JP5989860B2 - Vacuum container manufacturing method - Google Patents

Vacuum container manufacturing method Download PDF

Info

Publication number
JP5989860B2
JP5989860B2 JP2015123811A JP2015123811A JP5989860B2 JP 5989860 B2 JP5989860 B2 JP 5989860B2 JP 2015123811 A JP2015123811 A JP 2015123811A JP 2015123811 A JP2015123811 A JP 2015123811A JP 5989860 B2 JP5989860 B2 JP 5989860B2
Authority
JP
Japan
Prior art keywords
waveguide
manufacturing
welding
lower plates
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015123811A
Other languages
Japanese (ja)
Other versions
JP2015195592A (en
Inventor
正浩 高崎
正浩 高崎
諭 木村
諭 木村
孝幸 小林
孝幸 小林
澁谷 純市
純市 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015123811A priority Critical patent/JP5989860B2/en
Publication of JP2015195592A publication Critical patent/JP2015195592A/en
Application granted granted Critical
Publication of JP5989860B2 publication Critical patent/JP5989860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は一般の真空容器及び加速器システムに使用される導波管等の真空容器の製造方法に関する。   The present invention relates to a general vacuum vessel and a method for manufacturing a vacuum vessel such as a waveguide used in an accelerator system.

加速器システム等に用いられる導波管は高周波電力を伝達するための装置であり、その内部は真空に保たれ、電力損失や放電などを起こすことなく大電力を伝達することが求められる。   A waveguide used in an accelerator system or the like is a device for transmitting high-frequency power, and the inside thereof is kept in a vacuum, and is required to transmit high power without causing power loss or discharge.

従来の導波管の製造方法を図9〜図13により説明する。導波管の素材としては銅のように熱伝導率・電気伝導率が高いものが使われている。このような素材を用いて大径の導波管の製造する際、TIG(Tungsten Inert Gas)溶接やMIG(Metal Inert Gas)溶接では板厚の関係から多層溶接となり入熱量が大きくなり導波管の歪みが大きくなってしまう。このため比較的安価であり歪みが少なく高品質であるという理由から、図9のように上下板1と一対の側板2を組み合わせ電子ビーム溶接で接合し導波管形状とする方法が一般的に採用されている。   A conventional waveguide manufacturing method will be described with reference to FIGS. As a material of the waveguide, a material having high thermal conductivity and electrical conductivity such as copper is used. When manufacturing large-diameter waveguides using such materials, TIG (Tungsten Inert Gas) welding and MIG (Metal Inert Gas) welding are multilayer welding due to the plate thickness, resulting in a large heat input. Will increase the distortion. For this reason, for the reason that it is relatively inexpensive, has low distortion, and is of high quality, a method in which the upper and lower plates 1 and a pair of side plates 2 are combined and joined by electron beam welding as shown in FIG. It has been adopted.

しかしこの方法では導波管の内面側に図10に示すようにスパッタ15が飛散付着したり、図11に示すように角部に口開き部16が発生したり、又は図12に示すように導波管全体が歪むなどの課題があった。このため電子ビーム溶接後に導波管を矯正する必要があり、やすりなどで内面側の手入れをするなどして内面の平滑性と形状精度を出す作業を行っているが、品質及びコストの面で問題があった。   However, in this method, the spatter 15 is scattered and adhered to the inner surface side of the waveguide as shown in FIG. 10, the opening 16 is generated at the corner as shown in FIG. 11, or as shown in FIG. There were problems such as distortion of the entire waveguide. For this reason, it is necessary to correct the waveguide after electron beam welding, and work is done to improve the smoothness and shape accuracy of the inner surface by taking care of the inner surface with a file, etc., but in terms of quality and cost There was a problem.

一方、電子ビーム溶接以外の方法として特許文献1乃至3に示すような種々の溶接方法も提案されている。
例えば、特許文献1では摩擦攪拌接合が用いられているが、この方法では接合時に強固な固定が必要であることから製品形状に制約があるという短所がある。また、摩擦攪拌接合には裏当てが必要となるが、導波管内面側に裏当てを設置する際に導波管内面を傷つける可能性が高まる。さらに形状に合致した裏当てが必要となることから精度の高い製造工程が必要となり、また、高コストとなる。
On the other hand, various welding methods as shown in Patent Documents 1 to 3 have been proposed as methods other than electron beam welding.
For example, in Patent Document 1, friction stir welding is used, but this method has a disadvantage in that there is a limitation on the product shape because strong fixation is required at the time of joining. In addition, a backing is required for friction stir welding, but the possibility of damaging the inner surface of the waveguide is increased when the backing is installed on the inner surface side of the waveguide. Furthermore, since a backing that matches the shape is required, a highly accurate manufacturing process is required, and the cost is increased.

また、特許文献2ではメッキによる製造法が用いられているが、このような構造では長時間の運転による負荷にメッキが耐えられず剥がれ等が起こって放電の要因になってしまう。   Moreover, although the manufacturing method by plating is used in Patent Document 2, with such a structure, the plating cannot withstand a load caused by a long-time operation, and peeling occurs, which becomes a cause of discharge.

さらに、特許文献3では引き抜き加工法及びブローチ加工法を用いているが、この方法ではブローチ加工で用いる刃物の製作の必要性から少量の製作では高価になり、また直線形状しかできないなど汎用性に欠ける。さらに真空用機器に油を使うことは品質上のトラブルとなるため、油の使用は好ましくないが、それによって切削性が大きく落ちるので被削物の材質によっては平滑な表面が期待できない。   Further, in Patent Document 3, a drawing method and a broaching method are used. However, in this method, since it is necessary to manufacture a blade used in broaching, it is expensive in a small amount of manufacturing, and only a linear shape can be used. Lack. Furthermore, the use of oil in vacuum equipment is a problem in quality, so the use of oil is not preferred. However, the machinability is greatly reduced, so that a smooth surface cannot be expected depending on the material of the work.

他に押し出し加工法などによっても導波管は製造されているが、この場合板厚が薄く小径かつ直線形状のものなど使用範囲が限定されていて高周波加速空洞等で要求されるような大電力の伝達には適さない。   Waveguides are also manufactured by other methods such as extrusion, but in this case, the range of use is limited, such as those with a small plate thickness, small diameter and linear shape, and high power that is required in high-frequency accelerating cavities etc. Not suitable for transmission.

また、一般の真空容器の製造方法において、例えば厚板(板厚85mm程度)のインバー材などを溶接し容器形状とする際には、図13のように容器の外側から電子ビーム溶接やレーザー溶接を行い、容器内面側をTIG溶接などでシールしているのが一般的である。   Further, in a general vacuum vessel manufacturing method, for example, when welding a thick plate (plate thickness of about 85 mm) invar material or the like to form a vessel shape, electron beam welding or laser welding is performed from the outside of the vessel as shown in FIG. In general, the inner surface of the container is sealed by TIG welding or the like.

しかしこの方法では内面側を溶接することになり高コストになるほか、内面側を溶接する際に容器に傷をつけてしまうリスクがある。このため外面側一方向から溶接しスパッタによる飛散がなく滑らかな裏面を形成させることが望ましいが、インバー材など溶融金属の粘性が高い金属に対しては図13に示すような開先形状や板組構造を用いた施工法では非常に困難であった。   However, in this method, the inner surface side is welded and the cost is increased, and there is a risk of damaging the container when the inner surface side is welded. For this reason, it is desirable to weld from one direction on the outer surface side and form a smooth back surface without scattering due to sputtering. However, for metals with a high molten metal viscosity such as invar material, a groove shape or plate as shown in FIG. It was very difficult with the construction method using the assembly structure.

特開2001−237621号公報JP 2001-237621 A 特開平7−58527号公報Japanese Patent Laid-Open No. 7-58527 特開平8−213812号公報JP-A-8-213812

上述したTIG溶接、MIG溶接、電子ビーム溶接等を用いた溶接によって導波管等の真空容器を製造する際の課題についてさらに詳しく説明する。   The problem in manufacturing a vacuum vessel such as a waveguide by welding using the above-described TIG welding, MIG welding, electron beam welding, etc. will be described in more detail.

溶融接合で導波管を製作した場合、不具合の要因として大きく3点が挙げられる。
第1は導波管全体の歪みである。溶融接合による入熱により加熱・冷却時において板が歪んでしまう。これにより導波管に要求される高い寸法精度や形状精度が得られないという問題がある。このため、完成した導波管を組み合わせ回路とする時にガスケットの厚さの調整や導波管を矯正するなどの施策をとり時間を費やし位置あわせをしているのが現状である。
When a waveguide is manufactured by melt bonding, there are three main reasons for the problems.
The first is distortion of the entire waveguide. The plate is distorted during heating and cooling due to heat input by melt bonding. Accordingly, there is a problem that high dimensional accuracy and shape accuracy required for the waveguide cannot be obtained. For this reason, when the completed waveguide is used as a combinational circuit, measures such as adjustment of the thickness of the gasket and correction of the waveguide are taken and time is used for alignment.

第2は溶融接合により発生するスパッタが導波管内面側に付着することにより急激な形状変化が生まれ、放電の原因となってしまうことである。また導波管内面に不連続や形状変化の多い裏波が出た場合も放電の原因となってしまう。導波管においては内面の平滑性という問題は極めて重要な問題となる。   Secondly, the spatter generated by melt bonding adheres to the inner surface side of the waveguide, thereby causing an abrupt shape change and causing discharge. In addition, when a back wave with many discontinuities or shape changes appears on the inner surface of the waveguide, it also causes discharge. In the waveguide, the problem of the smoothness of the inner surface is a very important problem.

第3は溶接の融合不足や開先の形状不良等の理由により発生する導波管内面の口開きである。これによっても放電が起こってしまうほか、切り欠きが存在するために応力の集中が発生し、強度低下の原因となってしまう。一般的にこのような切り欠きが存在する場合、フィレットがある場合のように連続的で滑らかな形状変化である場合と比べ強度が低下する。   The third is the opening on the inner surface of the waveguide, which occurs due to insufficient welding fusion or defective shape of the groove. This not only causes discharge but also causes stress concentration due to the presence of notches, which causes a decrease in strength. In general, when such a notch is present, the strength is reduced as compared with a case where the shape change is continuous and smooth as in the case where there is a fillet.

本発明は上記課題を解決するためになされたもので、上述した3つの主要な課題を解決し高品質かつ低コストの真空容器の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-quality and low-cost manufacturing method of a vacuum vessel that solves the three main problems described above.

上述した課題を解決するために、本発明に係る真空容器の製造方法は、上下端部に段部が形成された一対の側板と、前記段部に嵌合する上下板からなる真空容器の製造方法において、前記側板と上下板の水平接合面に設けられた凹部の内部に溶融材を配置し、前記側板と上下板の接合面に形成された垂直開先面を溶接により接合するとともに、前記水平接合面にフィレット部を形成することを特徴とする。   In order to solve the above-described problems, a vacuum container manufacturing method according to the present invention is a vacuum container manufacturing method including a pair of side plates having stepped portions at upper and lower ends, and upper and lower plates fitted to the stepped portions. In the method, a molten material is disposed inside a recess provided in a horizontal joint surface between the side plate and the upper and lower plates, and a vertical groove surface formed on the joint surface between the side plate and the upper and lower plates is joined by welding, and A fillet portion is formed on the horizontal joint surface.

本発明によれば、上下板と側板を段部により接合することにより、外側からの溶融接合のみで、歪みが小さく、形状精度が高い、低コストの導波管等の真空容器を製造することができる。   According to the present invention, by joining the upper and lower plates and the side plates with the stepped portion, a low-cost vacuum vessel such as a waveguide having a low distortion and a high shape accuracy can be manufactured only by fusion bonding from the outside. Can do.

(a)は第1の実施形態に係る製造方法を示す図、(b)は溶接部の拡大図。(A) is a figure which shows the manufacturing method which concerns on 1st Embodiment, (b) is an enlarged view of a welding part. 第1の実施形態に係る製造方法の変形例を示す図。The figure which shows the modification of the manufacturing method which concerns on 1st Embodiment. 第2の実施形態に係る製造方法を示す図。The figure which shows the manufacturing method which concerns on 2nd Embodiment. 第2の実施形態に係る製造方法の変形例を示す図。The figure which shows the modification of the manufacturing method which concerns on 2nd Embodiment. 第3の実施形態に係る製造方法を示す図。The figure which shows the manufacturing method which concerns on 3rd Embodiment. 第4の実施形態に係る製造方法を示す図。The figure which shows the manufacturing method which concerns on 4th Embodiment. (a)、(b)は第5の実施形態に係る製造方法を示す図。(A), (b) is a figure which shows the manufacturing method which concerns on 5th Embodiment. 第6の実施形態に係る製造方法を示す図。The figure which shows the manufacturing method which concerns on 6th Embodiment. 従来の製造方法を示す図。The figure which shows the conventional manufacturing method. 従来の製造方法を示す図で、容器内面にスパッタが付着した例を示す図。It is a figure which shows the conventional manufacturing method, and is a figure which shows the example which sputter | spatter adhered to the container inner surface. 従来の製造方法を示す図で、容器内面に口開き部が形成された例を示す図。It is a figure which shows the conventional manufacturing method, and is a figure which shows the example in which the opening part was formed in the container inner surface. 従来の製造方法を示す図で、容器に歪みが生じた例を示す図。It is a figure which shows the conventional manufacturing method, and is a figure which shows the example which distortion generate | occur | produced in the container. 従来の製造方法を示す図で、容器内面をシール溶接した例を示す図。It is a figure which shows the conventional manufacturing method, and is a figure which shows the example which carried out the seal welding of the container inner surface.

以下、本発明に係る真空容器の製造方法の実施形態について、図面を参照して説明する。なお、以下の実施形態では真空容器として導波管の製造方法について説明するが、一般の真空容器にも適用できることはもちろんである。   Hereinafter, an embodiment of a manufacturing method of a vacuum container according to the present invention will be described with reference to the drawings. In the following embodiments, a method of manufacturing a waveguide as a vacuum vessel will be described, but it is needless to say that the method can be applied to a general vacuum vessel.

(第1の実施形態)
第1の実施形態に係る導波管の製造方法を図1により説明する。
本第1の実施形態に係る導波管は、図1(a)、(b)に示すとおり、上下板1と一対の側板2からなり、一対の側板2の内側上下に所定幅の段部を設け上下板1をこの段部に嵌合する構成となっている。これにより開先面は接合面の垂直部(垂直開先面a)と水平部(水平開先面b)に形成される。
(First embodiment)
A method of manufacturing a waveguide according to the first embodiment will be described with reference to FIG.
As shown in FIGS. 1A and 1B, the waveguide according to the first embodiment includes an upper and lower plate 1 and a pair of side plates 2, and a step portion having a predetermined width on the inner upper and lower sides of the pair of side plates 2. And the upper and lower plates 1 are configured to be fitted into the stepped portion. Thereby, a groove surface is formed in the vertical part (vertical groove surface a) and the horizontal part (horizontal groove surface b) of a joint surface.

具体的な実施例として、上下板1と側板2の板厚は約10mmで、基材は無酸素銅CLASS1等の導電性が高くガスの発生が低いものを用い、垂直開先面aの先端から導波管内面側までの距離は約3mmとした。この構造で溶融接合又ははんだ・ろう付等の接合を実施した。3は溶融部である。   As a specific example, the thickness of the upper and lower plates 1 and the side plates 2 is about 10 mm, and the base material is made of oxygen-free copper CLASS 1 or the like and has high conductivity and low gas generation. The distance from the inner surface of the waveguide to the inner surface of the waveguide was about 3 mm. This structure was used for fusion bonding or soldering / brazing. 3 is a melting part.

また、接合に際しては、上下板1の両端面からそれぞれ垂直開先面aと水平開先面bの一部を含むように実施した。これにより、垂直開先面aと水平開先面bの両方が含まれるように接合するため、全体の変形を抑制するとともに、強固な構造の導波管を得ることができる。なお、水平開先面aの部分のみを接合しても同様の効果が得られる。   In addition, the joining was performed so as to include a part of the vertical groove surface a and the horizontal groove surface b from both end surfaces of the upper and lower plates 1, respectively. Thereby, since it joins so that both the vertical groove surface a and the horizontal groove surface b may be included, while being able to suppress the whole deformation | transformation, the waveguide of a firm structure can be obtained. The same effect can be obtained by joining only the portion of the horizontal groove surface a.

その結果、図10〜図13に示す従来例では接合時の応力に対し変形をおさえる機能がなく歪み易い形状となったり、スパッタ、口開き部等が発生するのに対し、本第1の実施形態では、接合時の応力の一部を側板2に受けさせることができるため、全体の変形を抑制することができる。   As a result, the conventional example shown in FIGS. 10 to 13 does not have a function of suppressing deformation with respect to the stress at the time of joining and has a shape that is easily distorted, or spatter, opening portions, etc. are generated. In the embodiment, since the side plate 2 can receive a part of the stress at the time of joining, the entire deformation can be suppressed.

また、上下板1は溶接時の変形を側板2が抑える構造になっており、特に内面側角部において直角形状を保ち易い構造となることから角部の口開きや歪みを防止することが可能となるとともに、容器内面にスパッタが付着するのも抑制することができる。   Further, the upper and lower plates 1 have a structure in which the side plate 2 suppresses deformation at the time of welding, and it is easy to maintain a right-angle shape particularly at the inner side corners, so that opening and distortion of the corners can be prevented. At the same time, it is possible to prevent spatter from adhering to the inner surface of the container.

また、第1の実施形態の変形例では、図2に示すように、上下板1と側板2の接合部に凹凸部4を設けている。これにより内面側角部がさらに強固に密着し、口開きを防止することができるほか導波管の矩形形状を保ち易い構造とすることができる。   Moreover, in the modification of 1st Embodiment, as shown in FIG. 2, the uneven | corrugated | grooved part 4 is provided in the junction part of the upper-and-lower board 1 and the side board 2. As shown in FIG. As a result, the corners on the inner surface side can be more firmly adhered to each other to prevent the mouth from opening, and the rectangular shape of the waveguide can be easily maintained.

以上説明したように、本第1の実施形態によれば、上下板及び側板の接合面を、段部を用いた嵌合構造として溶接接合を行うことにより、従来のものと比較し全体的な歪みが小さく、内面側角部の形状を保つことが可能な導波管を製造することができる。   As described above, according to the first embodiment, the joint surfaces of the upper and lower plates and the side plates are welded and joined as a fitting structure using stepped portions, so that the overall surface is compared with the conventional one. A waveguide having a small distortion and capable of maintaining the shape of the inner side corner portion can be manufactured.

(第2の実施形態)
第2の実施形態に係る導波管の製造方法を図3、図4により説明する。
本第2の実施形態では、図3に示すように、一対の側板2の上下端部に傾斜段部を形成するとともに、上下板1の左右端部にも傾斜段部を形成することにより、上下板1と一対の側板2の接合面を傾斜段部構造としている。開先面は傾斜部(傾斜開先面c)と垂直部(垂直開先面a)に形成される。
(Second Embodiment)
A method of manufacturing a waveguide according to the second embodiment will be described with reference to FIGS.
In the second embodiment, as shown in FIG. 3, by forming inclined stepped portions at the upper and lower end portions of the pair of side plates 2, and by forming inclined stepped portions at the left and right end portions of the upper and lower plates 1, The joining surface of the upper and lower plates 1 and the pair of side plates 2 has an inclined step structure. The groove surface is formed in an inclined portion (inclined groove surface c) and a vertical portion (vertical groove surface a).

これにより接合時の歪みを抑制し、また内面側角部をより強固に密着させる方向に応力を向けることが可能となる。また、内面側角部が強固に密着するので、口開きを防止することができるほか管の矩形形状を保ち易い構造とすることができる。   As a result, it is possible to suppress distortion at the time of joining and to apply stress in a direction in which the inner side corners are more closely adhered. In addition, since the corners on the inner surface side firmly adhere to each other, it is possible to prevent opening of the mouth and to make it easy to maintain the rectangular shape of the tube.

また、第2の実施形態の変形例として図4に示すように、傾斜開先面cの溶接と当該傾斜開先面cにクロスし垂直開先面aを含む溶接を併用することにより、溶接接合時の歪みをさらに抑制し、内面側角部をより強固に密着させる方向に応力を向けることが可能となる。
これにより内面側角部が強固に密着し、口開きを防止することができるほか導波管の矩形形状を保ち易い構造とすることができる。
As a modification of the second embodiment, as shown in FIG. 4, welding is performed by combining welding of the inclined groove surface c and welding including the vertical groove surface a that crosses the inclined groove surface c. It is possible to further suppress the distortion at the time of joining, and to apply stress in a direction in which the inner side corners are more closely attached.
As a result, the corners on the inner surface side can be firmly adhered to each other to prevent the mouth from opening, and the rectangular shape of the waveguide can be easily maintained.

(第3の実施形態)
第3の実施形態に係る導波管の製造方法を図5により説明する。
本第3の実施形態では、図5に示すように溶融部3の両端近傍に溝部5を設け、強度的に弱い部分をあえて形成することにより、溶接接合時にその部分で歪みを吸収し、全体の歪みを防止する。
これにより導波管の矩形形状をさらに保ち易い構造とすることができる。
(Third embodiment)
A method of manufacturing a waveguide according to the third embodiment will be described with reference to FIG.
In the third embodiment, as shown in FIG. 5, the groove portion 5 is provided in the vicinity of both ends of the melting portion 3, and a portion weak in strength is intentionally formed, so that distortion is absorbed at that portion at the time of welding joining. Prevent distortion.
Thereby, it can be set as the structure which is easy to maintain the rectangular shape of a waveguide.

(第4の実施の形態)
第4の実施形態に係る導波管の製造方法を図6により説明する。
本第4の実施形態では、図6に示すように側板2と上下板1との接合面に凹部6を設け、接合時に上下板1と側板2の内面接合部がより強固に密着し易い構造とする。
これにより導波管の矩形形状を保ち易い構造とするとともに、内面側角部における口開きの発生を防止することができる。
(Fourth embodiment)
A method of manufacturing a waveguide according to the fourth embodiment will be described with reference to FIG.
In the fourth embodiment, as shown in FIG. 6, a recess 6 is provided on the joint surface between the side plate 2 and the upper and lower plates 1, and the inner surface joint portion between the upper and lower plates 1 and the side plate 2 can be more firmly adhered to each other at the time of joining. And
As a result, the rectangular shape of the waveguide can be easily maintained, and the opening of the inner side corner can be prevented.

(第5の実施形態)
第5の実施形態に係る導波管の製造方法を図7(a)、(b)により説明する。
本第5の実施形態では、図7(a)、(b)に示すように、側板2と上下板1との接合面において、側板2又は上下板1のいずれかに凹部7を設け、その部分に、はんだ材・ろう材等からなる溶融材8を配置した後に導波管を組立て、溶接する。
(Fifth embodiment)
A method for manufacturing a waveguide according to the fifth embodiment will be described with reference to FIGS.
In the fifth embodiment, as shown in FIGS. 7A and 7B, a recess 7 is provided on either the side plate 2 or the upper and lower plates 1 on the joint surface between the side plate 2 and the upper and lower plates 1. After the molten material 8 made of a solder material, a brazing material, or the like is disposed in the portion, the waveguide is assembled and welded.

この時の溶接時の入熱により、凹部7内に配置された溶融材8は溶融し、図7(b)のように接合面の空隙を補填する。その際、溶融材8の選定と接合条件を調節することによりフィレット部9を形成することも可能である。   Due to the heat input during welding at this time, the molten material 8 disposed in the recess 7 is melted, and the gaps in the joint surface are filled as shown in FIG. At that time, the fillet portion 9 can be formed by selecting the molten material 8 and adjusting the joining conditions.

これにより容器の内面側が確実にシールされ、例えば、真空容器等に必要とされる内面側のシール溶接が不必要となりコストを大幅に減らすことができると同時に内面側での作業がなくなることから内面側を傷つけてしまうという品質リスクを回避することが可能となる。   As a result, the inner surface side of the container is securely sealed, and, for example, the inner surface side seal welding required for a vacuum container or the like is unnecessary, which can greatly reduce the cost and eliminate the work on the inner surface side. It is possible to avoid the quality risk of damaging the side.

また、接合面の空隙がなくなることにより、空気溜まりもなくなるため、真空に引く時間の短縮や、導波管内への不純物質の混入防止の効果も有する。また、フィレット部9が形成されることにより、接合面の強度が低下するというリスクを回避することができる。   Further, since there is no air pool due to the absence of the gaps in the joint surfaces, there are effects of shortening the time for evacuation and preventing impurities from being mixed into the waveguide. Moreover, the risk that the intensity | strength of a joint surface falls by forming the fillet part 9 can be avoided.

一般的にはこのような接合方法は従来別々の工程で実施されているが、本第5の実施形態によれば、垂直開先面a及び水平開先面bの溶接と、接合面のシールを同時に実施しているため、工程の短縮化と低コスト化を実現することができる。また、リードタイムも短縮することができる。   In general, such a joining method is conventionally performed in separate steps, but according to the fifth embodiment, welding of the vertical groove surface a and the horizontal groove surface b and sealing of the joint surface are performed. Since the process is performed simultaneously, the process can be shortened and the cost can be reduced. In addition, the lead time can be shortened.

例えば、従来の方法では溶接前後に内部の真空ろう付を行うとすると、真空引き、昇温、ろう付、冷却と真空加熱炉内での拘束時間が長い。特に対象物が大きくなればなるほどこの拘束時間は長く、かつ大きなものが入る真空加熱炉も別途必要となってしまう。しかしながら、本第5の実施形態によればこれらの問題を回避することが可能となる。   For example, in the conventional method, if the internal vacuum brazing is performed before and after welding, the time required for evacuation, temperature rise, brazing, cooling, and vacuum heating furnace is long. In particular, the larger the object is, the longer the restraint time becomes, and a separate vacuum heating furnace in which a large object enters is necessary. However, according to the fifth embodiment, these problems can be avoided.

(第6の実施の形態)
第6の実施形態に係る導波管の製造方法を図8により説明する。
本第6の実施形態では、図8に示すように、溶融部3の両端近傍に冷却パイプ等の冷却構造体10を溝部11内に配置するとともに、溝部内にはんだ材・ろう材等の溶融材(図示せず)を配置する。
これにより、導波管を溶接する際の入熱を利用して冷却構造体10を溝11内に固着することができる。なお、冷却構造体10は、導波管を冷却するために設置される。
(Sixth embodiment)
A method of manufacturing a waveguide according to the sixth embodiment will be described with reference to FIG.
In the sixth embodiment, as shown in FIG. 8, the cooling structure 10 such as a cooling pipe is disposed in the groove portion 11 near both ends of the melting portion 3, and the solder material, the brazing material, etc. are melted in the groove portion. A material (not shown) is arranged.
Thereby, the cooling structure 10 can be fixed in the groove 11 by utilizing heat input when welding the waveguide. The cooling structure 10 is installed to cool the waveguide.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、組み合わせ、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, combinations, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…上下板、2…側板、3…溶融部、4…凹凸部、5…溝部、6…凹部、7…凹部、8…溶融材、9…フィレット部、10…冷却構造体、11…溝部、15…スパッタ、16…口開き部。

DESCRIPTION OF SYMBOLS 1 ... Up-and-down board, 2 ... Side plate, 3 ... Melting part, 4 ... Uneven part, 5 ... Groove part, 6 ... Recessed part, 7 ... Recessed part, 8 ... Molten material, 9 ... Fillet part, 10 ... Cooling structure, 11 ... Groove part , 15: Spatter, 16: Opening part

Claims (2)

上下端部に段部が形成された一対の側板と、前記段部に嵌合する上下板からなる真空容器の製造方法において、
前記側板と上下板の水平接合面に設けられた凹部の内部に溶融材を配置し、前記側板と上下板の接合面に形成された垂直開先面を溶接により接合するとともに、前記水平接合面にフィレット部を形成することを特徴とする真空容器の製造方法。
In a manufacturing method of a vacuum vessel comprising a pair of side plates in which step portions are formed at upper and lower ends, and upper and lower plates fitted to the step portions,
A molten material is disposed inside a recess provided in a horizontal joint surface between the side plate and the upper and lower plates, and a vertical groove surface formed on the joint surface between the side plate and the upper and lower plates is joined by welding, and the horizontal joint surface A method of manufacturing a vacuum vessel, wherein a fillet portion is formed in the vacuum vessel.
前記接合面に形成された垂直開先面と水平開先面を溶接により接合することを特徴とする請求項1記載の真空容器の製造方法。

2. The method of manufacturing a vacuum vessel according to claim 1, wherein the vertical groove surface and the horizontal groove surface formed on the bonding surface are bonded by welding.

JP2015123811A 2015-06-19 2015-06-19 Vacuum container manufacturing method Active JP5989860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123811A JP5989860B2 (en) 2015-06-19 2015-06-19 Vacuum container manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123811A JP5989860B2 (en) 2015-06-19 2015-06-19 Vacuum container manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011148333A Division JP5801118B2 (en) 2011-07-04 2011-07-04 Vacuum container manufacturing method

Publications (2)

Publication Number Publication Date
JP2015195592A JP2015195592A (en) 2015-11-05
JP5989860B2 true JP5989860B2 (en) 2016-09-07

Family

ID=54434235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123811A Active JP5989860B2 (en) 2015-06-19 2015-06-19 Vacuum container manufacturing method

Country Status (1)

Country Link
JP (1) JP5989860B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340325B (en) * 2016-10-19 2020-04-24 中国科学院合肥物质科学研究院 Joint area structure for joining and looping between vacuum chamber segments of nuclear fusion reactor
JP7280399B1 (en) 2022-02-24 2023-05-23 ヤマザキマザック株式会社 Thin-walled tube manufacturing method, intermediate for thin-walled tube manufacturing, and thin-walled tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU172698B (en) * 1976-09-30 1978-11-28 Finommech Vallalat Method for interconnecting current-carrying elements of a microwave apparatus and by means of this making the apparatus
JPH0821477B2 (en) * 1990-02-07 1996-03-04 株式会社東芝 High frequency acceleration cavity manufacturing method
JP3087130B2 (en) * 1991-03-28 2000-09-11 昭和アルミニウム株式会社 Brazing method for metal materials

Also Published As

Publication number Publication date
JP2015195592A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
CN211903865U (en) Vapor chamber
US10076799B2 (en) Joined body of dissimilar metals and method for producing joined body of dissimilar metals
CN106238934B (en) Strong molten aluminum cooled case welding method in one kind
CN110421223A (en) Using titanium alloy-stainless steel dissimilar metal laser method for welding of copper base solder
JP5801118B2 (en) Vacuum container manufacturing method
JP2018075612A (en) Bending member and manufacturing method thereof
JP5989860B2 (en) Vacuum container manufacturing method
CN102240851A (en) Welding forming method of thin invar alloy
CN102706205A (en) Heat exchanger and method of joining heat exchanger pipe
CN114243358A (en) Airtight metal packaging structure and manufacturing method
JP6511664B2 (en) Laser welding method
JP2011005499A (en) Method for laser butt-welding aluminum member and copper member
CN103753021B (en) The method for laser welding of red copper and brass
JP5416422B2 (en) Laser-arc combined welding method
JP2018118265A (en) Welding method for thin copper plates to each other
KR101151569B1 (en) Welding method of stainless steel
CN102814568A (en) Casting welding method
CN107914075A (en) Target material welding method
JP2020082159A (en) Laser welding method and flux for laser welding
WO2014129199A1 (en) Heat exchanger and method for manufacturing same
JP2016078283A (en) Metal-resin composite and method for producing the same
JP7341937B2 (en) Electroslag welding method
JP6310267B2 (en) Manufacturing method of joined body
JP2017035736A (en) Manufacturing method of capsule for hip and manufacturing method of sintered body
JP2002331374A (en) Lap welding joint

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R151 Written notification of patent or utility model registration

Ref document number: 5989860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151