JP5983822B2 - Negative electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents
Negative electrode for lithium ion secondary battery and lithium ion secondary battery Download PDFInfo
- Publication number
- JP5983822B2 JP5983822B2 JP2015107686A JP2015107686A JP5983822B2 JP 5983822 B2 JP5983822 B2 JP 5983822B2 JP 2015107686 A JP2015107686 A JP 2015107686A JP 2015107686 A JP2015107686 A JP 2015107686A JP 5983822 B2 JP5983822 B2 JP 5983822B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- negative electrode
- material layer
- lithium ion
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。 The present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery.
高容量の二次電池としてリチウムイオン二次電池が注目されており、リチウムイオン二次電池の性能を向上させるための様々な技術が開発されている(特許文献1〜8等参照)。
Lithium ion secondary batteries have attracted attention as high-capacity secondary batteries, and various techniques for improving the performance of lithium ion secondary batteries have been developed (see
特許文献1には、複数の貫通孔を有する集電体の表面に形成され、厚さが10〜60μmで密度が1.0〜1.5g/cm3である負極合材層が開示されている。当該負極合材層には、複数の貫通孔に対応する位置に複数の凹部が形成されている。特許文献1に開示されている負極合材層は、充電時の負極活物質の膨張を凹部によって吸収できるので、負極合材層の厚み増加を抑制することができ、セパレータへの応力を緩和できる。
特許文献2には、活物質塗工厚さを80μm以下とし、集電体側の活物質層の空隙率を30〜50%とし、セパレータ側の空隙率を50〜60%としたリチウムイオン二次電池用電極が開示されている。特許文献2に開示されているリチウムイオン二次電池用電極は、リチウムイオン二次電池に用いると、電極内の電解液量が増え、電極内電解液中の膜厚方向へのリチウムイオン輸送力が増し、より出力密度を向上させることができる。
特許文献3には、集電体の表面に設けられ、集電体を貫通しない多数の穴部が3mm以下の間隔で形成された活物質層が開示されている。このような活物質層の一例として、特許文献3には、正極活物質としてLiCoO2を含み、重量が50mg/cm2、厚さが約140μmであり、2.25mm間隔で穴が形成された正極活物質層が開示されている。特許文献3に開示されている活物質層は、リチウムイオン二次電池に用いると、これらの穴部を通してリチウムイオンが活物質層の内部にスムーズに移動できるようになり、負荷特性を改善でき、大電流での充放電特性を向上できる。
特許文献4には、負極活物質と電荷吸蔵物質とを含み、密度が1.2g/cm3以上1.6g/cm3以下、厚さが50μm以上100μm以下である負極合材層が開示されている。特許文献4に開示されている負極合材層は、電荷吸蔵物質が吸蔵した電荷担体を放出せずに保持するため、負極の電位を高めることができ、正極の作動電圧を従来に比べて上昇させ、内部抵抗を低減できる。
特許文献5には、集電体上に形成され、密度が1.2g/cm3以上1.5g/cm3以下の負極合材層が開示されている。当該負極合材層は、厚み方向に二分したときに相対的に集電体に近い領域の負極活物質の単位重量当たりの吸油量Fcと、相対的に表面に近い領域の負極活物質の単位重量当たりの吸油量FsとがFc>Fsの関係にある。吸油量の大きさは電解液との親和性の高さを意味している。このような負極合材層の一例として特許文献5は、負極活物質として天然黒鉛粉末を含み、給油量が異なる上層と下層とがそれぞれ18mg/cm2(片面あたり)の目付量で集電体の表面に形成された、密度が1.4g/cm3の負極合材層が開示されている。特許文献5に開示されている合材層は、負極合材層に吸油量の勾配が付いているので、集電体近傍まで電解液が行き渡り、負極合材層全体を有効に利用できる。 Patent Document 5 discloses a negative electrode mixture layer formed on a current collector and having a density of 1.2 g / cm 3 or more and 1.5 g / cm 3 or less. The negative electrode mixture layer has an oil absorption amount Fc per unit weight of the negative electrode active material in a region relatively close to the current collector when divided into two in the thickness direction, and a unit of the negative electrode active material in a region relatively close to the surface The oil absorption amount Fs per weight has a relationship of Fc> Fs. The amount of oil absorption means high affinity with the electrolyte. As an example of such a negative electrode mixture layer, Patent Literature 5 includes a natural graphite powder as a negative electrode active material, and an upper layer and a lower layer having different amounts of oil supply are each 18 mg / cm 2 (per one side) of current collector. A negative electrode composite material layer having a density of 1.4 g / cm 3 formed on the surface of is disclosed. In the composite material layer disclosed in Patent Document 5, since the negative electrode composite material layer has a gradient of the oil absorption amount, the electrolytic solution spreads to the vicinity of the current collector, and the entire negative electrode composite material layer can be used effectively.
特許文献6には、活物質粒子と、結着剤と、結着剤を溶解させる第1の溶剤と、第1の溶剤と相分離する第2の溶剤と、第2の溶剤を分散させる界面活性剤とを含むスラリーを集電体の表面に塗布し、第1の溶剤を蒸発させて第2の溶剤を相分離させた後、第2の溶剤を蒸発させて活物質層に穴部を形成する方法が開示されている。特許文献6に開示されている方法により作製された活物質層は、活物質層中に電解液が浸透しやすく、かつ表面積が大きいので、活物質−電解液間のリチウムイオンの拡散をスムーズに行うことができる。
特許文献7には、活物質として黒鉛系炭素活物質を含み、乾燥後の合材の質量が約10mg/cm2であり、縦横7mmの間隔で開口の最大径が100μmの透孔を有するリチウム電池用電極が開示されている。特許文献7に開示されているリチウム電池用電極は、電池内への電解液の浸透状態を改善できる。
In
特許文献8には、ヘリウム吸着法による真密度が1.6〜2.1g/cm3で、ブタノール法による真密度が1.5〜2.0g/cm3の負極活物質を1.1〜1.7g/cm3の密度で含み、正極合材の空隙率よりも小さい空隙率の負極合材を備える負極が開示されている。特許文献8に開示されている負極は、低温においても出力特性が高く、高入出力負荷耐性に優れたリチウムイオン二次電池を提供できる。
特許文献1に開示されている負極合材層が最も多くの負極合材を有している場合は、厚さが60μmで密度が1.5g/cm3のときである。このときでも負極合材層の負極合材量は9mg/cm2と少ない。負極合材には結着剤や導電材などが含まれているので、負極合剤層が有している活物質量はさらに小さい。よって、特許文献1に開示されている負極合材層を用いたリチウムイオン二次電池は容量が小さい。
The case where the negative electrode mixture layer disclosed in
特許文献2に開示されているリチウムイオン二次電池用電極は、活物質層の厚さが20〜80μmであり、セパレータ側の空隙率が50%以上、60%以下であるために、活物質密度が低い。そのため、当該電極を用いたリチウムイオン二次電池は、体積当たりのエネルギー密度(充放電容量)が低いという不具合がある。
The electrode for a lithium ion secondary battery disclosed in
特許文献3には、活物質層を正極に適用した例は開示されているが、負極に適用された例が開示されていない。そのため、活物質層を負極に適用した場合、当該負極を用いたリチウムイオン二次電池が高容量であるか不明である。
特許文献4に開示されている負極合材層は、負極活物質が黒鉛で、合材の密度が1.6g/cm3の場合、黒鉛の真密度はおよそ2.2g/cm3であるので、黒鉛の真密度の約72%の割合で合材が充填されている。このように比較的高密度で合材が充填されているので、負極合材層は空隙が少なく、電解質が含浸し難く、有効に利用できない活物質が多い。そのため、特許文献4に開示されている負極合材層を用いたリチウムイオン二次電池は電池の容量が小さい。
In the negative electrode mixture layer disclosed in
特許文献5に開示されている負極合材層は、密度が上層及び下層共に1.4g/cm3である。これは、負極活物質の黒鉛の真密度の約63.6%であり、当該負極合材層は担持している活物質が少ない。さらに活物質を担持させるために密度を高くすると、負極合材層に空隙が少なくなり、電解液との親和性が低い上層は、特に電解液が含浸し難くなる。このように負極合材層は、電解液との親和性が高い下層まで電解液が届き難くなり、集電体近傍に電解液を十分にいき渡らせることができず、有効に利用できない活物質が多くなる恐れがあり、電池の容量を増加し難い。 The negative electrode composite material layer disclosed in Patent Document 5 has a density of 1.4 g / cm 3 for both the upper layer and the lower layer. This is about 63.6% of the true density of graphite of the negative electrode active material, and the negative electrode mixture layer has a small amount of active material supported. If the density is increased to further support the active material, the negative electrode mixture layer has fewer voids, and the upper layer having low affinity with the electrolytic solution is particularly difficult to be impregnated with the electrolytic solution. As described above, the negative electrode mixture layer is difficult to reach the lower layer having high affinity with the electrolytic solution, and the active material cannot be used effectively because the electrolytic solution cannot be sufficiently distributed in the vicinity of the current collector. May increase, and it is difficult to increase the capacity of the battery.
特許文献6に開示されている活物質層は、相分離した第2の溶剤を蒸発させて穴を形成しているので、第2の溶剤が占めていた部分には活物質が存在せず、その分だけ活物質の密度が低くなり、担持する活物質の量が少ない。そのため、特許文献6に開示されている負極合材層を用いたリチウムイオン二次電池は電池の容量が小さい。
Since the active material layer disclosed in
特許文献7に開示されているリチウムイオン電池用電極は、合材の質量が10mg/cm2であり、担持する活物質の量が少ない。よって、特許文献7に開示されているリチウムイオン電池用電極を用いたリチウムイオン二次電池は容量が小さい。
In the electrode for a lithium ion battery disclosed in
特許文献8に開示されている負極は、最も高い真密度2.1g/cm3の活物質を用いた場合、負極合材の密度の上限は1.7g/cm3であり、その場合、活物質の真密度の約80%と高密度に活物質が充填されている。そのため、負極には、空隙が少ないため電解液が含浸し難く、有効に利用できない活物質が多い。また、負極合材の密度を小さくすると、負極の担持する活物質の量は減少する。そのため、特許文献8に開示されている負極を用いたリチウムイオン二次電池は電池の容量が小さい。
In the negative electrode disclosed in
このように従来は、高容量で内部抵抗の低いリチウムイオン二次電池を作製することが困難であった。 Thus, conventionally, it has been difficult to produce a lithium ion secondary battery having a high capacity and a low internal resistance.
そこで本発明は、上記の問題点に鑑み、高容量で素早く充放電できるリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery that can be charged and discharged quickly with a high capacity.
本発明の第1の観点は、集電体と、前記集電体の表面に形成された活物質層とを備え、前記活物質層は、複数の穴が表面に形成されており、活物質密度が前記活物質層に含まれる活物質の真密度の70〜83%であり、厚さが100〜1000μmであることを特徴とする。 A first aspect of the present invention includes a current collector and an active material layer formed on a surface of the current collector, and the active material layer has a plurality of holes formed on the surface, and the active material The density is 70 to 83% of the true density of the active material contained in the active material layer, and the thickness is 100 to 1000 μm.
本発明の第2の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質として黒鉛を含み、前記活物質密度が1.54〜1.82g/cm3であることを特徴とする。 A second aspect of the present invention is the invention based on the first aspect, wherein the active material layer includes graphite as the active material, and the active material density is 1.54 to 1.82 g / cm 3 . It is characterized by being.
本発明の第3の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質として難黒鉛化炭素を含み、前記活物質密度が1.26〜1.49g/cm3であることを特徴とする。 A third aspect of the present invention is the invention based on the first aspect, wherein the active material layer includes non-graphitizable carbon as the active material, and the active material density is 1.26 to 1.49 g / It is characterized by being cm 3 .
本発明の第4の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質として易黒鉛化炭素を含み、前記活物質密度が1.26〜1.49g/cm3であることを特徴とする。 A fourth aspect of the present invention is the invention based on the first aspect, wherein the active material layer includes graphitizable carbon as the active material, and the active material density is 1.26 to 1.49 g / It is characterized by being cm 3 .
本発明の第5の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質としてLi4Ti5O12を含み、前記活物質密度が2.30〜2.73g/cm3であることを特徴とする。 A fifth aspect of the present invention is the invention based on the first aspect, wherein the active material layer includes Li 4 Ti 5 O 12 as the active material, and the active material density is 2.30-2. It is 73 g / cm 3 .
本発明の第6の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質としてSiOを含み、前記活物質密度が1.47〜1.74g/cm3であることを特徴とする。 A sixth aspect of the present invention is the invention based on the first aspect, wherein the active material layer includes SiO as the active material, and the active material density is 1.47 to 1.74 g / cm 3 . It is characterized by being.
本発明の第7の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質としてSnを含み、前記活物質密度が5.04〜6.10g/cm3であることを特徴とする。 A seventh aspect of the present invention is the invention based on the first aspect, wherein the active material layer contains Sn as the active material, and the active material density is 5.04 to 6.10 g / cm 3 . It is characterized by being.
本発明の第8の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質としてSiを含み、前記活物質密度が1.61〜1.90g/cm3であることを特徴とする。 An eighth aspect of the present invention is the invention based on the first aspect, wherein the active material layer contains Si as the active material, and the active material density is 1.61 to 1.90 g / cm 3 . It is characterized by being.
本発明の第9の観点は、第1の観点に基づく発明であって、前記活物質層は、前記活物質として黒鉛、難黒鉛化炭素、易黒鉛化炭素、Li4Ti5O12、SiO、Sn、Siから選択される2種以上を含み、前記活物質密度が1.26g/cm3超6.10g/cm3未満であることを特徴とする。 A ninth aspect of the present invention is the invention based on the first aspect, wherein the active material layer includes graphite, non-graphitizable carbon, graphitizable carbon, Li 4 Ti 5 O 12 , SiO as the active material. , Sn, Si, and the active material density is more than 1.26 g / cm 3 and less than 6.10 g / cm 3 .
本発明の第10の観点は、第1〜第9の観点のいずれか1つに基づく発明であって、前記活物質層は、導電助剤を0.0〜10wt%、バインダー及び増粘剤を1.0〜10wt%含むことを特徴とする。 A tenth aspect of the present invention is an invention based on any one of the first to ninth aspects, wherein the active material layer comprises a conductive auxiliary agent in an amount of 0.0 to 10 wt%, a binder and a thickener. Is contained in an amount of 1.0 to 10 wt%.
本発明の第11の観点は、第1〜第10の観点のいずれか1つに基づく発明であって、前記複数の穴の最大径が5〜1500μmであることを特徴とする。 An eleventh aspect of the present invention is an invention based on any one of the first to tenth aspects, wherein a maximum diameter of the plurality of holes is 5 to 1500 μm.
本発明の第12の観点は、第1〜第11の観点のいずれか1つに基づく発明であって、前記複数の穴の中心間隔が500〜6000μmであることを特徴とする。 A twelfth aspect of the present invention is the invention based on any one of the first to eleventh aspects, characterized in that a center interval between the plurality of holes is 500 to 6000 μm.
本発明の第13の観点は、第1〜第12の観点のいずれか1つに基づく発明であって、前記複数の穴の開口の形状が、丸形、三角形、四角形又は五角形以上の多角形から選ばれる1つ以上であることを特徴とする。 A thirteenth aspect of the present invention is the invention based on any one of the first to twelfth aspects, wherein the opening of the plurality of holes has a round shape, a triangular shape, a quadrangular shape, or a polygonal shape that is a pentagon or more. It is one or more selected from.
本発明の第14の観点は、第1〜第13の観点のいずれか1つに基づく発明であって、前記複数の穴の深さが前記活物質層の厚さの5%以上であることを特徴とする。 A fourteenth aspect of the present invention is the invention based on any one of the first to thirteenth aspects, wherein the depth of the plurality of holes is 5% or more of the thickness of the active material layer. It is characterized by.
本発明の第15の観点は、第1〜第14の観点のいずれか1つに基づく発明であって、前記複数の穴は、底部を有していることを特徴とする。 A fifteenth aspect of the present invention is an invention based on any one of the first to fourteenth aspects, wherein the plurality of holes have a bottom portion.
本発明の第16の観点は、第1〜第14の観点のいずれか1つに基づく発明であって、前記集電体の両面に前記活物質層が形成されており、前記複数の穴が、一の前記活物質層の表面に開口が形成され、該活物質層と前記集電体とを貫通し、他の前記活物質層によって底部が形成されていることを特徴とする。 A sixteenth aspect of the present invention is the invention based on any one of the first to fourteenth aspects, wherein the active material layer is formed on both surfaces of the current collector, and the plurality of holes are formed. An opening is formed on the surface of one of the active material layers, the active material layer and the current collector are penetrated, and a bottom is formed by the other active material layer.
本発明の第17の観点は、第16の観点に基づく発明であって、前記複数の穴は、前記他の活物質層の表面に開口が形成され、該活物質層と前記集電体とを貫通し、前記一の活物質層によって底部が形成されている穴を含み、前記一の活物質層の表面に開口が形成された穴と前記他の活物質層の表面に開口が形成された穴とが交互に形成されていることを特徴とする。 A seventeenth aspect of the present invention is the invention based on the sixteenth aspect, wherein the plurality of holes have openings formed on the surface of the other active material layer, and the active material layer, the current collector, Including a hole having a bottom formed by the one active material layer, and an opening formed in the surface of the one active material layer and an opening formed in the surface of the other active material layer. The holes are alternately formed.
本発明の第18の観点は、第1〜第17の観点のいずれか1つに基づくリチウムイオン二次電池用負極を備えることを特徴とする。 An eighteenth aspect of the present invention includes a negative electrode for a lithium ion secondary battery based on any one of the first to seventeenth aspects.
本発明の第1の観点のリチウムイオン二次電池用負極は、集電体と、集電体の表面に形成された活物質層とを備え、活物質層は、複数の穴が表面に形成されており、活物質密度が活物質層に含まれる活物質の真密度の70〜83%であり、厚さが100〜1000μmであるため、より多くの活物質を有しており、リチウムイオン二次電池に用いると、活物質層の表面に加え、活物質層の表面から厚さ方向に深い位置においても、電子の授受や、リチウムイオンの挿入、脱離が生じ、活物質層の表面から厚さ方向に深い位置の活物質を有効に利用でき、また、負極内でのリチウムイオンの移動距離が長くなりすぎないのでさらに有効に活物質を利用でき、高容量のリチウムイオン二次電池を提供できる。加えて、リチウムイオン二次電池用負極は、リチウムイオン二次電池に用いると、活物質層の表面から厚さ方向に深い位置において活物質から離脱したリチウムイオンが穴に存在する電解液中を移動できるので、電池の内部抵抗が低く、素早く充放電でき、高出力のリチウムイオン二次電池を提供できる。 A negative electrode for a lithium ion secondary battery according to a first aspect of the present invention includes a current collector and an active material layer formed on a surface of the current collector, and the active material layer has a plurality of holes formed on the surface. The active material density is 70 to 83% of the true density of the active material contained in the active material layer, and the thickness is 100 to 1000 μm. When used in a secondary battery, in addition to the surface of the active material layer, even at positions deep in the thickness direction from the surface of the active material layer, electrons are transferred, lithium ions are inserted and desorbed, and the surface of the active material layer The active material at a deep position in the thickness direction can be used effectively, and the active material can be used more effectively because the movement distance of lithium ions in the negative electrode is not too long, and the lithium ion secondary battery with high capacity Can provide. In addition, when the negative electrode for a lithium ion secondary battery is used in a lithium ion secondary battery, the lithium ion released from the active material is located in the hole at a position deep in the thickness direction from the surface of the active material layer. Since the battery can be moved, the internal resistance of the battery is low, the battery can be charged and discharged quickly, and a high-power lithium ion secondary battery can be provided.
本発明の第2の観点のリチウムイオン二次電池用負極は、活物質層が、活物質として黒鉛を含み、活物質密度が1.54〜1.82g/cm3であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the second aspect of the present invention, the active material layer contains graphite as an active material, and the active material density is 1.54 to 1.82 g / cm 3. A negative electrode having a high density and a high-capacity lithium ion secondary battery can be provided.
本発明の第3の観点のリチウムイオン二次電池用負極は、活物質層が、活物質として難黒鉛化炭素を含み、活物質密度が1.26〜1.49g/cm3であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the third aspect of the present invention, the active material layer includes non-graphitizable carbon as the active material, and the active material density is 1.26 to 1.49 g / cm 3 . A negative electrode having a high density of active materials, and can provide a high-capacity lithium ion secondary battery.
本発明の第4の観点のリチウムイオン二次電池用負極は、活物質層が、活物質として易黒鉛化炭素を含み、活物質密度が1.26〜1.49g/cm3であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the fourth aspect of the present invention, the active material layer contains graphitizable carbon as an active material, and the active material density is 1.26 to 1.49 g / cm 3 . A negative electrode having a high density of active materials, and can provide a high-capacity lithium ion secondary battery.
本発明の第5の観点のリチウムイオン二次電池用負極は、活物質層が、活物質としてLi4Ti5O12を含み、活物質密度が2.30〜2.73g/cm3であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the fifth aspect of the present invention, the active material layer includes Li 4 Ti 5 O 12 as an active material, and the active material density is 2.30 to 2.73 g / cm 3 . Therefore, it is a negative electrode which has an active material in high density, and can provide a high capacity | capacitance lithium ion secondary battery.
本発明の第6の観点のリチウムイオン二次電池用負極は、活物質層が、活物質としてSiOを含み、活物質密度が1.47〜1.74g/cm3であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the sixth aspect of the present invention, the active material layer contains SiO as the active material, and the active material density is 1.47 to 1.74 g / cm 3. A negative electrode having a high density and a high-capacity lithium ion secondary battery can be provided.
本発明の第7の観点のリチウムイオン二次電池用負極は、活物質層が、活物質としてSnを含み、活物質密度が5.04〜6.10g/cm3であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the seventh aspect of the present invention, the active material layer contains Sn as the active material, and the active material density is 5.04 to 6.10 g / cm 3. A negative electrode having a high density and a high-capacity lithium ion secondary battery can be provided.
本発明の第8の観点のリチウムイオン二次電池用負極は、活物質層が、活物質としてSiを含み、活物質密度が1.61〜1.90g/cm3であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the eighth aspect of the present invention, the active material layer contains Si as the active material, and the active material density is 1.61 to 1.90 g / cm 3. A negative electrode having a high density and a high-capacity lithium ion secondary battery can be provided.
本発明の第9の観点のリチウムイオン二次電池用負極は、活物質層が、活物質として黒鉛、難黒鉛化炭素、易黒鉛化炭素、Li4Ti5O12、SiO、Sn、Siから選択される2種以上を含み、活物質密度が1.26g/cm3超6.10g/cm3未満であるので、活物質を高密度に有している負極であり、高容量のリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the ninth aspect of the present invention, the active material layer is composed of graphite, non-graphitizable carbon, graphitizable carbon, Li 4 Ti 5 O 12 , SiO, Sn, Si as the active material. Including two or more selected, the active material density is more than 1.26 g / cm 3 and less than 6.10 g / cm 3 , so that it is a negative electrode having a high density of active material, and has a high capacity lithium ion A secondary battery can be provided.
本発明の第10の観点のリチウムイオン二次電池用負極は、活物質層が、導電助剤を0.0〜10wt%、バインダー及び増粘剤を1.0〜10wt%含むので、担持する活物質の量を減らすことなく、活物質を十分に結着でき、かつ十分な導電性を持つことができる。 The negative electrode for a lithium ion secondary battery according to the tenth aspect of the present invention is supported because the active material layer contains 0.0 to 10 wt% of a conductive additive, 1.0 to 10 wt% of a binder and a thickener. Without reducing the amount of the active material, the active material can be sufficiently bound and have sufficient conductivity.
本発明の第11の観点のリチウムイオン二次電池用負極は、複数の穴の最大径が5〜1500μmであるので、当該負極を用いたリチウムイオン二次電池では、穴の径がリチウムイオンが移動をするのに適したものとなり、より高容量で素早く充放電できるリチウムイオン二次電池を提供できる。 Since the negative electrode for a lithium ion secondary battery according to the eleventh aspect of the present invention has a maximum diameter of a plurality of holes of 5 to 1500 μm, the lithium ion secondary battery using the negative electrode has a hole diameter of lithium ions. A lithium ion secondary battery that is suitable for movement and can be quickly charged and discharged with higher capacity can be provided.
本発明の第12の観点のリチウムイオン二次電池用負極は、複数の穴の中心間隔が500〜6000μmであるので、穴の数及び穴の間隔がより適したものとなり、より高容量で素早く充放電できるリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the twelfth aspect of the present invention, since the center interval of the plurality of holes is 500 to 6000 μm, the number of holes and the interval between the holes are more suitable, and the capacity is increased quickly. A lithium ion secondary battery that can be charged and discharged can be provided.
本発明の第13の観点のリチウムイオン二次電池用負極は、穴の開口の形状が、丸形、三角形、四角形又は五角形以上の多角形から選ばれる1つ以上であるので、穴の形状が電池反応に適したものになり、より高容量で素早く充放電できるリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the thirteenth aspect of the present invention, the shape of the opening of the hole is one or more selected from a round shape, a triangle shape, a quadrangular shape, or a polygonal shape of a pentagon or more. A lithium ion secondary battery that is suitable for battery reaction and can be charged and discharged quickly with a higher capacity can be provided.
本発明の第14の観点のリチウムイオン二次電池用負極は、複数の穴の深さが活物質層の厚さの5%以上であるので、穴の深さが電池反応に適したものになり、集電体の表面から厚さ方向に深い位置の活物質も有効に利用でき、より高容量で素早く充放電できるリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the fourteenth aspect of the present invention, since the depth of the plurality of holes is 5% or more of the thickness of the active material layer, the depth of the holes is suitable for the battery reaction. Therefore, an active material deep in the thickness direction from the surface of the current collector can be used effectively, and a lithium ion secondary battery that can be charged and discharged quickly with a higher capacity can be provided.
本発明の第15の観点のリチウムイオン二次電池用負極は、複数の穴が底部を有しているので、集電体に穴が形成されておらず、リチウムイオン二次電池用負極及びリチウムイオン二次電池の製造工程において集電体が破れにくく、効率的にリチウムイオン二次電池用負極及びリチウムイオン二次電池を製造できる。 The negative electrode for a lithium ion secondary battery according to the fifteenth aspect of the present invention has a plurality of holes at the bottom, so that no holes are formed in the current collector, and the negative electrode for lithium ion secondary batteries and lithium In the manufacturing process of the ion secondary battery, the current collector is not easily broken, and the negative electrode for lithium ion secondary battery and the lithium ion secondary battery can be efficiently manufactured.
本発明の第16の観点のリチウムイオン二次電池用負極は、集電体の両面に活物質層が形成されており、複数の穴が、一の活物質層の表面に開口が形成され、該活物質層と集電体とを貫通し、他の活物質層によって底部が形成されているので、集電体によって底部が形成された場合と比較して、底部の表面の分だけ活物質層の表面積が増えるので、電池反応に寄与し易い活物質が増え、より効率的に充放電できる。また、当該リチウムイオン二次電池用負極は、複数の穴が底部を有し、穴の深さがより深く、保液性がより高いので、電池が傾いて電解液が一方に偏った場合も、穴に電解液が保持され、性能の低下が起こりにくいリチウムイオン二次電池を提供できる。 In the negative electrode for a lithium ion secondary battery according to the sixteenth aspect of the present invention, the active material layer is formed on both surfaces of the current collector, and a plurality of holes are formed on the surface of the one active material layer. Since the bottom is formed by another active material layer through the active material layer and the current collector, the active material is as much as the surface of the bottom compared to the case where the bottom is formed by the current collector. Since the surface area of the layer increases, the number of active materials that easily contribute to the battery reaction increases, and charge and discharge can be performed more efficiently. In addition, the negative electrode for a lithium ion secondary battery has a plurality of holes at the bottom, the depth of the holes is deeper, and the liquid retention is higher, so the battery may be inclined and the electrolyte may be biased to one side. The lithium ion secondary battery in which the electrolytic solution is held in the hole and the performance is not easily lowered can be provided.
本発明の第17の観点のリチウムイオン二次電池用負極は、複数の穴が、他の活物質層の表面に開口が形成され、該活物質層と集電体とを貫通し、一の活物質層によって底部が形成されている穴を含み、一の活物質層の表面に開口が形成された穴と他の活物質層の表面に開口が形成された穴とが交互に形成されていることを特徴とするので、複数の負極と正極とを積層したリチウムイオン二次電池に用いると、穴の開口がセパレータと必ず向き合い、より効率的に充放電できる。 In the negative electrode for a lithium ion secondary battery according to a seventeenth aspect of the present invention, a plurality of holes are formed in the surface of another active material layer, penetrates the active material layer and the current collector, A hole having a bottom formed by an active material layer is formed, and a hole having an opening formed on the surface of one active material layer and a hole having an opening formed on the surface of another active material layer are alternately formed. Therefore, when it is used for a lithium ion secondary battery in which a plurality of negative electrodes and positive electrodes are stacked, the opening of the hole always faces the separator, and charging and discharging can be performed more efficiently.
本発明の第18の観点のリチウムイオン二次電池は、第1〜第17の観点のいずれか1つに基づくリチウムイオン二次電池用負極を備えるので、高容量であり、素早く充放電できる。 Since the lithium ion secondary battery of the 18th viewpoint of this invention is equipped with the negative electrode for lithium ion secondary batteries based on any one of the 1st-17th viewpoint, it is high capacity | capacitance and can charge / discharge quickly.
以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1.本発明の実施形態に係るリチウムイオン二次電池の構成
図1に示すように、リチウムイオン二次電池1は、本発明のリチウムイオン二次電池用負極2(以下、負極2という。)と正極3とセパレータ4とを備えている。負極2と正極3とは、セパレータ4を挟んで対向配置されている。負極2、正極3、及びセパレータ4は、例えば、エチレンカーボネート(以下、ECという。)やジエチルカーボネート(以下、DECという。)、ジメチルカーボネート(以下、DMCという。)メチルエチルカーボネート(以下、MECという。)等を含む非水溶媒にLiPF6やLiBF4、LiClO4等のリチウム塩を混合した電解液に浸されている。
1. Configuration of Lithium Ion Secondary Battery According to Embodiment of the Present Invention As shown in FIG. 1, a lithium ion
負極2は、負極2の表面に開口9を有する穴7が形成されている。負極2は、穴7の開口9がセパレータ4と向き合うように配置されている。
In the
正極3は、集電体10の両面に活物質層11が形成されており、負極2と同様に、表面に開口13を有する穴12が形成されている。正極3に形成された穴12は、セパレータ4を挟んで、負極2の穴7の開口9と向き合うように配置されている。負極2に形成された穴7の開口9と正極3に形成された穴12の開口13とは、必ずしも向き合っている必要はないが、少なくとも1つ以上の穴7の開口9と穴12の開口13とが向き合っている方が望ましい。穴7と穴12とが向き合っていると、負極2の穴7と正極3の穴12との間をリチウムイオンやカウンターイオン(例えば、PF6 −イオン)がスムーズに移動でき、より電池反応が早くなる。
In the
なお正極3は、特に限定されず、公知のリチウムイオン二次電池用正極を用いることができる。正極3は、例えば、活物質を含む合材で形成された活物質層を集電体の両面に有するような従来の合材電極であってもよい。
In addition, the
2.本発明の実施形態に係るリチウムイオン二次電池用負極の構成
図1に示すように、負極2は、集電体5と2つの活物質層6とを備え、集電体5の両面に活物質層6が形成されている。集電体5は、板状の部材であり、好ましくは厚さが5〜20μmの薄膜状の部材である。集電体5の大きさ、形状などは、作製するリチウムイオン二次電池に合わせて適宜変更できる。集電体5は、電池の充放電時に生じる化学反応に対して安定的であり、導電性を有している部材で形成されていれば特に限定されない。例えば、集電体5は、銅、アルミニウム、銀、金、白金、ニッケル、チタン、鉄、ステンレスなどで形成された箔を用いることができる。また、集電体5としては、金属繊維や炭素繊維で形成された不織布等も用いることができる。
2. Configuration of Negative Electrode for Lithium Ion Secondary Battery According to Embodiment of the Present Invention As shown in FIG. 1, the
活物質層6は、活物質、導電助剤、バインダー及び増粘剤を含む混合物で形成されている。活物質層6は、活物質、導電助剤、バインダー及び増粘剤の質量の合計を100wt%としたとき、活物質を80.0〜99.0wt%、導電助剤を0.0〜10.0wt%、バインダー及び増粘剤を1.0〜10.0wt%含んでいる。なお、導電助剤は必ずしも含まれていなくてもよい。活物質等をこの割合で含んでいることが望ましいが、以下で説明する活物質密度で活物質を含んでいればこの割合からずれていてもよい。
The
活物質としては、天然黒鉛や人造黒鉛などの黒鉛、難黒鉛化炭素(以下、ハードカーボンという。)、易黒鉛化炭素(以下、ソフトカーボンという。)、Li4Ti5O12(以下、LTOという。)、SiO(一酸化ケイ素)、Sn(スズ)、及びSi(ケイ素)などから選ばれる1種以上を用いることができる。導電助剤としては、アセチレンブラック(以下、ABという。)、ケッチェンブラック(以下、KBという。)、カーボンナノチューブ(以下、CNTという。)などを用いることができる。バインダーとしては、ポリフッ化ビニリデン(以下、PVDFという。)、スチレンブタジエンラバー(以下、SBRという。)などを用いることができる。増粘剤としては、カルボキシメチルセルロース(以下、CMCという。)などを用いることができる。 Examples of the active material include graphite such as natural graphite and artificial graphite, non-graphitizable carbon (hereinafter referred to as hard carbon), graphitizable carbon (hereinafter referred to as soft carbon), Li 4 Ti 5 O 12 (hereinafter referred to as LTO). 1) or more selected from SiO (silicon monoxide), Sn (tin), Si (silicon), and the like. As the conductive assistant, acetylene black (hereinafter referred to as AB), ketjen black (hereinafter referred to as KB), carbon nanotube (hereinafter referred to as CNT), or the like can be used. As the binder, polyvinylidene fluoride (hereinafter referred to as PVDF), styrene butadiene rubber (hereinafter referred to as SBR), or the like can be used. As the thickener, carboxymethyl cellulose (hereinafter referred to as CMC) can be used.
活物質層6には、活物質層6の単位体積に含まれる活物質の量を表す活物質密度が当該活物質の真密度の70〜83%で含まれている。さらに活物質層6は、活物質密度が真密度の72〜83%で活物質を含んでいることが好ましい。真密度に対する活物質密度の割合が大きいと、負極2は、より多くの活物質を担持しており、穴7を形成することで、活物質層6の深さ方向において深い位置まで電解液が届き、穴7が形成されていない場合よりも多くの活物質にリチウムイオンが届くようになり、活物質層6が担持する活物質のより多くを有効に利用できるようになるので、より高容量のリチウムイオン二次電池を提供できる。そして負極2は、リチウムイオンが穴7内の電解液中を移動できるので、より確実に、高容量で素早く充放電できるリチウムイオン二次電池を提供できる。
The
なお、活物質層6の真密度に対する活物質密度の割合が70%より小さいと、活物質層6に穴7が形成されていなくとも活物質層6は内部まで電解液が届きやすいので、活物質層6に穴7を形成しても、穴7を形成したことで初めて有効に利用できるようになった活物質が少なく、放電容量が増加し難くい。
If the ratio of the active material density to the true density of the
また、活物質層6の真密度に対する活物質密度の割合が83%よりも大きいと、活物質密度が極めて高いため、活物質層6中の空隙が小さく、活物質層6中をリチウムイオンが移動し難い。そのため、活物質層6に穴7を形成しても、穴7の内部空間に露出した部分の活物質しか利用できず、活物質層の内部の活物質まで有効に利用できないため、活物質の担持量が増えても、放電容量が増加し難くい。
In addition, when the ratio of the active material density to the true density of the
例えば、活物質として黒鉛を用いる場合、黒鉛の真密度は2.2g/cm3であるので、活物質層6の活物質密度は1.54〜1.82g/cm3である。
For example, when graphite is used as the active material, since the true density of graphite is 2.2 g / cm 3 , the active material density of the
同様に、活物質としてハードカーボンを用いる場合、ハードカーボンの真密度は1.8g/cm3であるので、活物質層6の活物質密度は1.26〜1.49g/cm3である。
Similarly, when hard carbon is used as the active material, since the true density of hard carbon is 1.8 g / cm 3 , the active material density of the
活物質としてソフトカーボンを用いる場合、ソフトカーボンの真密度は1.8g/cm3であるので、活物質層6の活物質密度は1.26〜1.49g/cm3である。
When soft carbon is used as the active material, since the true density of soft carbon is 1.8 g / cm 3 , the active material density of the
活物質としてLTOを用いる場合、LTOの真密度は3.3g/cm3であるので、活物質層6の活物質密度は2.30〜2.73g/cm3である。
When LTO is used as the active material, since the true density of LTO is 3.3 g / cm 3 , the active material density of the
活物質としてSiOを用いる場合、SiOの真密度は2.1g/cm3であるので、活物質密度は1.47〜1.74g/cm3である。 When using a SiO as an active material, since the true density of the SiO is a 2.1 g / cm 3, the active material density is 1.47~1.74g / cm 3.
活物質としてSnを用いる場合、Snの真密度は7.36g/cm3であるので、活物質密度は5.04〜6.10g/cm3である。 When Sn is used as the active material, the true density of Sn is 7.36 g / cm 3 , so the active material density is 5.04 to 6.10 g / cm 3 .
活物質としてSiを用いる場合、Siの真密度は2.3g/cm3であるので、活物質密度は1.61〜1.90g/cm3である。 When Si is used as an active material, since the true density of Si is 2.3 g / cm 3, the active material density is 1.61~1.90g / cm 3.
2種類以上の活物質を用いる場合、活物質の混合物の真密度は少なくとも、最も真密度が低いハードカーボンが100%含まれている場合の真密度1.8g/cm3より大きく、最も真密度が高いSnが100%含まれている場合の真密度7.36g/cm3より小さい。よって、この場合の活物質密度は1.26g/cm3超6.10g/cm3未満の範囲内である。 When two or more kinds of active materials are used, the true density of the active material mixture is at least greater than the true density of 1.8 g / cm 3 when 100% of the hard carbon having the lowest true density is contained, and the true density is the highest. When the Sn content is 100%, the true density is less than 7.36 g / cm 3 . Therefore, the active material density in this case is in the range of more than 1.26 g / cm 3 and less than 6.10 g / cm 3 .
活物質層6は、集電体5の表面に膜状に形成されている。活物質層6には複数の穴7が形成されている。穴7は、活物質層6の表面に開口9を有し、表面から集電体5に向かって形成されている。本実施形態の場合、穴7は活物質層6の集電体5と接する面に形成された底部8を有している。すなわち、穴7は、集電体5を貫通しておらず、活物質層6によって底部8が形成されている。穴7は、円柱状に形成されており、縦断面形状が四角形をしている。
The
活物質層6の厚さは、100〜1000μmである。活物質層6の厚さが100〜1000μmであると、負極2は、十分な活物質を担持でき、電池容量の大きいリチウムイオン二次電池を提供できる。そして、負極2は、リチウムイオン二次電池に用いた場合、リチウムイオンの移動距離が長くなりすぎず、リチウムイオン二次電池の充放電特性を向上できる。
The thickness of the
さらに、活物質層6の厚さは、150〜1000μmであることがより好ましい。活物質層6の厚さが150〜1000μmであると、負極2は、より確実に高容量で素早く充放電できるリチウムイオン二次電池を提供できる。
Furthermore, the thickness of the
図2に示すように、穴7は開口9の形状が丸形をしている。穴7は、活物質層6の表面に所定の間隔を空けて縦横等間隔に開口9が並ぶように配置されている。
As shown in FIG. 2, the
なお、穴7の最大径は特に限定されないが、5〜1500μmであることが望ましい。穴7の最大径が5〜1500μmであると、負極2は、穴7に含浸された電解液中をリチウムイオンがスムーズに移動できるので、電池反応の速度をさらに向上できる。そして負極2は、穴7を形成するときの圧縮により減少する活物質層6中の空隙が少なく、穴7を形成することで有効に利用できる活物質が増加する。
The maximum diameter of the
さらに、穴7の最大径は100〜1000μmであることが特に望ましい。穴7の最大径が100〜1000μmであると、負極2は、穴7の径が大きくなったことで、穴7に収容された電解液中をリチウムイオンがよりスムーズに移動できるようになり、電池反応の速度がさらに向上する。
Furthermore, it is particularly desirable that the maximum diameter of the
また、隣接する穴7同士の中心間の長さ(穴の中心間隔)は、特に限定されないが、500〜6000μmであることが望ましい。穴7の中心間隔が500〜6000μmであると、負極2は、1つの穴7から電解液中のリチウムイオンが届く範囲が重複せず、活物質層6において電解液中のリチウムイオンが届き難い領域が減少するので、穴7を形成することで有効に利用できる活物質が増加する。
The length between the centers of the adjacent holes 7 (hole center interval) is not particularly limited, but is preferably 500 to 6000 μm. When the center distance between the
さらに、穴7の中心間隔は、500〜2000μmであることが特に望ましい。穴7の中心間隔が500〜2000μmであると、負極2は、負極2全体にさらに電解液中のリチウムイオンがいきわたりやすくなり、有効に利用できる活物質が増加する。
Furthermore, the center distance between the
また、穴7の深さは特に限定されないが、活物質層6の厚さの5%以上であることが望ましい。穴7の深さが5%以上であると、活物質層6の深さ方向において深い位置まで電解液中のリチウムイオンが届きやすくなり、有効に利用できる活物質が増加する。
Further, the depth of the
さらに、穴7の深さは、活物質層6の厚さの75%以上であることが特に望ましい。穴の深さが75%以上であると、活物質層6の深さ方向において深い位置まで電解液中のリチウムイオンがさらに届きやすくなり、有効に利用できる活物質がより増加する。
Further, it is particularly desirable that the depth of the
3.本発明のリチウムイオン二次電池用負極の製造方法
リチウムイオン二次電池用負極2の製造方法を説明する。活物質、バインダー、増粘剤、及び導電助剤を所定の質量比となるように量る。計量後、増粘剤を水に溶かした溶液に、活物質を投入して撹拌する。続いて、導電助剤及びバインダーを投入し、撹拌する。その後、多少の水を加えさらに攪拌することにより粘度を調整して負極スラリーを得る。負極スラリーは、集電体5の表面に活物質層6を形成するために用いる液である。ちなみに、負極スラリーは一般には合材スラリーと呼ばれている。
3. Manufacturing method of the negative electrode for lithium ion secondary batteries of this invention The manufacturing method of the
次に、所定の大きさに成形した集電体5の両面に作製した負極スラリーを塗工し、所定温度で所定時間乾燥する。塗工方法は特に限定されず、例えばドクターブレード法やダイコート法を用いることができる。 Next, the negative electrode slurry prepared on both surfaces of the current collector 5 formed in a predetermined size is applied and dried at a predetermined temperature for a predetermined time. The coating method is not particularly limited, and for example, a doctor blade method or a die coating method can be used.
なお、活物質層6に含まれる活物質の量は、負極スラリーの粘度及び負極スラリーの塗工厚さを変えることで調整することができる。
The amount of the active material contained in the
次いで、活物質層6を形成した集電体5をロールプレス機に通し、活物質層6を所定の厚さに成形する。なお、活物質層6の活物質密度はロールプレス機のロール間のギャップの間隔を調整して活物質層6の厚さを変えることで調整することができる。
Next, the current collector 5 on which the
最後に、数多くの針が付いた剣山のような治具を活物質層6の表面に突き刺し、穴7を形成して、リチウムイオン二次電池用負極2を得る。
Finally, a jig like a sword mountain with a large number of needles is pierced into the surface of the
なお、直径500μm以下の小さな穴7はレーザー加工によって形成することもできる。この方法では、照射するレーザー光の口径を変えることにより形成する穴7の大きさを調整でき、入射角度を変えることにより例えば円錐台形状の穴7を形成することもできる。
The
4.作用及び効果
本発明の負極2を用いたリチウムイオン二次電池1の動作を説明する。リチウムイオン二次電池1では、負極2及び正極3が電解液に浸されており、負極2の活物質層6に形成された穴7にも電解液が収容されている。活物質層6には穴7が形成されているため、電解液は、活物質層6の表面から厚さ方向に深い位置にも含浸されている。
4). Operation and Effect The operation of the lithium ion
まず、リチウムイオン二次電池1の充電時の動作について説明する。図示しない外部回路を通じて負極2及び正極3間に電圧を印加する。そうすると正極3の活物質内のリチウムがリチウムイオンとして電解液中に放出される。そして活物質から電子が放出され、集電体10で集められる。
First, the operation during charging of the lithium ion
集電体10で集められた電子は図示しない外部回路を通って負極2へ移動する。一方、リチウムイオンは電解液中を通って負極2へ移動し、活物質内に挿入される。負極2の活物質層6には穴7が形成されているため、活物質層6の表面に加え、活物質層6の表面から厚さ方向に深い位置においても、リチウムイオンが活物質内に挿入される。このように負極2では、穴7に収容されている電解液中をリチウムイオンが移動できるので、リチウムイオンは正極3から負極2までの長い距離を容易に移動できる。以上のようにしてリチウムイオン二次電池1は充電される。
The electrons collected by the
次いで、リチウムイオン二次電池1の放電時の動作について説明する。図示しない外部負荷に負極2及び正極3を接続する。そうすると負極2の活物質内のリチウムがリチウムイオンとして電解液中に放出される。そして活物質から電子が放出され、集電体5で集められる。上記したように活物質層6には穴7が形成されているため、活物質層6の表面に加え、活物質層6の表面から厚さ方向に深い位置においてもこの反応が進行する。
Next, the operation during discharging of the lithium ion
集電体5で集められた電子は負極2から外部負荷を通って正極3へ移動する。リチウムイオンは、活物質から脱離し、電解液中を通って正極3へ移動する。リチウムイオンは、正極3で活物質内に挿入される。このようにしてリチウムイオン二次電池1は放電される。
The electrons collected by the current collector 5 move from the
以上の構成において、本発明の実施形態に係るリチウムイオン二次電池用負極2は、集電体5と、集電体5の表面に形成された活物質層6とを備えているように構成した。活物質層6は、複数の穴7が表面に形成されており、活物質密度が活物質層6に含まれる活物質の真密度の70〜83%であり、厚さが100〜1000μmであるように構成した。
In the above configuration, the
よって、負極2は、複数の穴7が活物質層6の表面に形成されているため、リチウムイオン二次電池1に用いると、活物質層6の表面に加え、活物質層6の表面から厚さ方向に深い位置においても、リチウムイオンの移動がスムーズになるために、電子の授受や、リチウムイオンの挿入、脱離が生じ得る。
Therefore, since the
そして、負極2は、活物質層6の表面から厚さ方向に深い位置において活物質から離脱したリチウムイオンが穴7に収容されている電解液中を移動できる。
The
そのため、本発明の実施形態に係るリチウムイオン二次電池1は、より多くの活物質を担持しており、担持した活物質の多くを有効に利用できて高容量であり、また、電池反応が早く素早く充放電でき、また、電池の内部抵抗が低く高出力にできる。
Therefore, the lithium ion
さらに、本発明の実施形態に係るリチウムイオン二次電池用正極2は、負極内でのリチウムイオンの移動距離が長くなりすぎずに有効に活物質を利用できるため、高容量のリチウムイオン二次電池を提供できる。
Furthermore, since the
リチウムイオンはイオン半径が非常に小さいため、電解液中では、数多くの溶媒と溶媒和していると考えられている。そして、溶媒和されたリチウムイオンは移動抵抗が大きい。また、集電体表面に塗工した合材スラリーを乾燥させて形成した、活物質層に穴が形成されていない従来の合材電極の場合、リチウムイオンと、例えばリチウム塩としてLiPF6を電解液に添加した場合のカウンターイオンであるPF6 −イオンとが電極中の活物質間に形成された微細孔に含浸された電解液中を通って移動していた。 Since lithium ions have a very small ion radius, it is considered that lithium ions are solvated with many solvents in the electrolytic solution. And the solvated lithium ion has a large movement resistance. Further, in the case of a conventional composite electrode formed by drying the composite slurry coated on the surface of the current collector and having no holes in the active material layer, electrolysis of LiPF 6 as, for example, lithium salt PF 6 − ions, which are counter ions when added to the solution, migrated through the electrolytic solution impregnated in the micropores formed between the active materials in the electrode.
このように、穴が形成されていない従来の電極を用いたリチウムイオン二次電池では、溶媒和されたリチウムイオンとPF6 −イオンとが微細孔に含浸された電解液中を通るため、リチウムイオンやPF6 −イオンは、活物質間の狭窄部分に引っ掛かり易く、さらに移動抵抗が高かった。 Thus, in the lithium ion secondary battery using the conventional electrode is not formed holes, solvated lithium ions and PF 6 - ions and because through the electrolytic solution impregnated in the micropores, lithium ions and PF 6 - ions, easily caught by the constricted portion between the active materials were more further transfer resistance.
これに対して本実施形態の場合、負極2の活物質層6に穴7が形成されているため、穴7に存在する電解液中をリチウムイオンやPF6 −イオンが優先的に通り、穴7はイオンが素早く移動できる優先経路となり、負極2中をリチウムイオンが阻害されることなく移動することが可能である。
For contrast, in this embodiment, since the
従って、本発明の実施形態に係る負極2は、穴7が形成されていることにより、活物質層6が高密度に活物質を担持していても電池反応が早く、さらに活物質層6を厚く形成した場合も、電池反応が早い。
Therefore, in the
従来はリチウムイオンの移動距離が長いことが電池反応の最大の律速と考えられており、厚さが100μm以上の電極が殆ど存在していなかった。 Conventionally, it is considered that the long movement distance of lithium ions is the maximum rate-determining rate of the battery reaction, and there is almost no electrode having a thickness of 100 μm or more.
しかし実際には、上記の様に、溶媒和したリチウムイオンやPF6 −イオンが合材電極中の活物質粒子間に形成された微細孔を通過する際の移動抵抗が電池反応の最大の律速であると考えられる。 However, in practice, as described above, lithium ion or PF 6 solvated - ions maximum rate-limiting movement resistance cell reaction when passing through the fine pores formed between the active material particles in the mixed material electrode It is thought that.
そのため、活物質層6の表面に穴7を形成することにより、当該穴7に含浸される電解液中をリチウムイオンやPF6 −イオンがスムーズに移動できるようになるので、負極2中をリチウムイオンがスムーズに移動でき、電池反応の速度を速めることができる。よって、負極2は素早く充放電可能なリチウムイオン二次電池を提供できる。
Therefore, by forming the
因みに、活物質層に穴が形成されていない従来の合材電極の場合、電極の厚さ方向に深い位置には電解液中のリチウムイオンが届き難く、有効に利用することができる活物質は、表面から100μm程度の範囲にあるものに限られていた。 Incidentally, in the case of a conventional composite electrode in which no hole is formed in the active material layer, lithium ions in the electrolyte solution are difficult to reach deeply in the thickness direction of the electrode, and the active material that can be used effectively is However, it was limited to those in the range of about 100 μm from the surface.
そして、合材の活物質密度を高くすると、合材内の空隙が減少し、合材内に電解液が流通し難く、活物質間の微細穴の狭窄部分が更に小さくなるので、合材中のリチウムイオン移動が阻害され、有効に利用することができる活物質は、さらに浅い位置にある活物質に限られた。 When the active material density of the composite material is increased, the voids in the composite material are reduced, the electrolyte does not easily flow through the composite material, and the narrowed portion of the fine holes between the active materials is further reduced. The active material that can effectively use the lithium ion migration is limited to the active material at a shallower position.
これに対し負極2は、活物質密度が活物質の真密度の70〜83%という高密度で、厚さが100〜1000μmである活物質層6を備える、すなわち、高密度に活物質を担持した厚い電極である場合も、リチウムイオン二次電池1に用いると、穴7に存在する電解液中をリチウムイオンが移動できるので、活物質層6の厚さ方向に深い位置にもリチウムイオンが移動でき、活物質層6の厚さ方向に深い位置にある活物質も有効に利用できる。
On the other hand, the
以上より、本発明の実施形態に係るリチウムイオン二次電池用負極2を用いたリチウムイオン二次電池1は、高容量で素早く充放電できる。
As mentioned above, the lithium ion
また従来は、リチウムイオン二次電池の容量を増やすためには、セパレータを介して複数の正極及び負極を積層する必要があった。 Further, conventionally, in order to increase the capacity of the lithium ion secondary battery, it has been necessary to stack a plurality of positive electrodes and negative electrodes via a separator.
しかし、本発明の実施形態に係るリチウムイオン二次電池用負極2は、活物質層6の厚さを厚く、活物質密度を高く形成するようにすることで、電池の容量を増加でき、1層の負極2で高容量の電池を実現でき、セパレータ4の数を減らすことができる。
However, the
また、本発明の実施形態に係るリチウムイオン二次電池用負極2は、複数の穴7が底部8を有しているようにすることで、穴7の保液性が良くなる。よって負極2は、リチウムイオン二次電池1に用いると、リチウムイオン二次電池1を傾けて電解液が一方に偏った場合も、穴7に電解液が保持され、リチウムイオン二次電池1の性能の低下を抑制できる。
Moreover, the
さらに負極2は、集電体5に穴7が形成されていないため、負極2及びリチウムイオン二次電池1の製造工程において集電体5が破れにくく、効率的に負極2及びリチウムイオン二次電池1を製造できる。
Furthermore, since the
5.変形例
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
5). The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
例えば、活物質、バインダー、増粘剤、導電助剤、電解液、セパレータ、及び集電体の材質等については、適宜変更することが可能である。 For example, the materials of the active material, binder, thickener, conductive additive, electrolytic solution, separator, and current collector can be appropriately changed.
上記実施形態では、負極2が、活物質層6の表面に開口9が形成され、当該活物質層6によって底部8が形成されている穴7を有している場合について説明したが、本発明はこれに限られない。例えば、図3Aに示すように、負極2Aは、活物質層6Aの表面に開口9Aが形成され、活物質層6Aを貫通し、集電体5Aによって底部8Aが形成されている穴7Aを有していてもよい。
In the above embodiment, the case where the
また、図3Bに示すように、負極2Bは、一の活物質層6B及び他の活物質層6Bの表面に開口9Bが形成され、集電体5Bと一の活物質層6B及び他の活物質層6Bとを貫通する穴7Bを有していてもよい。この場合、負極2Bは、リチウムイオン二次電池の製造過程において、電解液を容易に注入でき、初回充電時に発生するガスを容易に排出できる。
As shown in FIG. 3B, the
さらに、図3Cに示すように、負極2Cは、一の活物質層6Cの表面に開口9Cが形成され、活物質層6Cと集電体5Cとを貫通し、他の活物質層26Cによって底部8Cが形成されている穴7Cを有していてもよい。この場合、負極2Cは、集電体5Aによって穴7Aの底部8Aが形成された場合と比較して、底部8Cの表面の分だけ活物質層の表面積が増えるので、電池反応に寄与し易い活物質が増え、より効率的に発電できるリチウムイオン二次電池を提供できる。また、穴7Cは、底部8Cを有し、穴の深さが穴7と比較して深いので、保液性がさらに高い。そのため、負極2Cを用いたリチウムイオン二次電池は、電池が傾いて電解液が一方に偏った場合も、穴7Cに電解液が十分に保持され、性能の低下が起こりにくい。
Furthermore, as shown in FIG. 3C, the
また、図3Dに示すように、負極2Dは、一の活物質層6Dの表面に開口9Dが形成され、活物質層6Dと集電体5Dとを貫通し、他の活物質層26Dによって底部8Dが形成されている穴7Dと、活物質層26Dの表面に開口29Dが形成され、活物質層26Dと集電体5Dとを貫通し、活物質層6Dによって底部28Dが形成されている穴27Dとを有し、穴7D及び穴27Dが交互に配置されていてもよい。
As shown in FIG. 3D, the
さらに、上記の実施形態では、穴7の縦断面形状が四角形である場合について説明してきたが、本発明はこれに限られず、穴7の縦断面形状を適宜変更することができる。例えば、図4Aに示すように、穴7Eが、縦断面形状が三角形をし、三角形の頂点部分が底部8Eとなるように活物質層6Eに形成されていてもよい。また、図4Bに示すように、穴7Fが、先端部の縦断面形状が半円形状をし、当該半円の頂点が底部8Fとなるように、活物質層6Fに形成されていてもよい。本変形例の場合、穴7Fの縦断面形状はU字型となる。さらに、図4Cに示すように、穴7Gが、先端部の縦断面形状が三角形状をし、当該三角形の頂点が底部8Gとなるように活物質層6Gに形成されていてもよい。本変形例の場合、穴7Gの縦断面形状は五角形となる。
Furthermore, in the above embodiment, the case where the vertical cross-sectional shape of the
また、上記変形例で示した穴7A、7B、7C、7D、27Dの縦断面形状が上記の様な三角形、U字型、五角形であってもよい。穴7A又は穴7Bの縦断面形状を上記の様にした場合、穴の最深部にある頂点に集電体5A、5Bが露出する又は頂点に穴が形成され貫通するので、縦断面形状が若干変形する。例えば、穴7Eを貫通穴として、負極2Bに適用した場合、縦断面形状は下底が上底より短い台形となる。
Further, the vertical cross-sectional shape of the
さらに活物質層6に形成された穴7は、全ての穴7の縦断面形状が同じ形状をしている必要はなく、異なる縦断面形状をした穴7が混在していてもよく、貫通穴と底部8を有する穴とが混在していてもよい。
Furthermore, the
また、上記の実施形態では、活物質層6の表面に所定の間隔を空けて縦横等間隔に開口9が並ぶように穴7が配置されている場合について説明したが、本発明はこれに限られない。例えば、図5に示すように、穴7Hは、活物質層6Hの表面に所定の間隔を空けて対角線と平行な軸に沿って等間隔に並ぶように開口9Hが配置されていてもよい。穴7は、活物質層6の中心を中心とする同心円に沿って所定の間隔を空けて開口9が並ぶように配置されていてもよい。
In the above embodiment, the case where the
さらに、上記の実施形態では、穴7の開口9の形状が丸形である場合について説明してきたが、本発明はこれに限られず、開口9の形状を適宜変更することができる。例えば、図6Aに示す穴7Jの様に開口9Jの形状が三角形であってもよく、図6Bに示す穴7Kの様に開口9Kの形状が四角形であってもよく、図6Cに示す穴7Lの様に開口9Lの形状が六角形であってもよい。
Furthermore, in the above embodiment, the case where the shape of the
また、開口9の形状は、五角形であってもよく、七角形以上の多角形であってもよい。例えば、図7A〜図7Gに示すように、穴7の開口9は頂点の数が3から10程度の星形であってもよい。そして、活物質層6に形成された穴7の開口9の形状は、全ての穴7の開口9が同じ形をしている必要はなく、異なる形状をした開口9が混在していてもよい。
In addition, the shape of the
さらに、上記変形例で説明した穴7の断面形状及び穴7の表面形状を適宜組み合わせて、例えば、穴7は、開口9が四角形をし、縦断面形状が三角形をしていてもよい。この場合、穴7は四角錐となる。
Furthermore, the
また、上記の実施形態では、負極2及び正極3がセパレータ4を挟んで1つずつ積層された1層構造のリチウムイオン二次電池1について説明したが、本発明はこれに限られず、セパレータ4を介してさらに負極2及び正極3を積層した多層構造のリチウムイオン二次電池とすることができる。例えば、図8Aに示すように、リチウムイオン二次電池1Aは、セパレータ4を介して負極2及び正極3を交互に4層積層した多層構造をしていてもよい。この場合、リチウムイオン二次電池1Aは、全てのセパレータ4において、負極2の穴7の開口9と正極3の穴12の開口13とが、セパレータ4を挟んで向き合うことができるので、負極2及び正極3間をリチウムイオンが移動しやすく、より効率的に充放電できる。
In the above embodiment, the lithium ion
さらに図8Bに示すように、リチウムイオン二次電池1Bは、負極2Dと、負極2Dと同様の形状に形成された正極3Dとをリチウムイオン二次電池1Aと同様に積層した多層構造をしていてもよい。リチウムイオン二次電池1Bも同様に、全てのセパレータ4において、負極2Dの穴7Dの開口9D、負極2Dの穴27Dの開口29D、正極3Dの穴12Dの開口13D、及び正極3Dの穴32Dの開口33Dのいずれかがセパレータ4と向かい合っているので、より効率的に充放電できる。
Further, as shown in FIG. 8B, the lithium ion
また、上記の実施形態及び変形例では、活物質層6が集電体5の両面に形成された場合について説明したが、本発明はこれに限られず、活物質層6が集電体5の片面にのみ形成されていてもよい。
In the above-described embodiment and modification, the case where the
(実施例I)
(1)電気化学セルの作製
実施例1〜6では、活物質として天然黒鉛を用いたリチウムイオン二次電池用負極を作製し、電気化学セルの負極に適用した。実施例1〜6の電気化学セルは、活物質層に形成した穴の深さが異なるが、他の構成は同じであるので、実施例1を例として電気化学セルの作製方法を説明する。
Example I
(1) Production of electrochemical cell In Examples 1 to 6, a negative electrode for a lithium ion secondary battery using natural graphite as an active material was produced and applied to the negative electrode of the electrochemical cell. Although the electrochemical cell of Examples 1-6 differs in the depth of the hole formed in the active material layer, since the other structure is the same, the manufacturing method of an electrochemical cell is demonstrated to Example 1 as an example.
最初に、活物質として天然黒鉛、バインダーとしてSBR、増粘剤としてCMCを質量比が98:1:1となるように計量した。計量後、水にCMCを溶解させ濃度1%の水溶液を作製し、当該水溶液と天然黒鉛とを自転公転ハイブリッドミキサー((株)シンキー製、モデル:ARE−310)に投入して10分撹拌した。さらに、SBRを分散させた溶液を投入して10分撹拌した。その後、適宜水を加えさらに攪拌し、粘度を800mPa・sに調整した負極スラリーを得た。 First, natural graphite as an active material, SBR as a binder, and CMC as a thickener were weighed so that the mass ratio was 98: 1: 1. After weighing, CMC was dissolved in water to prepare an aqueous solution with a concentration of 1%, and the aqueous solution and natural graphite were put into a rotation and revolution hybrid mixer (manufactured by Shinky Co., Ltd., model: ARE-310) and stirred for 10 minutes. . Further, a solution in which SBR was dispersed was added and stirred for 10 minutes. Thereafter, water was appropriately added and further stirred to obtain a negative electrode slurry having a viscosity adjusted to 800 mPa · s.
次に、集電体として3cm×3cmの大きさにカットした厚さ10μmの銅箔を用意し、銅箔の一表面に負極スラリーをコンマロールコータによって塗工し、120℃で1時間乾燥させて活物質層を形成した。その後、銅箔の他表面にも同様に活物質層を形成した。形成した活物質層の厚さは300μmである。 Next, a 10 μm thick copper foil cut to a size of 3 cm × 3 cm is prepared as a current collector, and a negative electrode slurry is applied to one surface of the copper foil with a comma roll coater and dried at 120 ° C. for 1 hour. Thus, an active material layer was formed. Thereafter, an active material layer was similarly formed on the other surface of the copper foil. The thickness of the formed active material layer is 300 μm.
次いで、活物質層を両面に形成した銅箔をロールプレス機(サンクメタル社製、製品名:5トンエアーハイドロプレス)にかけて、活物質層の厚さが200μmとなるように圧縮した。圧縮した活物質層の一表面に剣山状の針を突き刺し、表1に示すパラメータの穴を形成した。その後、圧縮した活物質層の他表面にも同様に複数の穴を形成した。以上の工程を経て、活物質密度が1.70g/cm3(真密度の77%)で、34mg/cm2の天然黒鉛を含む活物質層を両面に有する負極を作製した。 Subsequently, the copper foil in which the active material layer was formed on both surfaces was subjected to a roll press machine (product name: 5 ton air hydro press) and compressed so that the thickness of the active material layer became 200 μm. A sword-shaped needle was pierced on one surface of the compressed active material layer to form holes having the parameters shown in Table 1. Thereafter, a plurality of holes were similarly formed on the other surface of the compressed active material layer. Through the above steps, an anode having an active material density of 1.70 g / cm 3 (77% of true density) and an active material layer containing 34 mg / cm 2 of natural graphite on both sides was produced.
続いて、作製した負極と同じサイズに金属リチウムを打ち抜いて対極を作製した。負極と対極の間に無数の微細孔を有するポリエチレン製のセパレータを挟み、EC(エチレンカーボーネート)とDMC(ジメチルカーボネート)とMEC(メチルエチルカーボネート)を体積比1:1:1の割合で混合した溶媒に1MのLiPF6を添加した電解液と共に、アルミラミネートパックに挿入し、真空パックをしてラミネートセルを作製した。当該ラミネートセルを実施例1の電気化学セルとした。電極の有効面積は9cm2である。 Subsequently, metallic lithium was punched out to the same size as the produced negative electrode to produce a counter electrode. A polyethylene separator having countless fine pores is sandwiched between the negative electrode and the counter electrode, and EC (ethylene carbonate), DMC (dimethyl carbonate), and MEC (methyl ethyl carbonate) are mixed at a volume ratio of 1: 1: 1. A laminate cell was prepared by inserting into an aluminum laminate pack together with an electrolyte obtained by adding 1M LiPF 6 to the mixed solvent and vacuum packing. The laminate cell was used as the electrochemical cell of Example 1. Effective area of the electrode is 9cm 2.
実施例2〜6の電気化学セルも実施例1と同様の方法により作製した。 The electrochemical cells of Examples 2 to 6 were also produced by the same method as in Example 1.
また比較のために、比較例1として負極に穴が形成されていない点以外実施例1と同様の電気化学セルを作製した。実施例1〜6の負極及び比較例1の負極のデータを表1に示す。 For comparison, an electrochemical cell similar to Example 1 was produced as Comparative Example 1 except that no hole was formed in the negative electrode. Table 1 shows the data of the negative electrodes of Examples 1 to 6 and the negative electrode of Comparative Example 1.
実施例7〜11では、活物質として人造黒鉛を用いたリチウムイオン二次電池用負極を作製し、電気化学セルの負極に適用した。実施例7〜11の電気化学セルは、活物質層に形成した穴の中心間隔が異なるが、他の構成は同じであるので、実施例7を例として電気化学セルの作製方法を説明する。 In Examples 7 to 11, a negative electrode for a lithium ion secondary battery using artificial graphite as an active material was prepared and applied to the negative electrode of an electrochemical cell. Although the electrochemical cells of Examples 7 to 11 differ in the center spacing of the holes formed in the active material layer, but the other configurations are the same, a method for manufacturing an electrochemical cell will be described using Example 7 as an example.
最初に、活物質として人造黒鉛、バインダーとしてSBR、増粘剤としてのCMCを質量比が98:1:1となるように計量した。計量後、水にCMCを溶解させ濃度1%の水溶液を作製し、当該水溶液と人造黒鉛とを自転公転ハイブリッドミキサーに投入して10分撹拌した。さらに、SBRを分散させた溶液を投入して10分撹拌した。その後、適宜水を加えさらに攪拌し、粘度を1000mPa・sに調整した負極スラリーを得た。 First, artificial graphite as an active material, SBR as a binder, and CMC as a thickener were weighed so that the mass ratio was 98: 1: 1. After weighing, CMC was dissolved in water to prepare an aqueous solution having a concentration of 1%, and the aqueous solution and artificial graphite were put into a rotation / revolution hybrid mixer and stirred for 10 minutes. Further, a solution in which SBR was dispersed was added and stirred for 10 minutes. Thereafter, water was appropriately added and further stirred to obtain a negative electrode slurry having a viscosity adjusted to 1000 mPa · s.
次に、集電体として3cm×3cmの大きさにカットした厚さ10μmの銅箔を用意し、実施例1と同様の方法により銅箔の両面に活物質層を形成した。形成した活物質層の厚さは650μmである。 Next, a 10 μm thick copper foil cut to a size of 3 cm × 3 cm was prepared as a current collector, and an active material layer was formed on both sides of the copper foil by the same method as in Example 1. The thickness of the formed active material layer is 650 μm.
次いで、活物質層を両面に形成した銅箔をロールプレス機にかけて、活物質層の厚さが500μmとなるように圧縮した。実施例1と同様の方法で、表2に示すパラメータの穴を形成し、活物質密度が1.76g/cm3(真密度の80%)で、93mg/cm2の人造黒鉛を含む活物質層を両面に有する負極を作製した。当該負極を用いて、実施例1と同様の方法で電気化学セルを形成した。実施例8〜11の電気化学セルも実施例7と同様に作製した。 Subsequently, the copper foil in which the active material layer was formed on both surfaces was subjected to a roll press machine and compressed so that the thickness of the active material layer was 500 μm. In the same manner as in Example 1, holes having the parameters shown in Table 2 were formed, the active material density was 1.76 g / cm 3 (80% of the true density), and an active material containing 93 mg / cm 2 of artificial graphite. A negative electrode having layers on both sides was prepared. An electrochemical cell was formed in the same manner as in Example 1 using the negative electrode. The electrochemical cells of Examples 8 to 11 were produced in the same manner as Example 7.
また比較のために、比較例2として穴が形成されていない点以外実施例7と同様の電気化学セルを作製した。実施例7〜11の負極及び比較例2の負極のデータを表2に示す。また、質量当たりの放電容量を質量当たりの理論放電容量で割って算出した値を活物質利用率(%)とし、あわせて表2に示す。人造黒鉛の質量当たりの理論放電容量は360mAh/gである。 For comparison, an electrochemical cell similar to that of Example 7 was produced as Comparative Example 2 except that no hole was formed. Table 2 shows the data of the negative electrodes of Examples 7 to 11 and the negative electrode of Comparative Example 2. In addition, Table 2 shows a value obtained by dividing the discharge capacity per mass by the theoretical discharge capacity per mass as the active material utilization rate (%). The theoretical discharge capacity per mass of artificial graphite is 360 mAh / g.
実施例12〜17では、活物質として天然黒鉛を用いたリチウムイオン二次電池用負極を作製し、電気化学セルの負極に適用した。実施例12〜17の電気化学セルは、活物質層に形成した穴の最大径が異なり、実施例12〜14と実施例15〜17とでは穴の形成方法と穴の深さが異なるが、他の構成は同じであるので、実施例12を例として電気化学セルの作製方法を説明する。 In Examples 12 to 17, a negative electrode for a lithium ion secondary battery using natural graphite as an active material was produced and applied to the negative electrode of an electrochemical cell. The electrochemical cells of Examples 12 to 17 differ in the maximum diameter of the holes formed in the active material layer, and Examples 12 to 14 and Examples 15 to 17 have different hole formation methods and hole depths. Since other configurations are the same, a method for manufacturing an electrochemical cell will be described using Example 12 as an example.
最初に、活物質として天然黒鉛を用い、実施例1と同様の方法により、粘度を1200mPa・sに調整した負極スラリーを作製した。 First, a negative electrode slurry having a viscosity adjusted to 1200 mPa · s was prepared by the same method as in Example 1 using natural graphite as an active material.
次に、集電体として3cm×3cmの大きさにカットした厚さ10μmの銅箔を用意し、実施例1と同様の方法により銅箔の両面に厚さ900μmの活物質層を形成した。 Next, a 10 μm-thick copper foil cut to a size of 3 cm × 3 cm was prepared as a current collector, and an active material layer having a thickness of 900 μm was formed on both sides of the copper foil by the same method as in Example 1.
次いで、活物質層を両面に形成した銅箔をロールプレス機にかけて、活物質層の厚さが700μmとなるように圧縮した。表3に示すパラメータを有する穴を、レーザー加工機(三菱電機社製:製品名ML605GTF2)を用いて口径が5μmのレーザー光を照射することで形成した。このとき、銅箔にも同様の穴を形成し、負極に貫通穴を形成した。このようにして、活物質密度が1.80g/cm3(真密度の82%)で、126mg/cm2の天然黒鉛を含む活物質層を両面に有する負極を作製した。当該負極を用いて、実施例1と同様の方法で電気化学セルを作製した。なお、実施例15〜17は、剣山針を用いて実施例1と同様の方法で穴を形成した。実施例13〜17の電気化学セルも実施例1と同様に作製した。 Subsequently, the copper foil in which the active material layer was formed on both sides was compressed by a roll press machine so that the thickness of the active material layer became 700 μm. Holes having the parameters shown in Table 3 were formed by irradiating a laser beam having a diameter of 5 μm using a laser processing machine (manufactured by Mitsubishi Electric Corporation: product name ML605GTF2). At this time, a similar hole was formed in the copper foil, and a through hole was formed in the negative electrode. In this manner, an anode having an active material density of 1.80 g / cm 3 (82% of the true density) and an active material layer containing 126 mg / cm 2 of natural graphite on both sides was produced. An electrochemical cell was produced in the same manner as in Example 1 using the negative electrode. In Examples 15 to 17, holes were formed in the same manner as in Example 1 using a sword mountain needle. The electrochemical cells of Examples 13 to 17 were also produced in the same manner as Example 1.
また比較のために、比較例3として穴が形成されていない点以外実施例12と同様の電気化学セルを作製した。実施例12〜17の負極及び比較例3の負極のデータを表3に示す。 For comparison, an electrochemical cell similar to Example 12 was produced as Comparative Example 3 except that no hole was formed. Table 3 shows data of the negative electrodes of Examples 12 to 17 and the negative electrode of Comparative Example 3.
実施例18〜21では、活物質として人造黒鉛を用いたリチウムイオン二次電池用負極を作製し、電気化学セルの負極に適用した。実施例19〜21の電気化学セルは、活物質層に形成した穴の開口の形状が異なるが、他の構成は同じであるので、実施例18を例として電気化学セルの作製方法を説明する。 In Examples 18 to 21, a negative electrode for a lithium ion secondary battery using artificial graphite as an active material was prepared and applied to the negative electrode of an electrochemical cell. The electrochemical cells of Examples 19 to 21 are different in the shape of the opening of the hole formed in the active material layer, but the other configurations are the same. Therefore, a method for manufacturing the electrochemical cell will be described using Example 18 as an example. .
最初に、活物質として人造黒鉛を用い、実施例7と同様の方法により、粘度を900mPa・sに調整した負極スラリーを作製した。 First, a negative electrode slurry having a viscosity adjusted to 900 mPa · s was prepared in the same manner as in Example 7 using artificial graphite as an active material.
次に、集電体として3cm×3cmの大きさにカットした厚さ10μmの銅箔を用意し、実施例1と同様の方法により銅箔の両面に厚さ400μmの活物質層を形成した。 Next, a 10 μm thick copper foil cut to a size of 3 cm × 3 cm was prepared as a current collector, and an active material layer having a thickness of 400 μm was formed on both sides of the copper foil by the same method as in Example 1.
次いで、活物質層を両面に形成した銅箔をロールプレス機にかけて、活物質層の厚さが300μmとなるように圧縮した。表4に示すパラメータを有する穴を、実施例1と同様の方法で活物質層に形成して、活物質密度が1.82g/cm3(真密度の83%)で、55mg/cm2の人造黒鉛を含む活物質層を両面に有する負極を作製した。当該負極を用いて、実施例1と同様の方法で電気化学セルを作製した。実施例19〜21の電気化学セルも実施例18と同様に作製した。 Subsequently, the copper foil in which the active material layer was formed on both sides was compressed by a roll press machine so that the thickness of the active material layer was 300 μm. Holes having the parameters shown in Table 4 were formed in the active material layer in the same manner as in Example 1. The active material density was 1.82 g / cm 3 (83% of the true density), and 55 mg / cm 2 . A negative electrode having an active material layer containing artificial graphite on both sides was produced. An electrochemical cell was produced in the same manner as in Example 1 using the negative electrode. The electrochemical cells of Examples 19 to 21 were produced in the same manner as Example 18.
また比較のために、比較例4として穴が形成されていない点以外実施例18と同様の電気化学セルを作製した。実施例18〜21の負極及び比較例4の負極のデータを表4に示す。 For comparison, an electrochemical cell similar to that of Example 18 was produced as Comparative Example 4 except that no hole was formed. Table 4 shows data of the negative electrodes of Examples 18 to 21 and the negative electrode of Comparative Example 4.
実施例22では、活物質として天然黒鉛とSiOの混合物を用いたリチウムイオン二次電池用負極を作製し、電気化学セルの負極に適用した。 In Example 22, a negative electrode for a lithium ion secondary battery using a mixture of natural graphite and SiO as an active material was produced and applied to the negative electrode of an electrochemical cell.
最初に、活物質として質量比で天然黒鉛を90%、SiOを10%含む混合物、導電助剤としてカーボンナノチューブ、バインダーとしてSBR、増粘剤としてCMCを質量比が97:1:1:1となるように計量した。計量後、水にCMCを溶解させ濃度1%の水溶液を作製し、当該水溶液と天然黒鉛及びSiOの混合物とを自転公転ハイブリッドミキサーに投入して10分撹拌した。さらに、カーボンナノチューブとSBRとを分散させた溶液を投入して10分撹拌した。その後、適宜水を加えさらに攪拌し、粘度を800mPa・sに調整した負極スラリーを得た。 First, a mixture containing 90% natural graphite and 10% SiO by mass as an active material, carbon nanotubes as a conductive additive, SBR as a binder, and CMC as a thickener at a mass ratio of 97: 1: 1: 1 Weighed so that After weighing, CMC was dissolved in water to prepare an aqueous solution having a concentration of 1%, and the aqueous solution and a mixture of natural graphite and SiO were put into a rotation / revolution hybrid mixer and stirred for 10 minutes. Further, a solution in which carbon nanotubes and SBR were dispersed was added and stirred for 10 minutes. Thereafter, water was appropriately added and further stirred to obtain a negative electrode slurry having a viscosity adjusted to 800 mPa · s.
次に、集電体として3cm×3cmの大きさにカットした厚さ10μmの銅箔を用意し、実施例1と同様の方法により銅箔の両面に厚さ400μmの活物質層を形成した。 Next, a 10 μm thick copper foil cut to a size of 3 cm × 3 cm was prepared as a current collector, and an active material layer having a thickness of 400 μm was formed on both sides of the copper foil by the same method as in Example 1.
次いで、活物質層を両面に形成した銅箔をロールプレス機にかけて、活物質層の厚さが300μmとなるように圧縮した。表5に示すパラメータを有する穴を、実施例1と同様の方法で活物質層に形成して、活物質密度が1.76g/cm3(真密度の80%)で、53mg/cm2の天然黒鉛とSiOの混合物を含む活物質層を両面に有する負極を作製した。当該負極を用いて、実施例1と同様の方法で電気化学セルを作製した。 Subsequently, the copper foil in which the active material layer was formed on both sides was compressed by a roll press machine so that the thickness of the active material layer was 300 μm. Holes having the parameters shown in Table 5 were formed in the active material layer in the same manner as in Example 1. The active material density was 1.76 g / cm 3 (80% of the true density), and 53 mg / cm 2 . A negative electrode having an active material layer containing a mixture of natural graphite and SiO on both sides was produced. An electrochemical cell was produced in the same manner as in Example 1 using the negative electrode.
また比較のために、比較例5として穴が形成されていない点以外実施例22と同様の電気化学セルを作製した。 For comparison, an electrochemical cell similar to that of Example 22 was prepared as Comparative Example 5 except that no hole was formed.
実施例23では、活物質として人造黒鉛とSnの混合物を用いたリチウムイオン二次電池用負極を作製し、電気化学セルの負極に適用した。 In Example 23, a negative electrode for a lithium ion secondary battery using a mixture of artificial graphite and Sn as an active material was produced and applied to the negative electrode of an electrochemical cell.
最初に、活物質として質量比で人造黒鉛を65%、Snを35%含む混合物、導電助剤としてカーボンナノチューブ、バインダーとしてSBR、増粘剤としてCMCを質量比が97:1:1:1となるように計量した。計量後、水にCMCを溶解させ濃度1%の水溶液を作製し、当該水溶液と人造黒鉛及びSnの混合物とを自転公転ハイブリッドミキサーに投入して10分撹拌した。さらに、カーボンナノチューブとSBRとを分散させた溶液を投入して10分撹拌した。その後、適宜水を加えさらに攪拌し、粘度800mPa・sに調整した負極スラリーを得た。 First, a mixture containing 65% artificial graphite and 35% Sn as an active material, carbon nanotubes as a conductive aid, SBR as a binder, and CMC as a thickener at a mass ratio of 97: 1: 1: 1 Weighed so that After weighing, CMC was dissolved in water to prepare an aqueous solution having a concentration of 1%, and the aqueous solution and a mixture of artificial graphite and Sn were put into a rotation / revolution hybrid mixer and stirred for 10 minutes. Further, a solution in which carbon nanotubes and SBR were dispersed was added and stirred for 10 minutes. Thereafter, water was appropriately added and further stirred to obtain a negative electrode slurry adjusted to a viscosity of 800 mPa · s.
次に、集電体として3cm×3cmの大きさにカットした厚さ10μmの銅箔を用意し、実施例1と同様の方法により銅箔の両面に厚さ280μmの活物質層を形成した。 Next, a 10 μm thick copper foil cut to a size of 3 cm × 3 cm was prepared as a current collector, and an active material layer having a thickness of 280 μm was formed on both sides of the copper foil by the same method as in Example 1.
次いで、活物質層を両面に形成した銅箔をロールプレス機にかけて、活物質層の厚さが200μmとなるように圧縮した。表5に示すパラメータを有する穴を、実施例1と同様の方法で活物質層に形成して、活物質密度が3.0g/cm3(真密度の75%)で、60mg/cm2の人造黒鉛とSnの混合物を含む活物質層を両面に有する負極を作製した。当該負極を用いて、実施例1と同様の方法で電気化学セルを作製した。 Subsequently, the copper foil in which the active material layer was formed on both sides was compressed by a roll press machine so that the thickness of the active material layer became 200 μm. Holes having the parameters shown in Table 5 were formed in the active material layer in the same manner as in Example 1, and the active material density was 3.0 g / cm 3 (75% of the true density), and 60 mg / cm 2 A negative electrode having active material layers containing a mixture of artificial graphite and Sn on both sides was produced. An electrochemical cell was produced in the same manner as in Example 1 using the negative electrode.
また比較のために、比較例6として穴が形成されていない点以外実施例21と同様の電気化学セルを作製した。実施例20、21及び比較例5、6の負極のデータを表5に示す。 For comparison, an electrochemical cell similar to that of Example 21 was produced as Comparative Example 6 except that no hole was formed. The negative electrode data of Examples 20 and 21 and Comparative Examples 5 and 6 are shown in Table 5.
実施例24〜27では、活物質として天然黒鉛を用いたリチウムイオン二次電池用負極を作製し、電気化学セルの負極に適用した。 In Examples 24-27, a negative electrode for a lithium ion secondary battery using natural graphite as an active material was prepared and applied to the negative electrode of an electrochemical cell.
実施例24では活物質として天然黒鉛、バインダーとしてSBR、増粘剤としてCMC、導電助剤としてABを質量比97:1:1:1で含む負極スラリーを用いた。まず、天然黒鉛、SBR、CMC、ABを上記の質量比となるように計量した。計量後、水にCMCを溶解させ濃度1%の水溶液を作製し、当該水溶液と人造黒鉛とを自転公転ハイブリッドミキサーに投入して10分撹拌した。さらに、SBRとABとを分散させた溶液を投入して10分撹拌した。その後、適宜水を加えさらに攪拌し、粘度を800mPa・sに調整して負極スラリーを作製した。 In Example 24, a negative electrode slurry containing natural graphite as an active material, SBR as a binder, CMC as a thickener, and AB as a conductive auxiliary agent in a mass ratio of 97: 1: 1: 1 was used. First, natural graphite, SBR, CMC, and AB were weighed so as to have the above mass ratio. After weighing, CMC was dissolved in water to prepare an aqueous solution having a concentration of 1%, and the aqueous solution and artificial graphite were put into a rotation / revolution hybrid mixer and stirred for 10 minutes. Further, a solution in which SBR and AB were dispersed was added and stirred for 10 minutes. Thereafter, water was appropriately added and further stirred, and the viscosity was adjusted to 800 mPa · s to prepare a negative electrode slurry.
作製した負極スラリーを用いて、厚さ10μmの銅箔の両面に厚さ118μmの活物質層を形成し、当該活物質層を100μmに圧縮し、実施例1と同様の方法で表6に示すパラメータの負極を作製した。 Using the prepared negative electrode slurry, an active material layer having a thickness of 118 μm is formed on both surfaces of a copper foil having a thickness of 10 μm, the active material layer is compressed to 100 μm, and shown in Table 6 in the same manner as in Example 1. A negative electrode with parameters was prepared.
実施例25では、粘度を800mPa・sに調整した実施例24と同様の負極スラリーを用いて、厚さ10μmの銅箔に厚さ120μmの活物質層を形成し、実施例24と同様の方法で表6に示すパラメータの負極を作製した。 In Example 25, an active material layer having a thickness of 120 μm was formed on a copper foil having a thickness of 10 μm using the same negative electrode slurry as in Example 24 having a viscosity adjusted to 800 mPa · s, and the same method as in Example 24 was performed. A negative electrode having the parameters shown in Table 6 was prepared.
実施例26では、粘度を800mPa・sに調整した実施例24と同様の負極スラリーを用いて、厚さ10μmの銅箔に厚さ125μmの活物質層を形成し、実施例24と同様の方法で表6に示すパラメータの負極を作製した。 In Example 26, an active material layer having a thickness of 125 μm was formed on a copper foil having a thickness of 10 μm using the same negative electrode slurry as in Example 24 having a viscosity adjusted to 800 mPa · s, and the same method as in Example 24 was used. A negative electrode having the parameters shown in Table 6 was prepared.
実施例27では、粘度を800mPa・sに調整した実施例24と同様の負極スラリーを用いて、厚さ10μmの銅箔に厚さ130μmの活物質層を形成し、当該活物質層を100μmに圧縮し、レーザー加工機を用いて口径が100μmのレーザー光を活物質層の表面に照射して表6に示すパラメータの負極を作製した。 In Example 27, an active material layer having a thickness of 130 μm was formed on a copper foil having a thickness of 10 μm using the same negative electrode slurry as in Example 24 having a viscosity adjusted to 800 mPa · s, and the active material layer was adjusted to 100 μm. The negative electrode having the parameters shown in Table 6 was prepared by compressing and irradiating the surface of the active material layer with a laser beam having a diameter of 100 μm using a laser processing machine.
また比較のために、比較例7として、粘度を800mPa・sに調整した実施例24と同様の負極スラリーを用いて、厚さ10μmの銅箔の両面に厚さ110μm活物質層を形成し、当該活物質層を100μmに圧縮し、実施例1と同様の方法で表6に示すパラメータの負極を作製した。比較例8として、穴が開いていない点以外比較例7と同様の構成の電気化学セルを作製した。 For comparison, as Comparative Example 7, a negative electrode slurry similar to Example 24 in which the viscosity was adjusted to 800 mPa · s was used, and a 110 μm thick active material layer was formed on both surfaces of a 10 μm thick copper foil, The active material layer was compressed to 100 μm, and negative electrodes having the parameters shown in Table 6 were produced in the same manner as in Example 1. As Comparative Example 8, an electrochemical cell having the same configuration as Comparative Example 7 was produced except that no hole was formed.
比較例9として、粘度を800mPa・sに調整した実施例24と同様の負極スラリーを用いて、厚さ10μmの銅箔に厚さ115μm活物質層を形成し、実施例24と同様の方法で表6に示すパラメータの負極を作製した。比較例10として、穴が開いていない点以外比較例7と同様の構成の電気化学セルを作製した。 As Comparative Example 9, a negative electrode slurry similar to that in Example 24 with the viscosity adjusted to 800 mPa · s was used to form a 115 μm thick active material layer on a 10 μm thick copper foil, and the same method as in Example 24 was used. Negative electrodes having the parameters shown in Table 6 were produced. As Comparative Example 10, an electrochemical cell having the same configuration as Comparative Example 7 was produced except that no hole was formed.
さらに、比較例11として実施例24と、比較例12として実施例25と、比較例13として実施例26と、比較例14として実施例27と穴が開いていない点以外同様の構成の電気化学セルをそれぞれ作製した。実施例24〜27と比較例7〜14の負極のデータを表6に示す。 Furthermore, Example 24 as Comparative Example 11, Example 25 as Comparative Example 12, Example 26 as Comparative Example 13, and Example 27 as Comparative Example 14 have the same structure except that they are not perforated. Each cell was fabricated. Table 6 shows the negative electrode data of Examples 24-27 and Comparative Examples 7-14.
なお、本実施例では活物質層に形成された穴の最大径、穴の中心間隔、穴の深さは、レーザー顕微鏡(キーエンス社製、製品名:VK-X100)によって測定した。これらの値は、30カ所ついてそれぞれ測定し、その平均値を求めることで算出した。 In this example, the maximum diameter of the holes formed in the active material layer, the center distance between the holes, and the depth of the holes were measured with a laser microscope (manufactured by Keyence Corporation, product name: VK-X100). These values were calculated by measuring each of 30 locations and obtaining the average value.
活物質密度は、以下の方法で算出した。まず、負極を面積が1cm2の大きさにカットし、その重量と厚さを測定した。その後、カットした負極から集電体である銅箔を取り出し、取り出した銅箔の重量と厚さを測定した。そして、負極の厚さから銅箔の厚さを引いて(活物質層が銅箔の両面に形成されている場合はさらに2で割って)、活物質層の厚さを算出した。算出した活物質層の厚さの値に、カットした集電体の面積を掛けて活物質層の体積を算出した。 The active material density was calculated by the following method. First, the negative electrode was cut into a size of 1 cm 2 and the weight and thickness thereof were measured. Then, the copper foil which is a collector was taken out from the cut negative electrode, and the weight and thickness of the taken-out copper foil were measured. Then, the thickness of the active material layer was calculated by subtracting the thickness of the copper foil from the thickness of the negative electrode (if the active material layer was formed on both sides of the copper foil, further dividing by 2). The volume of the active material layer was calculated by multiplying the calculated thickness value of the active material layer by the area of the cut current collector.
続いて、負極の重量から銅箔の重量を引いた値に電極スラリーを作製した際の重量分率を掛けて(活物質層が銅箔の両面に形成されている場合はさらに2で割って)活物質重量を算出した。なお、活物質の重量は、実電池の負極を1cm2の大きさに切り取り、切り取った負極の一部から集電体を剥離し、活物質含む合材層を水に溶かして遠心分離し、活物質のみを分離、乾燥させた後、重量を計量することにより、測定することができる。 Subsequently, the value obtained by subtracting the weight of the copper foil from the weight of the negative electrode is multiplied by the weight fraction when the electrode slurry is produced (if the active material layer is formed on both sides of the copper foil, it is further divided by 2). ) The active material weight was calculated. In addition, the weight of the active material is cut to a size of 1 cm 2 of the negative electrode of the actual battery, the current collector is peeled from a part of the cut negative electrode, the mixture layer containing the active material is dissolved in water, and centrifuged. After separating and drying only the active material, it can be measured by weighing.
最後に、上記で求めた活物質重量を活物質層の体積で割ることで活物質密度を算出した。なお、活物質重量の値をカットした負極の面積で割った値を、単位面積当たりの活物質担持量とした。 Finally, the active material density was calculated by dividing the active material weight determined above by the volume of the active material layer. In addition, the value which divided the value of the active material weight by the area of the cut negative electrode was made into the active material carrying amount per unit area.
(2)電気化学セルの特性評価方法
放電容量を測定して電気化学セルの特性を評価した。放電容量は、充放電試験装置(アスカ電子(株)製、モデル:ACD−R1APS)を用い、温度25±1℃において測定した。全ての実施例及び比較例の電気化学セルでは、5mA/cm2の定電流(CC:コンスタントカーレント)、0.005Vの定電圧(CV:コンスタントボルテージ)で充電電流値が0.1mA/cm2に低下するまで充電した後、カットオフ電圧を1.0Vvs.Li/Li+として10mA/cm2の定電流で放電したときに得られた電気容量を放電容量とした。
(2) Electrochemical cell characteristic evaluation method The discharge capacity was measured to evaluate the electrochemical cell characteristics. The discharge capacity was measured at a temperature of 25 ± 1 ° C. using a charge / discharge test apparatus (manufactured by Asuka Electronics Co., Ltd., model: ACD-R1APS). In the electrochemical cells of all the examples and comparative examples, a constant current (CC: constant current) of 5 mA / cm 2, a constant current of 0.005 V (CV: constant voltage), and a charging current value of 0.1 mA / cm After charging until the voltage drops to 2 , the cut-off voltage is 1.0 Vvs. The electric capacity obtained when discharging at a constant current of 10 mA / cm 2 as Li / Li + was taken as the discharge capacity.
(3)電気化学セルの評価結果
(3−1)活物質層の穴の深さと電気化学セルの特性の関係について
表1に示すように、実施例1〜6の電気化学セルは、活物質層の厚さに対する穴の深さの割合が5%以上の穴が負極に形成されており、比較例1の電気化学セルに比較して単位質量当たりの放電容量が高い。
(3) Evaluation results of electrochemical cell (3-1) Relationship between hole depth of active material layer and characteristics of electrochemical cell As shown in Table 1, the electrochemical cells of Examples 1 to 6 are active materials A hole having a ratio of the depth of the hole to the layer thickness of 5% or more is formed in the negative electrode, and the discharge capacity per unit mass is higher than that of the electrochemical cell of Comparative Example 1.
また、活物質層の厚さに対する穴の深さの割合が75%以上の範囲では質量当たりの放電容量が339〜353mAh/gとさらに高い。このことから、本発明のリチウムイオン二次電池用負極は、活物質層の厚さに対する穴の深さの割合が75%以上であることがさらに望ましいことがわかる。 Moreover, when the ratio of the depth of the hole to the thickness of the active material layer is in the range of 75% or more, the discharge capacity per mass is further higher as 339 to 353 mAh / g. From this, it can be seen that in the negative electrode for a lithium ion secondary battery of the present invention, the ratio of the hole depth to the thickness of the active material layer is more preferably 75% or more.
(3−2)活物質層の穴の中心間隔と電気化学セルの特性の関係について
表2に示すように、実施例7〜11の電気化学セルは、穴の中心間隔が500〜6000μmの間隔で穴が負極に形成されており、比較例2の電気化学セルに比較し、質量当たりの放電容量が高い。
(3-2) About the relationship between the center distance of the hole of an active material layer, and the characteristic of an electrochemical cell As shown in Table 2, the electrochemical cell of Examples 7-11 is a space | interval whose hole center distance is 500-6000 micrometers. And a hole is formed in the negative electrode, and compared with the electrochemical cell of Comparative Example 2, the discharge capacity per mass is high.
特に、穴の中心間隔が500〜2000μmの範囲では質量当たりの放電容量が334〜353mAh/gとさらに高い。このことから、本発明のリチウムイオン二次電池用負極は、穴の中心間隔が500〜2000μmであることがさらに望ましいことがわかる。 In particular, the discharge capacity per mass is as high as 334 to 353 mAh / g when the hole center distance is in the range of 500 to 2000 μm. From this, it can be seen that the negative electrode for the lithium ion secondary battery of the present invention preferably has a hole center distance of 500 to 2000 μm.
(3−3)活物質層の穴の最大径と電気化学セルの特性の関係について
表3に示すように、実施例12〜17の電気化学セルは、穴の最大径が5〜1500μmの穴が負極に形成されており、比較例3の電気化学セルと比較して質量当たりの放電容量が高い。
(3-3) Relationship between Maximum Diameter of Active Material Layer Hole and Characteristics of Electrochemical Cell As shown in Table 3, the electrochemical cells of Examples 12 to 17 have a maximum hole diameter of 5 to 1500 μm. Is formed on the negative electrode, and the discharge capacity per mass is higher than that of the electrochemical cell of Comparative Example 3.
特に、穴の最大径が100〜1000μmの範囲では、質量当たりの放電容量が266〜312mAh/gとさらに高い。このことから、本発明のリチウムイオン二次電池用負極は、穴の最大径が100〜1000μmであることが特に望ましいことがわかる。 In particular, when the maximum hole diameter is in the range of 100 to 1000 μm, the discharge capacity per mass is 266 to 312 mAh / g, which is even higher. From this, it can be seen that the negative electrode for lithium ion secondary batteries of the present invention preferably has a maximum hole diameter of 100 to 1000 μm.
(3−4)活物質層の穴の表面形状と電気化学セルの特性の関係について
表4に示すように、実施例18〜21の電気化学セルは、比較例4の電気化学セルと比較して、質量当たりの放電容量が高い。以上から、本発明のリチウムイオン二次電池用負極は、活物質層に形成された穴の表面形状によらず、質量当たりの放電容量を向上できることがわかる。
(3-4) Relationship between surface shape of hole in active material layer and characteristics of electrochemical cell As shown in Table 4, the electrochemical cells of Examples 18 to 21 were compared with the electrochemical cell of Comparative Example 4. The discharge capacity per mass is high. From the above, it can be seen that the negative electrode for a lithium ion secondary battery of the present invention can improve the discharge capacity per mass regardless of the surface shape of the hole formed in the active material layer.
(3−5)活物質の種類と電気化学セルの特性の関係について
表5に示すように、実施例22の電気化学セルは比較例5と比較して放電容量が高く、実施例23の電気化学セルは比較例6と比較して放電容量が高い。このように、本発明のリチウムイオン二次電池用負極は、活物質として、天然黒鉛とSiOの混合物及び人造黒鉛とSnの混合物を用いても、放電容量を向上できることがわかる。
(3-5) Relationship between Type of Active Material and Characteristics of Electrochemical Cell As shown in Table 5, the electrochemical cell of Example 22 has a higher discharge capacity than that of Comparative Example 5, and the electric power of Example 23 The chemical cell has a higher discharge capacity than Comparative Example 6. Thus, it can be seen that the negative electrode for a lithium ion secondary battery of the present invention can improve the discharge capacity even when a mixture of natural graphite and SiO and a mixture of artificial graphite and Sn are used as the active material.
(3−6)活物質層の活物質密度と電気化学セルの特性の関係について
負極の活物質層の活物質密度と、当該負極を用いた電気化学セルの放電容量の関係を表6に示す。表6に示すように、実施例24〜27の電気化学セルは、実施例の電気化学セルと活物質層に穴が形成されていない点のみ異なる比較例11〜14の電気化学セルと比較して、質量あたりの放電容量及び面積当たりの放電容量がともに高い。このように、活物質密度が真密度の70〜82%の範囲では、穴を形成したことで放電容量が増加していることがわかる。
(3-6) Relationship between Active Material Density of Active Material Layer and Electrochemical Cell Characteristics Table 6 shows the relationship between the active material density of the negative electrode active material layer and the discharge capacity of the electrochemical cell using the negative electrode. . As shown in Table 6, the electrochemical cells of Examples 24-27 are different from the electrochemical cells of Comparative Examples 11-14, which differ from the electrochemical cells of Examples only in that no holes are formed in the active material layer. Both the discharge capacity per mass and the discharge capacity per area are high. Thus, it can be seen that when the active material density is in the range of 70 to 82% of the true density, the discharge capacity is increased by forming the holes.
比較例7と比較例8、比較例9と比較例10、実施例24と比較例11、実施例25と比較例12、実施例26と比較例13、実施例27と比較例14をそれぞれ比較すると、穴を形成することで質量当たりの放電容量が約1.04倍、約1.06倍、約1.08倍、約1.11倍、約1.22倍、約1.6倍となっており、活物質密度が高くなるほど、穴が形成されたことによる放電容量の増加量が増えている。 Comparative Example 7 and Comparative Example 8, Comparative Example 9 and Comparative Example 10, Example 24 and Comparative Example 11, Example 25 and Comparative Example 12, Example 26 and Comparative Example 13, Example 27 and Comparative Example 14 are respectively compared. Then, by forming a hole, the discharge capacity per mass is about 1.04 times, about 1.06 times, about 1.08 times, about 1.11 times, about 1.22 times, about 1.6 times. As the active material density increases, the amount of increase in discharge capacity due to the formation of holes increases.
真密度に対する活物質密度の割合が68%から70%に変わると、穴が形成されたことによる質量当たりの放電容量の増加量約1.06倍から約1.08倍に増えている。一方で、真密度に対する活物質密度の割合が70%から77%に変わると、穴が形成されたことによる質量当たりの放電容量の増加量約1.08倍から約1.11倍に増えている。 When the ratio of the active material density to the true density is changed from 68% to 70%, the amount of increase in discharge capacity per mass due to the formation of holes is increased from about 1.06 times to about 1.08 times. On the other hand, when the ratio of the active material density to the true density is changed from 70% to 77%, the increase in discharge capacity per mass due to the formation of holes is increased from about 1.08 times to about 1.11 times. Yes.
このように、真密度に対する活物質密度の割合が70%以上になると、電気化学セルは、穴が形成されたことによる質量当たりの放電容量の増加量が大きくなり始める。 Thus, when the ratio of the active material density to the true density becomes 70% or more, the electrochemical cell starts to increase the discharge capacity per mass due to the formation of holes.
さらに電気化学セルは、真密度に対する活物質密度の割合が72〜82%の範囲で放電容量の増加量が10%を超え、穴が形成されたことによる質量当たりの放電容量の増加量がさらに大きい。 Further, the electrochemical cell has a discharge capacity increase of more than 10% when the ratio of the active material density to the true density is in the range of 72 to 82%, and the increase in discharge capacity per mass due to the formation of holes is further increased. large.
このように、活物質密度が真密度の72〜82%の範囲であること望ましいことがわかる。 Thus, it can be seen that the active material density is desirably in the range of 72 to 82% of the true density.
(実施例II)
さらに、負極の活物層の活物質密度と、当該負極を用いた電気化学セルの放電容量の関係を調べるために、実施例28〜38として活物質密度を真密度の70〜83%の範囲で変化させて本発明の負極を作製し、当該負極を用いて上記と同様の電気化学セルを作製した。
Example II
Furthermore, in order to investigate the relationship between the active material density of the active material layer of the negative electrode and the discharge capacity of the electrochemical cell using the negative electrode, the active material density was in the range of 70 to 83% of the true density as Examples 28 to 38. The negative electrode of the present invention was produced by changing the above, and an electrochemical cell similar to the above was produced using the negative electrode.
実施例28〜31は、活物質として難黒鉛化炭素を用い、穴の開口の形状が丸形で、表7に記載したパラメータの穴を負極の活物質層に形成した。そして比較のために、比較例15、17として活物質密度が真密度の60、68%であり、実施例と同じ穴を有する穴あり負極と、比較例16、18として比較例15、17の負極と同じ活物質密度の穴なし負極と、比較例19〜22として実施例28〜31の負極とそれぞれ同じ活物質密度の穴なし負極とを作製し、電気化学セルを作製した。電気化学セルは、実施例1と同様の方法で作製した。実施例28〜31及び比較例15〜22の電気化学セルは、1mA/cm2の充電電流、0.005Vの定電圧で充電電流値が0.1mA/cm2に低下するまで充電した後、カットオフ電圧を1.0Vvs.Li/Li+として10mA/cm2の放電電流で放電して、放電容量を測定した。 In Examples 28 to 31, non-graphitizable carbon was used as the active material, the shape of the hole opening was round, and the holes having the parameters described in Table 7 were formed in the active material layer of the negative electrode. And for comparison, the active material density is 60 and 68% of the true density as Comparative Examples 15 and 17, and the negative electrode with holes having the same hole as the Examples, and Comparative Examples 15 and 17 as Comparative Examples 15 and 17 A negative electrode without holes having the same active material density as that of the negative electrode, and negative electrodes without holes having the same active material density as those of Examples 28 to 31 as Comparative Examples 19 to 22 were prepared to prepare electrochemical cells. The electrochemical cell was produced by the same method as in Example 1. The electrochemical cells of Examples 28 to 31 and Comparative Examples 15 to 22 were charged at a charging current of 1 mA / cm 2 and a constant voltage of 0.005 V until the charging current value decreased to 0.1 mA / cm 2 . The cut-off voltage is 1.0 Vvs. The discharge capacity was measured by discharging at a discharge current of 10 mA / cm 2 as Li / Li + .
実施例32〜35は、活物質として易黒鉛化炭素を用い、穴の開口の形状が丸形で、表7に記載したパラメータの穴を負極の活物質層に形成した。そして比較のために、比較例23、25として活物質密度が真密度の62、68%であり、実施例と同じ穴を有する穴あり負極と、比較例24、26として比較例23、25の負極と同じ活物質密度の穴なし負極と、比較例27〜30として実施例32〜35の負極とそれぞれ同じ活物質密度の穴なし負極とを作製し、電気化学セルを作製した。電気化学セルは、実施例1と同様の方法で作製した。実施例32〜35及び比較例23〜30の電気化学セルは、1mA/cm2の充電電流、0.005Vの定電圧で充電電流値が0.1mA/cm2に低下するまで充電した後、カットオフ電圧を1.0Vvs.Li/Li+として10mA/cm2の放電電流で放電して、放電容量を測定した。 In Examples 32 to 35, graphitizable carbon was used as the active material, the shape of the hole opening was round, and the holes having the parameters described in Table 7 were formed in the active material layer of the negative electrode. For comparison, the active material density of Comparative Examples 23 and 25 is 62 and 68% of the true density, and the negative electrode with holes having the same holes as those of Examples, and Comparative Examples 24 and 26 of Comparative Examples 23 and 25 of Comparative Examples 23 and 25. A negative electrode without holes having the same active material density as that of the negative electrode, and negative electrodes having the same active material density as those of Examples 32 to 35 as Comparative Examples 27 to 30 were prepared to prepare electrochemical cells. The electrochemical cell was produced by the same method as in Example 1. The electrochemical cell of Examples 32-35 and Comparative Examples 23-30, after charging until the charging current of 1 mA / cm 2, the charging current value in the constant voltage of 0.005V drops to 0.1 mA / cm 2, The cut-off voltage is 1.0 Vvs. The discharge capacity was measured by discharging at a discharge current of 10 mA / cm 2 as Li / Li + .
実施例36〜38は、活物質としてLTOを用い、穴の開口の形状が丸形で、表7に記載したパラメータの穴を負極の活物質層に形成した。そして比較のために、比較例31、33として、活物質密度が真密度の58、64%であり、実施例と同じ穴を有する穴あり負極と、比較例32、34として比較例31、33の負極と同じ活物質密度の穴なし負極と、比較例35〜37として実施例36〜38の負極とそれぞれ同じ活物質密度の穴なし負極とを作製し、電気化学セルを作製した。電気化学セルは、実施例1と同様の方法で作製した。実施例36〜38及び比較例31〜37の電気化学セルは、1mA/cm2の充電電流、1.40Vの定電圧で充電電流値が0.1mA/cm2に低下するまで充電した後、カットオフ電圧を2.0Vvs.Li/Li+として10mA/cm2の放電電流で放電して、放電容量を測定した。 In Examples 36 to 38, LTO was used as the active material, the shape of the hole opening was round, and the holes having the parameters described in Table 7 were formed in the active material layer of the negative electrode. For comparison, as Comparative Examples 31 and 33, the active material density is 58 and 64% of the true density, and the holed negative electrode having the same hole as the Example, and Comparative Examples 32 and 34 are Comparative Examples 31 and 33. A negative electrode with no hole having the same active material density as that of the negative electrode and negative electrodes without holes having the same active material density as those of Examples 36 to 38 as Comparative Examples 35 to 37 were prepared. The electrochemical cell was produced by the same method as in Example 1. The electrochemical cells of Examples 36 to 38 and Comparative Examples 31 to 37 were charged at a charging current of 1 mA / cm 2 and a constant voltage of 1.40 V until the charging current value decreased to 0.1 mA / cm 2 . The cut-off voltage is set to 2.0 Vvs. The discharge capacity was measured by discharging at a discharge current of 10 mA / cm 2 as Li / Li + .
実施例28〜38の電気化学セルの負極のパラメータ及び放電容量の測定結果を表7に、比較例15〜37の電気化学セルの負極のパラメータ及び放電容量の測定結果を表8に示す。なお、活物質利用率(%)は、質量当たりの放電容量を質量当たりの理論放電容量で割って算出した。難黒鉛化炭素の質量当たりの理論放電容量は170mAh/g、易黒鉛化炭素の質量当たりの理論放電容量は230mAh/g、LTOの質量当たりの理論放電容量は160mAh/gである。 The measurement results of the negative electrode parameters and discharge capacity of the electrochemical cells of Examples 28 to 38 are shown in Table 7, and the negative electrode parameters and discharge capacity measurement results of the electrochemical cells of Comparative Examples 15 to 37 are shown in Table 8. The active material utilization rate (%) was calculated by dividing the discharge capacity per mass by the theoretical discharge capacity per mass. The theoretical discharge capacity per mass of non-graphitizable carbon is 170 mAh / g, the theoretical discharge capacity per mass of graphitizable carbon is 230 mAh / g, and the theoretical discharge capacity per mass of LTO is 160 mAh / g.
活物質が難黒鉛化炭素の場合、真密度に対する活物質密度の割合が60%、68%、70%、72%、77%、83%の穴あり活物質層を有する負極の電気化学セルは、穴が形成されたことによる質量当たりの放電容量の増加量が約1.02倍、約1.06倍、約1.12倍、約1.17倍、約1.33倍、約1.49倍である。 When the active material is non-graphitizable carbon, the negative electrode electrochemical cell having an active material layer with holes having a ratio of the active material density to the true density of 60%, 68%, 70%, 72%, 77%, 83% is The increase in discharge capacity per mass due to the formation of the holes is about 1.02, about 1.06, about 1.12, about 1.17, about 1.33, about 1. 49 times.
活物質が易黒鉛化炭素の場合、真密度に対する活物質密度の割合が62%、68%、70%、72%、78%、83%の穴あり活物質層を有する負極の電気化学セルは、穴が形成されたことによる質量当たりの放電容量の増加量が1.00倍、約1.02倍、約1.08倍、約1.13倍、約1.25倍、約1.54倍である。 When the active material is graphitizable carbon, the negative electrode electrochemical cell having an active material layer with holes having a ratio of the active material density to the true density of 62%, 68%, 70%, 72%, 78%, 83% is The increase in discharge capacity per mass due to the formation of holes is 1.00 times, about 1.02 times, about 1.08 times, about 1.13 times, about 1.25 times, about 1.54 times. Is double.
活物質がLTOの場合、真密度に対する活物質密度の割合が58%、64%、70%、76%、82%の穴あり活物質層を有する負極の電気化学セルは、穴が形成されたことによる質量当たりの放電容量の増加量が1.00倍、約1.06倍、約1.11倍、約1.21倍、約1.31倍である。 When the active material is LTO, the ratio of the active material density to the true density is 58%, 64%, 70%, 76%, 82%. The increase in discharge capacity per unit mass is 1.00 times, about 1.06 times, about 1.11 times, about 1.21 times, and about 1.31 times.
活物質が天然黒鉛のきと同様に、活物質がハードカーボンの場合も、活物質密度が高くなるほど、穴が形成されたことによる質量当たりの放電容量の増加量が増えている。 When the active material is hard carbon as in the case of natural graphite, the amount of increase in discharge capacity per mass due to the formation of holes increases as the active material density increases.
また、真密度に対する活物質密度の割合が70〜83%の範囲であると、穴が形成されたことによる質量当たりの放電容量の増加量が特に大きいことがわかる。 Further, it can be seen that when the ratio of the active material density to the true density is in the range of 70 to 83%, the amount of increase in discharge capacity per mass due to the formation of holes is particularly large.
なお活物質密度が83%よりも高いと、負極は、活物質密度が極めて高いため、活物質層に存在する空隙が少ない上、空隙の大きさも小さい。そのため負極は、負極の内部に存在する電解液の量が少なく活物質間に存在する空隙が小さいために、リチウムイオンの移動抵抗が極めて大きくなっていると考えられる。そのため活物質層に穴を形成しても、穴の内部空間に露出した部分の活物質しか利用できず、活物質層の内部の活物質まで有効に利用できないと考えられる。その結果負極は、担持する活物質を増加させても、質量当たりの放電容量が急激に低下してしまい、電池の容量が大きく減少してしまうと考えられる。 Note that when the active material density is higher than 83%, the negative electrode has an extremely high active material density, so that there are few voids in the active material layer and the size of the voids is small. Therefore, it is considered that the negative electrode has a very large resistance to movement of lithium ions because the amount of the electrolyte present in the negative electrode is small and the voids between the active materials are small. Therefore, even if a hole is formed in the active material layer, only the portion of the active material exposed in the internal space of the hole can be used, and it is considered that the active material inside the active material layer cannot be used effectively. As a result, even if the active material carried by the negative electrode is increased, the discharge capacity per mass is drastically reduced, and the capacity of the battery is greatly reduced.
このように、活物質層に穴が形成されている負極の電気化学セルは、活物質密度が高い程、穴を形成することで増加する放電容量が多く、非常に高い効果が得られる。このことは、これまで開示された過去の技術(引例)では明らかにされていなかった。活物質密度が高い場合は、電解液を含浸できる負極の空隙が少なく、活物質間の隙間が狭い。そのため、溶媒であるエチレンカーボネートなどと溶媒和して電解液中に存在しているリチウムイオンが活物質間の隙間を通れなくなり、穴が形成されていない負極では、セパレータから遠い部分の活物質にリチウムイオンが届かなくなる。活物質密度が高くなるほど、活物質間の隙間が狭くなり、リチウムイオンがより届き難くなる。そのために、活物質密度が高い程、放電容量が極端に落ちると考えられる。 Thus, the negative electrode electrochemical cell in which holes are formed in the active material layer has a higher discharge capacity that is increased by forming holes as the active material density is higher, and a very high effect is obtained. This has not been clarified in the past techniques (references) disclosed so far. When the active material density is high, there are few gaps in the negative electrode that can be impregnated with the electrolyte, and the gaps between the active materials are narrow. Therefore, lithium ions that are solvated with the solvent, such as ethylene carbonate, do not pass through the gaps between the active materials, and in the negative electrode in which no holes are formed, Lithium ions will not reach. The higher the active material density, the narrower the gap between the active materials, and the more difficult it is for lithium ions to reach. Therefore, it is considered that the discharge capacity is extremely decreased as the active material density is higher.
一方、穴が形成された負極は、リチウムイオンがこの穴に存在する電解液中をセパレータから遠い部分の負極まで移動し、その後、穴の横方向に浸透できる。そのため、表面から厚さ方向に深い位置にある活物質にもリチウムイオンが届くようになり、有効に利用できる活物質が増えたため、高い放電容量が得られると考えられる。活物質密度が高い程、負極は、多くの活物質を担持しており、有効に利用できる活物質も増えるために、放電容量が高いと考えられる。 On the other hand, in the negative electrode in which the hole is formed, lithium ions can move in the electrolytic solution existing in the hole to the negative electrode at a portion far from the separator, and then permeate in the lateral direction of the hole. For this reason, lithium ions can reach the active material located deep in the thickness direction from the surface, and the number of active materials that can be used effectively has increased, so that a high discharge capacity can be obtained. The higher the active material density, the more the negative electrode carries more active materials, and the more active materials that can be used effectively, the higher the discharge capacity.
ここで、実施例28と、穴が形成されていない点のみ実施例28と異なる比較例19とを比較すると、実施例28は、穴を形成したことで質量当たりの放電容量が比較例19の約1.12倍になっている。一方で、比較例17と、穴が形成されていない点のみ比較例17と異なる比較例18とを比較すると、比較例17は、実施例28と同じ穴を負極の活物質層に形成したにもかかわらず、質量当たりの放電容量が約1.06倍にしかなっていない。 Here, when Example 28 is compared with Comparative Example 19 that is different from Example 28 only in that no hole is formed, Example 28 has a discharge capacity per mass of Comparative Example 19 due to the formation of the hole. It is about 1.12 times. On the other hand, when Comparative Example 17 was compared with Comparative Example 18 that was different from Comparative Example 17 only in that no hole was formed, Comparative Example 17 had the same hole as Example 28 formed in the active material layer of the negative electrode. Nevertheless, the discharge capacity per mass is only about 1.06 times.
比較例18の場合、負極の活物質密度に対する真密度の割合が68%と低く、その分空隙が多く形成されている。そのため負極は、活物質層に穴を形成しなくても十分な電解液量を含有しており、表面から厚さ方向に深い位置にある活物質も有効に利用できている。よって、比較例17のように負極の活物質層に穴を形成しても、穴が形成されたことによって初めて有効に利用できるようになった活物質があまりなく、放電容量の増加量が小さかったと考えられる。一方で、比較例19の場合、活物質密度が真密度の70%と高いため、負極に含まれる電解液量が十分ではなく、負極は、表面から厚さ方向に対して深い位置にある活物質を有効に利用できていなかった。そのため、実施例28のように穴を形成することにより、電解液が穴の中にも存在し、表面から厚さ方向に対して深い位置にもリチウムイオンが届くようになり、負極が有効に利用できる活物質が増え、電気化学セルは質量当たりの放電容量が増えたと考えられる。このことは、活物質密度が高いほど、穴を形成することにより増加する放電容量が大きくなっていることからも裏付けられる。このように、活物質密度が真密度の70%以上であると、穴を形成することで放電容量が大きく増加することがわかる。 In the case of the comparative example 18, the ratio of the true density to the active material density of the negative electrode is as low as 68%, and a lot of voids are formed accordingly. Therefore, the negative electrode contains a sufficient amount of electrolytic solution without forming a hole in the active material layer, and an active material located deep in the thickness direction from the surface can also be used effectively. Therefore, even if a hole is formed in the active material layer of the negative electrode as in Comparative Example 17, there is not much active material that can be effectively used for the first time because the hole is formed, and the increase in discharge capacity is small. It is thought. On the other hand, in the case of Comparative Example 19, since the active material density is as high as 70% of the true density, the amount of the electrolyte contained in the negative electrode is not sufficient, and the negative electrode is an active material located deep from the surface in the thickness direction. The substance could not be used effectively. Therefore, by forming a hole as in Example 28, the electrolyte also exists in the hole, so that lithium ions can reach deeper in the thickness direction from the surface, and the negative electrode becomes effective. The number of active materials that can be used is increased, and it is considered that the discharge capacity per mass of the electrochemical cell has increased. This is also supported by the fact that the higher the active material density, the larger the discharge capacity that is increased by forming the holes. Thus, it can be seen that when the active material density is 70% or more of the true density, the discharge capacity is greatly increased by forming the holes.
活物質密度に対する真密度の割合が70%より小さい比較例25及び比較例26、比較例33及び比較例34を比較すると、穴が形成されたことによる質量当たりの放電容量の増加量が約1.02倍、約1.06倍である。一方で、活物質密度に対する真密度の割合が70%である実施例32、36は、穴が形成されたことによる質量当たりの放電容量の増加量が約1.08倍、約1.11倍であり、真密度に対する活物質密度の割合が70%未満の比較例よりも穴を形成することで放電容量が大きく増加している。このように、活物質の種類がソフトカーボンやLTOであっても同様の傾向を示す。 Comparing Comparative Example 25, Comparative Example 26, Comparative Example 33, and Comparative Example 34, in which the ratio of the true density to the active material density is less than 70%, the amount of increase in discharge capacity per mass due to the formation of holes was about 1 0.02 times and about 1.06 times. On the other hand, in Examples 32 and 36 in which the ratio of the true density to the active material density is 70%, the increase in discharge capacity per mass due to the formation of the holes is about 1.08 times and about 1.11 times. Thus, the discharge capacity is greatly increased by forming the holes as compared with the comparative example in which the ratio of the active material density to the true density is less than 70%. Thus, the same tendency is shown even if the type of active material is soft carbon or LTO.
また、本発明のリチウムイオン二次電池用負極は、負極に含浸される電解液の量を削減することができる。例えば、実施例30の負極は、活物質密度が77%であり、その他の23%には、空隙と、SBRと、CMCと、ABとが含まれている。そしてこの負極はハードカーボンを97wt%、SBRを1wt%、CMCを1wt%、ABを1wt%含んでいる。これらと、SBR、CMC、及びABの密度とを勘案すると、SBR、CMC、及びABが占める体積は負極中で約6%である。よって空隙率は、約17%である。 Moreover, the negative electrode for lithium ion secondary batteries of this invention can reduce the quantity of the electrolyte solution which a negative electrode is impregnated. For example, the negative electrode of Example 30 has an active material density of 77%, and the other 23% contains voids, SBR, CMC, and AB. This negative electrode contains 97 wt% hard carbon, 1 wt% SBR, 1 wt% CMC, and 1 wt% AB. Considering these and the density of SBR, CMC, and AB, the volume occupied by SBR, CMC, and AB is about 6% in the negative electrode. Therefore, the porosity is about 17%.
一方、比較例15の負極は活物質密度が60%である。そのため、同様の計算をすると、SBR、CMC、及びABが占める体積は約6%となる。よって、空隙率は約34%である。 On the other hand, the negative electrode of Comparative Example 15 has an active material density of 60%. Therefore, when the same calculation is performed, the volume occupied by SBR, CMC, and AB is about 6%. Therefore, the porosity is about 34%.
負極の空隙に電解液が含浸されるので、実施例30は空隙率が比較例15の約1/2以下であるので、含浸している電解液も比較例15の約1/2以下である。このように、高密度に活物質を有することで、負極に含浸される電解液量は、約1/2以下にまで低減される。よって、本発明のリチウムイオン二次電池用負極は、使用する電解液量を低減することができる。 Since the electrolyte solution is impregnated in the gap of the negative electrode, the porosity in Example 30 is about ½ or less that in Comparative Example 15, and thus the electrolyte solution impregnated is also about ½ or less that in Comparative Example 15. . Thus, by having an active material at a high density, the amount of electrolyte impregnated in the negative electrode is reduced to about ½ or less. Therefore, the negative electrode for a lithium ion secondary battery of the present invention can reduce the amount of electrolyte used.
(実施例III)
活物質層の厚さと電気化学セルの放電容量の関係を調べるために、実施例39〜42として活物質層の厚さを100〜1000μmの範囲で変化させて本発明の負極を作製し、当該負極を用いて電気化学セルを作製した。実施例39〜42は、穴の開口の形状が丸形で、表9に示すパラメータの穴を有する。また、比較のために、比較例38、40として活物質層の厚さがそれぞれ50、85μmである点以外、実施例と同じ負極を作成し、比較例39、41〜45として穴が形成されていない点以外実施例39〜42、比較例38、40と同様の負極を作製し、それぞれ電気化学セルを作製した。電気化学セルは、実施例1と同様の方法で作製した。これらの電気化学セルの放電容量は、2mA/cm2の充電電流、0.005Vvs.Li/Li+の定電圧で充電電流値が0.1mA/cm2に低下するまで充電した後、カットオフ電圧を1.0Vvs.Li/Li+として、10mA/cm2の放電電流で放電して測定した。作製した実施例及び比較例の負極のパラメータと測定した放電容量の値とを表9に示す。
Example III
In order to investigate the relationship between the thickness of the active material layer and the discharge capacity of the electrochemical cell, the thickness of the active material layer was changed in the range of 100 to 1000 μm as Examples 39 to 42, and the negative electrode of the present invention was produced. An electrochemical cell was produced using the negative electrode. In Examples 39 to 42, the shape of the hole opening is round, and the holes having the parameters shown in Table 9 are provided. For comparison, the same negative electrodes as those in Examples were prepared except that the thicknesses of the active material layers were 50 and 85 μm as Comparative Examples 38 and 40, respectively, and holes were formed as Comparative Examples 39 and 41 to 45. Except for the above, negative electrodes similar to those in Examples 39 to 42 and Comparative Examples 38 and 40 were produced, and electrochemical cells were produced. The electrochemical cell was produced by the same method as in Example 1. The discharge capacity of these electrochemical cells is 2 mA / cm 2 charging current, 0.005 Vvs. After charging at a constant voltage of Li / Li + until the charging current value decreases to 0.1 mA / cm 2 , the cut-off voltage is set to 1.0 Vvs. Li / Li + was measured by discharging at a discharge current of 10 mA / cm 2 . Table 9 shows the parameters of the negative electrodes and measured discharge capacities of Examples and Comparative Examples.
実施例39〜42の電気化学セルは、各実施例と活物質層の厚さが同じ穴なし負極を有する比較例42〜45の電気化学セルとそれぞれ比較して、質量当たりの放電容量、面積当たりの放電容量が共に高く、穴を形成することで放電容量が増加していることがわかる。 The electrochemical cells of Examples 39 to 42 were compared with the electrochemical cells of Comparative Examples 42 to 45 having negative holes with the same active material layer thickness as the respective examples, respectively, compared with the discharge capacity and area per mass. It can be seen that the discharge capacity per unit is high and the discharge capacity is increased by forming the holes.
穴が形成された活物質層を有する各電気化学セルと、穴が形成されていな活物質層を有する各電気化学セルとを、活物質層の厚さが同じ電気化学セル同士でそれぞれ比較する。穴が形成され、厚さが50μm、85μm、100μm、150μm、300μm、1000μmの活物質層を有する負極の電気化学セルは、穴が形成されたことで質量当たりの放電容量がそれぞれ、約1.08倍、約1.21倍、約1.24倍、約1.36倍、約1.97倍、約2.36倍となっている。 Each electrochemical cell having an active material layer in which holes are formed and each electrochemical cell having an active material layer in which holes are not formed are compared between electrochemical cells having the same active material layer thickness. . A negative electrode electrochemical cell having holes formed therein and having an active material layer with a thickness of 50 μm, 85 μm, 100 μm, 150 μm, 300 μm, and 1000 μm has a discharge capacity per mass of about 1. They are 08 times, about 1.21 times, about 1.24 times, about 1.36 times, about 1.97 times, and about 2.36 times.
比較例38の電気化学セルは、活物質層の厚さが同じ穴なし負極を有する比較例39の電気化学セルと比較して、質量当たりの放電容量及び面積当たりの放電容量があまり増加していない。穴が形成されたことによる質量当たりの放電容量の増加量も約1.08倍と小さい。 The electrochemical cell of Comparative Example 38 has a much higher discharge capacity per mass and discharge capacity per area than the electrochemical cell of Comparative Example 39 having the negative electrode without the same active material layer thickness. Absent. The increase in discharge capacity per mass due to the formation of the holes is also as small as about 1.08 times.
活物質層の厚さが50μmのように比較的薄い場合は、活物質層に穴が形成されたことによる放電容量の増加量が小さい。活物質層の厚さが薄い場合、電解液中のリチウムイオンが活物質層内部の活物質にも届きやすく、穴が形成されていなくても多くの活物質を有効に利用できていると考えられる。そのため、活物質層の厚さが薄い負極は、活物質層に穴を形成することで新たに利用できるようになった活物質が少なく、放電容量の増加も小さかったと考えられる。 When the thickness of the active material layer is relatively thin, such as 50 μm, the increase in discharge capacity due to the formation of holes in the active material layer is small. When the thickness of the active material layer is thin, lithium ions in the electrolyte solution can easily reach the active material inside the active material layer, and many active materials can be used effectively even if holes are not formed. It is done. Therefore, it is considered that the negative electrode having a thin active material layer has few active materials that can be newly used by forming holes in the active material layer, and the increase in discharge capacity is small.
また、活物質層が厚い場合に穴が形成されたことによる質量当たりの放電容量の増加量が多い。活物質層が厚い場合、穴が形成されていないと、リチウムイオンが活物質層の空隙を長距離移動するのでリチウムイオンの移動抵抗が高く、活物質層が厚いので活物質層の表面から厚さ方向に深い位置の活物質を利用できず、活物質の担持量が多くても有効に利用できる活物質が少ないと考えられる。そのため、活物質層が厚い負極の電気化学セルは、活物質層に穴を形成することで、リチウムイオンが穴に存在する電解液中を優先的に通ってリチウムイオンの移動がスムーズになることによってリチウムイオンの移動抵抗が大きく低下し、かつ、穴が形成されたことで初めて有効に利用されるようになった活物質が多いので、放電容量の増加量が大きかったと考えられる。 Further, when the active material layer is thick, there is a large increase in discharge capacity per mass due to the formation of holes. When the active material layer is thick, if no hole is formed, lithium ions move through the voids of the active material layer for a long distance, so the lithium ion has a high resistance to movement, and the active material layer is thick, so the thickness increases from the surface of the active material layer. It is considered that an active material that is deep in the vertical direction cannot be used, and there are few active materials that can be used effectively even if the amount of active material supported is large. Therefore, in the negative electrode electrochemical cell with a thick active material layer, the formation of holes in the active material layer facilitates the movement of lithium ions through the lithium ions preferentially through the electrolyte present in the holes. It is considered that the increase in the discharge capacity was large because the migration resistance of lithium ions was greatly reduced by this, and there were many active materials that were effectively used only after the formation of holes.
なお、活物質層が1000μmよりもさらに厚くなると、リチウムイオンが活物質層の穴に収容された電解液中を移動していても、リチウムイオンの移動距離が長くなる。そのため、電気化学セルは、効率的に電池反応を行うことができず、質量当たりの放電容量、面積当たりの放電容量が低下し、穴が形成されたことによる質量当たりの放電容量の増加量も低下すると考えられる。 Note that if the active material layer becomes thicker than 1000 μm, the movement distance of lithium ions becomes long even if lithium ions move in the electrolyte contained in the holes of the active material layer. Therefore, the electrochemical cell cannot efficiently perform a battery reaction, the discharge capacity per mass, the discharge capacity per area are reduced, and the increase in discharge capacity per mass due to the formation of holes is also reduced. It is thought to decline.
活物質層の厚さが150μm以上になると、穴を形成することで質量当たりの放電容量は、約1.36倍以上大きくなり、増加量が特に多い。このように、活物質層の厚さが150〜1000μmであることが特に望ましいことがわかる。 When the thickness of the active material layer is 150 μm or more, the discharge capacity per mass is increased by about 1.36 times or more by forming holes, and the increase amount is particularly large. Thus, it can be seen that the thickness of the active material layer is particularly desirable to be 150 to 1000 μm.
1 リチウムイオン二次電池
2 リチウムイオン二次電池用負極
3 正極
4 セパレータ
5、10 集電体
6、11 活物質層
7、12 穴
8 底部
9、13 開口
DESCRIPTION OF
Claims (15)
前記活物質層は、
複数の穴が表面に形成されており、
活物質密度が前記活物質層に含まれる活物質の真密度の70〜83%であり、
厚さが100〜1000μmであり、
前記複数の穴は、最大径が5〜1500μmであり、中心間隔が500〜6000μmであり、深さが前記活物質層の厚さの5%以上である
ことを特徴とするリチウムイオン二次電池用負極。 A current collector, and an active material layer formed on the surface of the current collector,
The active material layer is
A plurality of holes are formed on the surface,
The active material density is 70 to 83% of the true density of the active material contained in the active material layer;
Thickness Ri 100~1000μm der,
The plurality of holes have a maximum diameter of 5 to 1500 μm, a center interval of 500 to 6000 μm, and a depth of 5% or more of the thickness of the active material layer. Negative electrode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014184154 | 2014-09-10 | ||
JP2014184154 | 2014-09-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016058375A JP2016058375A (en) | 2016-04-21 |
JP5983822B2 true JP5983822B2 (en) | 2016-09-06 |
Family
ID=55758938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015107686A Active JP5983822B2 (en) | 2014-09-10 | 2015-05-27 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5983822B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102034809B1 (en) * | 2016-07-18 | 2019-10-21 | 주식회사 엘지화학 | Method for preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared by the same |
EP3758033A4 (en) * | 2018-02-22 | 2021-12-08 | Musashi Energy Solutions Co., Ltd. | Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode |
US20210050599A1 (en) * | 2019-08-16 | 2021-02-18 | Samsung Sdi Co., Ltd. | High loading electrodes having high areal capacity and energy storage devices including the same |
CN112542570B (en) * | 2019-09-23 | 2022-08-09 | 北京小米移动软件有限公司 | Silicon negative pole piece, preparation method thereof and lithium ion battery |
CN211980772U (en) * | 2020-05-09 | 2020-11-20 | 比亚迪股份有限公司 | Pole piece, winding type battery cell and battery |
CN112968148B (en) * | 2021-03-29 | 2023-07-14 | 欣旺达惠州动力新能源有限公司 | Lithium ion battery negative plate and lithium ion battery |
CN118782725A (en) * | 2021-12-28 | 2024-10-15 | 珠海冠宇电池股份有限公司 | Pole piece and electrochemical device |
CN114512670B (en) * | 2022-01-13 | 2024-09-03 | 珠海冠宇电池股份有限公司 | Negative plate and battery comprising same |
CN114927639B (en) * | 2022-06-16 | 2023-08-15 | 欣旺达电动汽车电池有限公司 | Negative electrode plate, preparation method thereof and secondary battery |
CN115939324A (en) * | 2022-06-20 | 2023-04-07 | 宁德时代新能源科技股份有限公司 | Negative plate, battery monomer, battery and consumer |
WO2024000458A1 (en) * | 2022-06-30 | 2024-01-04 | 宁德新能源科技有限公司 | Electrochemical apparatus and electronic device |
CN118661278A (en) * | 2022-07-18 | 2024-09-17 | 宁德新能源科技有限公司 | Electrochemical device and electronic apparatus |
CN115832187A (en) * | 2022-07-20 | 2023-03-21 | 宁德时代新能源科技股份有限公司 | Electrode, method for producing same, secondary battery, battery module, battery pack, and electric device |
CN116885103A (en) * | 2023-09-08 | 2023-10-13 | 浙江锂威电子科技有限公司 | Graphite anode and preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250510A (en) * | 2006-02-15 | 2007-09-27 | Sanyo Electric Co Ltd | Electrode for lithium secondary battery and lithium secondary battery |
JP5730538B2 (en) * | 2010-11-04 | 2015-06-10 | トヨタ自動車株式会社 | Sintered body for lithium secondary battery electrode, electrode for lithium secondary battery including the sintered body, and lithium secondary battery including the electrode |
JP2012160292A (en) * | 2011-01-31 | 2012-08-23 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2012190625A (en) * | 2011-03-10 | 2012-10-04 | Hitachi Ltd | Nonaqueous secondary battery |
JP2012199097A (en) * | 2011-03-22 | 2012-10-18 | Toyota Motor Corp | Sintered type positive electrode and battery equipped with the sintered type positive electrode |
-
2015
- 2015-05-27 JP JP2015107686A patent/JP5983822B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016058375A (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5983822B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5983821B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2016039263A1 (en) | Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell | |
CN103794800B (en) | Lithium battery collector, pole piece and lithium battery and preparation method thereof, lithium battery applications | |
US10637045B2 (en) | Composite electrode and lithium-ion battery comprising same and method for producing the composite electrode | |
TWI536637B (en) | Lithium electrode and lithium secondary battery comprising the same | |
US10122019B2 (en) | Ionic liquid filled porous carbon anode active material and method for manufacturing the same | |
JP2013016800A (en) | Lithium plate, method for lithiation of electrode and energy storage device | |
Kim et al. | Composite protection layers for dendrite-suppressing non-granular micro-patterned lithium metal anodes | |
JP2012089303A (en) | Lithium secondary battery electrode and lithium secondary battery using the same | |
KR20160008593A (en) | Electrode for power storage device, power storage device, and production method for electrode for power storage device | |
CN111799437B (en) | Positive pole piece and sodium ion battery | |
JP6973244B2 (en) | Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery | |
WO2016039264A1 (en) | Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell | |
Chen et al. | Regulating Li-ion flux distribution via holey graphene oxide functionalized separator for dendrite-inhibited lithium metal battery | |
JP2012195182A (en) | Lithium secondary battery electrode and lithium secondary battery including the electrode | |
JP2016058258A (en) | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
Dzakpasu et al. | Bifunctional role of carbon nanofibrils within Li powder composite anode: More Li nucleation but less Li isolation | |
CN114050233A (en) | Negative pole piece and battery | |
CN108832135A (en) | Based lithium-ion battery positive plate and lithium ion battery | |
Srinivasan et al. | Mechanistic insights into structural parameters maximizing energy storage density in Si mesoporous electrodes for Li-ion batteries | |
KR20150082467A (en) | Electrodes for lithium secondary battery and lithium secondary battery | |
WO2014156053A1 (en) | Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery | |
CN108767192A (en) | Based lithium-ion battery positive plate and lithium ion battery | |
JP2015095634A (en) | Power storage device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160718 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5983822 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |