ法を用いて実施例12から16及び、比較例4および6の試料に窒化珪素膜を直接成膜して付着性について試験を行った。到達真空5×10−5Paまで真空に引いた後、珪素のターゲットを用いてアルゴンガスと窒素ガスの混合ガスを0.3Paの圧力まで導入し、室温で窒化珪素の膜厚を100μm形成した。成膜後、大気に戻して1日放置後に各試料を600℃で1時間加熱し、室温に戻ってから顕微鏡で検査したところ、実施例12〜16では剥離やパーティクルの発生は全く見られなかったが、比較例4および6の試料では剥離が認められた。
Example 17
Next, in order to evaluate the retention of the obtained sample against the deposit, a silicon nitride film was directly formed on the samples of Examples 12 to 16 and Comparative Examples 4 and 6 using a sputtering method, and the adhesion was tested. Went. After evacuating to an ultimate vacuum of 5 × 10 −5 Pa, a mixed gas of argon gas and nitrogen gas was introduced to a pressure of 0.3 Pa using a silicon target, and a silicon nitride film thickness of 100 μm was formed at room temperature. . After film formation, the sample was returned to the atmosphere and allowed to stand for 1 day, and then each sample was heated at 600 ° C. for 1 hour. After returning to room temperature and examined with a microscope, no peeling or particle generation was observed in Examples 12-16. However, peeling was observed in the samples of Comparative Examples 4 and 6.

実施例18
実施例12から13、及び比較例4から5の条件にて、堆積膜が付着するプラズマクリーニング装置の石英製のベルジャーを試作し、プラズマ処理に使用した。実施例12と比較例5で真空引き時間を比較したところ、実施例12では比較例5の2/3の時間で到達真空に達した。一方、比較例5に比べて実施例12から13では、ベルジャーを装置で使用開始後、堆積膜が剥離しはじめるまでの時間が2倍以上長くなった。
Example 18
Under the conditions of Examples 12 to 13 and Comparative Examples 4 to 5, a quartz bell jar for a plasma cleaning apparatus to which a deposited film adheres was prototyped and used for plasma processing. When the evacuation time was compared in Example 12 and Comparative Example 5, in Example 12, the ultimate vacuum was reached in 2/3 time of Comparative Example 5. On the other hand, compared with Comparative Example 5, in Examples 12 to 13, the time until the deposited film began to peel after the start of use of the bell jar with the apparatus was more than doubled.

実施例19
実施例14〜16及び比較例6から7の条件にて、TiNの堆積膜が付着するPVD装置の上部シールドを試作し、ウエハへの成膜に使用した。実施例15と比較例7で真空引き時間を比較したところ、実施例15では比較例7の半分の時間で到達真空に達した。一方、比較例6に比べて実施例14〜16では、上部シールドを装置で使用開始後、堆積膜が剥離しはじめるまでの時間が2倍以上長くなった。
Example 19
Under the conditions of Examples 14 to 16 and Comparative Examples 6 to 7, an upper shield of a PVD apparatus to which a deposited film of TiN adhered was prototyped and used for film formation on a wafer. When the evacuation time was compared between Example 15 and Comparative Example 7, the ultimate vacuum was reached in Example 15 in half the time of Comparative Example 7. On the other hand, in Examples 14 to 16 compared to Comparative Example 6, the time until the deposited film began to peel after the start of using the upper shield in the apparatus was more than twice as long.

本発明の島状突起修飾部品の構造を示す模式図である。It is a schematic diagram which shows the structure of the island-shaped protrusion modification component of this invention. 実施例1で得られた試料の走査型顕微鏡の上面観察結果である。2 is a top surface observation result of a scanning microscope of the sample obtained in Example 1. FIG. 実施例1で得られた試料の走査型顕微鏡の断面観察結果である。It is a cross-sectional observation result of the scanning microscope of the sample obtained in Example 1. 本発明の島状突起修飾部品の構造を示す模式図である。It is a schematic diagram which shows the structure of the island-shaped protrusion modification component of this invention. 実施例3で得られた試料の走査型顕微鏡の上面観察結果である。It is the upper surface observation result of the scanning microscope of the sample obtained in Example 3. FIG. 実施例3で得られた試料の走査型顕微鏡の断面観察結果である。It is a cross-sectional observation result of the scanning microscope of the sample obtained in Example 3. 本発明のガラス修飾部品の構造を示す模式図である。It is a schematic diagram which shows the structure of the glass modification component of this invention. 一般的なプラズマ溶射装置の一例を示す図である。It is a figure which shows an example of a general plasma spraying apparatus. 複トーチ型プラズマ溶射装置の一例を示す図である。It is a figure which shows an example of a double torch type plasma spraying apparatus. 本発明の釣鐘状島状突起修飾部品の構造を示す模式図である。It is a schematic diagram which shows the structure of the bell-shaped island-shaped protrusion modification component of this invention. ディスク状の島状突起修飾部品の構造を示す模式図である。It is a schematic diagram which shows the structure of a disk-shaped island-shaped protrusion modification component. スキューネスが負の基材に釣鐘状島状突起を形成した本発明の島状突起修飾部品の構造を示す模式図である。It is a schematic diagram which shows the structure of the island-shaped protrusion modification component of this invention which formed the bell-shaped island-shaped protrusion in the base material with a negative skewness. スキューネスが正の基材に釣鐘状島状突起を形成した本発明の島状突起修飾部品の構造を示す模式図である。It is a schematic diagram which shows the structure of the island-shaped protrusion modification component of this invention which formed the bell-shaped island-shaped protrusion in the base material with a positive skewness. 島状突起を融点の小さい材料が融点の大きい材料を包み込む様な構造として釣鐘状とした本発明の島状突起修飾部品の構造を示す模式図である。It is a schematic diagram showing the structure of the island-shaped protrusion modified part of the present invention in which the island-shaped protrusion is shaped like a bell so that a material having a low melting point wraps a material having a high melting point. 本発明の釣鐘状島状突起修飾部品の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the bell-shaped island-shaped projection modified component of this invention.

符号の説明Explanation of symbols

10:基材
11:表面修飾層
12:球状突起
40:基材
41:表面修飾層
42:釣鐘状突起
70:基材
71:ガラス溶射下地層
72:表面修飾層
80:カソード
81:アノード
82:プラズマガス
83:溶射粉末(供給口)
84:溶射距離
85:基材
86:ガラス溶射膜
87:電源
90:カソード
91:アノード
92:プラズマガス(供給口)
93:溶射粉末(供給口)
94:溶射距離
95:基材
96:ガラス溶射膜
97:プラズマガス(供給口)
98:主電源
99:補助電源
100:基材
101:上部が半球状の釣鐘状島状突起
102:上部が丸みを帯びて突き出た釣鐘状島状突起
103:釣鐘状島状突起の幅
104:釣鐘状島状突起の高さ
110:基材
111:ディスク状島状突起
112:ディスク状島状突起の幅
113:ディスク状島状突起の高さ
120:粗さのスキューネスが負の基材
121:釣鐘状島状突起
130:粗さのスキューネスが正の基材
131:釣鐘状島状突起
132:釣鐘状島状突起の一部が弾けた部分
133:気孔
140:基材
141:融点が高い材料
142:融点が低い材料
143:釣鐘状島状突起
150:溶射ガン
151:溶射フレーム
152:溶射粉末
153:飛行溶射粒子の未溶融部分
154:飛行溶射粒子の溶融部分
155:飛行溶射粒子の未溶融部分から成る釣鐘状島状突起の核
156:飛行溶射粒子の溶融部分から成る釣鐘状島状突起の皮
157:基材
158:溶射距離
DESCRIPTION OF SYMBOLS 10: Base material 11: Surface modification layer 12: Spherical protrusion 40: Base material 41: Surface modification layer 42: Bell-shaped protrusion 70: Base material 71: Glass spraying base layer 72: Surface modification layer 80: Cathode 81: Anode 82: Plasma gas 83: Thermal spray powder (supply port)
84: Spraying distance 85: Base material 86: Glass sprayed film 87: Power supply 90: Cathode 91: Anode 92: Plasma gas (supply port)
93: Thermal spray powder (supply port)
94: Spraying distance 95: Base material 96: Glass sprayed film 97: Plasma gas (supply port)
98: Main power supply 99: Auxiliary power supply 100: Substrate 101: Bell-shaped island-shaped protrusion with hemispherical upper part 102: Bell-shaped island-shaped protrusion with rounded upper part 103: Width of bell-shaped island-shaped protrusion 104: Height of bell-shaped island-shaped protrusion 110: Base material 111: Disc-shaped island-shaped protrusion 112: Width of disk-shaped island-shaped protrusion 113: Height of disk-shaped island-shaped protrusion 120: Substrate with negative roughness skewness 121 : Bell-shaped island-shaped protrusions 130: Base material with positive skewness of roughness 131: Bell-shaped island-shaped protrusions 132: Portions where some of the bell-shaped island-shaped protrusions bounced 133: Pore 140: Base material 141: High melting point Material 142: Material having a low melting point 143: Bell-shaped island-shaped protrusion 150: Thermal spray gun 151: Thermal spray frame 152: Thermal spray powder 153: Unmelted portion of flying spray particles 154: Melted portion of flying spray particles 155: Flight Morphism bell island projections nucleus 156 consisting of unmelted portion of the particle: the flight consisting of fused portion of the spray particles bell island projections skin 157: substrate 158: spray distance

Claims (19)

成膜装置またはプラズマ処理装置に使用する部品であって、部品の基材上に幅5〜300μm、高さ2〜200μmの範囲の島状突起を有し、当該島状突起はガラスで形成され、それらの形状は、球形状、球が欠けた形状、半球状、釣鐘状もしくは山形状、またはこれらの2種以上が混在してなるものであって、形状全体として丸みを帯び、各突起は基材上で孤立し、突起が相互に繋がることによって全体として膜を形成しておらず、かつ島状突起の個数が20〜5000個/mmである島状突起修飾部品。 A component used for a film forming apparatus or a plasma processing apparatus, having an island-shaped protrusion having a width of 5 to 300 μm and a height of 2 to 200 μm on a base material of the component, and the island-shaped protrusion is formed of glass. , their shape, spherical shape, the shape of a sphere is missing, hemispherical, be those bell shape or chevron-shaped, or two or more of these is mixed, rounded overall shape, each projection An island-shaped protrusion-modified part that is isolated on a base material and has no film formed as a whole by connecting the protrusions to each other , and the number of island-shaped protrusions is 20 to 5000 / mm 2 . 島状突起が、基材上に形成されたガラス溶射膜の上に形成されている請求項1記載の島状突起修飾部品。 Island projections, island-shaped protrusions modified component according to claim 1 Symbol mounting is formed on a glass sprayed film formed on the substrate. ガラス溶射膜が100μm以上の空洞を有さず、かつガラス溶射膜の表面粗さRaが1〜5μmであることを特徴とする請求項2記載の島状突起修飾部品。The island-shaped projection modified component according to claim 2, wherein the glass sprayed film does not have a cavity of 100 µm or more, and the surface roughness Ra of the glass sprayed film is 1 to 5 µm. 島状突起を形成するガラスが石英ガラスである請求項記載の島状突起修飾部品。 Island projection-modified part as claimed in claim 1, wherein the glass forming the island-shaped projections is quartz glass. 溶射膜が石英ガラスである請求項2又は請求項3記載の島状突起修飾部品。 4. The island-shaped projection modified component according to claim 2 , wherein the sprayed film is quartz glass. 基材または基材上に形成されたガラス溶射膜の表面に対して、突起形成原料供給量を当該表面の表面積に対して1〜20mg/cmとしてプラズマ溶射を行って島状突起を設けることを特徴とする、請求項1〜5のいずれかに記載の突起修飾部品の製造方法。 Plasma spraying is performed on the surface of the base material or the glass sprayed film formed on the base material so that the protrusion forming raw material supply amount is 1 to 20 mg / cm 2 with respect to the surface area of the surface to provide island-like protrusions. The method for producing a protrusion-modified part according to claim 1, wherein: 請求項1〜5のいずれかに記載された島状突起修飾部品を用いてなる成膜装置。 A film forming apparatus using the island-shaped protrusion-modifying component according to claim 1. 請求項1〜5のいずれかに記載された島状突起修飾部品を、プラズマエッチングによって膜が堆積またはエッチングされる部分に用いたプラズマエッチング装置。 6. A plasma etching apparatus using the island-shaped projection modified component according to claim 1 in a portion where a film is deposited or etched by plasma etching. 請求項1〜5のいずれかに記載された島状突起修飾部品を、逆スパッタにより膜が堆積またはエッチングされる部分に用いたプラズマクリーニング装置。 6. A plasma cleaning apparatus using the island-shaped projection modified component according to claim 1 in a portion where a film is deposited or etched by reverse sputtering. 成膜装置またはプラズマ処理装置に使用する部品であって、部品の基材上に幅5〜300μm、高さ2〜200μmの範囲の島状突起を有し、当該島状突起はセラミックおよび/または金属からなり、その形状が山形状および/または釣鐘状であるものであって、形状全体として丸みを帯び、各突起は基材上で孤立し、突起が相互に繋がることによって全体として膜を形成しておらず、かつ島状突起の個数が20〜5000個/mmA component used for a film forming apparatus or a plasma processing apparatus, having an island-shaped protrusion having a width of 5 to 300 μm and a height of 2 to 200 μm on a base material of the component, wherein the island-shaped protrusion is ceramic and / or It is made of metal and has a mountain shape and / or bell shape, rounded as a whole shape, each protrusion is isolated on the base material, and the protrusion is connected to each other to form a film as a whole And the number of island-shaped protrusions is 20 to 5000 / mm 2 である島状突起修飾部品。Is an island-shaped projection modified part. 島状突起の高さと幅の比(高さ/幅)の平均値が0.3〜1.5である請求項1に記載の島状突起修飾部品。 The island-shaped projection modified part according to claim 1, wherein an average value of a ratio of height to width (height / width) of the island-shaped projection is 0.3 to 1.5. 島状突起が形成される基材表面が、表面粗さRaが5μm以下である請求項10または請求項11に記載の島状突起修飾部品。 The island-shaped protrusion-modified component according to claim 10 or 11, wherein the surface of the substrate on which the island-shaped protrusions are formed has a surface roughness Ra of 5 µm or less. 島状突起が融点の異なる材料からなり、融点の小さい材料が融点の大きい材料を包み込む様に形成されている請求項10〜12のいずれかに記載の島状突起修飾部品。 The island-shaped protrusion-modified component according to any one of claims 10 to 12, wherein the island-shaped protrusion is made of a material having a different melting point, and a material having a low melting point wraps the material having a high melting point. 基材表面に対して、突起形成原料粉末を半溶融状態で、当該表面の表面積に対して1〜20mg/cmの供給量で基板上に衝突させることによって突起を設けることを特徴とする、請求項10〜13のいずれかに記載の突起修飾部品の製造方法。 Protrusions are provided by colliding on a substrate with a supply amount of 1 to 20 mg / cm 2 with respect to the surface area of the surface in a semi-molten state with the protrusion-forming raw material powder on the substrate surface, The manufacturing method of the protrusion modification component in any one of Claims 10-13. 溶射粉末として融点の小さい材料で融点の大きい材料を包み込んだ粉末を調製し、溶射時には融点の小さい材料を完全に溶融させ、融点の大きい材料は未溶融又は半溶融状態で溶射法により基材上へ衝突させる請求項10〜13のいずれかに記載の島状突起修飾部品の製造方法。 Prepare a powder containing a material with a low melting point and a material with a high melting point as the thermal spraying powder. During spraying, the material with a low melting point is completely melted. The method for producing an island-shaped protrusion-modified part according to claim 10, wherein the island-shaped protrusion-modified component is caused to collide with the island. 溶射法により基材上へ島状突起を形成後、更に熱処理することを特徴とする請求項14または請求項15に記載の島状突起修飾部品の製造方法。 16. The method for manufacturing an island-shaped protrusion-modified part according to claim 14 or 15, wherein the island-shaped protrusion is formed on the substrate by a thermal spraying method, and further heat-treated. PVDまたはCVDにより膜が堆積される部分に請求項10〜13のいずれかに記載の部品を用いた成膜装置。 The film-forming apparatus using the components in any one of Claims 10-13 in the part in which a film | membrane is deposited by PVD or CVD. 請求項10〜13のいずれかに記載の部品を、プラズマエッチングによって膜が堆積またはエッチングされる部分に用いたプラズマエッチング装置。 A plasma etching apparatus using the component according to claim 10 at a portion where a film is deposited or etched by plasma etching. 請求項10〜13のいずれかに記載の部品を、プラズマエッチングによって膜が堆積またはエッチングされる部分に用いたプラズマクリーニング装置。 A plasma cleaning apparatus using the component according to claim 10 at a portion where a film is deposited or etched by plasma etching.
JP2003372754A 2002-10-31 2003-10-31 ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME Expired - Fee Related JP4062236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372754A JP4062236B2 (en) 2002-10-31 2003-10-31 ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002317578 2002-10-31
JP2003372754A JP4062236B2 (en) 2002-10-31 2003-10-31 ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2004172607A JP2004172607A (en) 2004-06-17
JP4062236B2 true JP4062236B2 (en) 2008-03-19

Family

ID=32715846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372754A Expired - Fee Related JP4062236B2 (en) 2002-10-31 2003-10-31 ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4062236B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851700B2 (en) * 2004-09-30 2012-01-11 株式会社東芝 Components for vacuum film forming apparatus and vacuum film forming apparatus
JP4894158B2 (en) * 2005-04-20 2012-03-14 東ソー株式会社 Vacuum equipment parts
JP4918972B2 (en) * 2005-07-27 2012-04-18 日産自動車株式会社 High speed sliding member
JP5089874B2 (en) * 2005-09-12 2012-12-05 トーカロ株式会社 Plasma processing apparatus member and manufacturing method thereof
JP4910465B2 (en) * 2006-04-18 2012-04-04 東ソー株式会社 Vacuum device member, manufacturing method thereof, and vacuum device
JP2009068051A (en) * 2007-09-11 2009-04-02 Univ Chuo Thermal spraying method for forming sprayed coating having excellent adhesion
JP5461825B2 (en) * 2008-11-05 2014-04-02 株式会社ブリヂストン Blade for OA
DE102011115379B4 (en) 2011-10-10 2018-09-27 Schott Ag Coated glass or glass ceramic substrate with haptic properties and glass ceramic hob
DE202012012372U1 (en) 2012-12-20 2013-01-16 Schott Ag Coated glass or glass-ceramic substrate with haptic properties
TWI704843B (en) * 2018-04-03 2020-09-11 日商京瓷股份有限公司 Member for plasma processing device and plasma processing device with same

Also Published As

Publication number Publication date
JP2004172607A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
KR100847082B1 (en) Parts to which island-form projection is attached, manufacturing method thereof and apparatus comprising the parts
KR100913116B1 (en) Quartz glass spray parts and the manufaturing method thereof
KR100851833B1 (en) Quartz glass parts, ceramic parts and process of producing those
EP1524682B1 (en) Component for vacuum apparatus, production method thereof and apparatus using the same
JP4062236B2 (en) ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME
JP2009054984A (en) Component for film forming apparatus and its manufacturing method
TW200416294A (en) Corrosion-resistant member and method for producing same
JP4407143B2 (en) Quartz glass component, manufacturing method thereof, and apparatus using the same
JP4407111B2 (en) Quartz glass sprayed parts and manufacturing method thereof
JP4604640B2 (en) Vacuum device parts, manufacturing method thereof, and apparatus using the same
JP4380211B2 (en) Quartz glass parts, manufacturing method thereof, and apparatus using the same
JP4367142B2 (en) Corrosion resistant member and manufacturing method thereof
JP2008189494A (en) Silica glass component and its manufacture method
JP2004002157A (en) Quartz glass part and manufacture method of the same
JP2007314354A (en) Glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070105

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R151 Written notification of patent or utility model registration

Ref document number: 4062236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees