JP2012089303A - Lithium secondary battery electrode and lithium secondary battery using the same - Google Patents

Lithium secondary battery electrode and lithium secondary battery using the same Download PDF

Info

Publication number
JP2012089303A
JP2012089303A JP2010233847A JP2010233847A JP2012089303A JP 2012089303 A JP2012089303 A JP 2012089303A JP 2010233847 A JP2010233847 A JP 2010233847A JP 2010233847 A JP2010233847 A JP 2010233847A JP 2012089303 A JP2012089303 A JP 2012089303A
Authority
JP
Japan
Prior art keywords
current collector
groove
positive electrode
electrode
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010233847A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tamura
宜之 田村
Naoki Imachi
直希 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010233847A priority Critical patent/JP2012089303A/en
Publication of JP2012089303A publication Critical patent/JP2012089303A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for lithium secondary batteries which is sufficiently impregnated with an electrolyte to exhibit increased ion conductivity and can thereby significantly increase battery characteristics such as load characteristics, etc., and a lithium secondary battery using the electrode.SOLUTION: In a lithium secondary battery constructed in such a way that aluminum fiber 5 molded in sheet form is used for a cathode current collector 1, with a cathode active material carried on the cathode current collector 1, a groove 2 is formed on the surface of the cathode current collector 1 and space 3 exists inside the groove while the cathode active material is being carried on the cathode current collector 1.

Description

本発明はリチウム二次電池に関し、特に、当該電池に用いられる集電体の改良に関する。   The present invention relates to a lithium secondary battery, and more particularly to an improvement of a current collector used in the battery.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行うリチウム二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。更に、上記移動情報端末の小型化に伴い、より高エネルギー密度の二次電池が要望されている。このような高エネルギー密度の二次電池のために、(1)〜(3)に示すように、金属不織布を集電体に用いた電池が提案されている。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacities. A lithium secondary battery that performs charging / discharging by moving lithium ions between the positive and negative electrodes along with charging / discharging has a high energy density and high capacity. As widely used. Furthermore, with the miniaturization of the mobile information terminal, a secondary battery having a higher energy density is demanded. For such a high energy density secondary battery, as shown in (1) to (3), a battery using a metal nonwoven fabric as a current collector has been proposed.

(1)アルミニウム繊維の多孔体シートを、正極の芯材に使用する提案(下記特許文献1参照)。
(2)アルミニウムを主成分とする金属繊維が溶融紡糸されて三次元の網目構造を有するように形成されたアルミニウム不織布を集電体として用いる提案(下記特許文献2参照)。
(3)純アルミニウムまたはアルミニウム合金の繊維からなり、繊維径が50〜100μmで、目付け量が300〜600g/mで、空隙率が50〜96%のアルミ不織布からなる正極集電体を用いる提案(下記特許文献3参照)。
(1) A proposal to use a porous sheet of aluminum fibers as a core material of a positive electrode (see Patent Document 1 below).
(2) A proposal using an aluminum non-woven fabric formed by melting and spinning metal fibers containing aluminum as a main component so as to have a three-dimensional network structure (see Patent Document 2 below).
(3) A positive electrode current collector made of an aluminum nonwoven fabric made of pure aluminum or aluminum alloy fibers, having a fiber diameter of 50 to 100 μm, a basis weight of 300 to 600 g / m 2 , and a porosity of 50 to 96% is used. Proposal (see Patent Document 3 below).

特開平6−196170号公報JP-A-6-196170 特開2001−155739号公報JP 2001-155739 A 特開2010−33891号公報JP 2010-33891 A

上記(1)〜(3)に示す提案は、不織布に活物質を担持させる構成となっているが、不織布の表面は平坦な形状(微視的には、金属繊維の突出等があるので完全に平坦ではない。したがって、平坦な形状とは、不織布の表面に大きな凹凸は形成されていないことを意味する)のである。このため、不織布に活物質を担持させて極板を作製した場合には、極板の表面も平坦な形状となる。したがって、電池を作製した場合には、極板内に電解液が浸透し難くなり、特に、積層型の電池では極板中央部に電解液が浸透し難くなる。また、電極の厚み方向にも電解液が浸透し難く、特に、電池の高容量化を図るため活物質の充填密度を高くした場合や電極の厚みを増加させた場合には顕著である。これらのことから、リチウムイオン導電性が低下して、負荷特性等の電池特性が低下するという課題を有していた。   The proposals shown in the above (1) to (3) have a structure in which the active material is supported on the nonwoven fabric, but the surface of the nonwoven fabric has a flat shape (microscopically because there are protrusions of metal fibers, etc.) Therefore, the flat shape means that large unevenness is not formed on the surface of the nonwoven fabric). For this reason, when an active material is carry | supported on a nonwoven fabric and an electrode plate is produced, the surface of an electrode plate also becomes a flat shape. Therefore, when the battery is manufactured, the electrolytic solution is less likely to penetrate into the electrode plate. In particular, in a stacked battery, the electrolytic solution is less likely to penetrate into the center portion of the electrode plate. Further, the electrolyte does not easily permeate in the thickness direction of the electrode, and is particularly remarkable when the packing density of the active material is increased or the thickness of the electrode is increased in order to increase the capacity of the battery. For these reasons, the lithium ion conductivity is lowered, and battery characteristics such as load characteristics are lowered.

本発明は、上記従来の課題を考慮したものであって、電解液を極板内へ十分に浸透させることによりイオン導電性の向上を図り、これによって負荷特性等の電池特性を飛躍的に向上させることができるリチウム二次電池用電極、及びその電極を用いたリチウム二次電池を提供することを目的としている。   The present invention takes the above-mentioned conventional problems into consideration, and improves the ionic conductivity by sufficiently infiltrating the electrolyte into the electrode plate, thereby dramatically improving the battery characteristics such as load characteristics. An object of the present invention is to provide an electrode for a lithium secondary battery, and a lithium secondary battery using the electrode.

上記目的を達成するために本発明は、金属繊維をシート状に成型したものを集電体に用い、この集電体に活物質が担持される構造のリチウム二次電池用電極において、上記集電体の表面には溝が形成されており、この集電体に活物質が担持された状態で溝内に空間が存在していることを特徴とする。
上記構成の如く、集電体の表面には溝が形成されており、且つ、この集電体に活物質が担持された状態で溝内に空間が存在していれば(溝内が活物質で埋まっていなければ)、電池作製時にはセパレータと電極との間に空間(隙間)が形成される。したがって、電解液は溝内の空間を通って、電極全体に容易に行き渡る(即ち、電極中央部にも電解液が十分に供給され易くなる)。また、電解液が電極に浸透する際、電極の表面から浸透する他、溝の側面からも浸透する。このように、電極が薄くなっている部位から電極の平面方向や電極の厚み方向にも電解液が浸透するので、電解液がより浸透し易くなる。これらのことから、電極全体に電解液を含浸させることが可能となって、電極内でのリチウムイオン導電性が向上する。この結果、電極反応が均一化し、負荷特性等の電池特性が飛躍的に向上する。特に、電池の高容量化、高出力化のため、極板厚みを大きくしたり、活物質の充填密度の向上を図った極板において、本発明は効果的である。
In order to achieve the above object, the present invention uses a current collector formed by molding a metal fiber in a sheet shape, and in the electrode for a lithium secondary battery having a structure in which an active material is supported on the current collector, A groove is formed on the surface of the electric body, and a space exists in the groove in a state where an active material is supported on the current collector.
As in the above configuration, a groove is formed on the surface of the current collector, and if there is a space in the groove with the active material supported on the current collector (the inside of the groove is the active material). When the battery is manufactured, a space (gap) is formed between the separator and the electrode. Therefore, the electrolytic solution easily passes through the space in the groove and spreads over the entire electrode (that is, the electrolytic solution is sufficiently supplied to the central portion of the electrode). Further, when the electrolytic solution penetrates into the electrode, it penetrates from the surface of the electrode and also from the side surface of the groove. As described above, the electrolytic solution penetrates from the portion where the electrode is thinned into the planar direction of the electrode and the thickness direction of the electrode, so that the electrolytic solution is more easily penetrated. From these things, it becomes possible to impregnate the whole electrode with electrolyte solution, and the lithium ion conductivity in an electrode improves. As a result, the electrode reaction becomes uniform, and battery characteristics such as load characteristics are dramatically improved. In particular, the present invention is effective in an electrode plate in which the thickness of the electrode plate is increased or the packing density of the active material is improved in order to increase the capacity and output of the battery.

上記溝に対応する部位における集電体の金属繊維の密度は、上記溝以外の部位における集電体の金属繊維の密度より高くなっていることが望ましい。
溝に対応する部位における集電体の金属繊維の密度が、溝以外の部位における集電体の金属繊維の密度より高くなっていれば、溝に対応する部位は、溝以外の部位よりも電子導電性が高くなる。このように、集電体の一部に電子導電性が高くなる部位が設けられていれば、電子のハイウェイパスが形成され易くなるので、集電体全体での電子導電性が向上する。この結果、電極反応が均一化して、サイクル特性等の電池特性が向上する。
The density of the metal fibers of the current collector in the part corresponding to the groove is desirably higher than the density of the metal fibers of the current collector in the part other than the groove.
If the density of the metal fiber of the current collector in the part corresponding to the groove is higher than the density of the metal fiber of the current collector in the part other than the groove, the part corresponding to the groove is more electron than the part other than the groove. The conductivity is increased. As described above, if a portion where the electronic conductivity is increased is provided in a part of the current collector, an electron highway path is easily formed, so that the electronic conductivity of the entire current collector is improved. As a result, the electrode reaction becomes uniform and battery characteristics such as cycle characteristics are improved.

また、溝に対応する部位における集電体の金属繊維の密度を高くすれば、当該部位では金属繊維のほつれや毛羽立ちが抑制されるので、ほつれ等を起点として電極が破損したり、電池内部で短絡が生じるのを抑制できる。
尚、上記と同様、電池の高容量化、高出力化のため、極板厚みを大きくしたり、活物質の充填密度の向上を図った極板において効果的である。
Also, if the density of the metal fiber of the current collector at the part corresponding to the groove is increased, fraying and fluffing of the metal fiber is suppressed at the part, so that the electrode may be damaged starting from fraying, etc. It can suppress that a short circuit arises.
In the same manner as described above, the electrode plate is effective in increasing the electrode plate thickness or improving the packing density of the active material in order to increase the capacity and output of the battery.

上記集電体の外周部における集電体の金属繊維の密度が、上記外周部以外の部位における集電体の金属繊維の密度より高くなっていることが望ましい。
集電体は、大きな金属繊維をシート状に成型したもの(不織布)を切断することにより作製するが、この場合、切断部は切断部以外の部位と比較して、金属繊維のほつれや毛羽立ちが多くなる。そこで、集電体の外周部(切断部)における集電体の金属繊維の密度を高くすれば、当該部位における金属繊維のほつれや毛羽立ちを抑制できるので、電極が破損したり、電池内部で短絡が生じるのを一層抑えることができる。
It is desirable that the density of the metal fibers of the current collector in the outer peripheral portion of the current collector is higher than the density of the metal fibers of the current collector in a portion other than the outer peripheral portion.
The current collector is produced by cutting a sheet (nonwoven fabric) obtained by molding large metal fibers into a sheet shape. In this case, the cut portion has fraying or fluffing of the metal fibers as compared to the portion other than the cut portion. Become more. Therefore, if the density of the metal fibers of the current collector at the outer peripheral part (cut part) of the current collector is increased, fraying and fluffing of the metal fibers at the part can be suppressed, so that the electrode is damaged or short-circuited inside the battery. Can be further suppressed.

溝の幅は1mm以上10mm以下となっていることが望ましい。
溝の幅が1mm未満では、溝の幅が小さ過ぎるため、集電体に活物質が担持された状態で溝内に空間を設けるのが困難になる場合がある。また、溝の作製は金属繊維をシート状に成型したものをプレスすることにより行うことができるが、溝の幅が小さ過ぎると、プレス圧が大きくなって、プレス時に集電体が破断する可能性がある。一方、溝の幅が10mmを超えると、集電体に担持される活物質量が少なくなって、電極容量が低下することがある。これは、溝に対応する部位における集電体の金属繊維の密度は、溝以外の部位における集電体の金属繊維の密度より高くなっているので、溝に対応する部位では、余り活物質を担持することができない。このため、溝の幅が余り大きくなると、集電体中に占める溝の割合が多くなって、集電体に担持される活物質量が少なくなるからである。
The width of the groove is desirably 1 mm or more and 10 mm or less.
If the width of the groove is less than 1 mm, the width of the groove is too small, and it may be difficult to provide a space in the groove in a state where the active material is supported on the current collector. Grooves can be made by pressing a metal fiber molded into a sheet shape, but if the groove width is too small, the press pressure increases and the current collector can break during pressing. There is sex. On the other hand, when the width of the groove exceeds 10 mm, the amount of the active material carried on the current collector is reduced, and the electrode capacity may be reduced. This is because the density of the metal fibers of the current collector in the part corresponding to the groove is higher than the density of the metal fibers of the current collector in the part other than the groove. It cannot be supported. For this reason, if the groove width becomes too large, the proportion of the groove in the current collector increases, and the amount of active material carried on the current collector decreases.

上記溝以外の部位における集電体の厚みに対する、上記溝に対応する部位における集電体の厚みの割合が、10%以上90%以下となっていることが望ましい。
上記割合が10%を下回ると、プレス法により溝を作製した場合に、プレス圧が大きくなって、溝に対応する部位で集電体が破断することがある。一方、上記割合が90%を越えると、溝に対応する部位における集電体の金属繊維の密度が、溝以外の部位における集電体の金属繊維の密度と余り変わらない。このため、イオン導電性や電子導電性の向上による電池特性の向上効果や、電池内部での短絡抑制による電池の信頼性の向上効果を十分に発揮できないことがある。
It is desirable that the ratio of the thickness of the current collector in the portion corresponding to the groove to the thickness of the current collector in the portion other than the groove is 10% or more and 90% or less.
When the ratio is less than 10%, when a groove is produced by a pressing method, the pressing pressure increases, and the current collector may break at a portion corresponding to the groove. On the other hand, when the ratio exceeds 90%, the density of the metal fibers of the current collector in the portion corresponding to the groove is not much different from the density of the metal fibers of the current collector in the portion other than the groove. For this reason, the improvement effect of the battery characteristic by the improvement of ion conductivity and electronic conductivity, and the improvement effect of the reliability of the battery by short circuit suppression inside a battery may not fully be exhibited.

上記溝は複数設けられていることが望ましい。
溝は複数設けられていれば、上記作用効果が一層発揮される。但し、面積が極めて小さな(1cm以下)な電極では溝が単数でも、上記効果は十分に発揮される。
It is desirable that a plurality of the grooves are provided.
If a plurality of grooves are provided, the above-described effects are further exhibited. However, in the case of an electrode having an extremely small area (1 cm 2 or less), even if there is a single groove, the above effect is sufficiently exhibited.

上記溝の間隔は、溝の幅の2倍以上で50mm以下となっていることが望ましい。
溝の間隔が溝の幅の2倍を下回ると、集電体中に占める溝の割合が多くなって、集電体に担持する活物質量が少なくなる結果、電極容量が低下することがある。一方、溝の間隔が50mmを超えると、電子導電性やリチウムイオン導電性を余り向上させることができず、しかも、繊維のほつれや毛羽立ちが発生し易くなる。
The interval between the grooves is preferably not less than twice the width of the groove and not more than 50 mm.
If the groove interval is less than twice the groove width, the proportion of the groove in the current collector increases, and the amount of active material carried on the current collector decreases, resulting in a decrease in electrode capacity. . On the other hand, when the groove interval exceeds 50 mm, the electronic conductivity and the lithium ion conductivity cannot be improved so much, and fraying and fluffing of fibers are likely to occur.

上記溝は格子状になっていることが望ましい。
溝は格子状になっていれば、電子のハイウェイパスが形成されて、集電体全体で導電性が向上し、更に、電極の如何なる部位においても電解液の液回り性が向上するので、電池特性向上効果が一層発揮される。また、上述の如く、金属繊維の密度が高い集電体部分(溝に対応する集電体部分)では繊維のほつれ、毛羽立ちが抑制されるが、当該溝が格子状にあれば、集電体全体で金属繊維のほつれ、毛羽立ちが大きく低減される。
It is desirable that the grooves have a lattice shape.
If the grooves are in the form of a lattice, a highway path for electrons is formed, the conductivity of the entire current collector is improved, and the ability of the electrolyte solution to flow is improved at any part of the electrode. The effect of improving characteristics is further exhibited. Further, as described above, fraying and fluffing of the current collector portion where the metal fiber density is high (current collector portion corresponding to the groove) are suppressed, but if the groove is in a lattice shape, the current collector As a whole, fraying and fluffing of metal fibers are greatly reduced.

上記溝内には活物質が存在しないことが望ましい。
溝内には活物質が存在しなければ、より多量の電解液が溝内を通ることができる(電極表面に存在する電解液量が多くなる)ので、イオン導電性が一層向上する。
It is desirable that no active material exists in the groove.
If there is no active material in the groove, a larger amount of electrolytic solution can pass through the groove (the amount of electrolytic solution present on the electrode surface increases), so that the ionic conductivity is further improved.

正極と負極と非水電解液とを備えたリチウム二次電池において、上述したリチウム二次電池用電極が、正負両極のうち少なくとも一方の極に用いられていることを特徴とする。また、上述したリチウム二次電池用電極が正極として用いられ、上記金属繊維がアルミニウム繊維から成ることが望ましい。   In a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, the above-described electrode for a lithium secondary battery is used for at least one of positive and negative electrodes. Moreover, it is desirable that the above-mentioned electrode for a lithium secondary battery is used as a positive electrode, and the metal fiber is made of aluminum fiber.

本発明によれば、電極中へ電解液を十分に含浸させることによってイオン導電性を向上させることができるので、負荷特性等の電池特性を飛躍的に向上させることができる。また、電子導電性が高くなるので、集電体全体での電子導電性が向上する。したがって、電極反応が均一化し、サイクル特性等の電池特性を向上させることができる。加えて、金属繊維のほつれや毛羽立ちを抑制できるので、ほつれ等を起点として電極が破損したり、電池内部で短絡が生じるのを抑制できるといった優れた効果を奏する。   According to the present invention, since the ionic conductivity can be improved by sufficiently impregnating the electrolyte into the electrode, battery characteristics such as load characteristics can be drastically improved. Moreover, since electronic conductivity becomes high, the electronic conductivity in the whole collector improves. Therefore, the electrode reaction can be made uniform and battery characteristics such as cycle characteristics can be improved. In addition, since fraying and fluffing of the metal fiber can be suppressed, an excellent effect can be achieved in that the electrode can be prevented from being damaged starting from fraying and the like, and a short circuit can be prevented from occurring inside the battery.

本発明の正極集電体を示す平面図である。It is a top view which shows the positive electrode electrical power collector of this invention. 本発明の正極集電体を示す断面図である。It is sectional drawing which shows the positive electrode electrical power collector of this invention. 本発明の正極集電体を用いた正極の断面図である。It is sectional drawing of the positive electrode using the positive electrode electrical power collector of this invention. 本発明の正極集電体に正極活物質を担持させる方法を示す説明図である。It is explanatory drawing which shows the method of making the positive electrode electrical power collector of this invention carry | support a positive electrode active material. 本発明の正極集電体を示す部分拡大断面図である。It is a partial expanded sectional view which shows the positive electrode electrical power collector of this invention. 本発明の正極集電体の変形例を示す平面図である。It is a top view which shows the modification of the positive electrode electrical power collector of this invention. 本発明の正極集電体の他の変形例を示す平面図である。It is a top view which shows the other modification of the positive electrode electrical power collector of this invention. 本発明の正極集電体の他の変形例を示す平面図である。It is a top view which shows the other modification of the positive electrode electrical power collector of this invention. 本発明の正極集電体の他の変形例を示す平面図である。It is a top view which shows the other modification of the positive electrode electrical power collector of this invention. 本発明の正極集電体の他の変形例を示す平面図である。It is a top view which shows the other modification of the positive electrode electrical power collector of this invention. 本発明の正極集電体に用いる不織布シートの平面図である。It is a top view of the nonwoven fabric sheet used for the positive electrode electrical power collector of this invention. 本発明の正極集電体に正極活物質を担持させる方法を示す説明図である。It is explanatory drawing which shows the method of making the positive electrode electrical power collector of this invention carry | support a positive electrode active material. 本発明の正極集電体の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the positive electrode electrical power collector of this invention. 本発明の正極集電体の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the positive electrode electrical power collector of this invention. 本発明の正極集電体を示す部分拡大断面図である。It is a partial expanded sectional view which shows the positive electrode electrical power collector of this invention. 比較例の正極集電体を示す断面図である。It is sectional drawing which shows the positive electrode electrical power collector of a comparative example. 比較例の正極集電体を示す断面図である。It is sectional drawing which shows the positive electrode electrical power collector of a comparative example. 比較例の正極集電体を用いた正極の断面図である。It is sectional drawing of the positive electrode using the positive electrode electrical power collector of a comparative example.

以下、本発明を下記形態に基づいてさらに詳細に説明するが、本発明は以下の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on the following embodiments, but the present invention is not limited to the following embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. It is.

(正極の作製)
図1に示すように、直径100μmのアルミニウム繊維5からなる不織布シートに、格子状の溝2をプレスにて形成した後、シートを方形状に切断して、正極集電体1を得た。図2に示すように、正極集電体1において、溝2に対応する部位以外の集電体の厚みL1は0.6mm、溝2に対応する部位の集電体の厚みL2は0.4mm、溝2の幅L3は1.5mm、溝2の間隔L4は10mmとした。
(Preparation of positive electrode)
As shown in FIG. 1, a grid-like groove 2 was formed on a nonwoven fabric sheet made of aluminum fibers 5 having a diameter of 100 μm by pressing, and then the sheet was cut into a square shape to obtain a positive electrode current collector 1. As shown in FIG. 2, in the positive electrode current collector 1, the thickness L1 of the current collector other than the portion corresponding to the groove 2 is 0.6 mm, and the thickness L2 of the current collector in the portion corresponding to the groove 2 is 0.4 mm. The width L3 of the groove 2 was 1.5 mm, and the distance L4 between the grooves 2 was 10 mm.

次に、図4に示すように、正極集電体1を正極スラリー10が満たされた容器15内に完全に浸漬した(図中、A方向に移動させて完全に浸漬した)後、正極集電体1を容器から引き上げた(図中、反A方向に移動させて引き上げた)。この後、正極スラリー10を乾燥させることにより、正極活物質が担持された正極を作製した。上記正極スラリー10は、コバルト酸リチウムと炭素導電剤とPVdFとが、質量比で94:3:3の比率からなる合剤をNMPに溶かすことにより作製した。図3に示すように、得られた正極において、溝2に対応する部位の正極の厚みL5は、溝2に対応する部位以外の正極の厚みL6に比べて小さくなっていた。これにより、溝2の上部には空間3が形成されることになる。   Next, as shown in FIG. 4, the positive electrode current collector 1 was completely immersed in a container 15 filled with the positive electrode slurry 10 (moved in the direction A in the drawing and completely immersed), and then the positive electrode collector The electric body 1 was pulled up from the container (in the figure, it was moved in the anti-A direction and pulled up). Thereafter, the positive electrode slurry 10 was dried to produce a positive electrode carrying a positive electrode active material. The positive electrode slurry 10 was prepared by dissolving lithium cobaltate, a carbon conductive agent, and PVdF in a mass ratio of 94: 3: 3 in NMP. As shown in FIG. 3, in the obtained positive electrode, the thickness L5 of the positive electrode at the portion corresponding to the groove 2 was smaller than the thickness L6 of the positive electrode other than the portion corresponding to the groove 2. As a result, a space 3 is formed above the groove 2.

ここで、このような構造となるのは、図5に示すように、溝2に対応する部位の正極集電体1aはプレスされているため、アルミニウム繊維5の密度が高くなるのに対して、溝2に対応する部位以外の正極集電体1bはプレスされていないため、アルミニウム繊維5の密度が低くなる。したがって、溝2の底面2aでは、通常の表面4に比べてスラリーに対するアンカー効果が小さくなる。加えて、溝2内は空間となっている(アルミニウム繊維5が存在しない)ので、アルミニウム繊維5が存在する場合に比べて、スラリーの流動性が高くなる。これらのことから、正極集電体1を正極スラリー10に浸漬したときに溝2内に正極スラリー10が配置され難く、且つ、溝2内に正極スラリー10が配置された場合であっても、正極集電体1を容器から引き上げる際に、自重により正極スラリー10が滑落するからである。   Here, such a structure is formed because, as shown in FIG. 5, the positive electrode current collector 1a corresponding to the groove 2 is pressed, so that the density of the aluminum fibers 5 is increased. Since the positive electrode current collector 1b other than the portion corresponding to the groove 2 is not pressed, the density of the aluminum fibers 5 is lowered. Therefore, the anchor effect on the slurry is smaller at the bottom surface 2 a of the groove 2 than at the normal surface 4. In addition, since the groove 2 is a space (the aluminum fiber 5 is not present), the fluidity of the slurry is higher than that in the case where the aluminum fiber 5 is present. From these, even when the positive electrode current collector 1 is immersed in the positive electrode slurry 10 and the positive electrode slurry 10 is difficult to be disposed in the groove 2 and the positive electrode slurry 10 is disposed in the groove 2, This is because when the positive electrode current collector 1 is pulled up from the container, the positive electrode slurry 10 slides down due to its own weight.

(負極の作製)
先ず、負極活物質としての黒鉛粉末と、CMCと、結着剤としてのSBRとを、溶剤としての水溶液中で混合して負極スラリーを調製した。次に、この負極スラリーを負極集電体としての銅箔の両面に塗布、乾燥した後、圧延することにより、負極を作製した。
(Preparation of negative electrode)
First, graphite powder as a negative electrode active material, CMC, and SBR as a binder were mixed in an aqueous solution as a solvent to prepare a negative electrode slurry. Next, this negative electrode slurry was applied to both sides of a copper foil as a negative electrode current collector, dried, and then rolled to prepare a negative electrode.

〔電池の作製〕
上記正極と上記負極との間にセパレータを配置した発電要素を多数積層させることにより、積層電極体を作製した後、この積層電極体をラミネートフィルムから成る外装体内に挿入した。最後に、上記外装体内に電解液を注入し、更に、外装体の開口部を熱溶着することにより電池を作製した。尚、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが体積比で3:7の割合で混合された混合溶媒に、LiPFが1M(モル/リットル)の割合で溶解したものを用いた。
[Production of battery]
A large number of power generating elements each having a separator disposed between the positive electrode and the negative electrode were laminated to produce a laminated electrode body, and the laminated electrode body was inserted into an outer package made of a laminate film. Finally, an electrolyte was injected into the outer package, and the opening of the outer package was thermally welded to produce a battery. As the above electrolyte solution, ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 3: 7 to mixed mixed solvent at a ratio of, LiPF 6 is dissolved in a proportion of 1M (mol / l) What was done was used.

(その他の事項)
(1)溝の格子形状としては、図1に示すように、各々の溝が直交する正方格子形状に限定するものではなく、各々の溝により構成される形状が、例えば、三角格子形状(図6参照)や平行四辺形格子形状(図7参照)でもよい。更に、各々の溝が交わる必要はなく、図8に示すように、平向に溝2を形成しても良く、更に、図9に示すように、渦巻き状に溝2を形成しても良い。即ち、集電体上で連続しており、集電体外周に向け開口していれば足る。但し、図8に示す溝形状の正極集電体や図9に示す溝形状の正極集電体では、図1に示す溝形状の正極集電体に比べて、正極集電体の端部まで延設された溝2が少ない(即ち、溝2の端部開口6が少ない)。したがって、正極集電体に電解液を満遍なく浸透させるという機能が低下する。このことから、溝2は格子状に形成するのが望ましい。更に、電解液を満遍なく浸透させるという機能をより発揮するには、溝2が均一な間隔で設けられていることが望ましい。
(Other matters)
(1) As shown in FIG. 1, the lattice shape of the grooves is not limited to a square lattice shape in which the grooves are orthogonal to each other, and the shape constituted by the grooves is, for example, a triangular lattice shape (see FIG. 6) or a parallelogram lattice shape (see FIG. 7). Further, it is not necessary for the grooves to intersect each other, and the grooves 2 may be formed in a flat direction as shown in FIG. 8, and further, the grooves 2 may be formed in a spiral shape as shown in FIG. . That is, it suffices if it is continuous on the current collector and opens toward the outer periphery of the current collector. However, in the groove-shaped positive electrode current collector shown in FIG. 8 and the groove-shaped positive electrode current collector shown in FIG. 9, the end of the positive electrode current collector is compared with the groove-shaped positive electrode current collector shown in FIG. There are few extended grooves 2 (that is, there are few end openings 6 of the grooves 2). Therefore, the function of evenly penetrating the electrolyte into the positive electrode current collector is reduced. Therefore, it is desirable to form the grooves 2 in a lattice shape. Furthermore, it is desirable that the grooves 2 be provided at a uniform interval in order to further exhibit the function of allowing the electrolytic solution to penetrate evenly.

また、正極集電体は、アルミニウム繊維を大きなシート状に成型したもの(不織布)を切断することにより製造することができるが、この場合、切断部は切断部以外の部位と比較して、アルミニウム繊維のほつれや毛羽立ちが多くなる。そこで、図11に示すように、溝2が形成された不織布12を切断して、正極集電体を作製する場合には、溝2に沿って切断(図11の線分13、14で切断)すればよい。このようにして作製した正極集電体は、図10に示すように、正極集電体1の外周部11におけるアルミニウム繊維5の密度が、正極集電体1の外周部11以外におけるアルミニウム繊維5の密度と比べて高くなる。このような構成であれば、切断部における金属繊維のほつれや毛羽立ちを抑制できるので、電極が破損したり、電池内部で短絡が生じるのを一層抑制できる。   In addition, the positive electrode current collector can be manufactured by cutting an aluminum fiber molded into a large sheet (nonwoven fabric). In this case, the cut portion is made of aluminum as compared with a portion other than the cut portion. Increases fiber fraying and fuzz. Therefore, as shown in FIG. 11, when the nonwoven fabric 12 in which the groove 2 is formed is cut to produce a positive electrode current collector, cutting along the groove 2 (cut along line segments 13 and 14 in FIG. 11). )do it. As shown in FIG. 10, the positive electrode current collector manufactured in this way has a density of aluminum fibers 5 in the outer peripheral portion 11 of the positive electrode current collector 1 such that the aluminum fibers 5 in other than the outer peripheral portion 11 of the positive electrode current collector 1. Higher than the density of. With such a configuration, fraying and fluffing of the metal fibers at the cut portion can be suppressed, and therefore it is possible to further suppress the electrode from being damaged or short-circuiting from occurring inside the battery.

(2)正極集電体に正極スラリーを浸透させる方法としては、図4に示したように、正極集電体1を正極スラリー10に完全に浸漬する方法に限定するものでなく、例えば、図12に示すように、正極集電体1の下面(溝2が形成された面と反対の面)20のみを正極スラリー10と接触させ、正極スラリー10を下面20から浸透させる方法を用いても良い。このような方法であれば、溝2に対応する部位以外の正極集電体1bはアルミニウム繊維5の密度が低いので、正極集電体1bを透過するスラリー量が多くなって、正極集電体1b内は正極スラリーで満たされる。これに対して、溝2に対応する部位の正極集電体1aはアルミニウム繊維5の密度が高いので、正極集電体1bを透過するスラリー量が少なくなる。したがって、溝2にまで到達する正極スラリーの量は僅かとなるので、溝2内に空間3を形成することができる。 (2) The method of allowing the positive electrode slurry to permeate the positive electrode current collector is not limited to the method of completely immersing the positive electrode current collector 1 in the positive electrode slurry 10 as shown in FIG. 12, only the lower surface (the surface opposite to the surface on which the groove 2 is formed) 20 of the positive electrode current collector 1 is brought into contact with the positive electrode slurry 10 and the positive electrode slurry 10 is allowed to penetrate from the lower surface 20. good. In such a method, since the positive electrode current collector 1b other than the portion corresponding to the groove 2 has a low density of the aluminum fibers 5, the amount of slurry passing through the positive electrode current collector 1b increases, and the positive electrode current collector The inside of 1b is filled with the positive electrode slurry. On the other hand, the positive electrode current collector 1a corresponding to the groove 2 has a high density of aluminum fibers 5, so that the amount of slurry that passes through the positive electrode current collector 1b is reduced. Accordingly, since the amount of the positive electrode slurry reaching the groove 2 is small, the space 3 can be formed in the groove 2.

(3)また、格子状の溝をプレスで形成する場合、図2に示したように、片面のみのプレス方(一方向のみのプレス)に限定するものではなく、図13に示すように、両面プレス(双方向のプレス)でも良い。尚、この場合、溝2が対向していない場合には、プレスをする際に集電体が波打ち形状となることがあるため、両面に形成された溝2は、対向するように設けられているのが好ましい。 (3) Further, when forming the grid-like grooves by pressing, as shown in FIG. 2, the method is not limited to pressing only on one side (pressing only in one direction), as shown in FIG. A double-sided press (bidirectional press) may be used. In this case, if the grooves 2 are not opposed, the current collector may be wavy when pressing, so the grooves 2 formed on both sides are provided to face each other. It is preferable.

(4)図14に示すように、溝2内に正極スラリーが存在しなければ、溝2内の空間が大きくなるので、前述の作用効果が一層発揮される。このような構造とする方法としては、以下の方法が例示される。
・正極集電体を正極スラリーに浸漬した後、溝内から正極スラリーをかき出す方法。
・正極スラリーの粘度を低下させて、正極集電体1を正極スラリーで満たされた容器から引き上げる際に、自重によって正極スラリーが滑落する量を多くする方法。
・正極集電体を正極スラリーに浸漬する前に、マスキングテープやレジストで溝を覆い、正極集電体1内に正極スラリーを充填した後に、マスキングテープやレジストを取り除く方法。
(4) As shown in FIG. 14, if no positive electrode slurry exists in the groove 2, the space in the groove 2 becomes large, and thus the above-described effects are further exhibited. The following methods are exemplified as a method for providing such a structure.
A method in which the positive electrode current collector is dipped in the positive electrode slurry and then the positive electrode slurry is scraped out from the groove.
A method of decreasing the viscosity of the positive electrode slurry and increasing the amount by which the positive electrode slurry slides down due to its own weight when the positive electrode current collector 1 is pulled up from the container filled with the positive electrode slurry.
A method in which the groove is covered with a masking tape or resist before the positive electrode current collector is immersed in the positive electrode slurry, and after the positive electrode current collector 1 is filled with the positive electrode slurry, the masking tape or resist is removed.

(5)上記形態では、正極を例にとって説明したが、本発明は負極にも適用することができる。負極に適用する場合には、金属繊維として銅繊維やニッケル繊維等を用いることができる。 (5) In the above embodiment, the positive electrode has been described as an example, but the present invention can also be applied to the negative electrode. When applied to the negative electrode, copper fiber, nickel fiber, or the like can be used as the metal fiber.

〔第1実施例〕
(実施例)
直径100μmのアルミ繊維からなる不織布シートに、格子状の溝をプレスにて形成することにより正極集電体(50mm×100mm)を得た。この正極集電体において、溝2に対応する部位以外の集電体の厚みL1は1.2mm、溝2に対応する部位の集電体の厚みL2は0.4mm、溝2の幅L3は1.5mm、溝2の間隔L4は10mmとした(L1〜L4は図2参照)。尚、正極集電体の質量は2.4gであった(また、下記比較例においても2.4gであった)。
[First embodiment]
(Example)
A positive electrode current collector (50 mm × 100 mm) was obtained by forming grid-like grooves on a nonwoven fabric sheet made of aluminum fibers having a diameter of 100 μm by pressing. In this positive electrode current collector, the thickness L1 of the current collector other than the part corresponding to the groove 2 is 1.2 mm, the thickness L2 of the current collector in the part corresponding to the groove 2 is 0.4 mm, and the width L3 of the groove 2 is The distance L4 between the grooves 2 was 1.5 mm and 10 mm (see FIG. 2 for L1 to L4). The mass of the positive electrode current collector was 2.4 g (also 2.4 g in the following comparative example).

次に、上記発明を実施するための形態と同様にして、上記と同様の正極活物質を正極集電体に担持させた。最後に、正極活物質が担持された正極集電体を20mm×20mmに切断し、更にタブ付けすることにより正極を作製した。この正極において、溝2に対応する部位の正極の厚みL5は1.2mmであった。また、溝2に対応する部位以外の正極の厚みL6は1.4mmであって、厚みL5は厚みL6の約86%であった(L5、L6は図3参照)。
最後に、上記正極を作用極とし、対極と参照極とがリチウム箔から成る3極セルを作製した。なお、電解液としては、上記発明を実施するための形態と同様のものを用いた。
このようにして作製したセルを、以下、セルAと称する。
Next, a positive electrode active material similar to that described above was supported on a positive electrode current collector in the same manner as in the embodiment for carrying out the invention. Finally, the positive electrode current collector carrying the positive electrode active material was cut into 20 mm × 20 mm and further tabbed to produce a positive electrode. In this positive electrode, the thickness L5 of the positive electrode at the portion corresponding to the groove 2 was 1.2 mm. Further, the thickness L6 of the positive electrode other than the portion corresponding to the groove 2 was 1.4 mm, and the thickness L5 was about 86% of the thickness L6 (see FIG. 3 for L5 and L6).
Finally, a three-electrode cell in which the positive electrode was used as a working electrode and the counter electrode and reference electrode were made of lithium foil was produced. In addition, as an electrolyte solution, the thing similar to the form for implementing the said invention was used.
The cell thus produced is hereinafter referred to as cell A.

(比較例)
溝を形成しない正極集電体を用いた以外は、上記実施例と同様にしてセルを作製した。
このようにして作製したセルを、以下、セルZと称する。
(Comparative example)
A cell was fabricated in the same manner as in the above example except that a positive electrode current collector that did not form grooves was used.
The cell thus produced is hereinafter referred to as cell Z.

(実験)
上記セルA、Zを、下記条件で充放電し、負荷特性(放電容量比)を調べたので、その結果を表1に示す。
・充放電条件
0.5mA/cmの電流で4.4V(vs.Li/Li)まで充電した後、0.5mA/cmの電流で3.0V(vs.Li/Li)まで放電して、電流0.5mA/cmのときの放電容量を調べた。次に、0.5mA/cmの電流で4.4V(vs.Li/Li)まで充電した後、5.0mA/cmの電流で3.0V(vs.Li/Li)まで放電して、電流5.0mA/cmのときの放電容量を調べた。
そして、電流0.5mA/cmのときの放電容量と電流5.0mA/cmのときの放電容量とから、下記(1)式を用いて放電容量比を算出した。
(Experiment)
The cells A and Z were charged / discharged under the following conditions, and the load characteristics (discharge capacity ratio) were examined. The results are shown in Table 1.
After charging to-discharge condition 0.5 mA / cm 2 current at 4.4V (vs.Li/Li +), with the current 0.5 mA / cm 2 until 3.0V (vs.Li/Li +) After discharging, the discharge capacity at a current of 0.5 mA / cm 2 was examined. Then, after charging with a current 0.5 mA / cm 2 until 4.4V (vs.Li/Li +), with the current 5.0 mA / cm 2 until 3.0V (vs.Li/Li +) discharge Then, the discharge capacity at a current of 5.0 mA / cm 2 was examined.
Then, the discharge capacity at a current 0.5 mA / cm discharge capacity when the 2 and the current 5.0 mA / cm 2, was calculated discharge capacity ratio using the following equation (1).

放電容量比=〔(電流5.0mA/cmのときの放電容量)/(電流0.5mA/cmのときの放電容量)〕×100・・・(1) Discharge capacity ratio = [(discharge capacity at a current 5.0mA / cm 2) / (discharge capacity at a current 0.5 mA / cm 2)] × 100 · · · (1)

Figure 2012089303
Figure 2012089303

上記表1から明らかなように、セルAはセルZと比べて放電容量比が大きくなっており、負荷特性に優れていることがわかる。尚、上記実験においては、電流密度は小さいので、電極のオーム抵抗による電圧降下が負荷特性に与える影響は小さい。したがって、セルAはセルZに比べてリチウムイオン導電性が高くなっている等に起因して、負荷特性に優れると考えられる。尚、リチウムイオン導電性が高くなるのは、以下に示す理由によるものと考えられる。   As is apparent from Table 1 above, it can be seen that the cell A has a larger discharge capacity ratio than the cell Z, and is excellent in load characteristics. In the above experiment, since the current density is small, the influence of the voltage drop due to the ohmic resistance of the electrode on the load characteristics is small. Therefore, the cell A is considered to have excellent load characteristics due to the lithium ion conductivity being higher than that of the cell Z. In addition, it is thought that it is based on the reason shown below that lithium ion conductivity becomes high.

(1)溝の空間を通って、電解液が電極全体に容易に行き渡る。したがって、電解液が供給され難い電極中央部にも電解液が十分に供給される。
(2)図15に示すように、溝2の空間部3を電解液が通るため、正極表面31のみならず、溝2の側面30からも、正極内部に電解液が供給されるとともにリチウムイオンの出入が可能になる。このように、電極が薄くなっている部位から平面方向(図中、B方向)や厚み方向(図中、C方向)にも電解液が浸透するとともにリチウムイオンの出入が可能になるので、電解液が一層浸透し易くなるとともにリチウムイオンの電極内拡散距離が短くなる。
上記(1)(2)より、本発明を適用した電極においては、リチウムイオン導電性が高くなる。
(1) The electrolyte easily spreads over the entire electrode through the groove space. Therefore, the electrolytic solution is sufficiently supplied even to the central portion of the electrode where it is difficult to supply the electrolytic solution.
(2) Since the electrolytic solution passes through the space 3 of the groove 2 as shown in FIG. 15, the electrolytic solution is supplied not only from the positive electrode surface 31 but also from the side surface 30 of the groove 2 to the inside of the positive electrode and lithium ions. Can go in and out. As described above, since the electrolytic solution penetrates in the planar direction (B direction in the figure) and the thickness direction (C direction in the figure) from the portion where the electrode is thinned, lithium ions can enter and exit. The liquid becomes more easily penetrated and the diffusion distance of lithium ions in the electrode is shortened.
From the above (1) and (2), in the electrode to which the present invention is applied, lithium ion conductivity is increased.

〔第2実施例〕
(実施例)
上記発明を実施するための形態で示す方法と同様にして、正極集電体を作製した。
このようにして作製した正極集電体を、以下、集電体bと称する。
[Second Embodiment]
(Example)
A positive electrode current collector was produced in the same manner as in the method for carrying out the invention.
The positive electrode current collector thus produced is hereinafter referred to as current collector b.

(比較例)
図16及び図17に示すように、格子状の溝を形成しない以外は、上記実施例と同様にして正極集電体を作製した。
このようにして作製した正極集電体を、以下、集電体yと称する。
(Comparative example)
As shown in FIGS. 16 and 17, a positive electrode current collector was produced in the same manner as in the above example, except that the grid-like grooves were not formed.
The positive electrode current collector thus fabricated is hereinafter referred to as current collector y.

(実験)
上記集電体b、yの抵抗と繊維の毛羽立ちの有無を調べたので、それらの結果を下記表2に示す。尚、集電体の抵抗はACミリオームハイテスタ3560(日置電機株式会社製)を用い、クリップ型リードで集電体を挟み込んで測定した。クリップは50×100mmのシートの対角線上に、集電体の角を含む10mm角の範囲内で、且つ、溝ではない部位に設置した。また、繊維の毛羽立ちの有無は目視で調べた。
(Experiment)
The resistance of the current collectors b and y and the presence or absence of fiber fluff were examined, and the results are shown in Table 2 below. The resistance of the current collector was measured using an AC milliohm high tester 3560 (manufactured by Hioki Electric Co., Ltd.) with the current collector sandwiched between clip-type leads. The clip was placed on a diagonal line of a 50 × 100 mm sheet within a 10 mm square including the corners of the current collector and at a site that was not a groove. The presence or absence of fiber fluff was visually examined.

Figure 2012089303
Figure 2012089303

表2から明らかなように、溝が設けられた集電体bは、溝が設けられていない集電体yに比べて、集電体の抵抗が低くなり、しかも、毛羽立ちが抑制されることがわかる。したがって集電体の電子導電性を向上させることによって電池特性の向上を図り、且つ、金属繊維のほつれや毛羽立ち等を抑えることによって電極が破損したり、電池内部で短絡が生じるのを抑制するためには、集電体に溝が形成するのが有効であることがわかる。尚、溝が設けられていない集電体yは、図17に示すように、製造段階で毛羽立っており(アルミニウム繊維5が飛び出ている)、更に、図18に示すように、正極活物質を担持させた状態でも毛羽立ちが維持されている。   As is clear from Table 2, the current collector b provided with the grooves has a lower resistance of the current collector than the current collector y provided with no grooves, and fuzz is suppressed. I understand. Therefore, in order to improve the battery characteristics by improving the electronic conductivity of the current collector, and to suppress the fraying and fluffing of the metal fibers to suppress the electrode from being damaged or short-circuiting inside the battery It is understood that it is effective to form grooves in the current collector. Incidentally, the current collector y without grooves is fluffed at the production stage as shown in FIG. 17 (the aluminum fibers 5 are protruding), and further, as shown in FIG. The fuzz is maintained even in the supported state.

〔第3実施例〕
(実施例)
正極集電体の溝の幅を1.0mmとした以外は、上記第2実施例の実施例と同様にして正極集電体を作製した。
このようにして作製した正極集電体を、以下、集電体cと称する。
[Third embodiment]
(Example)
A positive electrode current collector was produced in the same manner as in the second example except that the width of the groove of the positive electrode current collector was 1.0 mm.
The positive electrode current collector thus produced is hereinafter referred to as current collector c.

(実験)
上記集電体cの抵抗と繊維の毛羽立ちの有無を、上記第2実施例の実験と同様にして調べたので、それらの結果を下記表3に示す。尚、表3には、上記集電体bの結果についても併せて示す。
(Experiment)
Since the resistance of the current collector c and the presence or absence of fiber fluff were examined in the same manner as in the experiment of the second example, the results are shown in Table 3 below. Table 3 also shows the results of the current collector b.

Figure 2012089303
Figure 2012089303

上記表3から明らかなように、集電体bと集電体cとでは毛羽立ちがなく、抵抗は略同等であることが認められる。但し、表3からは明らかではないが、溝の幅は1mm以上、10mm以下が好ましい。溝の幅が1mm未満では、溝の幅が狭すぎて、集電体に活物質が担持された状態で溝内に空間を設けるのが困難になる場合があること、及び、プレス圧が大きくなって、プレス時に集電体が破断する可能性がある。一方、溝の幅が10mmを超えると、集電体に担持される活物質量が少なくなって、電極容量が低下することがある。これは、溝に対応する部位の集電体は、溝以外の部位における集電体に比べて金属繊維の密度が高いので、当該部位では余り活物質を担持することができない。このため、溝の幅が余り大きくなると、集電体中に占める溝の割合が多くなって、集電体に担持する活物質量が少なくなるからである。   As is clear from Table 3 above, it can be seen that the current collector b and the current collector c have no fuzz and the resistance is substantially the same. However, although not clear from Table 3, the groove width is preferably 1 mm or more and 10 mm or less. If the groove width is less than 1 mm, the groove width is too narrow, and it may be difficult to provide a space in the groove while the active material is supported on the current collector, and the press pressure is large. Thus, the current collector may break during pressing. On the other hand, when the width of the groove exceeds 10 mm, the amount of the active material carried on the current collector is reduced, and the electrode capacity may be reduced. This is because the current collector at the site corresponding to the groove has a higher density of metal fibers than the current collector at the site other than the groove, so that the active material cannot be supported so much at the site. For this reason, if the groove width becomes too large, the proportion of the groove in the current collector increases, and the amount of active material carried on the current collector decreases.

〔第4実施例〕
(実施例1)
正極集電体の質量を2.5gとした以外は、上記第2実施例の実施例と同様にして正極集電体を作製した。即ち、本実施例の集電体は上記集電体bと厚みが同一であるにも関わらず、集電体bに比べて質量が大きくなっているということから、集電体bに比べてアルミニウム繊維の密度が高くなっている。
このようにして作製した正極集電体を、以下、集電体d1と称する。
[Fourth embodiment]
Example 1
A positive electrode current collector was produced in the same manner as in the second example except that the mass of the positive electrode current collector was 2.5 g. That is, the current collector of this example has the same thickness as the current collector b, but its mass is larger than that of the current collector b. The density of aluminum fiber is high.
The positive electrode current collector thus fabricated is hereinafter referred to as current collector d1.

(実施例2)
正極集電体の厚みを1.0mmとした以外は、上記実施例1と同様にして正極集電体を作製した。即ち、本実施例の集電体は上記集電体d1と質量が同一にも関わらず、集電体d1より厚みが大きくなっているということから、集電体d1に比べてアルミニウム繊維の密度が低くなっている。
このようにして作製した正極集電体を、以下、集電体d2と称する。
(Example 2)
A positive electrode current collector was produced in the same manner as in Example 1 except that the thickness of the positive electrode current collector was 1.0 mm. In other words, the current collector of this example has a thickness greater than that of the current collector d1, although the mass is the same as that of the current collector d1, so that the density of the aluminum fibers is higher than that of the current collector d1. Is low.
The positive electrode current collector thus fabricated is hereinafter referred to as current collector d2.

(実施例3)
正極集電体の厚みを1.2mmとし、且つ、正極集電体の質量を2.5gとした以外は、上記実施例1と同様にして正極集電体を作製した。即ち、本実施例の集電体は上記集電体d2に比べて質量が小さいにも関わらず、集電体d2より厚みが大きくなっているということから、集電体d2に比べてアルミニウム繊維の密度が低くなっている。
このようにして作製した正極集電体を、以下、集電体d3と称する。
(Example 3)
A positive electrode current collector was produced in the same manner as in Example 1 except that the thickness of the positive electrode current collector was 1.2 mm and the mass of the positive electrode current collector was 2.5 g. That is, the current collector of the present example has a thickness larger than that of the current collector d2 although the mass is smaller than that of the current collector d2, and therefore, the aluminum fiber compared with the current collector d2. The density is low.
The positive electrode current collector thus fabricated is hereinafter referred to as current collector d3.

(実験)
上記集電体d1〜d3の抵抗と繊維の毛羽立ちの有無を、上記第2実施例の実験と同様にして調べたので、それらの結果を下記表4に示す。
(Experiment)
Since the resistances of the current collectors d1 to d3 and the presence or absence of fiber fluff were examined in the same manner as in the experiment of the second example, the results are shown in Table 4 below.

Figure 2012089303
Figure 2012089303

表4から明らかなように、集電体d1〜d3は、アルミニウム繊維の密度が異なるにも関わらず、抵抗は略同等となっていることがわかる。したがって、アルミニウム繊維の密度が低い集電体であっても、プレスを行って集電体の一部にアルミニウム繊維の密度が高い部分を設ければ、集電体の抵抗を低下させることができることがわかる。   As is clear from Table 4, it can be seen that the current collectors d1 to d3 have substantially the same resistance although the density of the aluminum fibers is different. Therefore, even if the current collector has a low aluminum fiber density, the resistance of the current collector can be reduced by pressing to provide a portion of the current collector with a high aluminum fiber density. I understand.

〔第5実施例〕
(実施例1)
正極集電体の溝の間隔を50mmとした以外は、上記第2実施例の実施例と同様にして正極集電体を作製した。
このようにして作製した正極集電体を、以下、集電体e1と称する。
[Fifth embodiment]
Example 1
A positive electrode current collector was produced in the same manner as in the second example except that the interval between the grooves of the positive electrode current collector was 50 mm.
The positive electrode current collector thus fabricated is hereinafter referred to as current collector e1.

(実施例2)
正極集電体の溝の間隔を80mmとした以外は、上記第2実施例の実施例と同様にして正極集電体を作製した。
このようにして作製した正極集電体を、以下、集電体e2と称する。
(Example 2)
A positive electrode current collector was produced in the same manner as in the second example except that the interval between the grooves of the positive electrode current collector was 80 mm.
The positive electrode current collector thus produced is hereinafter referred to as current collector e2.

(実験)
上記集電体e1、e2の抵抗と繊維の毛羽立ちの有無を、上記第2実施例の実験と同様にして調べたので、それらの結果を下記表5に示す。尚、表5には、上記集電体bの結果についても併せて示す。
(Experiment)
Since the resistances of the current collectors e1 and e2 and the presence or absence of fiber fluff were examined in the same manner as in the experiment of the second example, the results are shown in Table 5 below. Table 5 also shows the results of the current collector b.

Figure 2012089303
Figure 2012089303

表5から明らかなように、溝の間隔が50mm以下の集電体b、e1では抵抗が低く、毛羽立ちも抑えられているのに対して、溝の間隔が50mmを超える集電体e2では抵抗が低く、若干毛羽立っていることがわかる(但し、溝のない上記集電体yと比べると、毛羽立ちは少なく、抵抗も小さい)。したがって、導電性の向上と毛羽立ちの抑制とを図るためには、溝の間隔は50mm以下がよいことがわかる。
溝の間隔が50mmを超えると、集電体に対する溝の割合が小さくなり過ぎて、溝を設けた効果が十分に発揮されないことがあるという理由による。尚、溝の間隔は溝の幅の2倍以上であることが望ましい。溝の間隔が溝の幅の2倍を下回ると、集電体中に占める溝の割合が多くなって、集電体に担持される活物質量が少なくなる結果、電極容量が低下することがある。
As is apparent from Table 5, the current collectors b and e1 having a groove interval of 50 mm or less have low resistance and fuzz is suppressed, whereas the current collector e2 having a groove interval exceeding 50 mm has resistance. Is low and slightly fuzzy (however, it is less fuzzy and less resistant than the current collector y without grooves). Therefore, it can be seen that the groove spacing is preferably 50 mm or less in order to improve conductivity and suppress fuzz.
If the interval between the grooves exceeds 50 mm, the ratio of the grooves to the current collector becomes too small, and the effect of providing the grooves may not be sufficiently exhibited. The groove interval is preferably at least twice the width of the groove. If the groove spacing is less than twice the groove width, the proportion of the groove in the current collector increases and the amount of active material carried on the current collector decreases, resulting in a decrease in electrode capacity. is there.

〔第6実施例〕
(実施例1)
溝に対応する部位の集電体の厚みを0.2mm〔溝に対応する部位以外の集電体の厚み(0.6mm)に対する割合が33%〕とした以外は、上記第2実施例の実施例と同様にして正極集電体を作製した。
このようにして作製した正極集電体を、以下、集電体f1と称する。
[Sixth embodiment]
Example 1
The thickness of the current collector at the site corresponding to the groove was 0.2 mm (ratio to the thickness of the current collector other than the site corresponding to the groove (0.6 mm) was 33%). A positive electrode current collector was produced in the same manner as in the example.
The positive electrode current collector thus produced is hereinafter referred to as current collector f1.

(実施例2)
溝に対応する部位の集電体の厚みを0.5mm〔溝に対応する部位以外の集電体の厚み(0.6mm)に対する割合が83%〕とした以外は、上記第2実施例の実施例と同様にして正極集電体を作製した。
このようにして作製した正極集電体を、以下、集電体f2と称する。
(Example 2)
The thickness of the current collector at the site corresponding to the groove was 0.5 mm (ratio to the thickness of the current collector other than the site corresponding to the groove (0.6 mm) was 83%). A positive electrode current collector was produced in the same manner as in the example.
The positive electrode current collector thus fabricated is hereinafter referred to as current collector f2.

(実験)
上記集電体f1、f2の抵抗と繊維の毛羽立ちの有無を、上記第2実施例の実験と同様にして調べたので、それらの結果を下記表6に示す。尚、表6には、上記集電体bの結果についても併せて示す。
(Experiment)
The resistance of the current collectors f1 and f2 and the presence or absence of fiber fluff were examined in the same manner as in the experiment of the second example, and the results are shown in Table 6 below. Table 6 also shows the results of the current collector b.

Figure 2012089303
Figure 2012089303

溝に対応する部位の集電体の厚みが小さな(プレス圧が大きくて、溝の深さが大きい)集電体f1、bは、溝に対応する部位の集電体の厚みが大きな(プレス圧が小さくて、溝の深さが小さい)集電体f2に比べて、抵抗が小さくなっていることが認められる。したがって、導電性の向上を図るためには、溝に対応する部位の集電体の厚みが小さくなっていることが望ましく、特に、溝に対応する部位以外の集電体の厚みに対する溝に対応する部位の集電体の厚みの割合は90%以下であることが好ましい。   The current collectors f1 and b where the current collector at the portion corresponding to the groove is small (the press pressure is large and the depth of the groove is large) are large at the current collector at the portion corresponding to the groove (press It can be seen that the resistance is small compared to the current collector f2 where the pressure is small and the groove depth is small. Therefore, in order to improve conductivity, it is desirable that the thickness of the current collector at the portion corresponding to the groove is small, and in particular, it corresponds to the groove for the thickness of the current collector other than the portion corresponding to the groove. It is preferable that the ratio of the thickness of the current collector at the site to be 90% or less.

上記割合が90%を越えると、溝に対応する部位における集電体の金属繊維の密度が、溝以外の部位における集電体の金属繊維の密度と余り変わらなくなって、本発明の作用効果(抵抗減少による電子導電性の向上効果の他、リチウムイオン導電性を向上する効果や、毛羽立ちを抑制する効果を含む)を十分に発揮できないからである。尚、溝に対応する部位以外の集電体の厚みに対する溝に対応する部位の集電体の厚みの割合は10%以上であることが好ましい。上記割合が10%を下回ると、プレス法により溝を作製した場合に、プレス圧が大きくなって、溝に対応する部位で集電体が破断することがある。   When the ratio exceeds 90%, the density of the metal fibers of the current collector in the portion corresponding to the groove is not much different from the density of the metal fibers of the current collector in the portion other than the groove, and the effect of the present invention ( This is because the effect of improving lithium ion conductivity and the effect of suppressing fuzz are not sufficiently exhibited in addition to the effect of improving the electronic conductivity by reducing the resistance. In addition, it is preferable that the ratio of the thickness of the electrical power collector of the site | part corresponding to a groove | channel with respect to the thickness of electrical power collectors other than the site | part corresponding to a groove | channel is 10% or more. When the ratio is less than 10%, when a groove is produced by a pressing method, the pressing pressure increases, and the current collector may break at a portion corresponding to the groove.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源や、HEVや電動工具といった高出力向けの駆動電源に展開が期待できる。   The present invention can be expected to be applied to a driving power source for mobile information terminals such as mobile phones, notebook computers, and PDAs, and a driving power source for high output such as HEVs and electric tools.

1:正極集電体
2:溝
3:空間
5:アルミニウム繊維
1: Positive electrode current collector 2: Groove 3: Space 5: Aluminum fiber

Claims (11)

金属繊維をシート状に成型したものを集電体に用い、この集電体に活物質が担持される構造のリチウム二次電池用電極において、
上記集電体の表面には溝が形成されており、この集電体に活物質が担持された状態で溝内に空間が存在していることを特徴とするリチウム二次電池用電極。
In the electrode for a lithium secondary battery having a structure in which an active material is supported on the current collector using a metal fiber molded into a sheet shape,
An electrode for a lithium secondary battery, wherein a groove is formed on a surface of the current collector, and a space exists in the groove in a state where an active material is supported on the current collector.
上記溝に対応する部位における集電体の金属繊維の密度は、上記溝以外の部位における集電体の金属繊維の密度より高くなっている、請求項1に記載のリチウム二次電池用電極。   2. The electrode for a lithium secondary battery according to claim 1, wherein the density of the metal fibers of the current collector in a portion corresponding to the groove is higher than the density of the metal fibers of the current collector in a portion other than the groove. 上記集電体の外周部における集電体の金属繊維の密度が、上記外周部以外の部位における集電体の金属繊維の密度より高くなっている、請求項2に記載のリチウム二次電池用電極。   3. The lithium secondary battery according to claim 2, wherein the density of the metal fibers of the current collector in the outer peripheral portion of the current collector is higher than the density of the metal fibers of the current collector in a portion other than the outer peripheral portion. electrode. 溝の幅は1mm以上10mm以下となっている、請求項2又は3に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 2 or 3, wherein the width of the groove is 1 mm or more and 10 mm or less. 上記溝以外の部位における集電体の厚みに対する、上記溝に対応する部位における集電体の厚みの割合が、10%以上90%以下となっている、請求項2〜4の何れか1項に記載のリチウム二次電池用電極。   The ratio of the thickness of the current collector in a portion corresponding to the groove to the thickness of the current collector in a portion other than the groove is 10% or more and 90% or less. An electrode for a lithium secondary battery as described in 1. 上記溝は複数設けられている、請求項1〜5の何れか1項に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to any one of claims 1 to 5, wherein a plurality of the grooves are provided. 上記溝の間隔は、溝の幅の2倍以上で50mm以下となっている、請求項6に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 6, wherein the interval between the grooves is not less than twice the width of the groove and not more than 50 mm. 上記溝は格子状になっている、請求項6又は7に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 6 or 7, wherein the groove has a lattice shape. 上記溝内には活物質が存在しない、請求項1〜8の何れか1項に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to any one of claims 1 to 8, wherein no active material is present in the groove. 正極と負極と非水電解液とを備えたリチウム二次電池において、請求項1〜9の何れか1項に記載のリチウム二次電池用電極が、正負両極のうち少なくとも一方の極に用いられていることを特徴とするリチウム二次電池。   A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the lithium secondary battery electrode according to any one of claims 1 to 9 is used for at least one of positive and negative electrodes. A lithium secondary battery characterized by comprising: 請求項1〜9の何れか1項に記載のリチウム二次電池用電極が正極として用いられ、上記金属繊維がアルミニウム繊維から成る、請求項10に記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 9, wherein the electrode for a lithium secondary battery according to any one of claims 1 to 9 is used as a positive electrode, and the metal fibers are made of aluminum fibers.
JP2010233847A 2010-10-18 2010-10-18 Lithium secondary battery electrode and lithium secondary battery using the same Withdrawn JP2012089303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233847A JP2012089303A (en) 2010-10-18 2010-10-18 Lithium secondary battery electrode and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233847A JP2012089303A (en) 2010-10-18 2010-10-18 Lithium secondary battery electrode and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2012089303A true JP2012089303A (en) 2012-05-10

Family

ID=46260735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233847A Withdrawn JP2012089303A (en) 2010-10-18 2010-10-18 Lithium secondary battery electrode and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2012089303A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543231A (en) * 2010-10-16 2013-11-28 シャイン カンパニー リミテッド Battery having electrode structure including long metal fiber and method for manufacturing the same
JP2016031922A (en) * 2014-07-30 2016-03-07 本田技研工業株式会社 Battery electrode doubling as current collector, and battery having the same
WO2016039263A1 (en) * 2014-09-10 2016-03-17 三菱マテリアル株式会社 Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
EP2939762A4 (en) * 2012-12-27 2016-08-10 Mitsubishi Materials Corp Porous aluminum body and manufacturing method therefor
EP2962791A4 (en) * 2013-03-01 2016-08-24 Mitsubishi Materials Corp Porous aluminum sintered compact
EP3016187A4 (en) * 2013-06-24 2016-12-21 Jenax Inc Current collector for secondary battery and electrode using same
WO2017219235A1 (en) * 2016-06-21 2017-12-28 GM Global Technology Operations LLC Lithium-ion battery with wire-containing electrodes
EP3367486A4 (en) * 2015-10-20 2019-07-24 I&T New Materials Co., Ltd. Aluminum nonwoven fiber member for collector of power storage device, method for manufacturing same, electrode in which aforementioned aluminum nonwoven fiber member is used, and method for manufacturing same
JP2021034143A (en) * 2019-08-20 2021-03-01 国立研究開発法人産業技術総合研究所 Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and current collector to use in electrode for nonaqueous electrolyte secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680147B2 (en) 2010-10-16 2017-06-13 Jenax Inc. Battery having an electrode structure comprising long metal fibers and a production method therefor
JP2013543231A (en) * 2010-10-16 2013-11-28 シャイン カンパニー リミテッド Battery having electrode structure including long metal fiber and method for manufacturing the same
EP2939762A4 (en) * 2012-12-27 2016-08-10 Mitsubishi Materials Corp Porous aluminum body and manufacturing method therefor
US9669462B2 (en) 2013-03-01 2017-06-06 Mitsubishi Materials Corporation Porous aluminum sintered compact
EP2962791A4 (en) * 2013-03-01 2016-08-24 Mitsubishi Materials Corp Porous aluminum sintered compact
EP3016187A4 (en) * 2013-06-24 2016-12-21 Jenax Inc Current collector for secondary battery and electrode using same
JP2016031922A (en) * 2014-07-30 2016-03-07 本田技研工業株式会社 Battery electrode doubling as current collector, and battery having the same
WO2016039263A1 (en) * 2014-09-10 2016-03-17 三菱マテリアル株式会社 Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
EP3367486A4 (en) * 2015-10-20 2019-07-24 I&T New Materials Co., Ltd. Aluminum nonwoven fiber member for collector of power storage device, method for manufacturing same, electrode in which aforementioned aluminum nonwoven fiber member is used, and method for manufacturing same
US10693142B2 (en) 2015-10-20 2020-06-23 I & T New Materials Co., Ltd. Aluminum nonwoven fiber material for current collector of electric power storage equipment, manufacturing method thereof, electrode utilizing aluminum nonwoven fiber material and manufacturing method thereof
WO2017219235A1 (en) * 2016-06-21 2017-12-28 GM Global Technology Operations LLC Lithium-ion battery with wire-containing electrodes
JP2021034143A (en) * 2019-08-20 2021-03-01 国立研究開発法人産業技術総合研究所 Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and current collector to use in electrode for nonaqueous electrolyte secondary battery
JP7426039B2 (en) 2019-08-20 2024-02-01 国立研究開発法人産業技術総合研究所 Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries

Similar Documents

Publication Publication Date Title
JP2012089303A (en) Lithium secondary battery electrode and lithium secondary battery using the same
CN105074968A (en) Lithium electrode and lithium secondary battery comprising same
US10230089B2 (en) Electrolyte holder for lithium secondary battery and lithium secondary battery
KR20170052592A (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
CN105009330A (en) Lithium electrode and lithium secondary battery comprising same
WO2016039263A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
KR20130007320A (en) Lithium plate, method for lithium of electrode and energy storage device
JPWO2011093126A1 (en) Power storage device cell, and manufacturing method and storage method thereof
JP2015072805A (en) Nonaqueous secondary battery
JP2016058375A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2009141114A (en) Electric double layer capacitor and manufacturing method thereof
JP2016081931A (en) Electrode integrating super capacitor and battery, and method of manufacturing the same
JP2012195182A (en) Lithium secondary battery electrode and lithium secondary battery including the electrode
JP2012138408A (en) Electrochemical device and manufacturing method thereof
KR101742609B1 (en) Electrode for a lithium secondary battery and lithium secondary battery comprising the same
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
WO2016039264A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP6136057B2 (en) Nonaqueous electrolyte secondary battery and secondary battery module
KR20130029328A (en) Non-aqueous electrolyte for electrochemical device and electrochemical device
JP2016058258A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014156053A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JP2011165930A (en) Power storage device, and method of manufacturing shared negative electrode of the same
US20160056475A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN114583295A (en) Negative plate, preparation method thereof and battery
KR20120051886A (en) Lithium ion capacitor cell and manufacturing method of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107