JP5990905B2 - 測定装置、測定方法、プログラム及び記録媒体 - Google Patents

測定装置、測定方法、プログラム及び記録媒体 Download PDF

Info

Publication number
JP5990905B2
JP5990905B2 JP2011277613A JP2011277613A JP5990905B2 JP 5990905 B2 JP5990905 B2 JP 5990905B2 JP 2011277613 A JP2011277613 A JP 2011277613A JP 2011277613 A JP2011277613 A JP 2011277613A JP 5990905 B2 JP5990905 B2 JP 5990905B2
Authority
JP
Japan
Prior art keywords
measurement
living body
light
unit
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011277613A
Other languages
English (en)
Other versions
JP2013126509A (ja
JP2013126509A5 (ja
Inventor
佐藤 英雄
英雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011277613A priority Critical patent/JP5990905B2/ja
Priority to US14/364,580 priority patent/US9867559B2/en
Priority to PCT/JP2012/080334 priority patent/WO2013094362A1/ja
Priority to CN201280061217.2A priority patent/CN103987316B/zh
Publication of JP2013126509A publication Critical patent/JP2013126509A/ja
Publication of JP2013126509A5 publication Critical patent/JP2013126509A5/ja
Application granted granted Critical
Publication of JP5990905B2 publication Critical patent/JP5990905B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14558Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cardiology (AREA)
  • Emergency Medicine (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本開示は、測定装置、測定方法、プログラム及び記録媒体に関する。
生体の皮下に存在する体内物質や血液中に含まれる血中成分(生体成分)を、各種の光を用いて非侵襲で計測する技術に関する研究が進んでいる。このような非侵襲光学方式による生体成分の分析技術では、一般的に、光吸収率を利用して生体成分の濃度を特定することが行われてきた(例えば、以下の特許文献1を参照。)。
特開2009−273819号公報
ここで、上記特許文献1に示したような生体成分濃度測定装置では、生体を透過した光(透過光)の強度に基づいて生体成分の濃度が測定されるものであるが、生体は光を良く散乱させる物体であるとともに、生体内に含まれるそれぞれの生体成分により照射した光の一部が吸収されてしまうため、照射する光の強度によっては、十分な透過光が得られない可能性がある。従って、上記特許文献1に示したような非侵襲光学方式を利用した生体成分濃度測定装置では、十分な強度の光を射出可能な光源や、微弱な透過光を検出可能な検出器を用いることが好ましく、装置が大型化する傾向があった。また、生体成分として血中グルコース濃度を測定する場合には、透過光の散乱特性や透過光の脈動による変化を計測する必要があり、装置が大掛かりなものとなってしまう。そのため、検出精度を維持しつつ、装置の小型化を図ることが求められている。
そこで、本開示では、上記事情に鑑みて、装置の更なる小型化を図ることが可能な測定装置、測定方法、プログラム及び記録媒体を提案する。
本開示によれば、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定部と、前記測定部による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析部と、を備える測定装置が提供される。
また、本開示によれば、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出することと、前記測定光の光源と前記生体との間、又は、前記生体の内部から射出された前記測定光を検出する検出部と前記生体との間の少なくとも何れか一方の位置で、前記測定光の偏光方向を制御することと、前記生体の内部から射出された前記測定光を検出することと、前記測定光の検出結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析することと、を含む測定方法が提供される。
また、本開示によれば、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定機器と通信可能なコンピュータに、前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能を実現させるためのプログラムが提供される。
また、本開示によれば、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定機器と通信可能なコンピュータに、前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能を実現させるためのプログラムが記録された記録媒体が提供される。
また、本開示によれば、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定部と、前記測定部による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析部と、前記測定部の制御を行う測定制御部と、を備え、前記測定部は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出する測定ユニットであり、前記測定制御部は、前記測定光の偏光方向を時分割で切り替えさせる測定装置が提供される。
また、本開示によれば、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出することと、前記測定光の光源と前記生体との間、又は、前記生体の内部から射出された前記測定光を検出する検出部と前記生体との間の少なくとも何れか一方の位置で、前記測定光の偏光方向を制御することと、前記生体の内部から射出された前記測定光を検出することと、前記測定光の検出結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析することと、を含み、前記測定光の射出及び検出は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出する測定ユニットにより行われ、前記測定光の偏光方向は、時分割で切り替えられる、測定方法が提供される。
また、本開示によれば、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有し、生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出する測定機器と通信可能なコンピュータに、前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能と、前記測定機器の制御機能と、を実現させるためのプログラムが提供される。
本開示によれば、光源部から射出された測定光が生体から射出されて検出部によって検出されるまでの間に、偏光制御部により測定光の偏光方向が制御される。また、解析部は、測定部により測定された測定結果を利用し、測定光の偏光状態の変化に基づいて旋光度を算出し、算出した旋光度に基づいて生体成分の濃度を解析する。
以上説明したように本開示によれば、装置の更なる小型化を図ることが可能である。
旋光度に基づく濃度測定の原理について説明するための説明図である。 本開示の第1の実施形態に係る測定装置の構成を示したブロック図である。 同実施形態に係る測定装置が備える測定部の概略を示した説明図である。 同実施形態に係る測定部の概略を示した説明図である。 同実施形態に係る測定部の概略を示した説明図である。 同実施形態に係る測定部について説明するための説明図である。 同実施形態に係る偏光制御部について説明するための説明図である。 同実施形態に係る偏光制御部について説明するための説明図である。 同実施形態に係る光源部について説明するための説明図である。 同実施形態に係る光源部について説明するための説明図である。 同実施形態に係る測定部の具体例を示した説明図である。 同実施形態に係る測定部の具体例を示した説明図である。 同実施形態に係る測定部の具体例を示した説明図である。 同実施形態に係る測定部の具体例を示した説明図である。 同実施形態に係る測定部の具体例を示した説明図である。 同実施形態に係る測定部の具体例を示した説明図である。 同実施形態に係る測定部の具体例を示した説明図である。 同実施形態に係る解析部における解析処理について説明するための説明図である。 本開示の実施形態に係る測定装置のハードウェア構成の一例を示したブロック図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は、以下の順序で行うものとする。
(1)旋光度に基づく濃度測定の原理について
(2)第1の実施形態
(2−1)測定装置の構成について
(3)本開示の実施形態に係る測定装置のハードウェア構成について
(旋光度に基づく濃度測定の原理について)
本開示の実施形態に係る測定装置、測定方法、プログラム及び記録媒体について説明するに先立ち、以下では、図1を参照しながら、旋光度に基づく濃度測定の原理について、簡単に説明する。図1は、旋光度に基づく濃度測定の原理について説明するための説明図である。
光は電磁波の一種であるが、光を含む電磁波は、進行方向に対して垂直な様々な方向(例えば、縦方向、横方向、斜め方向等)に振動している横波として考えることができる。このような様々な方向に振動している光の中には、特定の方向に振動しているものも存在しうる。このような特定の方向に振動している光は、偏光と呼ばれる。このような偏光の一種として、振動方向が光の伝播に伴って円を描く円偏光や、特定の方向にのみ振動している平面偏光(面偏光ともいう。)等が存在する。また、上記円偏光には、回転方向(時計回りか反時計回りか)に応じて、右円偏光と左円偏光という2種類の円偏光が存在することが知られている。また、平面偏光は、全く同じ振動と周期で進行している右円偏光と左円偏光のベクトル和として考えることができる。
いま、図1に示したように、ある光源から円偏光の光が射出されたものとする。この円偏光の光路中に、特定の偏光(例えば、縦方向にのみ振動している光)を取り出すことが可能な光学素子である偏光子(偏光フィルタ)が設置されると、偏光フィルタを透過できる光は、図1に示したように、縦方向にのみ振動している面偏光のみとなる。
ここで、図1に示したように、面偏光がある物質(測定物質)に入射した場合を考える。測定物質が、グルコース等のように不斉炭素を有する物質の溶液であったり、偏極面を有する結晶等の固体であったりすると、面偏光と測定物質との間で相互作用が生じて、物質内を進む右円偏光の速度と左円偏光の速度とが異なってしまう場合が生じうる。この場合、右円偏光と左円偏光とのベクトル和として考えられる面偏光の偏光面は、入射した際の偏光面から角度αだけ回転してしまうこととなる。この場合に、右円偏光の速度が左円偏光の速度よりも大きい場合には、物質を射出した際の偏光面は、入射した際の偏光面から右に回転することとなり、左円偏光の速度が右円偏光の速度よりも大きい場合には、物質を射出した際の偏光面は、入射した際の偏光面から左に回転することとなる。このような現象は旋光と呼ばれ、回転した角度αは、旋光度と呼ばれている。
ここで、検出器により測定される旋光度αの大きさは、着目している物質に固有の定数(比旋光度)と、着目している物質の濃度と、透過距離と、を利用して、以下の式10で表されることが知られている。
Figure 0005990905
ここで、上記式10において、
α(λ):波長λの面偏光により測定した温度tにおける物質の旋光度の実測値
[α] λ:波長λの面偏光により測定した温度tにおける物質の比旋光度
C:物質の濃度[g/ml]
L:透過距離[mm]
である。
上記のように比旋光度は物質に固有の値であるため、物質中を光が進んだ長さ(上記式10におけるパラメータL)と、旋光度の実測値とを得ることができれば、上記式10を利用して着目する測定物質の濃度を特定することが可能となる。
以下で説明する本開示の実施形態に係る測定装置では、上記式10で表される旋光度に着目し、偏光を利用して生体を測定した測定結果を利用して、測定に用いた偏光(測定光)の偏光状態の変化から旋光度を算出する。その上で、本開示の実施形態に係る測定装置は、算出した旋光度に基づいて生体物質の濃度を特定する。
(第1の実施形態)
<測定装置の構成について>
続いて、図2〜図15を参照しながら、本開示の第1の実施形態に係る測定装置及び測定方法について、詳細に説明する。図2は、本実施形態に係る測定装置10の構成について示したブロック図である。図3A〜図3Cは、本実施形態に係る測定部の概略を示した説明図である。図4は、本実施形態に係る測定部について説明するための説明図である。図5及び図6は、本実施形態に係る偏光制御部について説明するための説明図である。図7A及び図7Bは、本実施形態に係る光源部について説明するための説明図である。図8〜図14は、本実施形態に係る測定部の具体例を示した説明図である。図15は、本実施形態に係る解析部における解析処理について説明するための説明図である。
まず、図2を参照しながら、本実施形態に係る測定装置10の全体構成について、詳細に説明する。
本実施形態に係る測定装置10は、測定対象物である生体Bの少なくとも一部を所定の波長を有する少なくとも1種の測定光を用いて測定し、得られた測定結果に基づいて、生体の内部に含まれる生体成分の濃度を算出する。この際、測定装置10では、測定光の偏光方向を制御しており、検出された測定光の偏光状態の変化(偏光方向の変化)に基づいて旋光度を算出する。その上で、測定装置10は、算出した旋光度に基づいて生体物質の濃度(例えば、血中グルコースや、アルブミンや、コレステロール等といった血中成分の濃度)を算出する。
また、本実施形態に係る測定装置10では、旋光度に基づく生体物質の濃度の解析のみならず、測定結果から得られる散乱特性スペクトルや吸収スペクトル等といった、測定結果から二次的に算出可能な情報を利用して、様々な生体成分の濃度を例えば多変量解析等により特定することも可能である。
この測定装置10は、図2に示したように、生体Bの測定領域を測定する測定部101と、測定制御部103と、解析部105と、記憶部107と、を主に備える。
[測定部101について]
以下では、まず、図3〜図14を参照しながら、本実施形態に係る測定部101の構成について、具体的に説明する。
本実施形態に係る測定部101は、図3A〜図3Cに示したように、光源部111と、検出部113と、偏光制御部115と、を主に備える。
○光源部について
光源部111は、生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出するものである。
光源部111が射出する測定光の波長は、着目する生体成分に応じて適宜設定することが可能である。例えば、酸素化ヘモグロビンを測定する場合には、波長940nm前後の近赤外光を使用することが可能であり、還元ヘモグロビンを測定する場合には、波長660nm前後の赤色光を使用することが可能である。また、光源部111が940nm、950nmのような波長の光を射出することで、皮下組織に存在する脂肪に関する知見を得ることができる。また、光源部111が568nm、580nm、660nm、890nmのような波長の光を射出することで、メラニン色素に関する知見を得ることができる。また、光源部111が、一般的に知られているグルコースの特徴的なスペクトルのピークである970nm、1160nm、1250nm、1400nm付近、1550nm、1650nm、2200nm、あるいはボトムとしての特徴である1200nm、1300nm付近、1600nm等の複数の特徴的な波長の光を時間分割的に射出し、得られた検出結果を、例えば多変量解析等といった各種の解析手法を用いて解析することで、グルコースに関する知見を得ることができる。このような複数の波長の光は、例えば、光源部111から時分割で射出される。
なお、前述の各種波長は、あくまでも一例であって、本実施形態に係る測定装置10の光源部111が射出する光が、上記の例に限定されるわけではない。
このような光源部111としては、例えば、発光ダイオード(Light Emitting Diode:LED)や小型のレーザ等を利用可能であり、このような発光デバイスが、光源部111として1又は複数個設けられる。
また、光源部111は、後述する測定制御部103により、上記測定光の射出タイミングや射出される測定光の強度や、複数の発光デバイスが存在する場合における発光デバイスの切り替え等が制御される。
○検出部について
検出部113は、生体Bの内部から射出された測定光を検出し、検出した測定光の強度を電気信号に変換して、後述する解析部105へと出力する。この検出部113は、例えば、CCD(Charge Coupled Devices)型画像センサ、CMOS(Complementary Metal Oxide Semiconductor)型画像センサ、有機ELを受光素子としたセンサ、TFT(Thin Film Transistor)型画像センサや等の2次元エリアセンサ等といった、いわゆるイメージセンサを用いて構成されている。また、かかるイメージセンサとして、複数のマイクロレンズが格子状に配列されたマイクロレンズアレイ(MLA)光学系を有するマイクロレンズアレイイメージセンサを利用することも可能である。なお、単純化したモデルとしては、この検出部113に、ラインセンサ等の1次元センサを実装することも可能である。
また、検出部113として、イメージセンサ以外にも、フォトダイオード(PD)や、InGaAs検出器等といった各種の光検出器等を用いることも可能である。
この検出部113は、後述する測定制御部103により走査タイミング等が制御されており、任意のタイミングで測定光の検出強度を解析部105に出力することができる。
なお、本実施形態に係る測定装置10で着目する生体成分によっては、イメージセンサやフォトダイオード等の検出器において検出可能な波長帯域の幅が、着目する生体成分の測定に求められる波長帯域よりも狭い場合も生じうる。このような場合には、例えば図4に示したように、検出可能な波長帯域の幅が異なる複数種類の検出器を組み合わせて利用することで、検出部113とすることも可能である。図4に示した場合では、検出可能な波長帯域が一部重複しながら相違している2種類の検出器(検出器A及び検出器B)を用いて、生体成分の測定に求められる波長帯域を確保する場合について図示している。
○偏光制御部について
偏光制御部115は、例えば偏光フィルタ等の偏光子に代表されるように、測定光として用いられる光の偏光方向を制御可能な光学素子であり、本実施形態に係る測定部101では、少なくとも測定光が互いに直交する2種類の面偏光となるように、少なくとも2種類の偏光制御部115(偏光フィルタ等)が利用される。
このような偏光制御部115は、図3A〜図3Cに示したように、光源部111と生体との間(図3Aに対応)、生体と検出部113との間(図3Bに対応)、又は、光源部111と生体との間及び生体と検出部113との間の両方(図3Cに対応)に設けられている。
偏光フィルタ等の偏光制御部115を、光源部111と生体との間に設けることにより、互いに異なる偏光方向を有する面偏光(少なくとも互いに直交する2種類の面偏光)を、生体に照射することが可能となる。また、偏光フィルタ等の偏光制御部115を、生体と検出器113との間に設けることにより、生体内を経由して生体から射出された測定光の偏光方向を選択することができ、生体から射出された偏光面の異なる測定光を検出部113で別個に検出することが可能となる。また、図3Cに示したように、光源部111と生体との間、及び、生体の検出部113との間の両方に偏光制御部115を設けることで、測定部101として着目する測定光の偏光状態の組み合わせ数を、更に増加させることが可能となる。
以下では、図3Cに示したように、偏光制御部115が、光源部111と生体との間、及び、生体の検出部113との間の両方に設けられる場合を例にとって、説明を行うものとする。
本実施形態に係る測定部101では、先述のように、少なくとも測定光が互いに直交する2種類の面偏光となるように、少なくとも2種類の偏光制御部115(偏光フィルタ等)が利用される。また、本実施形態に係る測定部101では、互いに直交する2種類の面偏光に加え、この互いに直交する2種類の面偏光とは異なる面偏光が得られるように(換言すれば、互いに直交する2種類の偏光方向を補間するように)、更に別の偏光方向を選択可能な偏光制御部115が利用されてもよい。すなわち、本実施形態に係る測定部101では、解析に有効な測定データを得るために適切な偏光の組み合わせを実現可能なように、複数の偏光フィルタを適宜組み合わせることが可能である。
図5は、互いに異なる偏光方向を有する複数の偏光制御部を用いる場合での偏光方向の組み合わせ例を示したものである。図5(a)に示したように、本実施形態に係る偏光制御部115としては、少なくとも測定光が互いに直交する2つの面偏光となるように、2種類の偏光フィルタ(例えば、0°方向と90°方向の2種類の偏光方向に対応する偏向フィルタ)が用いられる。また、本実施形態では、例えば図5(b)や図5(c)に示したように、互いに直交する2種類の偏向方向を補間するように、2種類の方向の間に位置する偏光方向を選択可能な偏光フィルタを更に利用しても良い。すなわち、図5(b)に示した例では、0°方向に対応する偏光フィルタ、及び、90°方向に対応する偏光フィルタに加えて、45°方向に対応する偏光フィルタ、及び、135°方向に対応する偏光フィルタを用いる場合を示している。また、図5(c)に示した例では、0°方向に対応する偏光フィルタ、及び、90°方向に対応する偏光フィルタに加えて、30°、60°、120°及び150°に対応する偏光フィルタを用いる場合を示している。
図5(b)及び図5(c)に示したように、互いに直交する偏光方向を補間するように更なる偏光フィルタを用いることで、後述する解析部105によって旋光度を特定する際に、より正確に旋光度を特定することが可能となる。
また、図5に示したように、光源部111と生体との間に設けられる偏光制御部115と、生体と検出部113との間に設けられる偏光制御部115とは、例えば、0°と0°、90°と90°等のように、選択可能な偏光面が対となるように設定される。しかしながら、本実施形態に係る測定部101では、例えば図6に示したように、生体と検出部113との間に設けられた偏光制御部115によって選択される偏光方向が、光源部111と生体との間に設けられた偏光制御部115によって選択される偏光方向に対して所定のオフセット角だけ回転したものとなるように、設定されていてもよい。図6に示したように、2箇所に設けられる偏光制御部(偏光フィルタ)115の角度をずらして設定することによって、用いる偏光フィルタの個数を削減しながら、多くの偏光状態を選択することが可能となる。
また、光源部111と生体との間に設けられる偏光制御部115の設置角度と、生体と検出部113との間に設けられる偏光制御部115の設置角度とが異なるようにすることで、検出する光が偏光制御部115によってブラックアウトすることを防止できる。これにより、後述する解析部105において、信号強度に基づく演算を行う際に、ゼロで割り算をする(すなわち、演算結果が無限大となってしまう)といったような状況を回避することができ、解析精度を向上させることが可能となる。
以上、図3A〜図6を参照しながら、本実施形態に係る測定部101について、詳細に説明した。
○複数の波長を有する偏光の制御について
以上説明したように、本実施形態に係る測定部101では、複数種類の偏光面を有する複数の波長の光を、生体成分の濃度を分析するための測定光として利用することが可能である。以下では、図7A及び図7Bを参照しながら、このような複数の偏光面を有する複数の波長の測定光の制御方法について、簡単に説明する。なお、以下では、偏光方向A、偏光方向Bという2種類の偏光方向を有する3種類の波長(970nm、1200nm、1650nm)の測定光を用いる場合を例に挙げて、説明を行うものとする。
本実施形態に係る測定部101では、偏光方向2種類×波長3種類=6種類の面偏光を生体に向けて照射する際に、図7Aに示したように、光源及び偏光フィルタの組み合わせをシーケンシャルに切り替えて、6種類の面偏光を時分割で照射することが可能である。
ここで、測定光として用いる光の波長の種類が増加すると、得られる検出信号のピーク形状がなまってしまう可能性がある。そこで、照射する面偏光の切り替えを図7Aに示したように規則性を持たせて行うのではなく、図7Bに示したように切り替えをランダムに行うことで、得られる検出信号の精度を向上させることができる。これは、切り替えをランダムに行うことで、サンプリング周波数よりも高い周波数を有するデータを検出することが可能となるためである。このような制御を行うことで、後述する解析部105において、二次的情報として検出信号の時間変化(すなわち、脈波形等)を算出して生体成分の解析に利用する際に、波形形状の精度を向上させることができ、より正確な測定を行うことが可能となる。
○測定部の具体例について
続いて、図8〜図14を参照しながら、本実施形態に係る測定部101の具体例について説明する。
まず、図8に示した測定部101の具体例について説明する。図8に示した測定部101は、測定光を生体に照射する照射ユニットと、生体から射出された測定光を検出する検出ユニットの2つのユニットを有している。この測定部101は、生体Bの内部で散乱した測定光が当該生体の内部で反射した結果生体から射出される測定光を検出する、いわゆる反射散乱型の測定ユニットとなっている。このような反射散乱型の測定ユニットでは、測定光は生体Bの内部を略U字形状に進行して、検出部113に検出されることとなる。
図8に示した例では、光源部111として、1〜nのn種類の波長を射出可能な同一のLEDアレイを2つ利用し、それぞれのLEDアレイの上方に、互いに異なる偏光方向を選択可能な偏光フィルタ(偏光フィルタ115a、115b)を設けている。また、偏光フィルタ115を透過した測定光は、対物レンズ117を透過した後に生体Bに向かって照射される。
略U字形状のパスで生体Bの内部を通過した測定光は、検出部113側の偏光フィルタ115(より詳細には、光源部111側の偏光フィルタと同様の偏光フィルタ115a、115b)によって偏光方向が選択される。その後、偏光フィルタ115を透過した測定光は、対物レンズ117によって集光されて、検出部113として機能するイメージセンサに結像される。
イメージセンサでは、図8右側に示したように、光源部111と同期したタイミングで、各面偏光について検出結果を取得し、解析部105に検出結果を出力する。
