JP2009068051A - Thermal spraying method for forming sprayed coating having excellent adhesion - Google Patents

Thermal spraying method for forming sprayed coating having excellent adhesion Download PDF

Info

Publication number
JP2009068051A
JP2009068051A JP2007235980A JP2007235980A JP2009068051A JP 2009068051 A JP2009068051 A JP 2009068051A JP 2007235980 A JP2007235980 A JP 2007235980A JP 2007235980 A JP2007235980 A JP 2007235980A JP 2009068051 A JP2009068051 A JP 2009068051A
Authority
JP
Japan
Prior art keywords
thermal spraying
spraying method
metal substrate
vac
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007235980A
Other languages
Japanese (ja)
Inventor
Tsugunori Inaba
次紀 稲葉
Shogo Tobe
省吾 戸部
Toru Iwao
徹 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2007235980A priority Critical patent/JP2009068051A/en
Publication of JP2009068051A publication Critical patent/JP2009068051A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal spraying method where the surface of a base material is subjected to roughening and cleaning combined with a specified treatment means before thermal spraying, thus the base material and the obtained sprayed coating have excellent adhesion even under severe conditions. <P>SOLUTION: Regarding the thermal spraying method where a sprayed coating having excellent adhesion is formed on the surface of a metal base material, the surface of a metal base material is subjected to blast treatment, next, the surface of the metal base material is subjected to reduced pressure arc cleaning in a state where external force is acted on the surface of the metal base material from the normal direction, and is subsequently subjected to thermal spraying treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属基材上に溶射皮膜を形成する溶射方法に関し、特に、基材と溶射皮膜との密着性を改良した溶射方法に関するものである。   The present invention relates to a thermal spraying method for forming a thermal spray coating on a metal substrate, and more particularly to a thermal spraying method with improved adhesion between the base material and the thermal spray coating.

溶射皮膜と基材との密着性を良くする方法として、溶射施工については、その前処理として、従来、ブラスト処理が行われてきた。その理由は基材の錆び、塗膜など異物や汚染物を除去すると共に、基材表面に凹凸をつけて皮膜と基材との接触面積を広くし、かつ皮膜に嵌め合いによる「アンカー効果」を持たせるためである。ブラスト処理には研削材として、アルミナ、炭化珪素などが用いられるが、それらの研削材を圧縮空気により高速で射出するため、その処理には粉塵と騒音が発生し、環境と作業者に負担が大きく、改善が要求されている。
また、この方法は安価で容易であるが、ブラスト材またはその破片が表面に突き刺さり皮膜形成後にも基材/皮膜界面に残留するためある程度までの密着性しか得られない。
例えば、大気中プラズマ溶射法で軟鋼上にSUS304ステンレス鋼を成膜した場合、その実用化されているものの密着強度は高々50N/mm(またはMpa)程度である。50N/mmと言えば、プラスチックの引張強さであり、このため溶射関連の技術者の間には「溶射皮膜は剥離しやすい」という固定観念がある。
As a method for improving the adhesion between the thermal spray coating and the substrate, blasting has been conventionally performed as a pretreatment for thermal spraying. The reason for this is the removal of rust on the substrate, foreign matter such as coatings, and contaminants, as well as making the surface of the substrate uneven, widening the contact area between the coating and the substrate, and the "anchor effect" by fitting into the coating. It is for having. Alumina, silicon carbide, etc. are used as abrasives for blasting, but since these abrasives are injected at a high speed with compressed air, dust and noise are generated in the process, which burdens the environment and workers. There is a big need for improvement.
In addition, this method is inexpensive and easy, but only a certain degree of adhesion can be obtained because the blast material or fragments thereof are stuck on the surface and remain at the substrate / film interface even after the film formation.
For example, when SUS304 stainless steel is deposited on mild steel by an atmospheric plasma spraying method, the adhesion strength of the practically used one is about 50 N / mm 2 (or Mpa). Speaking of 50 N / mm 2 is the tensile strength of plastic, and therefore there is a fixed idea among spraying related engineers that “the spray coating is easy to peel”.

そこで、複層金属材の製造方法で、ブラスト処理の後、ワイヤーブラシでの研磨処理を施し、次いで溶射して付着する方法が提案されている(例えば、特許文献1参照)。
また、溶射材料を溶射する方法で、被溶射材料を陰極として真空アーク放電を生起させて表面処理を行う前処理法が知られている(例えば、特許文献2参照)。
しかし、従来の前処理法を施した後の溶射による成膜方法では、溶射皮膜の密着強度は低く充分ではなく、各種機器の性能向上での要望に答えることができなかった。
これに対して、特許文献3では、金属基材表面をブラスト処理し、次いで表面酸化処理を施し、次いで真空アーククリーニング処理を行った後、溶射処理して、基材と得られる溶射皮膜の密着強度を向上さる溶射方法が記載されている。
しかし、より過酷な条件下で使用される機器などにおいては、さらなる基材と溶射皮膜との密着強度の向上が求められている。
特許第3425496号公報 特開平5−98412号公報 特開2005−350748号公報
Thus, a method of manufacturing a multilayer metal material has been proposed in which a blasting process is followed by a polishing process with a wire brush, followed by thermal spraying (see, for example, Patent Document 1).
Further, a pretreatment method is known in which a surface treatment is performed by spraying a thermal spray material and generating a vacuum arc discharge using a thermal spray material as a cathode (see, for example, Patent Document 2).
However, in the conventional film formation method by the thermal spraying after the pretreatment method, the adhesion strength of the thermal spray coating is not low enough, and it has not been possible to meet the demand for improving the performance of various devices.
On the other hand, in Patent Document 3, the surface of the metal substrate is subjected to blasting, then subjected to surface oxidation, and then subjected to vacuum arc cleaning, followed by thermal spraying to adhere the base and the resulting thermal spray coating. A thermal spraying method that improves strength is described.
However, in devices used under harsher conditions, further improvement in adhesion strength between the base material and the thermal spray coating is required.
Japanese Patent No. 3425496 Japanese Patent Laid-Open No. 5-98412 JP 2005-350748 A

本発明は、溶射前に基材表面を特定の処理手段を組み合わせた粗面化と清浄化により、基材と得られる溶射皮膜とが過酷な条件下であっても密着可能な密着性を有する溶射方法を提供することを目的とするものである。   The present invention has adhesion that allows the base material and the thermal spray coating obtained to adhere to each other even under harsh conditions by roughening and cleaning the base material surface combined with specific treatment means before spraying. The object is to provide a thermal spraying method.

本発明者らは上記課題に鑑み鋭意研究した結果、溶射前処理としてブラスト処理後に特定の減圧アーククリーニング処理を施すことにより皮膜の高密着強度を実現し得ることを見出した。そこでこの知見に基づいて本発明を完成するに至った。
すなわち本発明は、
(1)金属基材表面をブラスト処理し、次いで該金属基材表面に法線方向から外力を作用させた状態で減圧アーククリーニング処理を行った後、溶射処理をする金属基材表面に密着性に優れた溶射皮膜を形成する溶射方法、
(2)前記外力が重力であり、前記金属基材表面を下向きにして減圧アーククリーニング処理を行うことを特徴とする(1)項記載の溶射方法、
(3)前記溶射皮膜が金属、合金、セラミック、およびサーメットからなる群から選ばれる1つの材料からなることを特徴とする(1)または(2)項記載の溶射方法、
(4)前記溶射皮膜がステンレススチールからなることを特徴とする(1)〜(3)のいずれか1項に記載の溶射方法、
(5)金属基材表面をブラスト処理し、次いで該金属基材表面に法線方向から外力を作用させた状態で減圧アーククリーニング処理を行った後、金属を溶射し金属皮膜を形成し、続いて該金属基材表面に法線方向から外力を作用させた状態で減圧アーククリーニング処理を行い、セラミック溶射をする金属基材表面に密着性に優れた溶射皮膜を形成する溶射方法、
(6)前記溶射処理が減圧溶射処理である場合、溶射中にも減圧アーククリーニング処理を行うことを特徴とする(1)〜(5)のいずれか1項に記載の溶射方法、および、
(7)前記(1)〜(6)のいずれか1項に記載の溶射方法で得られる複層金属材料、
を提供するものである。
本発明において、減圧アーククリーニング(VAC)とは、10〜5000Paの圧力の領域で行われるアーククリーニングであり、真空アーククリーニングを含む概念である。
As a result of intensive studies in view of the above problems, the present inventors have found that a high adhesion strength of the coating can be realized by performing a specific reduced-pressure arc cleaning process after the blasting process as a pre-spraying process. Therefore, the present invention has been completed based on this finding.
That is, the present invention
(1) After blasting the surface of the metal substrate, and then subjecting the surface of the metal substrate to a reduced pressure arc cleaning process in a state where an external force is applied from the normal direction, the adhesion to the surface of the metal substrate to be sprayed is performed. Thermal spraying method to form an excellent thermal spray coating,
(2) The thermal spraying method according to (1), wherein the external force is gravity, and a reduced-pressure arc cleaning process is performed with the surface of the metal substrate facing downward.
(3) The thermal spraying method according to (1) or (2), wherein the thermal spray coating is made of one material selected from the group consisting of metals, alloys, ceramics, and cermets.
(4) The thermal spraying method according to any one of (1) to (3), wherein the thermal spray coating is made of stainless steel.
(5) The surface of the metal substrate is blasted, and then subjected to a reduced pressure arc cleaning treatment in a state where an external force is applied to the surface of the metal substrate from the normal direction, and then a metal is sprayed to form a metal film. A thermal spraying method in which an external force is applied from the normal direction to the surface of the metal base to perform a reduced-pressure arc cleaning process, and a thermal spray coating having excellent adhesion is formed on the surface of the metal base to be ceramic sprayed,
(6) The thermal spraying method according to any one of (1) to (5), wherein when the thermal spraying process is a reduced pressure thermal spraying process, the reduced pressure arc cleaning process is also performed during thermal spraying, and
(7) A multilayer metal material obtained by the thermal spraying method according to any one of (1) to (6),
Is to provide.
In the present invention, reduced-pressure arc cleaning (VAC) is arc cleaning performed in a pressure range of 10 to 5000 Pa, and is a concept including vacuum arc cleaning.

本発明によれば、ブラスト材が界面に残留することがなく、また、界面の凹凸が深く細いため、基材と溶射皮膜との密着強度が極めて強い溶射皮膜を形成することができる。そして、その密着強度は従来方法により得られた皮膜に比べ、大きく上回ることができた。
そして、本発明により得られた溶射皮膜のある金属材料は、航空機用エシジン、発電用ガスタービンエンジン、自動車用エンジンなどに多用され、より過酷な条件にも対応することが可能となり、密着強度の向上は、機器の高性能化、長寿命、省資源、省エネルギーに直接資することができる。
また、本発明の方法は、環境負荷と作業者に負担の大きいブラスト処理時間を短縮することができる。
According to the present invention, since the blast material does not remain at the interface and the unevenness of the interface is deep and thin, it is possible to form a sprayed coating with extremely strong adhesion strength between the substrate and the sprayed coating. And the adhesion strength could be greatly exceeded compared with the film | membrane obtained by the conventional method.
The metal material with a thermal spray coating obtained by the present invention is frequently used for aircraft ethidine, gas turbine engines for power generation, engines for automobiles, etc., and can cope with more severe conditions, and has a high adhesion strength. Improvement can directly contribute to high performance of equipment, long life, resource saving, and energy saving.
In addition, the method of the present invention can reduce the environmental load and the blasting time that is heavy on the operator.

本発明の密着度の優れた溶射皮膜を形成する溶射方法の好ましい実施の態様について、詳細に説明する。
本発明の溶射皮膜材料は、金属、合金、セラミック、サーメットなどこれまで利用されているどのようなものでもよく、例えば、鋼系材料、モリブデン、チタン等があり、ステンレススチール、モリブデン等が特に好ましい。
また、本発明において、表面に溶射皮膜が形成される金属基材としては、鋼材、ステンレス、アルミニウム、合金などを用いることができ、鋼材、ステンレスが好ましい。
A preferred embodiment of a thermal spraying method for forming a thermal spray coating having excellent adhesion according to the present invention will be described in detail.
The sprayed coating material of the present invention may be any material that has been used so far, such as metal, alloy, ceramic, cermet, etc., for example, steel-based material, molybdenum, titanium, etc., and stainless steel, molybdenum, etc. are particularly preferred. .
In the present invention, as the metal base material on which the thermal spray coating is formed, steel materials, stainless steel, aluminum, alloys and the like can be used, and steel materials and stainless steel are preferable.

ブラスト処理は溶射施工の前処理として不可欠であるが、アルミナ等酸化物などをブラスト材として用いるために、ブラスト面が汚染される。これが密着力低下の一つの原因である。さらに、長時間ブラスト処理を施しても、基材が摩耗するだけで、表面粗さは高くならない。
ブラスト処理には、ブラスト材の粒度・エア圧力、ブラスト距離など多くの条件があるが、本発明で用いることのできブラスト処理はどのようなものでも良く特に限定するものではないが、本発明では例えば、#20〜100のアルミナをブラスト材とし、エア圧0.5MPa〜0.7MPaで行うのが好ましい。
さらに後述するように減圧アーククリーニング処理を行うので、ブラスト処理は従来ほど長時間行う必要はない。
Blasting is indispensable as a pretreatment for thermal spraying, but the blasting surface is contaminated because oxides such as alumina are used as a blasting material. This is one cause of the decrease in adhesion. Furthermore, even if the blast treatment is performed for a long time, the substrate is only worn and the surface roughness is not increased.
The blasting process has many conditions such as the particle size of the blasting material, the air pressure, and the blasting distance, but any blasting process that can be used in the present invention is not particularly limited. For example, it is preferable to use # 20 to 100 alumina as a blast material and perform air pressure of 0.5 MPa to 0.7 MPa.
Further, since the reduced pressure arc cleaning process is performed as will be described later, the blasting process does not need to be performed for a longer time than in the past.

ブラスト処理により金属基材表面には凹凸が形成され、基材に存在した大部分の酸化膜は除去されているが、ブラスト材またはその破片などの不純物が残るので、溶射皮膜の高密着のために減圧アーククリーニング処理を行う。
この減圧アーククリーニング処理時に金属基材表面に酸化膜が形成されていても良い。
As a result of the blast treatment, irregularities are formed on the surface of the metal substrate, and most of the oxide film present on the substrate has been removed, but impurities such as the blasting material or its fragments remain, so that the thermal spray coating has high adhesion. A vacuum arc cleaning process is performed.
An oxide film may be formed on the surface of the metal substrate during the reduced-pressure arc cleaning process.

次いで、ブラスト処理された金属基材に、減圧アーククリーニング処理を施す。減圧アーククリーニング処理では、チャンバー内圧力、電圧、電流、クリーニング時間など諸条件があるが、本発明ではこれらの条件を適宜設定して行うことができる。それらの条件は、例えば、チャンバー内圧力100Pa、電流20〜90A、クリーニング時間は1〜10秒が好ましい。   Next, a reduced pressure arc cleaning process is performed on the blasted metal substrate. The reduced-pressure arc cleaning process has various conditions such as chamber pressure, voltage, current, and cleaning time. In the present invention, these conditions can be set as appropriate. For example, the chamber pressure is 100 Pa, the current is 20 to 90 A, and the cleaning time is preferably 1 to 10 seconds.

図1に好ましい減圧アーククリーニング処理装置の一例の概略構成を示す。その主な構成は、真空容器1、容器内に設けられた水冷式銅電極(陽極)2、周囲を絶縁体5で覆った支持具4、支持具に支持され陰極となる被処理対象である金属基材3、DC電源6、RF(高周波)イグナイタ7、タイマースイッチ8、のぞき窓9、弁10を備えたガス吸入口11、フィルタ12を備えたガス排気口13、圧力ゲージ14からなる。   FIG. 1 shows a schematic configuration of an example of a preferred reduced-pressure arc cleaning processing apparatus. The main structure is a vacuum vessel 1, a water-cooled copper electrode (anode) 2 provided in the vessel, a support 4 covered with an insulator 5 and an object to be processed which is supported by the support and becomes a cathode. It comprises a metal substrate 3, a DC power source 6, an RF (high frequency) igniter 7, a timer switch 8, a viewing window 9, a gas inlet 11 provided with a valve 10, a gas outlet 13 provided with a filter 12, and a pressure gauge 14.

図1に示す装置を用い、例えば、金属基材3を支持具4にセットし、ガス吸入口11から矢印方向にアルゴンガスを注入したのち、ガス排気口13から真空ポンプ等によりガスを矢印方向に排出することを何回か繰り返し、容器1内部を約100Paに減圧し、RF(高周波)イグナイタ7を用いて、アークを点弧することで、減圧アーククリーニング処理を行うことができる。   1, for example, after setting the metal substrate 3 on the support 4 and injecting argon gas from the gas inlet 11 in the direction of the arrow, the gas is supplied from the gas outlet 13 by a vacuum pump or the like in the direction of the arrow. The discharge is repeatedly performed several times, the inside of the container 1 is depressurized to about 100 Pa, and an arc is ignited using an RF (high frequency) igniter 7, whereby a reduced pressure arc cleaning process can be performed.

本発明において、上記減圧アーククリーニングは、金属基材の金属基材表面に法線方向から外力を作用させた状態で行われる。
図1に示す態様では、金属基材3の表面は下向きにセットされているので、金属基材3の表面には、表面に法線方向から重力が作用している状態となっている。
本発明において、この金属基材の表面に法線方向から作用する外力としては、上記の重力に限定されるものではなく、例えば、遠心力などを挙げることができる。また、金属基材表面に作用(負荷)される外力の大きさは、10m/s(1G)以上が好ましく、30〜300m/s(3G〜30G)がさらに好ましい。
In the present invention, the reduced-pressure arc cleaning is performed in a state where an external force is applied from the normal direction to the surface of the metal substrate.
In the embodiment shown in FIG. 1, the surface of the metal substrate 3 is set downward, and therefore, the surface of the metal substrate 3 is in a state where gravity acts on the surface from the normal direction.
In the present invention, the external force acting on the surface of the metal substrate from the normal direction is not limited to the above-described gravity, and examples thereof include centrifugal force. Further, the magnitude of the external force acting (loaded) on the surface of the metal substrate is preferably 10 m / s 2 (1G) or more, and more preferably 30 to 300 m / s 2 (3G to 30G).

溶射処理は、一般的に多く用いられているいかなる溶射法でもよい。大気圧プラズマ溶射法の例で説明すると、電流600〜850A、電圧35V、アルゴン圧力0.35MPa(50psi)、ヘリウム圧力0.35〜0.69MPa(50〜100psi)が適当である。
こうして密着性に優れた溶射皮膜を形成する。
The spraying process may be any spraying method that is generally used. As an example of the atmospheric pressure plasma spraying method, a current of 600 to 850 A, a voltage of 35 V, an argon pressure of 0.35 MPa (50 psi), and a helium pressure of 0.35 to 0.69 MPa (50 to 100 psi) are appropriate.
Thus, a sprayed coating having excellent adhesion is formed.

本発明は、複数層の溶射皮膜を形成することもできる。この場合、1層目の皮膜を形成した後、再度金属基材表面から法線方向に力を作用させながら減圧アーククリーニング処理を行い表面の酸化物を除去し、続いて外層の溶射皮膜を形成する。このように皮膜形成の間に減圧アーククリーニング処理を施すことによって各層間の密着強度を強力にすることができる。外層にセラミック皮膜を形成する場合にも好ましい方法である。   In the present invention, a plurality of thermal spray coatings can also be formed. In this case, after forming the first layer coating, the reduced pressure arc cleaning treatment is performed again while applying a force in the normal direction from the surface of the metal substrate to remove the surface oxide, followed by the formation of the outer layer thermal spray coating. To do. Thus, the adhesion strength between the respective layers can be strengthened by performing the reduced-pressure arc cleaning treatment during the film formation. This method is also preferable when a ceramic film is formed on the outer layer.

本発明では、溶射処理の前工程としてブラスト処理、減圧アーククリーニング(VAC)処理をこの順序で行うことが重要である。
ブラスト処理後、VAC処理を行ったものは、ブラスト処理又はVAC処理のみのものより表断面の凹凸が大きく且つ細かい。これは、ブラスト処理後VAC処理を行うと、ブラスト処理によってできた凸部に電界が集中し陰極点が生じ、高電流密度によって、溶融、蒸発が起き、凹凸がさらに大きくなると考えられる。
In the present invention, it is important to perform the blasting process and the reduced pressure arc cleaning (VAC) process in this order as a pre-process of the thermal spraying process.
After the blast treatment, the VAC treatment has a larger and finer surface cross section than the blast treatment or the VAC treatment alone. It is considered that when the VAC process is performed after the blasting process, the electric field concentrates on the convex part formed by the blasting process and a cathode spot is generated, melting and evaporation occur due to the high current density, and the unevenness is further increased.

ブラスト処理後VAC処理をおこなった金属基材表面の顕微鏡写真から次のように考えられる。
(1)酸化物、ブラスト処理による残留ブラスト材などがほぼ完全に取り除かれ、清浄な表面が得られる。
(2)表面が薄く溶融し、新しい表面が露出するため、表面が活性化している。
(3)酸化物除去時の強いアークによって薄く溶融した基材の一部が上方に持ち上げられるため、粗さの山と山の間隔もブラストだけよりも小さい。このとき持ち上げられた瞬間にアークは他の部分に移るために、溶融部分が落下しながら凝固する。このため、凹凸部にキノコ型の山が形成される。キノコ型の傘の下に溶射皮膜が入り込むので、強いアンカー効果が発揮される。
このような機構によって、基材−皮膜界面は清浄であり、基材と皮膜は拡散を伴って結合し密着強度が著しく高い溶射皮膜が形成されるものと考えられる。
It can be considered as follows from the micrograph of the surface of the metal substrate that has been subjected to VAC treatment after blast treatment.
(1) Oxides, residual blasting material by blasting, etc. are almost completely removed, and a clean surface can be obtained.
(2) Since the surface melts thinly and a new surface is exposed, the surface is activated.
(3) Since a part of the thinly melted base material is lifted upward by the strong arc at the time of oxide removal, the interval between the crests of the roughness is smaller than the blast alone. At this moment, since the arc moves to another part at the moment of lifting, the molten part solidifies while falling. For this reason, a mushroom-shaped mountain is formed in the uneven part. Because the thermal spray coating enters under the mushroom-shaped umbrella, a strong anchor effect is exhibited.
By such a mechanism, it is considered that the base material-coating interface is clean, the base material and the coating are bonded together with diffusion, and a thermal spray coating having a remarkably high adhesion strength is formed.

さらに上記のVAC処理を、被処理金属基材表面を下向きとした下向きVACで行った場合と、被処理金属基材表面を上向きとした上向きVACで行った場合とで比較すると、形成された突起物が下向きVACの方が縦長い太いキノコ状の突起として形成することができる。これは、重力による影響と考えられ、法線方向に作用する外力によって表面形状をさらに粗面化することができる。この表面のさらなる粗面化により、溶射皮膜と基材とのより強固な密着が可能となる。   Furthermore, when the above VAC treatment is performed with a downward VAC with the surface of the metal substrate to be treated facing downward, and with an upward VAC with the surface of the metal substrate to be treated facing upward, the formed protrusions The object can be formed as a thick mushroom-like protrusion with the vertically downward VAC. This is considered to be the effect of gravity, and the surface shape can be further roughened by an external force acting in the normal direction. This further roughening of the surface enables a stronger adhesion between the thermal spray coating and the substrate.

先に記載した通り、皮膜の密着力の向上は皮膜として最も基本的な要件であり、皮膜を用いるすべての機器の性能を向上させることが可能である。その中でも、密着力の向上や酸化物の除去によって初めて可能となる具体例について詳述する。
(1)自動車用エンジンの軽量化、コンパクト化
周知のように自動車の燃費の向上は、自動車メーカーにとって重要な課題であり、燃費の向上のためには車重の低減が大きな要件である。車の部品の中で最も重いエンジンを軽くすることによって、エンジンを固定する各種の部品、メンバーも軽量化でき、波及効果が期待できる。
このためシリンダーブロックを軽量なアルミニウム合金で作製し、これに溶射法で硬質な金属を成膜して、シリンダーを作ることが各社で開発されている。この方法にはシリンダー間の寸法を縮小できると言うメリットもあり、エンジンを横置きして、前輪を駆動するレイアウトの車には一石二鳥と言える方策である。
しかし、実用化を妨げている最大の問題点は皮膜の密着力の低さの故に、各自動車メーカーとも10万キロメートル(km)、20万キロメートル(km)走行後にも、シリンダーを形成する皮膜が剥離しないという確信が持てないのが現状である。
本発明の溶射方法を用いれば、皮膜の密着力を高め、軽量・コンパクトなシリンダーの製造に有力な手法となり得ることが期待できる。
As described above, improvement of the adhesion of the film is the most basic requirement for the film, and it is possible to improve the performance of all devices using the film. Among these, specific examples that can be achieved only by improving adhesion and removing oxides will be described in detail.
(1) Lighter and more compact automobile engines As is well known, improving the fuel efficiency of automobiles is an important issue for automobile manufacturers, and reducing the vehicle weight is a major requirement for improving fuel efficiency. By lightening the heaviest engine among car parts, various parts and members that fix the engine can be reduced in weight, and a ripple effect can be expected.
For this reason, each company has developed that a cylinder block is made of a lightweight aluminum alloy and a hard metal film is formed on the cylinder block by a thermal spraying method. This method also has the advantage that the dimensions between the cylinders can be reduced, and it is a measure that can be said to be two birds with one stone for a car that lays the engine horizontally and drives the front wheels.
However, the biggest problem that hinders practical use is the low adhesion of the film, so that each automobile manufacturer has a film that forms a cylinder even after traveling 100,000 km (km) and 200,000 km (km). The current situation is that there is no confidence that it will not peel off.
If the thermal spraying method of the present invention is used, it can be expected that the adhesion strength of the coating will be increased and it can be an effective method for the production of lightweight and compact cylinders.

(2)航空機用・発電用ガスタービンエンジンの高効率化
ガスタービンエンジンは高出力化と高効率化のために、タービン入り口温度はますます高くなっており、高温・高速の燃焼ガスにさらされるタービン翼には断熱皮膜(TBC)が不可欠である。現在用いられているTBCは、ボンドコートとして用いられるCoNiCrAlYと断熱の役割があるZrO−Y(PSZ)の2層からなる。しかし、特に運転が過酷な発電用ガスタービンでは、断熱皮膜の寿命は約半年と言われており、断熱皮膜の長寿命化が高効率の鍵となっている。
TBCに関しては多くの研究結果があり、皮膜の剥離の原因はボンドコートであるCoNiCrAlYの表面に発生する酸化物であることが明らかとなっている。周知のように酸化や腐食現象では、酸化物、腐食生成物が一種の触媒になって、さらに酸化、腐食が進行する。
そこでTBCの皮膜形成に当たって、本発明を適用すれば、
1.基材とCoNiCrAlYの密着強度を格段に高めることができる。
2.溶射成膜されたCoNiCrAlYの表面からほぼ完全に酸化物を除去できる。
3.CoNiCrAlYとPSZの密着力を格段に高めることができる。
などの理由から、TBCの耐剥離寿命を大幅に伸ばすことが可能と考えられる。このため航空機エンジンにこの技術が採用されれば、メインテナンスの間隔を延ばすことができ、
経済的な効果は計り知れない。
(2) Higher efficiency of aircraft and power generation gas turbine engines In order to increase the output and efficiency of gas turbine engines, the turbine inlet temperature is getting higher and exposed to high-temperature and high-speed combustion gases. Thermal insulation coating (TBC) is essential for turbine blades. The TBC currently used is composed of two layers of CoNiCrAlY used as a bond coat and ZrO 2 —Y 2 O 3 (PSZ) that plays a role of heat insulation. However, in a gas turbine for power generation, which is particularly difficult to operate, the life of the heat insulating film is said to be about half a year, and extending the life of the heat insulating film is the key to high efficiency.
There are many research results regarding TBC, and it has been clarified that the cause of film peeling is an oxide generated on the surface of CoNiCrAlY as a bond coat. As is well known, in oxidation and corrosion phenomena, oxides and corrosion products become a kind of catalyst, and oxidation and corrosion further progress.
Therefore, if the present invention is applied in forming the TBC film,
1. The adhesion strength between the base material and CoNiCrAlY can be significantly increased.
2. The oxide can be almost completely removed from the surface of CoNiCrAlY formed by thermal spraying.
3. The adhesion between CoNiCrAlY and PSZ can be significantly increased.
For these reasons, it is considered possible to greatly extend the peel-resistant life of TBC. Therefore, if this technology is adopted for aircraft engines, the maintenance interval can be extended,
The economic effect is immeasurable.

(3)皮膜中に酸化物を含まない減圧プラズマ溶射の開発
金属皮膜を減圧プラズマ溶射装置で成膜した場合でも、たとえば走査型電子顕微鏡(SEM)で皮膜断面を観察すると、少量の酸化物が存在することは、よく経験することである。この少量の酸化物が、時として機械的性質を低下させ、耐食性を劣化させる原因となっているが、現在実用化されている溶射法では、皮膜中に全く酸化物を含まないで成膜することはできていない。したがって、溶射皮膜から酸化物を完全に除去できる技術が開発されれば、画期的といえる。
本発明において、減圧プラズマ溶射法を用いて溶射中に減圧アーククリーニング処理を連続して行えば、減圧アーククリーニング処理によるアークは酸化物に選択的に作用するので、ほとんど酸化物を含まない溶射皮膜を形成することが可能と考えられる。
(3) Development of low-pressure plasma spraying that does not contain oxides in the film Even when a metal film is formed by a low-pressure plasma spraying device, a small amount of oxide is found when the cross-section of the film is observed with a scanning electron microscope (SEM), for example. Being present is a common experience. This small amount of oxide sometimes causes mechanical properties to deteriorate and corrosion resistance to deteriorate. However, in the thermal spraying method currently in practical use, a film is formed without any oxide in the film. I can't. Therefore, if a technology capable of completely removing oxides from the sprayed coating is developed, it can be said that it is epoch-making.
In the present invention, if the reduced-pressure arc cleaning process is continuously performed during the thermal spraying using the reduced-pressure plasma spraying method, the arc by the reduced-pressure arc cleaning process selectively acts on the oxide. It is considered possible to form

実施例1
先ず、鉄鋼基材(SS400)を試料とし、その端面を#20のアルミナ粒子を使用し手動でブラスト処理を行った。ブラスト空気圧0.7MPa、ノズル径8mm、基材−ノズル間距離は約100mmである。
Example 1
First, the steel base material (SS400) was used as a sample, and the end surface was manually blasted using # 20 alumina particles. The blast air pressure is 0.7 MPa, the nozzle diameter is 8 mm, and the distance between the substrate and the nozzle is about 100 mm.

上記試料を図1に示した真空容器内の支持具4に設置し、金属基材試料を陰極とし、真空容器1内を100Pa以下に排気し、Arガス雰囲気とした。容器内の排気後、試料と電極間に直流電圧を印加し、直流アーク放電を生起させた。電極間距離は20mmとし、電流は20Aとし、アーク時間は10秒未満の任意の時間として減圧アーククリーニング処理を行った。   The sample was placed on the support 4 in the vacuum vessel shown in FIG. 1, the metal substrate sample was used as a cathode, the inside of the vacuum vessel 1 was exhausted to 100 Pa or less, and an Ar gas atmosphere was formed. After evacuating the container, a DC voltage was applied between the sample and the electrode to cause a DC arc discharge. The reduced-pressure arc cleaning process was performed by setting the distance between the electrodes to 20 mm, the current to 20 A, and the arc time to an arbitrary time of less than 10 seconds.

減圧アーククリーニング処理した試料にプラズマ溶射により円筒型試料端面に溶射皮膜を形成した。溶射材料はSUS316ステンレススチールを使用し、溶射皮膜の厚さは200μmを目標とした。
溶射条件は、アーク電流:800A、溶射距離:100mm、溶射角度:90°、主ガス:Ar(0.35MPa)、補助ガス:He(0.69MPa)、吐出量:30g/分とした。
A sprayed coating was formed on the end face of the cylindrical sample by plasma spraying on the sample subjected to the reduced-pressure arc cleaning treatment. SUS316 stainless steel was used as the thermal spray material, and the thickness of the thermal spray coating was targeted at 200 μm.
The spraying conditions were as follows: arc current: 800 A, spraying distance: 100 mm, spraying angle: 90 °, main gas: Ar (0.35 MPa), auxiliary gas: He (0.69 MPa), discharge rate: 30 g / min.

比較例1
実施例1と同様に金属基材にブラスト処理した後、図2に示されるように、図1に示す構成から陰極と陽極とを取り換え、直流電源方向を逆向きとし、被処理金属基材表面を上向きとして減圧アーククリーニングを行った以外は、実施例1と同様に、減圧アーククリーニング処理、次いで、溶射処理を行い、金属基材表面に溶射皮膜を形成した。
なお、図2中における符号の意味は、図1における符号と同じ意味である。
Comparative Example 1
After blasting the metal substrate in the same manner as in Example 1, as shown in FIG. 2, the cathode and anode are replaced from the configuration shown in FIG. As in Example 1, a reduced pressure arc cleaning process and then a thermal spraying process were performed to form a sprayed coating on the surface of the metal base material, except that the reduced pressure arc cleaning was performed with the surface facing upward.
In addition, the meaning of the code | symbol in FIG. 2 is the same meaning as the code | symbol in FIG.

試験例1
実施例1および比較例1における減圧アーククリーニング(VAC)処理前及び一定時間VAC処理後の試料の表面を含む断面を光学顕微鏡により観察した。観察された顕微鏡写真を図3に示す。
図3中、左側のa〜fが比較例1の上向きVAC処理後の、右側のg〜lが実施例1の下向きVAC処理後の試料断面を示す。また、aおよびgはVAC処理時間が0、すなわち、ブラスト処理のみ行われた試料の断面を示す。また、bおよびhは処理時間1秒、cおよびiは処理時間3秒、dおよびjは処理時間5秒、eおよびkは処理時間7秒、fおよびlは処理時間9秒の断面を示す。なお、図3−a〜lの倍率はすべて同一で、aおよびgの下方に示される区分線は、50μmの長さを示す。
図3に示されるように、上向きVAC処理を行った比較例1(図3−a〜f)、下向きVAC処理を行った実施例1(図3−g〜l)ともいたるところにキノコ状突起の形成が見られるが、形成された突起物を比較すると、下向きVAC処理を行った実施例1の方が縦長に太いものとなった。このように、重力による影響が見てとれるため、外力によって表面形状を更に粗面化させることが期待できる。
Test example 1
The cross section including the surface of the sample before the vacuum arc cleaning (VAC) treatment in Example 1 and Comparative Example 1 and after the VAC treatment for a certain time was observed with an optical microscope. The observed micrograph is shown in FIG.
In FIG. 3, the left side a to f show the sample cross section after the upward VAC treatment of Comparative Example 1, and the right side g to l show the sample cross section after the downward VAC treatment of Example 1. Further, a and g indicate the cross section of the sample in which the VAC processing time is 0, that is, only the blast processing is performed. In addition, b and h are processing times of 1 second, c and i are processing times of 3 seconds, d and j are processing times of 5 seconds, e and k are processing times of 7 seconds, and f and l are processing times of 9 seconds. . In addition, all the magnifications of FIGS. 3A to 1L are the same, and the dividing line shown below a and g indicates a length of 50 μm.
As shown in FIG. 3, mushroom-like protrusions are found everywhere in Comparative Example 1 (FIGS. 3A to 3F) subjected to upward VAC treatment and Example 1 (FIGS. 3G to l) subjected to downward VAC treatment. However, when the formed protrusions were compared, Example 1 which performed the downward VAC treatment became longer and longer. Thus, since the influence by gravity can be seen, it can be expected that the surface shape is further roughened by an external force.

試験例2
実施例1および比較例1におけるVAC処理前及び一定時間VAC処理後の試料を、レーザー顕微鏡を用いて、表面粗さの算術平均高さRおよび、輪郭曲線要素の平均の長さRsmを測定した。
ここで、算術平均高さRとは粗さ曲線から、その平均線の方向に基準長さlだけ抜き取り、この抜き取り部分の平均線mをx軸(y=0)とし、そこから測定曲線までの偏差の絶対値を合計し、平均した値である。すなわち、図4の説明図に示すように粗さ曲線f(x)上の基準長さに対し、x軸と粗さ曲線で囲まれた面積を合計し、粗さの形状に関係なく平均した値である。以下に導出式を示す
Test example 2
The sample after VAC treatment before and a predetermined time VAC process in Example 1 and Comparative Example 1, by using a laser microscope, the arithmetic mean height of surface roughness R a and the average profile elements the length R sm It was measured.
Here, the arithmetic average height R a is extracted from the roughness curve by the reference length l in the direction of the average line, and the average line m of this extracted portion is taken as the x-axis (y = 0), from which the measurement curve The absolute values of the deviations up to are totaled and averaged. That is, as shown in the explanatory diagram of FIG. 4, the area surrounded by the x-axis and the roughness curve is added to the reference length on the roughness curve f (x), and averaged regardless of the shape of the roughness. Value. The derivation formula is shown below

(式中、lは基準長さ(m)を示す。)
また、輪郭曲線要素の平均長さRsmは、図5の説明図で表されるような粗さ曲線からその平均線の方向に基準長さLだけを抜き取り、この抜き取り部分において一つの山およびそれに隣り合う一つの谷に対応する平均線の長さの和(凹凸の間隔)を求め、この多数の凹凸の間隔の算術平均値を表したものをいう。ここで粗さ曲線の平均値をm(x軸)とする。一口に山及び谷と言っても、ターゲット表面上においては様々な高さの山、様々な深さの谷が存在するが、その中で最も高いものを最大高さRzとし、Rzの10%以上の山及び谷をカウントし、それ以下のものはRsmの算出には用いなかった。以下に導出式を示す。
(In the formula, l represents the reference length (m).)
Further, the average length R sm of the contour curve element is extracted from the roughness curve as shown in the explanatory diagram of FIG. 5 only in the direction of the average line L, and one peak and The sum of the lengths of the average lines corresponding to one adjacent valley (interval between irregularities) is obtained, and the arithmetic average value of the intervals between the numerous irregularities is expressed. Here, the average value of the roughness curve is m (x axis). There are mountains and valleys of various heights on the target surface even though they are called mountains and valleys, but the highest one is the maximum height Rz, and 10% of Rz. The above peaks and valleys were counted, and those below were not used for the calculation of R sm . The derivation formula is shown below.

(式中、Smiは凹凸の間隔(m)、nは基準長さ内での凹凸の間隔の個数を示す)
結果を、図6〜8に示す。図6〜8中、■は実施例1、◆は比較例1を示す。また、ブラスト処理のみの場合の値を点線で示した。
(In the formula, Smi is the unevenness interval (m), and n is the number of unevenness intervals within the reference length)
The results are shown in FIGS. 6-8, ■ shows Example 1, and ◆ shows Comparative Example 1. FIG. In addition, the value in the case of only blast processing is indicated by a dotted line.

図6は、VAC処理時間(アーク時間(s))に対する算術平均高さR(μm)の変化を示すグラフである。同じ処理時間で、Rは上向き、下向き共にブラストのみの場合より大きく、更に下向きVACを行った実施例1の方が、上向きVACを行った比較例1よりRの値が最大約2倍大きいことが示されている。
図7は、VAC処理時間(アーク時間(s))に対する輪郭曲線要素の平均の長さRsm(μm)の変化を示すグラフである。同じ処理時間では、Rsmは上向き、下向き共にブラストのみの場合より小さく、実施例1と比較例1の間で水平凹凸間隔Rsmに大きな差は無い。
図8は、VAC処理時間(アーク時間(s))に対するR/Rsm比の変化を示すグラフである。同じ処理時間で、R/Rsm比は上向き、下向き共にブラストのみの場合より大きく、下向きVACを行った実施例1の方が、上向きVACを行った比較例1よりR/Rsmの値が大きいことが示されている。
このように、下向きVAC処理の方が、上向きVAC処理やブラストのみに比べ、金属基材表面の大幅な粗面化が可能である。
FIG. 6 is a graph showing a change in arithmetic average height R a (μm) with respect to VAC processing time (arc time (s)). In the same processing time, Ra is larger in both upward and downward directions than in the case of blasting alone, and the value of Ra in Example 1 in which downward VAC is performed is about twice as large as that in Comparative Example 1 in which upward VAC is performed. It is shown to be big.
FIG. 7 is a graph showing changes in the average length R sm (μm) of the contour curve elements with respect to the VAC processing time (arc time (s)). At the same processing time, R sm is smaller than the case of only blasting in both upward and downward directions, and there is no great difference in the horizontal unevenness interval R sm between Example 1 and Comparative Example 1.
FIG. 8 is a graph showing changes in the ratio R a / R sm with respect to the VAC processing time (arc time (s)). At the same processing time, the ratio of R a / R sm is larger both in the upward and downward directions than in the case of blasting alone. In Example 1 in which downward VAC was performed, R a / R sm was higher than that in Comparative Example 1 in which upward VAC was performed. The value is shown to be large.
In this way, the downward VAC treatment can greatly roughen the surface of the metal substrate as compared with the upward VAC treatment or blasting alone.

試験例3
次に、実施例1および比較例1でアーク処理時間の異なる溶射皮膜の形成された試料をJIS H 8666の溶射皮膜試験方法に準じて皮膜の密着強度を測定した。
本試験では、A試験片は、実施例1および比較例2で皮膜を形成したものである。A試験片は直径25mm、長さ40mmの円柱状で反対側の端面には引張り試験機のジグに固定するために、M16のネジが切ってある。
同寸法のB試験片にはブラストだけを施し、A試験片、B試験片を強力な接着剤で試験ロッド(相手材)に接着した。この測定ではエポキシ樹脂系の接着剤(商品名:アラルダイトAT−1、チバガイギー株式会社製)を使用し、150℃、40分加熱して接着した。この接着剤の強度は約85N/mmである。その後、A、B両試験片の他端にチャッキング用の棒材をねじ止めして、引張り試験機に取り付け、引張試験を行って皮膜の密着強度を測定した。
Test example 3
Next, the adhesion strength of the coatings of the samples on which the thermal spray coatings having different arc treatment times in Example 1 and Comparative Example 1 were measured in accordance with the thermal spray coating test method of JIS H8666.
In this test, the A test piece was formed by forming a film in Example 1 and Comparative Example 2. The A test piece is a cylinder having a diameter of 25 mm and a length of 40 mm, and an M16 screw is cut on the opposite end face to fix it to the jig of the tensile tester.
Only the blasting was applied to the B test piece of the same size, and the A test piece and the B test piece were bonded to the test rod (mating material) with a strong adhesive. In this measurement, an epoxy resin adhesive (trade name: Araldite AT-1, manufactured by Ciba Geigy Co., Ltd.) was used, and the adhesive was heated at 150 ° C. for 40 minutes. The strength of this adhesive is about 85 N / mm 2 . Thereafter, a chucking bar was screwed to the other end of both the A and B test pieces, attached to a tensile tester, and a tensile test was performed to measure the adhesion strength of the film.

図9にVAC処理時間(アーク時間(s))に対する皮膜−金属基材間の密着力(MPa=N/mm)の変化を示す。図9中、■は実施例1、◆は比較例1を示す。また、ブラスト処理のみの場合の値を点線で示した。
図9に示されるように、上向きVAC処理した比較例1より下向きVAC処理した実施例1の方が密着力は最高約20MPa大きな値を示した。
FIG. 9 shows a change in the adhesion force (MPa = N / mm 2 ) between the film and the metal substrate with respect to the VAC treatment time (arc time (s)). In FIG. 9, ■ represents Example 1, and ◆ represents Comparative Example 1. In addition, the value in the case of only blast processing is indicated by a dotted line.
As shown in FIG. 9, the adhesive strength of Example 1 treated with downward VAC was higher by about 20 MPa at the maximum than Comparative Example 1 treated with upward VAC.

実施例2
図1に示す装置において、陰極および陽極の部材を、図10の概略構成図に示す回転VAC部材に変更し、容器内圧力を200Paとして、金属基材表面に遠心力を作用させて、減圧アーククリーニング処理した以外は、実施例1と同様に、金属基材表面に溶射皮膜を形成した。
図10中、金属基材(陰極)21と銅電極(陽極)22は、モータ23により磁気シールド軸24を回転軸として回転する。また、25は絶縁体、26は導体である。導体26と陰極21は通電可能に形成されている。これら符号21〜26で示される部材により駆動部が形成されている。一方電極支持(絶縁)材27には、マイナス電極28とプラス電極29が固定され、マイナス電極28は回転する導体26に、プラス電極29は回転する陽極22にそれぞれ接触している。また、電極間距離30は20mmとした。VACは、回転数200rpmおよび600rpmで、アーク時間3秒(200rpm)および5秒(200rpmおよび600rpm)で行った。
得られた皮膜の密着力を試験例3と同様に測定した。結果を表1に示す。なお、表1には、比較の意味で、前処理としてブラスト単独を行った参考例、ブラストおよび逆さVACを行った実施例1、およびブラストおよび上向VACを行った比較例1の密着強度を合わせて示した。
Example 2
In the apparatus shown in FIG. 1, the cathode and anode members are changed to the rotating VAC member shown in the schematic configuration diagram of FIG. 10, the internal pressure of the container is set to 200 Pa, centrifugal force is applied to the surface of the metal substrate, and the reduced pressure arc A thermal spray coating was formed on the surface of the metal substrate in the same manner as in Example 1 except that the cleaning treatment was performed.
In FIG. 10, a metal substrate (cathode) 21 and a copper electrode (anode) 22 are rotated by a motor 23 around a magnetic shield shaft 24 as a rotation axis. 25 is an insulator, and 26 is a conductor. The conductor 26 and the cathode 21 are formed to be energized. The drive part is formed of the members indicated by these reference numerals 21 to 26. On the other hand, a minus electrode 28 and a plus electrode 29 are fixed to the electrode support (insulating) material 27, the minus electrode 28 is in contact with the rotating conductor 26, and the plus electrode 29 is in contact with the rotating anode 22. The interelectrode distance 30 was 20 mm. VAC was performed at rotation speeds of 200 rpm and 600 rpm, with arc times of 3 seconds (200 rpm) and 5 seconds (200 rpm and 600 rpm).
The adhesion of the obtained film was measured in the same manner as in Test Example 3. The results are shown in Table 1. For comparison, Table 1 shows the adhesion strength of Reference Example in which blasting alone was performed as a pretreatment, Example 1 in which blasting and inverted VAC were performed, and Comparative Example 1 in which blasting and upward VAC were performed. Shown together.

比較例2
金属基材表面にブラスト処理は行わず、ローレット加工により微細なピラミッド状突起を規則的に形成させ、これに実施例1(逆さVAC)、実施例2(回転VAC)および比較例1(上向きVAC)と同様にVAC処理、並びに、溶射処理を施すことにより、金属基材表面に溶射皮膜を形成した。この溶射皮膜の密着力を試験例3と同様に測定した。結果を表1にあわせて示す。
Comparative Example 2
Blast treatment is not performed on the surface of the metal base material, and fine pyramid-shaped protrusions are regularly formed by knurling. Example 1 (inverted VAC), Example 2 (rotary VAC) and Comparative example 1 (upward VAC) The spray coating was formed on the surface of the metal substrate by performing the VAC treatment and the thermal spray treatment in the same manner as in FIG. The adhesion of this sprayed coating was measured in the same manner as in Test Example 3. The results are shown in Table 1.

表1に示すように、前処理がブラスト処理だけの参考例では32N/mmであったが、これに「上向きVAC」処理を施した比較例1では密着強度は65N/mmと倍増した。さらに試験片(陰極)を上部、陽極を下部に設置した「逆さVAC」処理した実施例1では、80〜95N/mmと言う極めて高い密着強度を達成できた。この場合、試験片には1Gの重力が負荷されていることになる。JIS H 8666に基づく密着強度測定では、皮膜付き試験片と試験ロッド(相手材)を熱硬化型の強力な接着剤で接着して引っ張り試験を行う。ブラスト+逆さVACの場合、同試験では接着剤が破断した例もあったので、実際の密着強度はさらに高いものと考えられる。
また、実施例2では、密着強度として54〜65MPa(ブラスト単独の参考例に対する相対比で1.7〜2.0倍)の高い値が得られた。実施例2における回転VACでは、上述のように、200Paの圧力下で200rpmと600rpmの回転数で行った。このときに試験表面に作用する遠心力はそれぞれ3Gと28Gである。このような高G下での密着強度はブラスト+通常(上向き)VACと同程度であった。
また、比較例2のローレット状加工+各種のVACでは密着強度は22〜32MPaとなった。密着強度が高いものとはならなかった理由としては、ローレット状加工でできるピラミッド状凸部の対頂角が90度であったためにピラミッドの熱容量が増加し、従来のVAC処理では表面が溶融せず、したがって凸部の先端形状がきのこ型にならなかったためではないかと考えられる。
As shown in Table 1, the pretreatment was 32 N / mm 2 in the reference example in which only the blast treatment was performed, but in Comparative Example 1 in which the “upward VAC” treatment was performed, the adhesion strength doubled to 65 N / mm 2 . . Furthermore, in Example 1 where the “inverted VAC” treatment was performed with the test piece (cathode) at the top and the anode at the bottom, an extremely high adhesion strength of 80 to 95 N / mm 2 could be achieved. In this case, the test piece is loaded with 1 G of gravity. In the adhesion strength measurement based on JIS H 8666, a tensile test is performed by bonding a test piece with a film and a test rod (mating material) with a thermosetting strong adhesive. In the case of blasting + inverted VAC, there was an example where the adhesive was broken in the same test, so the actual adhesion strength is considered to be higher.
Further, in Example 2, a high value of 54 to 65 MPa (1.7 to 2.0 times relative to the reference example of blasting alone) was obtained as the adhesion strength. In the rotating VAC in Example 2, as described above, the rotation was performed at 200 rpm and 600 rpm under a pressure of 200 Pa. The centrifugal forces acting on the test surface at this time are 3G and 28G, respectively. The adhesion strength under such high G was almost the same as blast + normal (upward) VAC.
Further, in the knurled processing of Comparative Example 2 + various VACs, the adhesion strength was 22 to 32 MPa. The reason why the adhesion strength did not become high is that the pyramid-shaped convex portion formed by knurling processing had a vertical angle of 90 degrees, so the heat capacity of the pyramid increased, and the surface of the conventional VAC treatment did not melt, Therefore, it is considered that the shape of the tip of the convex portion was not a mushroom shape.

本発明を実施する減圧アーククリーニング装置の一例の概略構成図である。It is a schematic block diagram of an example of the pressure reduction arc cleaning apparatus which implements this invention. 比較例1で用いられた減圧アーククリーニング装置の概略構成図である。2 is a schematic configuration diagram of a reduced-pressure arc cleaning device used in Comparative Example 1. FIG. 実施例1および比較例1におけるアーク処理された試料の表面を含む断面の光学顕微鏡写真である。2 is an optical micrograph of a cross section including the surface of an arc-treated sample in Example 1 and Comparative Example 1. FIG. 算術平均高さRの説明図である。The arithmetic mean it is an explanatory view of height R a. 輪郭曲線要素の平均長さRsmの説明図である。It is explanatory drawing of the average length Rsm of a contour curve element. 実施例1および比較例1のVAC処理時間に対する算術平均高さRaの変化を示すグラフである。It is a graph which shows the change of arithmetic mean height Ra with respect to the VAC processing time of Example 1 and Comparative Example 1. 実施例1および比較例1のVAC処理時間に対する輪郭曲線要素の平均の長さRsmの変化を示すグラフである。It is a graph which shows the change of the average length R sm of the contour curve element with respect to the VAC processing time of Example 1 and Comparative Example 1. 実施例1および比較例1のVAC処理時間に対するR/Rsm比の変化を示すグラフである。It is a graph which shows the change of Ra / Rsm ratio with respect to the VAC processing time of Example 1 and Comparative Example 1. 実施例1および比較例1のVAC処理時間に対する皮膜密着力の変化を示すグラフである。It is a graph which shows the change of the film | membrane adhesive force with respect to the VAC processing time of Example 1 and Comparative Example 1. 実施例2で用いた回転VAC装置の概略構成図である。It is a schematic block diagram of the rotation VAC apparatus used in Example 2.

符号の説明Explanation of symbols

1 真空容器
2 銅電極(陽極)
3 金属基材(陰極)
4 支持具
5 絶縁体
6 DC電源
7 RFイグナイタ(高周波イグナイタ)
8 タイマースイッチ
9 のぞき窓
10 弁
11 ガス吸入口
12 フィルタ
13 ガス排気口
14 圧力ゲージ
21 金属基材(陰極)
22 銅電極(陽極)
23 モータ
24 磁気シールド軸
25 絶縁体
26 導体
27 電極支持(絶縁)材
28 マイナス電極
29 プラス電極
30 電極間距離
1 Vacuum container 2 Copper electrode (anode)
3 Metal substrate (cathode)
4 Supporting Tool 5 Insulator 6 DC Power Supply 7 RF Igniter (High Frequency Igniter)
8 Timer switch 9 Peep window 10 Valve 11 Gas inlet 12 Filter 13 Gas outlet 14 Pressure gauge 21 Metal substrate (cathode)
22 Copper electrode (anode)
23 Motor 24 Magnetic shield shaft 25 Insulator 26 Conductor 27 Electrode support (insulation) material 28 Negative electrode 29 Positive electrode 30 Distance between electrodes

Claims (7)

金属基材表面をブラスト処理し、次いで該金属基材表面に法線方向から外力を作用させた状態で減圧アーククリーニング処理を行った後、溶射処理をする金属基材表面に密着性に優れた溶射皮膜を形成する溶射方法。   After blasting the surface of the metal substrate and then performing a reduced-pressure arc cleaning process with an external force acting on the surface of the metal substrate from the normal direction, the metal substrate surface to be thermally sprayed has excellent adhesion. A thermal spraying method for forming a thermal spray coating. 前記外力が重力であり、前記金属基材表面を下向きにして減圧アーククリーニング処理を行うことを特徴とする請求項1記載の溶射方法。   The thermal spraying method according to claim 1, wherein the external force is gravity, and the reduced-pressure arc cleaning process is performed with the metal substrate surface facing downward. 前記溶射皮膜が金属、合金、セラミック、およびサーメットからなる群から選ばれる1つの材料からなることを特徴とする請求項1または2記載の溶射方法。   The thermal spraying method according to claim 1 or 2, wherein the thermal spray coating is made of one material selected from the group consisting of metals, alloys, ceramics, and cermets. 前記溶射皮膜がステンレススチールであることを特徴とする請求項1〜3のいずれか1項に記載の溶射方法。   The thermal spraying method according to any one of claims 1 to 3, wherein the thermal spray coating is stainless steel. 金属基材表面をブラスト処理し、次いで該金属基材表面に法線方向から外力を作用させた状態で減圧アーククリーニング処理を行った後、金属を溶射し金属皮膜を形成し、続いて該金属基材表面に法線方向から外力を作用させた状態で減圧アーククリーニング処理を行い、セラミック溶射をする金属基材表面に密着性に優れた溶射皮膜を形成する溶射方法。   After blasting the surface of the metal substrate, and then performing a reduced-pressure arc cleaning process with an external force applied to the surface of the metal substrate from the normal direction, the metal is sprayed to form a metal film, and then the metal A thermal spraying method in which a reduced pressure arc cleaning process is performed with an external force applied to the surface of a base material from the normal direction to form a thermal spray coating having excellent adhesion on the surface of the metal base material to be ceramic sprayed. 前記溶射処理が減圧溶射処理であり、溶射中にも減圧アーククリーニング処理を行うことを特徴とする請求項1〜5のいずれか1項に記載の溶射方法。   The thermal spraying method according to any one of claims 1 to 5, wherein the thermal spraying process is a low-pressure thermal spraying process, and the vacuum arc cleaning process is also performed during thermal spraying. 前記請求項1〜6のいずれか1項に記載の溶射方法で得られる複層金属材料。   The multilayer metal material obtained by the thermal spraying method of any one of the said Claims 1-6.
JP2007235980A 2007-09-11 2007-09-11 Thermal spraying method for forming sprayed coating having excellent adhesion Pending JP2009068051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235980A JP2009068051A (en) 2007-09-11 2007-09-11 Thermal spraying method for forming sprayed coating having excellent adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235980A JP2009068051A (en) 2007-09-11 2007-09-11 Thermal spraying method for forming sprayed coating having excellent adhesion

Publications (1)

Publication Number Publication Date
JP2009068051A true JP2009068051A (en) 2009-04-02

Family

ID=40604625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235980A Pending JP2009068051A (en) 2007-09-11 2007-09-11 Thermal spraying method for forming sprayed coating having excellent adhesion

Country Status (1)

Country Link
JP (1) JP2009068051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117079A (en) * 2009-12-03 2011-06-16 Sulzer Metco Ag Spray material, thermal spray layer and cylinder provided with thermal spray layer
JP2014156651A (en) * 2013-01-18 2014-08-28 Fujimi Inc Sprayed coating and metallic member with coating
JP2020136469A (en) * 2019-02-19 2020-08-31 日本特殊陶業株式会社 Composite base material, semiconductor module, and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655562A (en) * 1979-10-11 1981-05-16 Mitsubishi Heavy Ind Ltd Plasma spraying method
JPH0313555A (en) * 1989-06-09 1991-01-22 Komatsu Ltd Reduced pressure thermal spraying method
JPH0598412A (en) * 1991-10-07 1993-04-20 Nippon Steel Corp Method for pretreatment of material to be thermal-sprayed
JPH07305158A (en) * 1994-05-06 1995-11-21 Nippon Steel Corp Pretreatment for thermal spraying
JP2004172607A (en) * 2002-10-31 2004-06-17 Tosoh Corp Island-projection-decorated component, its manufacturing method, and apparatus using it
JP2005350748A (en) * 2004-06-11 2005-12-22 Tama Tlo Kk Thermal spraying method of forming thermally sprayed film having excellent adhesion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655562A (en) * 1979-10-11 1981-05-16 Mitsubishi Heavy Ind Ltd Plasma spraying method
JPH0313555A (en) * 1989-06-09 1991-01-22 Komatsu Ltd Reduced pressure thermal spraying method
JPH0598412A (en) * 1991-10-07 1993-04-20 Nippon Steel Corp Method for pretreatment of material to be thermal-sprayed
JPH07305158A (en) * 1994-05-06 1995-11-21 Nippon Steel Corp Pretreatment for thermal spraying
JP2004172607A (en) * 2002-10-31 2004-06-17 Tosoh Corp Island-projection-decorated component, its manufacturing method, and apparatus using it
JP2005350748A (en) * 2004-06-11 2005-12-22 Tama Tlo Kk Thermal spraying method of forming thermally sprayed film having excellent adhesion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117079A (en) * 2009-12-03 2011-06-16 Sulzer Metco Ag Spray material, thermal spray layer and cylinder provided with thermal spray layer
JP2014156651A (en) * 2013-01-18 2014-08-28 Fujimi Inc Sprayed coating and metallic member with coating
JP2020136469A (en) * 2019-02-19 2020-08-31 日本特殊陶業株式会社 Composite base material, semiconductor module, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8209831B2 (en) Surface conditioning for thermal spray layers
KR101157707B1 (en) Plasma-resistant member and method of producing the same
US6043451A (en) Plasma spraying of nickel-titanium compound
WO2015151857A1 (en) Plasma-resistant component, method for manufacturing plasma-resistant component, and film deposition device used to manufacture plasma-resistant component
EP1749899B1 (en) Method and apparatus for the application of twin wire arc spray coatings
US20060177582A1 (en) Process for applying a protective layer
US7824159B2 (en) Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
US6571472B2 (en) Restoration of thickness to load-bearing gas turbine engine components
US20070178247A1 (en) Method for forming a protective coating with enhanced adhesion between layers
WO2006095799A1 (en) Surface treatment method and repair method
JP2005240171A (en) Corrosion resistant member and its production method
Tucker Jr Introduction to coating design and processing
EP2688708B1 (en) Method for repairing an aluminium alloy component
CN109266997A (en) A kind of metal works duplex coating and preparation method thereof suitable for hot environment
JP5566891B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
US20100055339A1 (en) Method of forming molybdenum based wear resistant coating on a workpiece
CN109440049B (en) Method for preparing amorphous aluminum coating by compounding electric arc spraying and laser remelting
JP2009068051A (en) Thermal spraying method for forming sprayed coating having excellent adhesion
US9481922B2 (en) Process for forming porous metal coating on surfaces
US20120248070A1 (en) Method and device for coating turbine components
CN104593620B (en) The aluminum liquid degasification rotor preparation of a kind of corrosion of resistance to aluminum abrasion and restorative procedure thereof
JP4649126B2 (en) Thermal spraying method for forming thermal spray coating with excellent adhesion
CN114196948A (en) Processing method of high-temperature protective coating on high-temperature alloy of aircraft engine
JP5618607B2 (en) Capstan block for wire drawing machine
CN113186526B (en) Metal coating and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212