JP7341937B2 - Electroslag welding method - Google Patents

Electroslag welding method Download PDF

Info

Publication number
JP7341937B2
JP7341937B2 JP2020056578A JP2020056578A JP7341937B2 JP 7341937 B2 JP7341937 B2 JP 7341937B2 JP 2020056578 A JP2020056578 A JP 2020056578A JP 2020056578 A JP2020056578 A JP 2020056578A JP 7341937 B2 JP7341937 B2 JP 7341937B2
Authority
JP
Japan
Prior art keywords
water
cooled copper
steel
plate
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020056578A
Other languages
Japanese (ja)
Other versions
JP2021154339A (en
Inventor
聖人 笹木
宏 吉本
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Priority to JP2020056578A priority Critical patent/JP7341937B2/en
Publication of JP2021154339A publication Critical patent/JP2021154339A/en
Application granted granted Critical
Publication of JP7341937B2 publication Critical patent/JP7341937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、エレクトロスラグ溶接方法に関し、溶接時の湯漏れを防止でき、アンダカットなどのない良好な溶接ビードが得られるエレクトロスラグ溶接方法に関する。 The present invention relates to an electroslag welding method, and more particularly to an electroslag welding method that can prevent melt leakage during welding and obtain a good weld bead without undercuts.

エレクトロスラグ溶接は、所定の間隔を空けて垂直方向に付き合わせた鋼板同士、あるいは一方の鋼板の端面をもう一方の鋼板の表面にT字形に付き合わせた鋼板同士を水冷銅板や鋼板で挟み、囲まれた開先内にフラックスを添加するとともに、溶接ワイヤを連続供給する消耗式あるいは非消耗式給電ノズルを挿入し、溶接開始後、アーク熱によって溶融したフラックスがスラグ浴を形成し、その溶融スラグに電流が流れることによる自らの抵抗発熱により高温になり、連続供給されるワイヤおよび母材が溶融され、スラグ浴の底部に溶融金属を形成することによって溶接する方法である。エレクトロスラグ溶接は、1パス溶接が可能で、他の溶接法に比べて高能率であるため、鉄骨及び橋梁分野などで広く適用されている。 Electroslag welding involves sandwiching steel plates vertically aligned at a predetermined distance, or steel plates with the end face of one steel plate aligned with the surface of the other steel plate in a T-shape, between water-cooled copper plates or steel plates. Flux is added into the enclosed groove and a consumable or non-consumable power supply nozzle is inserted to continuously supply welding wire. After welding starts, the flux melted by arc heat forms a slag bath, and the melting This is a welding method in which the slag reaches a high temperature due to its own resistance heat generation due to current flowing through it, melts the continuously supplied wire and base metal, and forms molten metal at the bottom of the slag bath. Electroslag welding allows one-pass welding and is more efficient than other welding methods, so it is widely applied in the fields of steel frames and bridges.

図2に、従来のエレクトロスラグ溶接を示す。図2に示すように、垂直方向に付き合わせた鋼板101と鋼板102の間に間隔を設け、この間隔を略垂直方向から挟むように水冷銅板103と水冷銅板104を設置する。鋼板101及び鋼板102における水冷銅板103側の端部をそれぞれ第1端部101a、第1端部102a、鋼板101及び鋼板102における水冷銅板104側の端部をそれぞれ第2端部101b、第2端部102bとし、水冷銅板103及び水冷銅板104における鋼板101側の端部をそれぞれ第1端部103a、第1端部104a、水冷銅板103及び水冷銅板104における鋼板102側の端部をそれぞれ第2端部103b、第2端部104bとした場合、第1端部101aと第1端部103a、第1端部102aと第2端部103b、第2端部101bと第1端部104a、第2端部102bと第2端部104bをそれぞれ当接させて開先105を形成する。 FIG. 2 shows conventional electroslag welding. As shown in FIG. 2, a gap is provided between a steel plate 101 and a steel plate 102 that are aligned vertically, and a water-cooled copper plate 103 and a water-cooled copper plate 104 are installed so as to sandwich this gap in the substantially vertical direction. The ends of the steel plate 101 and the steel plate 102 on the water-cooled copper plate 103 side are respectively called a first end 101a and the first end 102a, and the ends of the steel plate 101 and the steel plate 102 on the water-cooled copper plate 104 side are called a second end 101b and a second end, respectively. The ends of the water-cooled copper plates 103 and 104 on the steel plate 101 side are respectively referred to as first ends 103a and 104a, and the ends of the water-cooled copper plates 103 and water-cooled copper plates 104 on the steel plate 102 side are respectively referred to as end portions 102b. In the case of the second end 103b and the second end 104b, the first end 101a and the first end 103a, the first end 102a and the second end 103b, the second end 101b and the first end 104a, A groove 105 is formed by bringing the second end 102b and the second end 104b into contact with each other.

この開先105を用いてエレクトロスラグ溶接を行って種々検討した結果、鋼板101及び鋼板102と水冷銅板103及び水冷銅板104が当接する各当接面において、鋼板101及び鋼板102端部の加工状態、鋼板101及び鋼板102との平行度合、水冷銅板103及び水冷銅板104の押付け度合などによって鋼板101及び鋼板102と水冷銅板103及び水冷銅板104との各当接面に隙間が発生すると、その隙間に開先105内の溶融金属が入り込み、凝固の際に表面にスラグが生成する。このスラグには厚みがあるため、スラグを取り除いた際にアンダカットが発生するという問題点があった。また、その隙間が大きい場合には隙間に溶融金属が流れて湯漏れが発生するという問題点があった。 As a result of performing electroslag welding using this groove 105 and conducting various studies, we found that the processed state of the ends of the steel plate 101 and the steel plate 102 at each contact surface where the steel plate 101 and the steel plate 102 and the water-cooled copper plate 103 and the water-cooled copper plate 104 contact each other. If a gap occurs between the contact surfaces of the steel plate 101 and the steel plate 102 and the water-cooled copper plate 103 and the water-cooled copper plate 104 due to the degree of parallelism between the steel plate 101 and the steel plate 102, the degree of pressing of the water-cooled copper plate 103 and the water-cooled copper plate 104, etc., the gap The molten metal in the groove 105 enters the groove, and slag is generated on the surface during solidification. Since this slag is thick, there is a problem in that undercuts occur when the slag is removed. Further, if the gap is large, there is a problem in that molten metal flows into the gap and leakage occurs.

また、特許文献1には、作業が簡便で溶接能率が高い非消耗ノズル式エレクトロスラグ溶接方法が開示されている。しかし、垂直方向に突き合わせた鋼板同士を溶接するエレクトロスラグ溶接では、鋼板及び水冷銅板を組み合わせて開先を形成するが、鋼板端部の開先精度が悪い場合、鋼板と水冷銅板が均一に密着できなかったり、また、溶接中に試験体が変形したりすることによって、鋼板と水冷銅板の間に隙間が生じ溶融金属が流れ落ちる現象(以下、湯漏れという。)が発生し、ビード形状が不良になるという問題点があった。 Further, Patent Document 1 discloses a non-consumable nozzle type electroslag welding method that is simple to operate and has high welding efficiency. However, in electroslag welding, which welds vertically butted steel plates together, a groove is formed by combining the steel plate and water-cooled copper plate, but if the groove precision at the edge of the steel plate is poor, the steel plate and water-cooled copper plate will not adhere uniformly. If the test specimen is deformed during welding, a gap may be created between the steel plate and the water-cooled copper plate, causing molten metal to flow down (hereinafter referred to as molten metal leakage), resulting in a defective bead shape. There was a problem with becoming.

この問題を改善する手法について、特許文献2には、鋼管部材とダイヤフラムを挟んで配置する裏当材との当接面に熱膨張性耐火材を配置することで、鋼管部材とダイヤフラムをエレクトロスラグ溶接する際、熱膨張性耐火材が膨張して鋼管部材と裏当材の隙間を塞いで溶融金属が漏れるのを防止する方法が開示されている。しかし、特許文献2に記載の方法は、鋼管部材とダイヤフラムとのエレクトロスラグ溶接での湯漏れを防止する方法であり、溶接長が長い鋼板及び水冷銅板で囲まれた開先内を溶接するエレクトロスラグ溶接では、当接面の隙間を完全に塞ぐことが難しく、十分な効果が得られないという問題点があった。 Regarding a method to improve this problem, Patent Document 2 discloses that by placing a thermally expandable refractory material on the contact surface between the steel pipe member and the diaphragm, the backing material is placed between the steel pipe member and the diaphragm. A method is disclosed in which, during welding, a thermally expandable refractory material expands to close the gap between a steel pipe member and a backing material to prevent molten metal from leaking. However, the method described in Patent Document 2 is a method for preventing melt leakage during electroslag welding between a steel pipe member and a diaphragm, and the method described in Patent Document 2 is a method for preventing melt leakage during electroslag welding between a steel pipe member and a diaphragm. Slag welding has a problem in that it is difficult to completely close the gap between the contact surfaces, and a sufficient effect cannot be obtained.

また、特許文献3には、鋼管部材と当接するダイヤフラム端面の両端に突起部を設けることで、エレクトロスラグ時の湯漏れを防止するダイヤフラムの製造方法が開示されている。しかし、鋼板及び水冷銅板で囲まれた開先内を溶接するエレクトロスラグ溶接では、鋼板全長の端面に突起物を設けるのは難しく、十分な効果が得られないという問題点があった。 Further, Patent Document 3 discloses a method for manufacturing a diaphragm that prevents leakage of hot water during electroslag by providing protrusions at both ends of the end face of the diaphragm that comes into contact with a steel pipe member. However, electroslag welding, which involves welding within a groove surrounded by a steel plate and a water-cooled copper plate, has the problem that it is difficult to provide protrusions on the end face of the entire length of the steel plate, and a sufficient effect cannot be obtained.

特開平8-10969号公報Japanese Patent Application Publication No. 8-10969 特開平7-229243号公報Japanese Patent Application Publication No. 7-229243 特開2004-351438号公報Japanese Patent Application Publication No. 2004-351438

そこで本発明は、上述した問題点に鑑みて案出されたものであり、エレクトロスラグ溶接方法において、溶接時の湯漏れを防止でき、アンダカットなどのない良好な溶接ビードが得られるエレクトロスラグ溶接方法を提供することを目的とする。 The present invention has been devised in view of the above-mentioned problems, and is an electroslag welding method that can prevent melt leakage during welding and provide a good weld bead without undercuts. The purpose is to provide a method.

本発明の要旨は、鋼板同士を所定の間隔を設けて垂直方向に突き合わせ、その間隔部を水冷銅板で挟んで当接させ、前記鋼板及び前記水冷銅板で囲まれた開先内を溶接するエレクトロスラグ溶接方法において、表面から窪んだ形状の溝で前記開先を囲むように前記水冷銅板を配置し、前記水冷銅板の端部と前記鋼板の端部との全ての当接面に、厚さ0.5mm~1.0mm未満であって、前記水冷銅板の端部と前記鋼板の端部の両方に当接する単体のガラステープを配置することを特徴とする。 The gist of the present invention is to abut the steel plates vertically with a predetermined gap between them, sandwich the gap between water-cooled copper plates, and weld the inside of the groove surrounded by the steel plate and the water-cooled copper plate. In the slag welding method, the water-cooled copper plate is arranged so that the groove is surrounded by a groove recessed from the surface, and a thickness is The present invention is characterized in that a single glass tape having a thickness of 0.5 mm to less than 1.0 mm is arranged so as to abut both the end of the water-cooled copper plate and the end of the steel plate .

本発明のエレクトロスラグ溶接方法によれば、溶接時の湯漏れを防止でき、アンダカットなどのない良好な溶接ビードが得られるエレクトロスラグ溶接ができるので、ビード形状が良好な溶接部を高能率に得ることができる。 According to the electroslag welding method of the present invention, it is possible to perform electroslag welding that can prevent melt leakage during welding and obtain a good weld bead without undercuts, so welding parts with good bead shapes can be made with high efficiency. Obtainable.

図1は、本発明のエレクトロスラグ溶接方法の開先形状を示す図である。FIG. 1 is a diagram showing the groove shape of the electroslag welding method of the present invention. 図2は、従来のエレクトロスラグ溶接方法の開先形状を示す図である。FIG. 2 is a diagram showing the groove shape of a conventional electroslag welding method.

本発明者らは、上述の課題を解決するために、鋼板及び水冷銅板で囲まれた開先内を溶接するエレクトロスラグ溶接において、湯漏れが発生せず、ビード形状が良好な溶接部を得られる溶接方法について種々検討した。具体的には、鋼板1及び鋼板2と水冷銅板3及び水冷銅板4との各当接面の隙間を無くす方法について種々検討した。その結果、図1に示すように、鋼板1及び鋼板2における水冷銅板3側の端部をそれぞれ第1端部1a、第1端部2a、鋼板1及び鋼板2における水冷銅板4側の端部をそれぞれ第2端部1b、第2端部2bとし、水冷銅板3及び水冷銅板4における鋼板1側の端部をそれぞれ第1端部3a、第1端部4a、水冷銅板3及び水冷銅板4における鋼板2側の端部をそれぞれ第2端部3b、第2端部4bとした場合、第1端部1aと第1端部3a、第1端部2aと第2端部3b、第2端部1bと第1端部4a、第2端部2bと第2端部4bの間に所定の厚さのガラステープTを各々配置することで、鋼板1及び鋼板2と水冷銅板3及び水冷銅板4との各当接面の隙間を埋め、湯漏れを防止できることを見出した。 In order to solve the above-mentioned problems, the present inventors have achieved a welded part that does not leak and has a good bead shape in electroslag welding in which the inside of a groove surrounded by a steel plate and a water-cooled copper plate is welded. Various welding methods were investigated. Specifically, various methods of eliminating gaps between the contact surfaces of the steel plates 1 and 2 and the water-cooled copper plates 3 and 4 were investigated. As a result, as shown in FIG. 1, the ends of the steel plates 1 and 2 on the water-cooled copper plate 3 side are replaced by the first end 1a and the first end 2a, and the ends of the steel plates 1 and 2 on the water-cooled copper plate 4 side, respectively. are a second end 1b and a second end 2b, respectively, and the ends of the water-cooled copper plate 3 and the water-cooled copper plate 4 on the steel plate 1 side are respectively a first end 3a and a first end 4a, a water-cooled copper plate 3 and a water-cooled copper plate 4, respectively. When the ends on the steel plate 2 side in By placing the glass tape T of a predetermined thickness between the end portion 1b and the first end portion 4a, and between the second end portion 2b and the second end portion 4b, the steel plate 1, the steel plate 2, the water-cooled copper plate 3, and the water-cooled It has been found that the gap between each contact surface with the copper plate 4 can be filled to prevent hot water from leaking.

また、所定の厚さのガラステープTを各当接面の間に配置することにより、ガラステープTが溶けた際に鋼板1及び鋼板2と水冷銅板3及び水冷銅板4との各当接面の間に適正な隙間が生じ、その隙間にスラグを形成させることでアンダカットのない良好なビード形状が得られることを見出した。 In addition, by placing a glass tape T of a predetermined thickness between each abutting surface, when the glass tape T melts, each abutting surface between the steel plates 1 and 2 and the water-cooled copper plate 3 and the water-cooled copper plate 4 It has been found that by forming an appropriate gap between the beads and forming a slag in the gap, a good bead shape without undercuts can be obtained.

なお、ガラステープTの厚さは0.5~2.0mmとする。鋼板1及び鋼板2と水冷銅板3及び水冷銅板4との各当接面の間に所定の厚さのガラステープTを配置することで、鋼板1及び鋼板2と水冷銅板3及び水冷銅板4との各当接面からの溶融金属などの湯漏れを防ぐとともに、各当接面の間に配置したガラステープTによるギャップとガラステープT端部の間に溶融金属を流入させてスラグを生成させることができるので、アンダカットを防止してビード形状を良好にする効果が得られる。ガラステープTの厚さが0.5mm未満では、試験体の組み立てあるいは溶接中に発生する各当接面の隙間を埋めることができず、各当接面の隙間に溶融金属が入り込んで湯漏れが発生しやすくなる。また、ガラステープTが溶けた隙間に生成するスラグの厚みが、ガラステープTが溶けた時に生じる隙間より大きいため、アンダカットが発生してビード形状が不良になる。一方、ガラステープTの厚さが2.0mmを超えると、鋼板1、2と水冷銅板3、4との間隔が過剰に大きくなるため、溶接ビード端部の余盛が過度に多くなり、ビード形状が悪くなる。したがって、各当接面の間に配置するガラステープTの厚さは0.5~2.0mmとする。 Note that the thickness of the glass tape T is 0.5 to 2.0 mm. By placing a glass tape T of a predetermined thickness between the contact surfaces of the steel plates 1 and 2 and the water-cooled copper plates 3 and 4, the steel plates 1 and 2 and the water-cooled copper plates 3 and 4 can be While preventing leakage of molten metal etc. from each contact surface, molten metal is caused to flow between the gap formed by the glass tape T placed between each contact surface and the end of the glass tape T to generate slag. Therefore, it is possible to prevent undercutting and improve the bead shape. If the thickness of the glass tape T is less than 0.5 mm, it will not be possible to fill the gaps between the contact surfaces that occur during assembly or welding of the test specimen, and molten metal will enter the gaps between the contact surfaces and cause metal leakage. is more likely to occur. Further, since the thickness of the slag generated in the gap where the glass tape T is melted is larger than the gap created when the glass tape T is melted, undercuts occur and the bead shape becomes defective. On the other hand, if the thickness of the glass tape T exceeds 2.0 mm, the distance between the steel plates 1 and 2 and the water-cooled copper plates 3 and 4 will become excessively large, resulting in excessive buildup at the end of the weld bead and The shape becomes worse. Therefore, the thickness of the glass tape T placed between each contact surface is set to 0.5 to 2.0 mm.

なお、各当接面の間に配置するガラステープTの材質及び厚さ以外のサイズについては特に限定はしないが、SiOを主成分とする一般的なガラステープTを用いても良い。また、ガラステープTの配置方法については特に限定しないが、粘着性のりが付いているものを用いて鋼板1、2または水冷銅板3、4に貼付しても良い。 Note that there are no particular limitations on the material and size of the glass tape T placed between the contact surfaces, other than the thickness, but a general glass tape T containing SiO 2 as a main component may be used. Further, the method of arranging the glass tape T is not particularly limited, but it may be attached to the steel plates 1 and 2 or the water-cooled copper plates 3 and 4 using adhesive glue.

また、使用するソリッドワイヤについては、特に限定はしないが、JIS Z 3353 YES52に準拠するソリッドワイヤを用いることが好ましい。 Furthermore, the solid wire used is not particularly limited, but it is preferable to use a solid wire that complies with JIS Z 3353 YES52.

さらに、使用するフラックスについては、特に限定はしないが、中酸化マンガン系溶融型フラックスを用いることが好ましい。 Further, the flux to be used is not particularly limited, but it is preferable to use a middle manganese oxide type melting type flux.

以下、実施例により本発明の効果を具体的に説明する。 EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.

JIS Z 3106 SM490Aに準拠した2枚の板厚50mmの鋼板1、2を用い、鋼板1、2同士を25mmの間隔を空けて鋼板1、2端部を垂直に突き合わせて平行に配置し、2枚の鋼板1、2の両面に拘束板を溶接して固定した後、その試験体を土台となる下板に対して垂直に立て当接し、溶接して固定する。次いで、2つの水冷銅板3、4を鋼板突合せ方向とは略垂直方向から間隔部を挟むよう鋼板1、2両面に配置した後、2枚の鋼板1、2と2つの水冷銅板3、4との各当接面の間(4箇所)に表1に示す厚さのガラステープTを配置し、各々配置したガラステープTを挟みながら各鋼板1、2と水冷銅板3、4の各当接面を当接した後、拘束板穴部と水冷銅板3、4の間にクサビを挿入して水冷銅板3、4を固定させて開先5を形成する。 Two steel plates 1 and 2 with a thickness of 50 mm conforming to JIS Z 3106 SM490A are used, and the steel plates 1 and 2 are arranged in parallel with a 25 mm interval and the ends of the steel plates 1 and 2 are vertically butted against each other. After fixing restraining plates by welding to both sides of the steel plates 1 and 2, the test specimen is vertically brought into contact with the lower plate serving as a base, and fixed by welding. Next, two water-cooled copper plates 3 and 4 are placed on both sides of the steel plates 1 and 2 with a gap between them in a direction substantially perpendicular to the direction in which the steel plates butt. A glass tape T having the thickness shown in Table 1 is placed between each contact surface (at 4 locations), and each of the steel plates 1 and 2 and the water-cooled copper plates 3 and 4 are brought into contact with each other while sandwiching the placed glass tape T. After the surfaces are brought into contact, a wedge is inserted between the restraining plate hole and the water-cooled copper plates 3 and 4 to fix the water-cooled copper plates 3 and 4, thereby forming a groove 5.

形成された開先5内に、JIS Z 3353 FS-FG3に準拠した溶融型フラックスを添加し、給電ノズルを挿入し、JIS Z 3353 YES52に準拠したワイヤ径が1.6mmφの溶接用ワイヤを送り出しながら表2に示す溶接条件で非消耗ノズル式エレクトロスラグ溶接を実施した。なお、試験体の高さは1000mmとした。 Add molten flux in accordance with JIS Z 3353 FS-FG3 into the formed groove 5, insert a power supply nozzle, and feed out a welding wire with a wire diameter of 1.6 mm in accordance with JIS Z 3353 YES52. However, non-consumable nozzle type electroslag welding was carried out under the welding conditions shown in Table 2. Note that the height of the test specimen was 1000 mm.

Figure 0007341937000001
Figure 0007341937000001

Figure 0007341937000002
Figure 0007341937000002

調査項目は、溶接時の湯漏れの有無、溶接後のビード形状を目視で調査した。それらの結果を表3にまとめて示す。 The investigation items included visual inspection of the presence or absence of melt leakage during welding and the shape of the bead after welding. The results are summarized in Table 3.

Figure 0007341937000003
Figure 0007341937000003

表3中試験No.1~試験No.5は本発明例、試験No.6~試験No.8は比較例である。本発明例である試験No.1~No.5は、鋼板1、2と水冷銅板3、4の各当接面の間にガラステープTが各々配置され、各々配置されたガラステープTの厚さが適正なので、エレクトロスラグ溶接時に湯漏れの発生が無く、溶接後のビード形状も良好であるなど極めて満足な結果であった。 Test No. in Table 3 1~Test No. 5 is an example of the present invention, test No. 6~Test No. 8 is a comparative example. Test No. which is an example of the present invention. 1~No. 5, glass tapes T are placed between the respective contact surfaces of the steel plates 1 and 2 and the water-cooled copper plates 3 and 4, and the thickness of each placed glass tape T is appropriate, so there is no leakage during electroslag welding. The results were extremely satisfactory, with no occurrence and the bead shape after welding was good.

比較例中試験No.6は、ガラステープの厚さが薄いので、鋼板1、2と水冷銅板3、4との各当接面の隙間を塞ぐことができず、溶接時に湯漏れが発生した。また、溶接ビードにアンダカットが発生してビード形状が不良であった。 Test No. in Comparative Example In No. 6, since the glass tape was thin, the gaps between the contact surfaces of the steel plates 1 and 2 and the water-cooled copper plates 3 and 4 could not be closed, and hot water leaked during welding. In addition, undercutting occurred in the weld bead, resulting in poor bead shape.

試験No.7は、ガラステープTの厚さが厚いので、ビード形状が不良であった。 Test No. Sample No. 7 had a poor bead shape because the glass tape T was thick.

試験No.8は、鋼板1、2と水冷銅板3、4の各当接面の間にガラステープTが配置されていないので、鋼板1、2と水冷銅板3、4との各当接面の隙間を塞ぐことができず、溶接時に湯漏れが発生した。また、溶接ビードにアンダカットが発生してビード形状が不良であった。 Test No. 8, since the glass tape T is not placed between the contact surfaces of the steel plates 1 and 2 and the water-cooled copper plates 3 and 4, the gaps between the contact surfaces of the steel plates 1 and 2 and the water-cooled copper plates 3 and 4 are It was not possible to seal it, and metal leakage occurred during welding. In addition, undercutting occurred in the weld bead, resulting in poor bead shape.

1 鋼板
1a 第1端部
1b 第2端部
2 鋼板
2a 第1端部
2b 第2端部
3 水冷銅板
3a 第1端部
3b 第2端部
4 水冷銅板
4a 第1端部
4b 第2端部
5 開先
T ガラステープ
1 Steel plate 1a First end 1b Second end 2 Steel plate 2a First end 2b Second end 3 Water-cooled copper plate 3a First end 3b Second end 4 Water-cooled copper plate 4a First end 4b Second end 5 Bevel T Glass tape

Claims (1)

鋼板同士を所定の間隔を設けて垂直方向に突き合わせ、その間隔部を水冷銅板で挟んで当接させ、前記鋼板及び前記水冷銅板で囲まれた開先内を溶接するエレクトロスラグ溶接方法において、表面から窪んだ形状の溝で前記開先を囲むように前記水冷銅板を配置し、前記水冷銅板の端部と前記鋼板の端部との全ての当接面に、厚さ0.5mm~1.0mm未満であって、前記水冷銅板の端部と前記鋼板の端部の両方に当接する単体のガラステープを配置することを特徴とするエレクトロスラグ溶接方法。 In an electroslag welding method, steel plates are abutted against each other vertically with a predetermined interval, the gap is sandwiched between water-cooled copper plates, and the inside of the groove surrounded by the steel plate and the water-cooled copper plate is welded. The water-cooled copper plate is arranged so that the groove is surrounded by a groove having a concave shape, and the water-cooled copper plate has a thickness of 0.5 mm to 1.5 mm on all contact surfaces between the end of the water-cooled copper plate and the end of the steel plate. An electroslag welding method characterized by arranging a single glass tape having a thickness of less than 0 mm and abutting both the end of the water-cooled copper plate and the end of the steel plate .
JP2020056578A 2020-03-26 2020-03-26 Electroslag welding method Active JP7341937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020056578A JP7341937B2 (en) 2020-03-26 2020-03-26 Electroslag welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056578A JP7341937B2 (en) 2020-03-26 2020-03-26 Electroslag welding method

Publications (2)

Publication Number Publication Date
JP2021154339A JP2021154339A (en) 2021-10-07
JP7341937B2 true JP7341937B2 (en) 2023-09-11

Family

ID=77919031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056578A Active JP7341937B2 (en) 2020-03-26 2020-03-26 Electroslag welding method

Country Status (1)

Country Link
JP (1) JP7341937B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728910U (en) * 1971-04-30 1972-12-02
JPS5240294B2 (en) * 1973-04-09 1977-10-11
JPS5252137A (en) * 1975-10-23 1977-04-26 Kobe Steel Ltd Vertical position upward welding process

Also Published As

Publication number Publication date
JP2021154339A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP4754991B2 (en) Friction stir welding method
JP2015208771A (en) Groove shrinkage restraining method of automatic tig back wave welding
JP2018118265A (en) Welding method for thin copper plates to each other
JP7341937B2 (en) Electroslag welding method
KR101151569B1 (en) Welding method of stainless steel
JP6382593B2 (en) Welding method
JP2006130562A (en) Method for repairing hole of metallic workpiece
JP2006281245A (en) Structure of backing metal for welding
JP2007196266A (en) Both-side welding method and weld structure thereby
JP5253777B2 (en) Overlapping laser welding method and laser welded product
US3319043A (en) Method and means for workpiece joinder
JP2008238265A (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
KR101162246B1 (en) Tap piece for generating starting arc in arc welding
JP4871747B2 (en) Double-side welding method
US4043500A (en) Tube to tube brazing
JPH046467B2 (en)
US20160288234A1 (en) Ceramic backing tile with consumable insert
JPS63203286A (en) Piercing welding method for t-shaped joint
JPH01233084A (en) Butt laser welding method for thin sheet
JP2017035721A (en) Laser-welded joint
KR20110075168A (en) Stir friction weld device of titanium backing plate and stir friction weld method thereof
JPH04327386A (en) Tee type welding method by laser beam
JPH09271992A (en) Backing material for t-joint
JPH10258361A (en) Horizontal position welding method
JPS61219484A (en) Method for one side welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7341937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150