図8左側に示したように、本具体例では、LEDアレイと偏光フィルタとを組み合わせて用いることで、予め所定の面偏光となるように設定された光源群を設けておき、このような光源群を電気的に切り替えて用いる。これにより、ある偏光(例えば、0°方向の面偏光)を有するn種類の測定光を射出可能なLEDアレイ(A1、A2、・・・、An)と、このLEDアレイとは異なる偏光(例えば、90°方向の面方向)を有するn種類の測定光を射出可能なLEDアレイ(B1、B2、・・・、Bn)と、を実現することができる。このような照射ユニットを用いることで、異なる偏光面を有する測定光を時分割で照射することが可能となる。
図8に示した例では、検出ユニットに通常のイメージセンサを用いているが、図9に示したように、検出ユニットとして、偏光フィルタ115が設けられたマイクロレンズアレイ(MLA)イメージセンサを利用することも可能である。ここで、図9に示した照射ユニットは、図8に示した例と同様の構成となっている。
MLAイメージセンサは、マイクロレンズアレイ光学系を有しているイメージセンサである。マイクロレンズアレイは、受光レンズである複数のマイクロレンズから構成されており、各マイクロレンズは、所定の基板上に格子状に配列されている。各マイクロレンズは、マイクロレンズに入射した測定光を、イメージセンサへと導光する。
マイクロレンズアレイは、像面湾曲が少なく深さ方向のひずみがないレンズアレイであるため、このようなマイクロレンズアレイを用いることで、良好な測定データを得ることができる。なお、マイクロレンズアレイを構成する各マイクロレンズの被写界深度は、生体Bが接写距離に存在している場合であっても本実施形態に係る測定装置10で着目する皮膚構造を包括するように(例えば、体表から数ミリ〜十数ミリの深さの範囲までがフォーカスされるように)設定される。
MLAイメージセンサでは、隣接するマイクロレンズ間に遮光体が設けられて、光の指向性が制御されており、マイクロレンズ間での検出光のクロストークを防止することができる。また、各マイクロレンズに対応するイメージセンサの1又は複数の画素から選択的に信号を取得することが可能である。そのために、MLAイメージセンサを利用することで、空間分解能及び時間分解能の優れた検出信号を得ることが可能となる。
図10は、図8に示した照射ユニット及び検出ユニットを、生体を挟んで互いに対向するように配置して、生体Bの内部を完全に透過した測定光を検出する透過型の測定ユニットとして利用した例を示している。このような透過型の測定ユニットの場合であっても、図11に示したように、MLAイメージセンサを利用することも可能である。
ここで、図10及び図11に示したような透過型の測定ユニットではなく、図8及び図9に示したような反射散乱型の測定ユニットを用いることで、測定光が生体内を通過するパスの長さを、透過型の場合に比べて短くすることが可能となる。測定光が生体内を通過する距離が短くなることで、生体内に存在する様々な生体成分等により測定光が吸収されたり散乱されたりする度合いを減少させることができる。その結果、透過方式では困難であった1000nm以上の波長帯域における生体成分の検出が可能となり、例えばグルコース等のように温度変動の大きな物質を測定する際であっても、測定結果に重畳される変動の影響を軽減することができる。更に、射出可能な強度の低い低光量の光源を用いた場合であっても生体から射出される光量の割合が増加することから、従来に比べ光源に消費される電力を軽減することが可能となる。
また、図8〜11に示した例では、検出部113としてイメージセンサを用いていたが、図12に示したように、検出部113として、フォトダイオード(PD)を利用することも可能である。図12は、検出部113としてフォトダイオードを利用した場合における測定部101の一具体例について示している。
図12に示した測定部101のうち、図12左側に示した照射ユニットの構造については、図8に示した照射ユニットと同様であるため、以下では詳細な説明は省略する。
図12に示した測定部101の検出ユニットは、図12右側に示したように、照射ユニットにおける偏光フィルタ115(偏光フィルタ115a、115b)と対応している偏光フィルタ115と、対物レンズ117と、検出部113として機能するフォトダイオードと、を有している。
図12に示した例では、フォトダイオードとして、図4にて説明したように、波長帯域の異なる2種類のフォトダイオードPD_a、PD_bを用いている。この2種類のフォトダイオードからなるフォトダイオード群を2セット用い、それぞれのフォトダイオード群を偏光フィルタ115a、115bそれぞれの下方に配置する。これにより、検出すべき測定光のうち、ある偏光方向(例えば、0°方向の面偏光)の成分は、偏光フィルタ115aの下方に設けられたフォトダイオードPD_a、PD_bにより検出されることとなり、異なる偏光方向(例えば、90°方向の面偏光)の成分は、偏光フィルタ115bの下方に設けられたフォトダイオードPD_a、PD_bにより検出されることとなる。
図12に示した例では、反射散乱型の測定ユニットが図示されているが、例えば図13に示したように、図12に示した照射ユニット及び検出ユニットを、生体を挟んで互いに対向するように配置して、透過型の測定ユニットとすることも可能である。
また、図8〜図13に示した例では、検出部113の上方に偏光制御部115として偏光フィルタを配置する場合について説明したが、図14に示したように、例えばイメージセンサの画素毎に、受光する光の偏光方向を選択することも可能である。すなわち、図14に示したように、画素毎に偏光フィルタを配置することで、一つのイメージセンサで異なる偏光面を有する面偏光を同時に測定することが可能となる。この場合、図14に示したように、ある2種類の偏光方向の組み合わせをイメージセンサの画素上に実現してもよく、4種類の偏光方向の組み合わせが実現できるように、イメージセンサの画素上に偏光フィルタを配置してもよい。
このように、本実施形態に係る測定装置10では、測定光として用いられる光の偏光方向を電気的に切り替えて生体成分の測定に用いるため、従来の非侵襲光学方式を利用した測定装置に比べて、装置の更なる小型化を図ることが可能となる。また、測定部101として、反射散乱型の光学系を採用することにより、装置の更なる小型化を図ることが可能となるとともに、被測定者の利便性を向上させることも可能となる。
以上、図2〜図14を参照しながら、本実施形態に係る測定装置10が備える測定部101について、詳細に説明した。
[測定制御部103について]
再び図2に戻って、本実施形態に係る測定装置10が備える測定制御部103について説明する。
測定制御部103は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等により実現される。測定制御部103は、測定部101に設けられた光源部111、検出部113等の駆動制御や偏光制御部115の制御等を行うことにより、測定部101における生体Bの測定処理全般を統括する。より詳細には、測定制御部103は、所定の同期信号等に基づいて、検出部113の走査タイミングや、情報を取得する検出部113の選択等といった検出部の駆動制御を行う。また、測定制御部103は、光源部111に対しても、光源の切り替えといった切り替え制御や、測定光の射出タイミングや強度に関する駆動制御を行う。
測定制御部103が以上のような制御を行うことで、測定部101の光源部111は、時分割で異なる波長及び異なる偏光方向の測定光を射出することが可能となるとともに、検出部113上の任意の位置の測定データを時分割で取得することが可能となる。
測定制御部103により制御された測定部101により測定された測定データは、後述する解析部105へと出力されて、測定データの解析処理が実施される。
ここで、制御部103は、測定部101の制御を行うにあたり、後述する記憶部107に記録されている各種のプログラムやパラメータやデータベース等を参照することが可能である。
[解析部105について]
本実施形態に係る測定装置10が備える解析部105は、例えば、CPU、ROM、RAM等により実現される。解析部105は、測定部101による測定結果を利用して測定光の偏光状態の変化に基づいて旋光度を算出し、算出した旋光度に基づいて生体成分の濃度を解析する。
先だって説明したように、本実施形態に係る測定部101では、偏光フィルタ等の偏光制御部115を利用することで、偏光フィルタ等の偏光制御部115により規定される偏光方向を有する面偏光の成分が、検出部113により検出される測定光にどの程度含まれているかを測定することができる。そこで、本実施形態に係る解析部105では、検出部113が検出したそれぞれの面偏光の検出強度の比率(センサゲインの比率)を利用して、どのような偏光方向の光がどの程度の割合で混合しているのかを特定する。このような比率を得ることができると、解析部105は、得られた比率と、偏光フィルタで規定されているそれぞれの偏光方向が表すベクトルと、に基づくベクトル計算(ベクトルの合成処理)を行うことで、検出された測定光の偏光面の方向を特定することができる。解析部105は、測定制御部103から取得した、着目している測定結果がどのような偏光方向の測定光を用いて測定されたのか、という情報(図7A、図7B等に示したような時分割のタイミングチャートから得られる情報)と、得られた偏光面の方向と、に基づいて、旋光度を算出することができる。
解析部105は、以上のような方法により旋光度を算出すると、記憶部107等に格納されている着目生体成分(例えば、血中グルコースや、アルブミンや、コレステロール等)の比旋光度を参照して、上記式10に基づいて、着目生体成分の濃度を算出する。
ここで、上記式10に基づいて生体成分の濃度を算出するためには、光の透過距離Lを用いることが求められるが、透過距離Lは、測定部101における光源部111と検出部113との間の離隔距離を参考にして予め設定された定数を利用することが可能である。
また、解析部105は、上記のような旋光度に加え、様々な波長の測定光を利用した際のそれぞれの測定結果を利用して、散乱特性スペクトルや吸収スペクトルを得ることができる。そこで、解析部105は、このような散乱特性スペクトルや吸収スペクトルを更に利用して、様々な生体成分の濃度を算出することが可能である。この際、解析部105は、ある所定の演算式に基づいて着目する生体成分の濃度を算出してもよいし、いわゆる多変量解析を行うことで着目する生体成分の濃度を算出してもよい。
また、解析部105は、生体に向かって射出される測定光の偏光面と、生体から射出された測定光の偏光面とに基づいて、生体の内部で散乱された散乱光と、生体を透過した透過光(換言すれば、生体内を直進した光)と、を分離することができる。このような散乱光と透過光との分離処理は、測定光として利用したそれぞれの波長での測定光の偏光面に基づいて、行うことが可能である。
また、先だって説明した本実施形態に係る測定方式においても、物質の光吸収率を利用した公知の方式と同様にして、動脈中の成分の時間変動を利用して動脈血内の成分のみを抽出することができる。古くはパルスオキシメータに代表されるように、光源部111から生体Bの内部を通過して検出部113で検出された信号には、動脈の拍動(脈拍)により変動を受けた動脈血の量的な変化が含まれている。従って、例えば図15に示したように、動脈血の量的な変化を脈波形として抽出することで、解析部105は、公知の方法に基づいて動脈内の血中酸素飽和度等を推定することができる。
また、測定制御部103及び解析部105が互いに連携し、複数種類の波長を有する測定光を組み合わせて高速な多波長光源による時分割サンプリングを実施して、これら複数種類の波長の測定光を時間分割で射出することにより、解析部105は、グルコース等といった他の動脈血中の生体成分の濃度も推定が可能である。具体的には、解析部105は、それぞれの波長の測定光における測定結果から算出された旋光度の時間変化や、散乱特性スペクトルの時間変化に着目することで、例えば図15に示したように、脈波形を表すデータを得ることができる。解析部105は、得られた脈波形を表すデータのピーク値及びボトム値を利用して、公知の方法により動脈血中の生体成分の濃度(例えば、グルコース濃度や、アルブミン濃度や、コレステロール濃度等)を推定することができる。
グルコース等の血中成分を物質の光吸収率に着目して測定する場合、これらの血中成分の中には温度変動が非常に大きいものも存在するため、実用化が困難とされてきた。しかしながら、本実施形態に係る測定方式のように、変化率がより大きい散乱特性や旋光度を利用することによって、温度変動の非常に大きいグルコース等のような血中成分であっても、安定した分離が可能となる。
[記憶部107について]
再び図2に戻って、本実施形態に係る測定装置10が備える記憶部107について説明する。
記憶部107は、本実施形態に係る測定装置10に設けられたRAMやストレージ装置等により実現される。記憶部107には、解析部105における解析処理に用いられる各種のデータや、各種のデータベースやルックアップテーブル等が格納されている。また、記憶部107には、本実施形態に係る測定部101により測定された測定データや、本実施形態に係る測定制御部103や解析部105が実施する処理に用いられる各種のプログラムやパラメータやデータ等が記録されていてもよい。また、記憶部107には、これらのデータ以外にも、測定装置10が、何らかの処理を行う際に保存する必要が生じた様々なパラメータや処理の途中経過等を適宜記憶することが可能である。この記憶部107は、測定部101、測定制御部103、解析部105等の各処理部が、自由にアクセスし、データを書き込んだり読み出したりすることができる。
以上、図2〜図15を参照しながら、本実施形態に係る測定装置10の構成について、詳細に説明した。
なお、本実施形態に係る測定制御部103及び解析部105は、本実施形態に係る測定装置10の一部であってもよいし、測定装置10に接続されているコンピュータ等の外部機器に実現されていてもよい。また、測定部101によって生成される測定データがリムーバブル記憶媒体等に格納され、この記憶媒体が測定装置10から取り外されて、解析部105を有する他の装置に接続されることで、測定データが解析されてもよい。
以上、本実施形態に係る測定装置10の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU等が全て行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。
なお、上述のような本実施形態に係る測定装置の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
(ハードウェア構成について)
次に、図16を参照しながら、本開示の実施形態に係る測定装置10のハードウェア構成について、詳細に説明する。図16は、本開示の実施形態に係る測定装置10のハードウェア構成を説明するためのブロック図である。
測定装置10は、主に、CPU901と、ROM903と、RAM905と、を備える。また、測定装置10は、更に、ホストバス907、ブリッジ909、外部バス911、インターフェース913、センサ914、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923および通信装置925を備える。
CPU901は、演算処理装置および制御装置として機能し、ROM903、RAM905、ストレージ装置919、またはリムーバブル記録媒体927に記録された各種プログラムに従って、測定装置10内の動作全般またはその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるホストバス907により相互に接続されている。
ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。
センサ914は、例えば、ユーザに固有の生体情報、または、かかる生体情報を取得するために用いられる各種情報を検出する検出手段である。このセンサ914として、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の各種の撮像素子を挙げることができる。また、センサ914は、生体部位を撮像するために用いられるレンズ等の光学系や光源等を更に有していてもよい。また、センサ914は、音声等を取得するためのマイクロフォン等であってもよい。なお、センサ914は、上述のもの以外にも、温度計、照度計、湿度計、速度計、加速度計などの様々な測定機器を備えていてもよい。
入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなどユーザが操作する操作手段である。また、入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、測定装置10の操作に対応した携帯電話やPDA等の外部接続機器929であってもよい。さらに、入力装置915は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。測定装置10のユーザは、この入力装置915を操作することにより、測定装置10に対して各種のデータを入力したり処理動作を指示したりすることができる。
出力装置917は、取得した情報をユーザに対して視覚的または聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置およびランプなどの表示装置や、スピーカおよびヘッドホンなどの音声出力装置や、プリンタ装置、携帯電話、ファクシミリなどがある。出力装置917は、例えば、測定装置10が行った各種処理により得られた結果を出力する。具体的には、表示装置は、測定装置10が行った各種処理により得られた結果を、テキストまたはイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。
ストレージ装置919は、測定装置10の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイス等により構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ、および外部から取得した各種データなどを格納する。
ドライブ921は、記録媒体用リーダライタであり、測定装置10に内蔵、あるいは外付けされる。ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体927に記録を書き込むことも可能である。リムーバブル記録媒体927は、例えば、DVDメディア、HD−DVDメディア、Blu−rayメディア等である。また、リムーバブル記録媒体927は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ、または、SDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)または電子機器等であってもよい。
接続ポート923は、機器を測定装置10に直接接続するためのポートである。接続ポート923の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート等がある。接続ポート923の別の例として、RS−232Cポート、光オーディオ端子、HDMI(High−Definition Multimedia Interface)ポート等がある。この接続ポート923に外部接続機器929を接続することで、測定装置10は、外部接続機器929から直接各種データを取得したり、外部接続機器929に各種データを提供したりする。
通信装置925は、例えば、通信網931に接続するための通信デバイス等で構成された通信インターフェースである。通信装置925は、例えば、有線または無線LAN(Local Area Network)、Bluetooth(登録商標)、またはWUSB(Wireless USB)用の通信カード等である。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、または、各種通信用のモデム等であってもよい。この通信装置925は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置925に接続される通信網931は、有線または無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信または衛星通信等であってもよい。
以上、本開示の実施形態に係る測定装置10の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定部と、
前記測定部による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析部と、
を備える、測定装置。
(2)
前記偏光制御部は、前記測定光が互いに直交する2種類の面偏光となるように、前記測定光の偏光方向を制御する、(1)に記載の測定装置。
(3)
前記測定装置は、前記測定部の制御を行う測定制御部を更に備え、
前記測定制御部は、前記測定光の偏光方向を時分割で切り替えさせる、(1)又は(2)に記載の測定装置。
(4)
前記解析部は、前記検出部が検出したそれぞれの前記面偏光の検出強度の比率を利用して検出された前記測定光の偏光方向を特定し、特定結果に基づいて前記旋光度を算出する、(1)〜(3)の何れか1つに記載の測定装置。
(5)
前記偏光制御部は、前記互いに直交する2種類の面偏光に加え、当該互いに直交する2種類の面偏光とは異なる面偏光となるように、前記測定光の偏光方向を制御する、(1)〜(4)の何れか1つに記載の測定装置。
(6)
前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
前記測定制御部は、前記光源部から射出される前記測定光の波長の選択及び前記偏光制御部による前記測定光の偏光方向の制御を時分割で実施する際に、前記測定光の波長及び前記偏光状態の組み合わせをランダムに変更する、(1)〜(5)の何れか1つに記載の測定装置。
(7)
前記偏光制御部は、前記光源部と前記生体との間、及び、前記生体と前記検出部との間の双方に設けられており、
前記生体と前記検出部との間に設けられた前記偏光制御部によって選択される偏光方向は、前記光源部と前記生体との間に設けられた前記偏光制御部によって選択される偏光方向に対して、所定のオフセット角だけ回転したものとなっている、(1)〜(6)の何れか1つに記載の測定装置。
(8)
前記測定部は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出する測定ユニットである、(1)〜(7)の何れか1つに記載の測定装置。
(9)
前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
前記解析部は、それぞれの波長における前記測定光の検出結果から得られた前記旋光度の時間変化に基づいて、前記生体の内部に存在する動脈の拍動に起因する脈動を表す脈波形を取得し、取得した前記脈波形のピーク値及びボトム値を利用して、動脈血中の前記生体成分の濃度を算出する、(1)〜(8)に記載の測定装置。
(10)
前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
前記解析部は、それぞれの波長における前記測定光の検出結果から得られた散乱特性スペクトル又は吸収スペクトルを更に利用して、前記生体成分の濃度を算出する、(1)〜(8)の何れか1つに記載の測定装置。
(11)
前記解析部は、それぞれの波長における前記測定光の検出結果から得られた前記散乱特性スペクトルの時間変化に基づいて、前記生体の内部に存在する動脈の拍動に起因する脈動を表す脈波形を取得し、取得した前記脈波形のピーク値及びボトム値を利用して、動脈血中の前記生体成分の濃度を算出する、(10)に記載の測定装置。
(12)
前記解析部は、血中グルコースの濃度を算出する、(1)〜(11)の何れか1つに記載の測定装置。
(13)
前記解析部は、前記生体に向かって射出される前記測定光の偏光面と、前記生体から射出された前記測定光の偏光面とに基づいて、前記生体の内部で散乱された散乱光と、前記生体を透過した透過光と、を分離する、(1)〜(12)の何れか1つに記載の測定装置。
(14)
前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
前記解析部は、それぞれの波長における前記測定光の偏光面に基づいて、前記散乱光と前記透過光とを分離する、(13)に記載の測定装置。
(15)
生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出することと、
前記測定光の光源と前記生体との間、又は、前記生体の内部から射出された前記測定光を検出する検出部と前記生体との間の少なくとも何れか一方の位置で、前記測定光の偏光方向を制御することと、
前記生体の内部から射出された前記測定光を検出することと、
前記測定光の検出結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析することと、
を含む、測定方法。
(16)
生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定機器と通信可能なコンピュータに、
前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能
を実現させるためのプログラム。
(17)
生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定機器と通信可能なコンピュータに、
前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能
を実現させるためのプログラムが記録された記録媒体。
(18)
生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定部と、
前記測定部による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析部と、
前記測定部の制御を行う測定制御部と、
を備え、
前記測定部は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出する測定ユニットであり、
前記測定制御部は、前記測定光の偏光方向を時分割で切り替えさせる、測定装置。
(19)
生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出することと、
前記測定光の光源と前記生体との間、又は、前記生体の内部から射出された前記測定光を検出する検出部と前記生体との間の少なくとも何れか一方の位置で、前記測定光の偏光方向を制御することと、
前記生体の内部から射出された前記測定光を検出することと、
前記測定光の検出結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析することと、
を含み、
前記測定光の射出及び検出は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出する測定ユニットにより行われ、
前記測定光の偏光方向は、時分割で切り替えられる、測定方法。
(20)
生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有し、生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出する測定機器と通信可能なコンピュータに、
前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能と、
前記測定機器の制御機能と、
を実現させるためのプログラム。
10 測定装置
101 測定部
103 測定制御部
105 解析部
107 記憶部
111 光源部
113 検出部
115 偏光制御部(偏光フィルタ)
117 対物レンズ

Claims (14)

  1. 生体の内部に含まれる生体成分を測定するための少なくとも1種の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を制御する偏光制御部を有する測定部と、
    前記測定部による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析部と、
    前記測定部の制御を行う測定制御部と、
    を備え、
    前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
    前記検出部は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出するマイクロレンズアレイ光学系を有し、画素毎に受光する光の偏光方向が制御されたマイクロレンズアレイイメージセンサを含むユニットであり、
    前記測定制御部は、前記測定光の偏光方向を時分割で切り替えさせるとともに、前記光源部から射出される前記測定光の波長の選択及び前記偏光制御部による前記測定光の偏光方向の制御を時分割で実施する際に、前記測定光の波長及び前記偏光方向の組み合わせをランダムに変更する、測定装置。
  2. 前記偏光制御部は、前記測定光が互いに直交する2種類の面偏光となるように、前記測定光の偏光方向を制御する、請求項1に記載の測定装置。
  3. 前記解析部は、前記検出部が検出したそれぞれの面偏光の検出強度の比率を利用して検出された前記測定光の偏光方向を特定し、特定結果に基づいて前記旋光度を算出する、請求項1又は2に記載の測定装置。
  4. 前記偏光制御部は、互いに直交する2種類の面偏光に加え、当該互いに直交する2種類の面偏光とは異なる面偏光となるように、前記測定光の偏光方向を制御する、請求項1〜3の何れか1項に記載の測定装置。
  5. 前記偏光制御部は、前記光源部と前記生体との間、及び、前記生体と前記検出部との間の双方に設けられており、
    前記生体と前記検出部との間に設けられた前記偏光制御部によって選択される偏光方向は、前記光源部と前記生体との間に設けられた前記偏光制御部によって選択される偏光方向に対して、所定のオフセット角だけ回転したものとなっている、請求項1〜の何れか1項に記載の測定装置。
  6. 前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
    前記解析部は、それぞれの波長における前記測定光の検出結果から得られた前記旋光度の時間変化に基づいて、前記生体の内部に存在する動脈の拍動に起因する脈動を表す脈波形を取得し、取得した前記脈波形のピーク値及びボトム値を利用して、動脈血中の前記生体成分の濃度を算出する、請求項1〜の何れか1項に記載の測定装置。
  7. 前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
    前記解析部は、それぞれの波長における前記測定光の検出結果から得られた散乱特性スペクトル又は吸収スペクトルを更に利用して、前記生体成分の濃度を算出する、請求項1〜の何れか1項に記載の測定装置。
  8. 前記解析部は、それぞれの波長における前記測定光の検出結果から得られた前記散乱特性スペクトルの時間変化に基づいて、前記生体の内部に存在する動脈の拍動に起因する脈動を表す脈波形を取得し、取得した前記脈波形のピーク値及びボトム値を利用して、動脈血中の前記生体成分の濃度を算出する、請求項に記載の測定装置。
  9. 前記解析部は、血中グルコースの濃度を算出する、請求項1〜の何れか1項に記載の測定装置。
  10. 前記解析部は、前記生体に向かって射出される前記測定光の偏光面と、前記生体から射出された前記測定光の偏光面とに基づいて、前記生体の内部で散乱された散乱光と、前記生体を透過した透過光と、を分離する、請求項1〜の何れか1項に記載の測定装置。
  11. 前記光源部は、互いに異なる複数種類の波長の前記測定光を射出し、
    前記解析部は、それぞれの波長における前記測定光の偏光面に基づいて、前記散乱光と前記透過光とを分離する、請求項10に記載の測定装置。
  12. 生体の内部に含まれる生体成分を測定するための互いに異なる複数種類の波長を有する測定光を射出することと、
    前記測定光の光源と前記生体との間、又は、前記生体の内部から射出された前記測定光を検出する検出部と前記生体との間の少なくとも何れか一方の位置で、前記測定光の偏光方向を時分割で制御し、前記測定光の波長及び前記偏光方向の組み合わせをランダムに変更することと、
    前記生体の内部から射出された前記測定光を検出することと、
    前記測定光の検出結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析することと、
    を含み、
    前記検出部は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出するマイクロレンズアレイ光学系を有し、画素毎に受光する光の偏光方向が制御されたマイクロレンズアレイイメージセンサを含むユニットである、測定方法。
  13. 生体の内部に含まれる生体成分を測定するための互いに異なる複数種類の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を時分割で制御する偏光制御部を有し、前記検出部は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出するマイクロレンズアレイ光学系を有し、画素毎に受光する光の偏光方向が制御されたマイクロレンズアレイイメージセンサを含むユニットであり、前記測定光の波長の選択及び前記測定光の偏光方向の制御が時分割で実施される際に、前記測定光の波長及び前記偏光方向の組み合わせがランダムに変更される測定機器と通信可能なコンピュータに、
    前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能
    を実現させるためのプログラム。
  14. 生体の内部に含まれる生体成分を測定するための互いに異なる複数種類の波長を有する測定光を射出する光源部、前記生体の内部から射出された前記測定光を検出する検出部、及び、前記光源部と前記生体との間、又は、前記生体と前記検出部との間の少なくとも何れか一方に設けられ、前記測定光の偏光方向を時分割で制御する偏光制御部を有し、前記検出部は、前記生体の内部で散乱した前記測定光が当該生体の内部で反射した結果前記生体から射出される前記測定光を検出するマイクロレンズアレイ光学系を有し、画素毎に受光する光の偏光方向が制御されたマイクロレンズアレイイメージセンサを含むユニットであり、前記測定光の波長の選択及び前記測定光の偏光方向の制御が時分割で実施される際に、前記測定光の波長及び前記偏光方向の組み合わせがランダムに変更される測定機器と通信可能なコンピュータに、
    前記測定機器による測定結果を利用して前記測定光の偏光状態の変化に基づいて旋光度を算出し、算出した前記旋光度に基づいて前記生体成分の濃度を解析する解析機能
    を実現させるためのプログラムが記録された記録媒体。
JP2011277613A 2011-12-19 2011-12-19 測定装置、測定方法、プログラム及び記録媒体 Expired - Fee Related JP5990905B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011277613A JP5990905B2 (ja) 2011-12-19 2011-12-19 測定装置、測定方法、プログラム及び記録媒体
US14/364,580 US9867559B2 (en) 2011-12-19 2012-11-22 Measurement device, measurement method, program and recording medium
PCT/JP2012/080334 WO2013094362A1 (ja) 2011-12-19 2012-11-22 測定装置、測定方法、プログラム及び記録媒体
CN201280061217.2A CN103987316B (zh) 2011-12-19 2012-11-22 测量设备、测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277613A JP5990905B2 (ja) 2011-12-19 2011-12-19 測定装置、測定方法、プログラム及び記録媒体

Publications (3)

Publication Number Publication Date
JP2013126509A JP2013126509A (ja) 2013-06-27
JP2013126509A5 JP2013126509A5 (ja) 2015-02-05
JP5990905B2 true JP5990905B2 (ja) 2016-09-14

Family

ID=48668261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277613A Expired - Fee Related JP5990905B2 (ja) 2011-12-19 2011-12-19 測定装置、測定方法、プログラム及び記録媒体

Country Status (4)

Country Link
US (1) US9867559B2 (ja)
JP (1) JP5990905B2 (ja)
CN (1) CN103987316B (ja)
WO (1) WO2013094362A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107537B2 (ja) * 2013-08-27 2017-04-05 ソニー株式会社 撮像システムおよびその画像処理方法、画像処理装置およびその画像処理方法、並びに、プログラム
KR20160130770A (ko) * 2014-03-12 2016-11-14 소니 주식회사 측정 장치 및 측정 방법
US10542920B2 (en) 2014-03-31 2020-01-28 Sony Corporation Measurement device, measurement method, program, and recording medium
US10575766B2 (en) * 2014-03-31 2020-03-03 Sony Corporation Measurement device, measurement method, program, and recording medium
JP2019506205A (ja) * 2015-12-31 2019-03-07 ウェア2ビー リミテッド 生理学的測定値の非侵襲的監視のための装置、システム、および方法
US10537270B2 (en) * 2016-07-25 2020-01-21 Biobeat Technologies Ltd Method and device for optical measurement of biological properties
CN111148468A (zh) * 2017-08-17 2020-05-12 威尔图比有限公司 用于非侵入式监测生理测量结果的设备、系统和方法
WO2019101612A1 (en) * 2017-11-21 2019-05-31 Sanofi Implantable glucose monitor
JP2021503985A (ja) * 2017-11-21 2021-02-15 サノフイSanofi 埋込可能なグルコースモニタ
CN111356895A (zh) * 2017-11-24 2020-06-30 索尼公司 检测装置以及生产电子装置的方法
KR20200099545A (ko) * 2017-12-20 2020-08-24 메디컬포토닉스 가부시키가이샤 지질계측장치 및 그 방법
US11474334B2 (en) 2018-02-14 2022-10-18 Sony Corporation Observation device and observation method
JP7009429B2 (ja) * 2019-10-07 2022-01-25 嘉満 長尾 血中酸素飽和度測定装置
KR20210069945A (ko) 2019-12-04 2021-06-14 삼성전자주식회사 생체정보 추산 장치 및 방법
KR20220008160A (ko) * 2020-07-13 2022-01-20 삼성전자주식회사 생체 신호 감지 센서, 센서 어레이 및 센서 시스템
TW202242408A (zh) * 2021-02-18 2022-11-01 日商古河電氣工業股份有限公司 生物資訊測定裝置、生物資訊測定方法與程式

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672807B2 (ja) * 1984-09-29 1994-09-14 株式会社島津製作所 旋光度測定装置
US5009230A (en) * 1988-05-31 1991-04-23 Eol, Inc. Personal glucose monitor
JPH06183924A (ja) * 1991-02-15 1994-07-05 Jiyumoku Chushutsu Seibun Riyou Gijutsu Kenkyu Kumiai 抗菌剤
WO1999030132A1 (fr) * 1997-12-09 1999-06-17 Matsushita Electric Industrial Co., Ltd. Procede de production d'une electrode destinee a des cellules secondaires electrolytiques non aqueuses
KR20040103898A (ko) * 2002-05-01 2004-12-09 마츠시타 덴끼 산교 가부시키가이샤 생체정보 검출용 접촉장치
JP3966796B2 (ja) * 2002-09-26 2007-08-29 真人 中村 血糖測定装置
JP3566277B1 (ja) * 2003-06-23 2004-09-15 株式会社日立製作所 血糖値測定装置
JP2005106592A (ja) * 2003-09-30 2005-04-21 Aime Technology Co Ltd 血糖測定法およびその装置
JP4556463B2 (ja) * 2004-03-25 2010-10-06 有限会社グローバルファイバオプティックス 複屈折率測定装置
US7248907B2 (en) * 2004-10-23 2007-07-24 Hogan Josh N Correlation of concurrent non-invasively acquired signals
WO2007029652A1 (ja) * 2005-09-06 2007-03-15 National University Corporation Gunma University 血糖値測定装置及び方法
CN100588952C (zh) * 2007-10-19 2010-02-10 南京大学 一种测量旋光左右旋向的方法及旋光仪
JP5024153B2 (ja) * 2008-03-27 2012-09-12 ソニー株式会社 生体撮像装置
JP2009273819A (ja) * 2008-05-19 2009-11-26 Panasonic Corp 生体成分濃度測定装置

Also Published As

Publication number Publication date
JP2013126509A (ja) 2013-06-27
US20140350365A1 (en) 2014-11-27
CN103987316A (zh) 2014-08-13
US9867559B2 (en) 2018-01-16
CN103987316B (zh) 2016-10-19
WO2013094362A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5990905B2 (ja) 測定装置、測定方法、プログラム及び記録媒体
US10542920B2 (en) Measurement device, measurement method, program, and recording medium
JP6539876B2 (ja) 測定装置、測定方法、プログラム及び記録媒体
US10871503B1 (en) Methods for depth estimation in laser speckle imaging
US10085656B2 (en) Measurement device, measurement method, program and recording medium
US11566886B2 (en) Interferometric parallel detection using digital rectification and integration
US9833179B2 (en) Blood component analyzing method and blood component analyzing apparatus
US11796467B2 (en) Interferometric parallel detection using analog data compression
US11547303B2 (en) Non-invasive optical detection system and method of multiple-scattered light with swept source illumination
US9888854B2 (en) Biometric device, biometric method, program, and recording medium
US11096586B1 (en) Systems for detecting carious lesions in teeth using short-wave infrared light
US11530948B2 (en) Compact Raman sensor and apparatus for estimating bio-component
JP5990906B2 (ja) 測定装置、測定方法、プログラムおよび記録媒体
KR20220000160A (ko) 대상체의 성분 분석 장치 및 방법
KR102574086B1 (ko) 라만 프로브
WO2013073244A1 (ja) 生体計測装置、生体計測方法、プログラムおよび記録媒体
JP2016106870A (ja) 生体情報取得装置および生体情報取得方法
WO2023233792A1 (ja) 測定装置
JP2016106660A (ja) 生体情報取得装置および生体情報取得方法
JP2005095465A (ja) 生体光計測装置
JP2017213040A (ja) 生体情報取得装置及び生体情報取得方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R151 Written notification of patent or utility model registration

Ref document number: 5990905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees