JP2021034143A - Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and current collector to use in electrode for nonaqueous electrolyte secondary battery - Google Patents

Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and current collector to use in electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2021034143A
JP2021034143A JP2019150082A JP2019150082A JP2021034143A JP 2021034143 A JP2021034143 A JP 2021034143A JP 2019150082 A JP2019150082 A JP 2019150082A JP 2019150082 A JP2019150082 A JP 2019150082A JP 2021034143 A JP2021034143 A JP 2021034143A
Authority
JP
Japan
Prior art keywords
layer
active material
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019150082A
Other languages
Japanese (ja)
Other versions
JP7426039B2 (en
Inventor
直人 山下
Naoto Yamashita
直人 山下
向井 孝志
Takashi Mukai
孝志 向井
博 妹尾
Hiroshi Senoo
博 妹尾
田中 秀明
Hideaki Tanaka
秀明 田中
昌宏 柳田
Masahiro Yanagida
昌宏 柳田
博 岩本
Hiroshi Iwamoto
博 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Seisen Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Seisen Co Ltd
Priority to JP2019150082A priority Critical patent/JP7426039B2/en
Publication of JP2021034143A publication Critical patent/JP2021034143A/en
Application granted granted Critical
Publication of JP7426039B2 publication Critical patent/JP7426039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an electrode for a nonaqueous electrolyte secondary battery, which can prevent the occurrence of liquid depletion in which an electrolyte solution runs out to achieve a long life and a high energy density.SOLUTION: An electrode 3 for a nonaqueous electrolyte secondary battery comprises: an electrically conductive current collector 30; an active material layer 31 fixed to the current collector 30 and containing an active material; and a porous layer 32 disposed adjacent to the active material layer 31. The current collector 30 is composed of a three dimensional structure having many pores. The active material layer 31 is formed on the current collector 30 so as to have many pores which enable the absorption and releasing of an electrolyte solution. The porous layer 32 contains an elastically deformable material having many pores which enable the absorption and releasing of the electrolyte solution, and has a porosity higher than that of the active material layer 31.SELECTED DRAWING: Figure 2

Description

本発明は、非水電解質二次電池用の電極、非水電解質二次電池及び非水電解質二次電池用の電極に用いるための集電体に関する。 The present invention relates to a current collector for use as an electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and an electrode for a non-aqueous electrolyte secondary battery.

近年、二次電池が様々な製品に使用されている。長寿命、高出力及び高エネルギー密度を備えた二次電池が市場から求められている。この種の二次電池としては、リチウムイオン電池に代表される非水電解質二次電池が知られている。高エネルギー密度を実現するために、例えば、電極の単位体積当たり(又は単位質量当たり)に極力多くの活物質を充填することや、負極活物質として、黒鉛系材料に代えて、リチウムと合金化する例えばシリコン(Si)系材料を用いること等が提案されている。 In recent years, secondary batteries have been used in various products. There is a demand from the market for a secondary battery having a long life, high output, and high energy density. As a secondary battery of this type, a non-aqueous electrolyte secondary battery represented by a lithium ion battery is known. In order to achieve high energy density, for example, as much active material as possible is filled per unit volume (or per unit mass) of the electrode, and as the negative electrode active material, it is alloyed with lithium instead of the graphite-based material. For example, it has been proposed to use a silicon (Si) -based material.

特開2010−153140号JP-A-2010-153140 特開2017−21888号Japanese Unexamined Patent Publication No. 2017-21888 特開2018−113108号JP-A-2018-113108

電極への活物質の充填量が多くなると、その量に比例して電極の体積変化量も増加する。例えば、負極活物質として充電時にリチウムイオンと合金化する材料を用いた場合、合金化に伴い体積が著しく膨張する。例えば、Si系材料の場合、その体積は約4倍に膨張する。つまり、このような二次電池においては、充放電に伴って活物質層が大きく膨張・収縮する。 As the amount of active material filled in the electrode increases, the amount of change in the volume of the electrode also increases in proportion to the amount. For example, when a material that alloys with lithium ions during charging is used as the negative electrode active material, the volume expands remarkably with the alloying. For example, in the case of a Si-based material, its volume expands about four times. That is, in such a secondary battery, the active material layer expands and contracts significantly with charging and discharging.

活物質層の膨張・収縮は、活物質粒子の破壊、集電体と活物質層との界面等での損傷、さらには、電極間や活物質層で電解液が不足するいわゆる「液涸れ」を招く傾向がある。液涸れは、イオンの円滑な移動を阻害し、電池容量の低下や内部抵抗の上昇を招く原因となる。 Expansion and contraction of the active material layer causes destruction of the active material particles, damage at the interface between the current collector and the active material layer, and so-called "dripping" in which the electrolytic solution is insufficient between the electrodes and between the active material layers. Tends to invite. The dripping hinders the smooth movement of ions, which causes a decrease in battery capacity and an increase in internal resistance.

本発明は以上のような問題に鑑み案出されたものであり、液涸れの発生を防止し、長寿命、かつ、高いエネルギー密度を実現することが可能な非水電解質二次電池用の電極などを提供することを主たる課題としている。 The present invention has been devised in view of the above problems, and is an electrode for a non-aqueous electrolyte secondary battery capable of preventing the occurrence of dripping, achieving a long life, and achieving a high energy density. The main issue is to provide such as.

本発明は、非水電解質二次電池用の電極であって、導電性を有する集電体と、前記集電体に固定された活物質を含む活物質層と、前記活物質層に隣接して配された空隙層とを含み、前記集電体は、多数の孔を有する三次元構造体であり、前記活物質層は、電解液を吸収・放出可能な多数の孔を有するように前記集電体に形成されており、 前記空隙層は、電解液を吸収・放出可能な多数の孔を有する弾性変形可能な材料からなり、かつ、前記活物質層の空隙率よりも高い空隙率を有する。 The present invention is an electrode for a non-aqueous electrolyte secondary battery, which is adjacent to a conductive current collector, an active material layer containing an active material fixed to the current collector, and the active material layer. The current collector is a three-dimensional structure having a large number of pores, and the active material layer has a large number of pores capable of absorbing and releasing an electrolytic solution. The void layer is formed of a current collector and is made of an elastically deformable material having a large number of pores capable of absorbing and releasing an electrolytic solution, and has a void ratio higher than the void ratio of the active material layer. Have.

本発明の他の態様では、前記空隙層は、その多数の孔の体積が小さくなるように、収縮変形が可能な弾性骨格を有しても良い。 In another aspect of the present invention, the void layer may have an elastic skeleton capable of shrinking and deforming so that the volume of its large number of holes is reduced.

本発明の他の態様では、前記空隙層は、前記活物質層が膨張変形したときの外力を受けたときに、自らの見かけ体積が減じるように収縮変形可能な弾性骨格を有しても良い。 In another aspect of the present invention, the void layer may have an elastic skeleton that can be contracted and deformed so that its apparent volume is reduced when the active material layer receives an external force when it is expanded and deformed. ..

本発明の他の態様では、前記空隙層の両側に、前記活物質層が形成されていても良い。 In another aspect of the present invention, the active material layer may be formed on both sides of the void layer.

本発明の他の態様では、キャリア放出状態での前記活物質層の空隙率が5%〜50%の範囲であっても良い。 In another aspect of the present invention, the porosity of the active material layer in the carrier-releasing state may be in the range of 5% to 50%.

本発明の他の態様では、キャリア放出状態での前記空隙層の空隙率が40%〜80%の範囲であっても良い。 In another aspect of the present invention, the porosity of the void layer in the carrier-releasing state may be in the range of 40% to 80%.

本発明の他の態様では、前記空隙層が、金属繊維の不織布からなるものでも良い。 In another aspect of the present invention, the void layer may be made of a non-woven fabric of metal fibers.

本発明の他の態様では、前記金属繊維の材質がステンレス鋼であっても良い。 In another aspect of the present invention, the material of the metal fiber may be stainless steel.

本発明の他の態様では、前記金属繊維の繊維径が12μm以下であっても良い。 In another aspect of the present invention, the fiber diameter of the metal fiber may be 12 μm or less.

本発明の他の態様では、前記集電体は、第1金属繊維を用いて形成された第1層と、第2金属繊維を用いて形成された第2層とを隣接して備え、前記第1層には、前記活物質層が形成されており、前記第2層は、前記活物質を含まない前記空隙層であり、前記第2金属繊維の繊維径は、前記第1金属繊維の繊維径よりも小さく構成されても良い。 In another aspect of the present invention, the current collector comprises adjacently comprising a first layer formed using a first metal fiber and a second layer formed using a second metal fiber. The active material layer is formed in the first layer, the second layer is the void layer that does not contain the active material, and the fiber diameter of the second metal fiber is that of the first metal fiber. It may be configured to be smaller than the fiber diameter.

本発明の他の態様では、前記第2金属繊維の繊維径が1μm以上であり、前記第1金属繊維の繊維径が5μm以上であっても良い。 In another aspect of the present invention, the fiber diameter of the second metal fiber may be 1 μm or more, and the fiber diameter of the first metal fiber may be 5 μm or more.

本発明の他の態様では、前記不織布は、さらに、銅、ニッケル、クロム、チタンのいずれかの遷移金属元素からなる金属、又は、これら遷移金属元素を主成分とする合金で被覆されていても良い。 In another aspect of the present invention, the non-woven fabric may be further coated with a metal composed of any of copper, nickel, chromium and titanium transition metal elements, or an alloy containing these transition metal elements as a main component. good.

本発明の他の態様では、前記活物質は、ケイ素を含む材料であっても良い。 In another aspect of the present invention, the active material may be a material containing silicon.

本発明の他の態様では、前記活物質層は、前記活物質及びバインダーを含む合剤の層、又は、前記活物質及び固体電解質を含む合剤の層であっても良い。 In another aspect of the present invention, the active material layer may be a layer of a mixture containing the active material and a binder, or a layer of a mixture containing the active material and a solid electrolyte.

本発明の他の態様では、上記いずれかに記載の電極の前記空隙層に、電解液が充填されている、非水電解質二次電池として構成されても良い。 In another aspect of the present invention, the void layer of the electrode according to any one of the above may be configured as a non-aqueous electrolyte secondary battery in which an electrolytic solution is filled.

本発明の他の態様では、非水電解質二次電池として、充電時又は放電時において、前記空隙層は、前記活物質層が膨張変形したときの外力を受けたときに、自らの見かけ体積が減じるように収縮変形可能な弾性骨格を有しても良い。 In another aspect of the present invention, as a non-aqueous electrolyte secondary battery, when charging or discharging, the void layer has its own apparent volume when it receives an external force when the active material layer expands and deforms. It may have an elastic skeleton that can be contracted and deformed so as to be reduced.

本発明の他の態様では、非水電解質二次電池として、正極と負極との間に、固体電解質又はゲル電解質を備えていても良い。 In another aspect of the present invention, the non-aqueous electrolyte secondary battery may include a solid electrolyte or a gel electrolyte between the positive electrode and the negative electrode.

本発明の他の態様では、非水電解質二次電池として、リチウムイオンをキャリアとしても良い。 In another aspect of the present invention, a lithium ion may be used as a carrier as a non-aqueous electrolyte secondary battery.

本発明の他の態様では、上記いずれかに記載の非水電解質二次電池を用いた組電池であっても良い。 In another aspect of the present invention, an assembled battery using the non-aqueous electrolyte secondary battery described in any of the above may be used.

本発明の他の態様では、上記組電池を用いた電気機器であっても良い。 In another aspect of the present invention, it may be an electric device using the above-mentioned assembled battery.

本発明の他の態様では、非水電解質二次電池用の電極に用いるための集電体であって、導電性を有し、かつ、多数の孔を有する構造体からなり、前記構造体は、活物質を固定するための第1層と、電解液を吸収・放出可能な第2層とを隣接して含み、前記第2層は、前記第1層よりも高い空隙率を有するものでも良い。 In another aspect of the present invention, it is a current collector for use as an electrode for a non-aqueous electrolyte secondary battery, and is composed of a structure having conductivity and having a large number of holes. , A first layer for fixing the active material and a second layer capable of absorbing and releasing the electrolytic solution are contained adjacent to each other, and the second layer may have a higher porosity than the first layer. good.

本発明の他の態様では、前記第2層の両側に、前記第1層を備えるものでも良い。 In another aspect of the present invention, the first layer may be provided on both sides of the second layer.

本発明の他の態様では、前記第1層は、第1金属繊維を用いて形成されており、前記第2層は、前記第1金属繊維よりも小さい繊維径を有する第2金属繊維を用いて形成されても良い。 In another aspect of the present invention, the first layer is formed by using a first metal fiber, and the second layer uses a second metal fiber having a fiber diameter smaller than that of the first metal fiber. May be formed.

本発明の他の態様では、前記第1層は、第1金属繊維を用いて形成されており、
前記第2層は、前記第1金属繊維よりも小さい弾性率を有する第2金属繊維を用いて形成されても良い。
In another aspect of the present invention, the first layer is formed using the first metal fiber.
The second layer may be formed by using a second metal fiber having an elastic modulus smaller than that of the first metal fiber.

本発明では、集電体が、これまでの箔材とは異なり、多数の孔を有する三次元構造体からなる。また、活物質層は、電解液を吸収・放出可能な多数の孔を有するように前記集電体に形成されている。したがって、前記集電体は、表面積が大きく、多くの活物質を三次元的に固定することができる。これは、より高いエネルギー密度および出力密度の二次電池を提供するのに役立つ。 In the present invention, the current collector is composed of a three-dimensional structure having a large number of holes, unlike the conventional foil materials. Further, the active material layer is formed in the current collector so as to have a large number of pores capable of absorbing and releasing the electrolytic solution. Therefore, the current collector has a large surface area and can fix many active materials three-dimensionally. This helps to provide secondary batteries with higher energy and output densities.

また、本発明では、活物質層に隣接して空隙層が配されている。この空隙層は、電解液を吸収・放出可能な多数の孔を有する弾性変形可能な材料からなる。また、空隙層は、前記活物質層の空隙率よりも高い空隙率を有する。このため、活物質層の膨張変形時、空隙層は、弾性収縮して自らが保持する電解液を、隣接する活物質層へと供給することができる。したがって、活物質層での電解液不足が抑制される。逆に、活物質層の収縮変形時には、空隙層は元の形状へと復元しつつ、収縮した活物質層にとって余剰の電解液を回収する。このように、活物質層の膨張・収縮形態に応じて、活物質層と空隙層との間で電解液の授受が行われるため、予め過度に電解液を充填することなく、活物質層又は電極間での液涸れが抑制される。 Further, in the present invention, a void layer is arranged adjacent to the active material layer. This void layer is made of an elastically deformable material having a large number of pores capable of absorbing and releasing an electrolytic solution. Further, the void layer has a porosity higher than the porosity of the active material layer. Therefore, when the active material layer is expanded and deformed, the void layer can elastically contract and supply the electrolytic solution held by itself to the adjacent active material layer. Therefore, the shortage of the electrolytic solution in the active material layer is suppressed. On the contrary, when the active material layer is contracted and deformed, the void layer is restored to its original shape, and the excess electrolytic solution for the contracted active material layer is recovered. In this way, the electrolytic solution is exchanged between the active material layer and the void layer according to the expansion / contraction form of the active material layer, so that the active material layer or the active material layer or Liquid dripping between the electrodes is suppressed.

なお、「弾性」とは、外力によって変形した部材が、その外力が除かれた時、元の形に戻ろうとする性質を意味する。そのため、弾性は性質を表す語であり、それ自体は数値で表される指標ではない。ただ、多くの部材は、加える力が小さい間では弾性を有するが、ある限度を超えて力が大きくなった場合では、力を除いても変形が元に戻らなくなることが知られている。本願では、充放電に伴って膨張・収縮する活物質の種類によって、最適な弾性率が変わるので、少なくとも本発明の効果が発揮され得る弾性変形可能な材料であればよい。また、本願における「弾性骨格」とは、前述の弾性変形可能な材料を骨格とする、もしくは基本的な構造に由来して弾性を示す骨格をいう。 The term "elasticity" means a property in which a member deformed by an external force tends to return to its original shape when the external force is removed. Therefore, elasticity is a word that expresses properties, and is not an index that is expressed numerically. However, many members have elasticity while the applied force is small, but it is known that when the force increases beyond a certain limit, the deformation cannot be restored even if the force is removed. In the present application, the optimum elastic modulus changes depending on the type of active material that expands and contracts with charge and discharge. Therefore, at least an elastically deformable material that can exhibit the effects of the present invention may be used. Further, the "elastic skeleton" in the present application refers to a skeleton that uses the above-mentioned elastically deformable material as a skeleton or exhibits elasticity derived from a basic structure.

さらに、箔状の集電体では、充放電に伴う活物質層の繰り返しの膨張・収縮変形により、活物質層内又は活物質層と集電体との界面に亀裂等の損傷が発生しやすい傾向がある。これに対して、本発明では、活物質層の膨張・収縮変形により生じる応力は、隣接する空隙層へも伝播することにより緩和される。したがって、本発明では、電極における内部亀裂等の損傷が抑制され、長寿命化が可能である。 Further, in a foil-shaped current collector, damage such as cracks is likely to occur in the active material layer or at the interface between the active material layer and the current collector due to repeated expansion and contraction deformation of the active material layer due to charging and discharging. Tend. On the other hand, in the present invention, the stress generated by the expansion / contraction deformation of the active material layer is relaxed by propagating to the adjacent void layer. Therefore, in the present invention, damage such as internal cracks in the electrode is suppressed, and the life can be extended.

本発明の一実施形態の非水電解質二次電池の概略模式図である。It is a schematic schematic diagram of the non-aqueous electrolyte secondary battery of one Embodiment of this invention. 負極の拡大模式図である。It is an enlarged schematic diagram of a negative electrode. 図2の負極活物質が膨張した状態を示す模式図である。It is a schematic diagram which shows the expanded state of the negative electrode active material of FIG. 図2の負極活物質が収縮した状態を示す模式図である。It is a schematic diagram which shows the state which the negative electrode active material of FIG. 2 has shrunk. 負極集電体を説明する模式図である。It is a schematic diagram explaining the negative electrode current collector. 正極を説明する模式図である。It is a schematic diagram explaining the positive electrode. 活物質層及び空隙層の一例を示す300倍の拡大断面写真である。It is a 300 times enlarged cross-sectional photograph which shows an example of an active material layer and a void layer. サイクル試験後の比較例の負極の状態を示す写真である。It is a photograph which shows the state of the negative electrode of the comparative example after a cycle test. サイクル試験後の実施例の負極の状態を示す写真である。It is a photograph which shows the state of the negative electrode of an Example after a cycle test.

以下、本発明の実施の一形態が図面に基づき説明される。図面は、実際の構造が有する寸法比とは必ずしも一致しておらず、むしろ誇張されて表現されている場合がある。また、同一又は共通する要素については同一の符号が付されており、重複する説明が省略されている。さらに、実施形態及び図面に表された具体的な構成は、本発明の内容理解のためのものであって、本発明は、図示された具体的な構成に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings do not always match the dimensional ratio of the actual structure, but rather may be exaggerated. Further, the same or common elements are given the same reference numerals, and duplicate explanations are omitted. Furthermore, the specific configurations shown in the embodiments and drawings are for understanding the contents of the present invention, and the present invention is not limited to the specific configurations shown.

[二次電池の全体構造]
図1には、本発明の一実施形態を適用した非水電解質二次電池(以下、単に「二次電池」という。)1として、リチウムイオンをキャリアとするリチウムイオン二次電池の模式図が示される。
[Overall structure of secondary battery]
FIG. 1 shows a schematic view of a lithium ion secondary battery having a lithium ion as a carrier as a non-aqueous electrolyte secondary battery (hereinafter, simply referred to as “secondary battery”) 1 to which one embodiment of the present invention is applied. Shown.

図1に示されるように、二次電池1は、正極2と、負極3と、これらの間に配されたセパレータ4とを含んでおり、これらがケーシング5に内蔵されている。二次電池1は、正極2及び負極3の一組を一単位とし、必要電圧に応じてその単位数が調整される。各正極2は、リード6を介して、電池外部の正極ターミナル7へと接続される。同様に、各負極3は、リード8を介して電池外部の負極ターミナル9へと接続される。図示していないが、ケーシング5内の正極2、セパレータ4及び負極3には、いずれも非水系電解液が含浸している。以下、これらの構成要素が詳細に説明される。 As shown in FIG. 1, the secondary battery 1 includes a positive electrode 2, a negative electrode 3, and a separator 4 arranged between them, and these are built in the casing 5. The secondary battery 1 has a set of a positive electrode 2 and a negative electrode 3 as one unit, and the number of units is adjusted according to the required voltage. Each positive electrode 2 is connected to a positive electrode terminal 7 outside the battery via a lead 6. Similarly, each negative electrode 3 is connected to the negative electrode terminal 9 outside the battery via the lead 8. Although not shown, the positive electrode 2, the separator 4, and the negative electrode 3 in the casing 5 are all impregnated with a non-aqueous electrolytic solution. Hereinafter, these components will be described in detail.

[ケーシング]
ケーシング5は、二次電池の正極2、負極3、セパレータ4及び電解液を収容するための外装体であり、いわゆる電池の外形をなす容器である。ケーシング材料としては、特に限定されるわけではないが、薬液による腐食に強く、かつ、機械的強度も備えたステンレス鋼が適する。他の態様では、ケーシング材料として、表面処理が施された鉄系材料の他、機械的強度を求めなければ、アルミニウム系材料や樹脂より構成されるラミネートフィルム等も採用され得る。
[casing]
The casing 5 is an exterior body for accommodating the positive electrode 2, the negative electrode 3, the separator 4, and the electrolytic solution of the secondary battery, and is a container having a so-called outer shape of the battery. The casing material is not particularly limited, but stainless steel, which is resistant to corrosion by chemicals and has mechanical strength, is suitable. In another aspect, as the casing material, in addition to the surface-treated iron-based material, a laminated film made of an aluminum-based material or a resin may be adopted if mechanical strength is not required.

[セパレータ]
セパレータ4は、正極2と負極3との直接接触を防ぐためにこれらの間に配された隔膜である。正極2と負極3との間で電解液中のリチウムイオンが移動できるように、セパレータ4は、例えば、微細孔が複数設けられた多孔膜で構成されている。このようなセパレータ4としては、例えば、ポリプロピレンやポリエチレン等の樹脂、又は、ガラスなど非金属無機材料などが用いられる。
[Separator]
The separator 4 is a diaphragm arranged between the positive electrode 2 and the negative electrode 3 in order to prevent direct contact with the negative electrode 3. The separator 4 is composed of, for example, a porous membrane provided with a plurality of micropores so that lithium ions in the electrolytic solution can move between the positive electrode 2 and the negative electrode 3. As such a separator 4, for example, a resin such as polypropylene or polyethylene, a non-metallic inorganic material such as glass, or the like is used.

[電解液]
電解液は、リチウムイオンの移動のために必要な媒体である。電解液が不足乃至は涸渇した(すなわち、液涸れ)領域では、リチウムイオンは移動できず、充放電に支障が生じる。リチウムイオン電池では、電解液として、例えば、リチウム塩を溶解させた有機系電解液が採用される。非水電解液を構成する電解質としては、リチウムトリフルオロメタンスルホニルアミド(Li-TFSA)、ヘキサフルオロリン酸リチウム(LiPF6)等の公知の電解質を用いることができる。非水電解液の溶媒としては、例えば、カーボネート(エチレンカーボネート、ジエチルカーボネート等)、エーテル(テトラグライム等)、ニトリル、含硫黄化合物等の非水溶媒系二次電池の溶媒として公知のものが採用され得る。
[Electrolytic solution]
The electrolyte is the medium required for the movement of lithium ions. In the region where the electrolytic solution is insufficient or depleted (that is, the liquid is drained), lithium ions cannot move, which hinders charging and discharging. In the lithium ion battery, for example, an organic electrolytic solution in which a lithium salt is dissolved is adopted as the electrolytic solution. As the electrolyte constituting the non-aqueous electrolyte solution, known electrolytes such as lithium trifluoromethanesulfonylamide (Li-TFSA) and lithium hexafluorophosphate (LiPF 6 ) can be used. As the solvent for the non-aqueous electrolyte solution, for example, known solvents for non-aqueous solvent-based secondary batteries such as carbonate (ethylene carbonate, diethyl carbonate, etc.), ether (tetraglime, etc.), nitrile, and sulfur-containing compounds are adopted. Can be done.

[負極]
図2には、電極の一例として、図1の負極3の拡大図が示される。図2に示されるように、負極3は、導電性を有する集電体(以下、「負極集電体」という。)30と、負極集電体30に固定された活物質(以下、「負極活物質」という。)を含む活物質層(以下、「負極活物質層」という。)31と、負極活物質層31に隣接して配された空隙層32とを含む。
[Negative electrode]
FIG. 2 shows an enlarged view of the negative electrode 3 of FIG. 1 as an example of the electrode. As shown in FIG. 2, the negative electrode 3 includes a conductive current collector (hereinafter, referred to as “negative electrode current collector”) 30 and an active material fixed to the negative electrode current collector 30 (hereinafter, “negative electrode”). It includes an active material layer (hereinafter, referred to as “negative electrode active material layer”) 31 containing (referred to as “active material”) and a void layer 32 arranged adjacent to the negative electrode active material layer 31.

[負極集電体]
本実施形態において、負極集電体30は、多数の孔を有する三次元構造体で構成されている。三次元構造体は、規則的及び/又は不規則的に多数の孔を形成するあらゆる構造要素を含む。好ましい態様では、三次元構造体は、高い通液性を有するように、集電体内部を不規則に横断する多数の連続した孔を含む。このような負極集電体30は、同一の見かけ体積を有する箔材料に比べて、表面積が大きいため、より多くの活物質を三次元的に固定することができる。このような負極集電体30は、より高いエネルギー密度および出力密度の二次電池を提供するのに役立つ。
[Negative electrode current collector]
In the present embodiment, the negative electrode current collector 30 is composed of a three-dimensional structure having a large number of holes. Tertiary structure includes any structural element that forms a large number of holes regularly and / or irregularly. In a preferred embodiment, the three-dimensional structure includes a large number of contiguous holes that irregularly traverse the interior of the current collector so that it has high liquid permeability. Since such a negative electrode current collector 30 has a large surface area as compared with a foil material having the same apparent volume, more active materials can be three-dimensionally fixed. Such a negative electrode current collector 30 serves to provide a secondary battery with a higher energy density and output density.

上記のような負極集電体30の材質としては、例えば、ステンレス鋼をはじめとする金属繊維不織布が好適である。金属繊維不織布は、特定の方位性を持たない多数の金属繊維に、熱又は機械的圧力(例えば、プレス、焼結、ニードルパンチ加工等)を与えることにより、前記金属繊維を三次元的に交絡させた布材である。好適な金属繊維不織布の詳細については後記する。 As the material of the negative electrode current collector 30 as described above, for example, a metal fiber non-woven fabric such as stainless steel is suitable. The metal fiber non-woven fabric entangles the metal fibers three-dimensionally by applying heat or mechanical pressure (for example, pressing, sintering, needle punching, etc.) to a large number of metal fibers having no specific orientation. It is a cloth material that has been made. Details of suitable metal fiber non-woven fabrics will be described later.

[負極活物質層]
負極活物質層31は、負極活物質を含む。負極活物質は、電子の授受を行わせることを目的とした還元剤であって、様々な材料を用いることができる。負極活物質としては、例えば、黒鉛系材料やチタン酸リチウム系材料などが挙げられる。また、負極活物質は、二次電池の容量や高エネルギー密度化を図るために、リチウムと合金化する材料、例えば、ケイ素(Si)系材料でも良い。リチウムと合金化する材料としては、アルミニウム(Al)、銀(Ag)、ビスマス(Bi)、ガリウム(Ga)、ゲルマニウム(Ge)、ケイ素(Si)、スズ(Sn)、アンチモン(Sb)、鉛(Pb)から選択される単体、またはこれらを主成分とする合金、酸化物、カルコゲン化合物、ハロゲン化物などを挙げることができる。これらの負極活物質は、1種単独でまたは2種以上を組み合わせて用いることもできる。
[Negative electrode active material layer]
The negative electrode active material layer 31 contains a negative electrode active material. The negative electrode active material is a reducing agent for the purpose of transmitting and receiving electrons, and various materials can be used. Examples of the negative electrode active material include graphite-based materials and lithium-titanium-based materials. Further, the negative electrode active material may be a material that alloys with lithium, for example, a silicon (Si) -based material, in order to increase the capacity and energy density of the secondary battery. Materials to be alloyed with lithium include aluminum (Al), silver (Ag), bismuth (Bi), gallium (Ga), germanium (Ge), silicon (Si), tin (Sn), antimony (Sb), and lead. Examples thereof include a simple substance selected from (Pb), an alloy containing these as a main component, an oxide, a chalcogen compound, a halide and the like. These negative electrode active materials may be used alone or in combination of two or more.

負極活物質層31は、電解液を吸収・放出可能な多数の孔を有するように負極集電体30に形成されている。本実施形態の負極活物質層31は、例えば、負極活物質に、導電助剤やバインダーなどの添加剤を混合した合剤を、三次元構造体の負極集電体30の孔を完全に埋めることなく塗布、硬化させることで形成される。これにより、本実施形態の負極活物質層31は、電解液を吸収・放出可能な多数の孔を有する三次元構造(網目構造)よりなる負極集電体30に固定される。 The negative electrode active material layer 31 is formed in the negative electrode current collector 30 so as to have a large number of holes capable of absorbing and discharging the electrolytic solution. The negative electrode active material layer 31 of the present embodiment completely fills the holes of the negative electrode current collector 30 of the three-dimensional structure with, for example, a mixture of the negative electrode active material and an additive such as a conductive auxiliary agent or a binder. It is formed by applying and curing without any need. As a result, the negative electrode active material layer 31 of the present embodiment is fixed to the negative electrode current collector 30 having a three-dimensional structure (mesh structure) having a large number of holes capable of absorbing and discharging the electrolytic solution.

導電助剤は、二次電池の電極(正極2、負極3)を形成するに当たり、活物質粒子間の電荷移動の抵抗、よりマクロ的には電極の内部抵抗を低減する目的で使用される材料である。導電助剤としては、例えば、アセチレンブラック、カーボンブラック又は気相成長炭素繊維(VGCF)等が採用され得る。 The conductive auxiliary agent is a material used for forming the electrodes (positive electrode 2, negative electrode 3) of a secondary battery for the purpose of reducing the resistance of charge transfer between active material particles, and more macroscopically, the internal resistance of the electrodes. Is. As the conductive auxiliary agent, for example, acetylene black, carbon black, vapor-grown carbon fiber (VGCF), or the like can be adopted.

バインダーは、活物質や導電助剤その他添加剤を負極集電体30に固定するための結着剤である。バインダーとしては、例えば、ポリ弗化ビニリデン等の熱可塑性フッ素重合、スチレン−ブタジエンゴム(SBR)等のゴムポリマー、さらにはポリイミド樹脂などが採用され得る。 The binder is a binder for fixing the active material, the conductive auxiliary agent, and other additives to the negative electrode current collector 30. As the binder, for example, a thermoplastic fluoropolymer such as polyvinylidene chloride, a rubber polymer such as styrene-butadiene rubber (SBR), a polyimide resin, or the like can be adopted.

なお、合剤は、さらに、固体電解質又はゲル電解質を含んでも良い。この構成によれば、正極と負極との間に介在する電解質が固体電解質又はゲル電解質であった場合に、活物質層のイオン伝導性を向上させ、入出力特性に優れた電池とすることができる。固体電解質など輸率が1に近いものは、効率的にキャリアを移動させることができる。また、固体電解質、ポリマー電解質等を利用した場合、セパレータが省略されても良い。さらに、電解液の存在により、固体電解質等の破断が修復可能となる。 The mixture may further contain a solid electrolyte or a gel electrolyte. According to this configuration, when the electrolyte interposed between the positive electrode and the negative electrode is a solid electrolyte or a gel electrolyte, the ionic conductivity of the active material layer can be improved to obtain a battery having excellent input / output characteristics. it can. Those with an transport rate close to 1 such as solid electrolytes can move carriers efficiently. Further, when a solid electrolyte, a polymer electrolyte, or the like is used, the separator may be omitted. Further, the presence of the electrolytic solution makes it possible to repair breakage of the solid electrolyte or the like.

本実施形態の二次電池1の一態様では、正極2と負極3との間に、固体電解質又はゲル電解質を備えていても良い。この構成によれば、正極と負極との間には、固体電解質又はゲル電解質が介在し、電極には電解液が含まれる電池が提供される。一般的な電解液は、引火しやすい液体であるが、固体電解質又はゲル電解質はこれと比べて引火しにくい傾向がある。したがって、この態様では、電解液による良好なイオン伝導性を維持しつつ、引火しにくい電池を構成することができる。 In one aspect of the secondary battery 1 of the present embodiment, a solid electrolyte or a gel electrolyte may be provided between the positive electrode 2 and the negative electrode 3. According to this configuration, a battery in which a solid electrolyte or a gel electrolyte is interposed between the positive electrode and the negative electrode and the electrode contains an electrolytic solution is provided. A general electrolyte is a liquid that is easily flammable, but a solid electrolyte or a gel electrolyte tends to be less flammable than this. Therefore, in this aspect, it is possible to construct a battery that does not easily catch fire while maintaining good ionic conductivity due to the electrolytic solution.

また、本構成の電池によれば、充放電に伴う活物質層の体積変化で電極が保有している電解液を、正極と負極との間に介在している固体電解質又はゲル電解質に供給することが可能となる。このため、活物質層の体積変化が大きい電極であるほど、電解液の供給量が増えることになる。したがって、正極と負極との間に流動性に乏しい電解質を用いた電池であっても、イオン伝導性を確保しやすくすることができる。また、正極と負極との間には、固体電解質又はゲル電解質が介在することで、電池に使用される電解液の量を減らすことができ、優れた安全性を示す電池とすることが期待できる。 Further, according to the battery having this configuration, the electrolytic solution held by the electrode due to the volume change of the active material layer due to charge / discharge is supplied to the solid electrolyte or the gel electrolyte interposed between the positive electrode and the negative electrode. It becomes possible. Therefore, the larger the volume change of the active material layer is, the larger the supply amount of the electrolytic solution is. Therefore, even in a battery using an electrolyte having poor fluidity between the positive electrode and the negative electrode, it is possible to easily secure ionic conductivity. Further, by interposing a solid electrolyte or a gel electrolyte between the positive electrode and the negative electrode, the amount of the electrolytic solution used in the battery can be reduced, and it can be expected that the battery exhibits excellent safety. ..

本実施形態では、空隙層32の両側に、負極活物質層31がそれぞれ形成されている。他の態様では、負極活物質層31が空隙層32の片側にのみ形成されても良い。 In the present embodiment, the negative electrode active material layers 31 are formed on both sides of the void layer 32, respectively. In another aspect, the negative electrode active material layer 31 may be formed on only one side of the void layer 32.

[空隙層]
空隙層32は、電解液を充填するための層である。本実施形態の空隙層32は、電解液を吸収・放出可能な多数の孔を有し、かつ、弾性変形可能な材料からなる。本実施形態の空隙層32は、例えば、負極集電体30と同様、ステンレス鋼をはじめとする材質よりなる金属繊維不織布で構成されている。金属繊維不織布は、その表面から内部に至って、規則的及び/又は不規則的に多数の連続した孔を形成する。空隙層32は、これらの孔内に、電解液を保持することができる。
[Void layer]
The void layer 32 is a layer for filling the electrolytic solution. The void layer 32 of the present embodiment is made of a material that has a large number of pores capable of absorbing and releasing an electrolytic solution and is elastically deformable. Like the negative electrode current collector 30, the void layer 32 of the present embodiment is made of a metal fiber non-woven fabric made of a material such as stainless steel. The metal fiber non-woven fabric forms a large number of continuous holes regularly and / or irregularly from the surface to the inside. The void layer 32 can hold the electrolytic solution in these pores.

本実施形態において、空隙層32は、本質的に負極活物質を含む前記合剤が塗工されておらず、金属繊維不織布のままの状態で用いられている。したがって、負極活物質層31と空隙層32との間には、境界40が形成される。 In the present embodiment, the void layer 32 is used in a state where the metal fiber non-woven fabric is not coated with the mixture essentially containing the negative electrode active material. Therefore, a boundary 40 is formed between the negative electrode active material layer 31 and the void layer 32.

空隙層32は、弾性変形可能な材料とされているので、例えば、外力を受けたときに、その内部の孔の体積を減じるよう収縮変形が可能な弾性骨格を有する。なお、本明細書において、「見かけ体積」とは、対象部分の外形寸法から計算される体積とする。 Since the void layer 32 is made of an elastically deformable material, it has, for example, an elastic skeleton that can be contracted and deformed so as to reduce the volume of the holes inside the void layer 32 when an external force is applied. In the present specification, the "apparent volume" is a volume calculated from the external dimensions of the target portion.

さらに、本実施形態では、空隙層32の空隙率は、負極活物質層31の空隙率よりも高く形成されている。本明細書において、「空隙率」とは、対象部分の見かけ体積に対して、空間体積が占める比率であり、空隙層32の空隙率は下式(1)で、負極活物質層31の空隙率は下式(2)でそれぞれ計算される。
空隙層の空隙率(%)
=(空間体積)/(空隙層の見かけ体積)×100 …(1)
負極活物質層の空隙率(%)
={(負極活物質層の見かけ体積)−(負極集電体の体積)−(負極活物質を含む合剤体積)}/(負極活物質層の見かけ体積)×100 …(2)
Further, in the present embodiment, the porosity of the void layer 32 is formed higher than the porosity of the negative electrode active material layer 31. In the present specification, the "porosity" is the ratio of the space volume to the apparent volume of the target portion, and the porosity of the void layer 32 is the void ratio of the negative electrode active material layer 31 according to the following equation (1). The rates are calculated by the following equations (2), respectively.
Porosity (%) of the void layer
= (Spatial volume) / (Apparent volume of void layer) x 100 ... (1)
Porosity (%) of the negative electrode active material layer
= {(Apparent volume of negative electrode active material layer)-(Volume of negative electrode current collector)-(Volume of mixture containing negative electrode active material)} / (Apparent volume of negative electrode active material layer) x 100 ... (2)

以上のように構成された負極3では、図3に示されるように、充電時には、負極活物質層31は、リチウムイオンを吸蔵して膨張変形する。この膨張に伴い、負極活物質層31に隣接する空隙層32は、負極活物質層31からの外力を受けて弾性収縮し、自らが保持する電解液を放出する。空隙層32が放出した電解液は、隣接する負極活物質層31へと供給される。したがって、負極活物質層31周辺での電解液不足が抑制される。 In the negative electrode 3 configured as described above, as shown in FIG. 3, the negative electrode active material layer 31 occludes lithium ions and expands and deforms during charging. Along with this expansion, the void layer 32 adjacent to the negative electrode active material layer 31 elastically contracts by receiving an external force from the negative electrode active material layer 31, and releases the electrolytic solution held by itself. The electrolytic solution released by the void layer 32 is supplied to the adjacent negative electrode active material layer 31. Therefore, the shortage of the electrolytic solution around the negative electrode active material layer 31 is suppressed.

逆に、図4に示されるように、放電時には、負極活物質層31がリチウムイオンを放出することで収縮変形する。この収縮変形に伴い、負極活物質層31に隣接している空隙層32は、元の形状へと弾性復元し、収縮した負極活物質層31にとって余剰となった電解液を自らの孔内に回収することができる。加えて、空隙層32の弾性復元により、空隙層32と負極活物質層31との境界40で隙間が形成されるのを抑制する。これにより、さらに、液涸れが抑制される。 On the contrary, as shown in FIG. 4, at the time of discharge, the negative electrode active material layer 31 contracts and deforms by releasing lithium ions. Along with this shrinkage deformation, the void layer 32 adjacent to the negative electrode active material layer 31 elastically restores to its original shape, and the electrolytic solution surplus for the shrunk negative electrode active material layer 31 is placed in its own pores. It can be recovered. In addition, the elastic restoration of the void layer 32 suppresses the formation of a gap at the boundary 40 between the void layer 32 and the negative electrode active material layer 31. As a result, dripping is further suppressed.

このように、負極活物質層31の膨張・収縮の変形形態に応じて、負極活物質層31と空隙層32との間で必要な電解液の授受が行われる。したがって、本実施形態の電極(負極3)によれば、電極内に予め過度に電解液を充填しておくことなく、負極活物質層31及び/又は電極(正極2、負極3)間での液涸れを抑制することができる。このような利点は、負極活物質層31の膨張変化量が大きい態様、すなわち、負極活物質として、リチウムと合金化する材料を用いた場合において、特に有用である。 In this way, the necessary electrolytic solution is exchanged between the negative electrode active material layer 31 and the void layer 32 according to the deformation form of the expansion / contraction of the negative electrode active material layer 31. Therefore, according to the electrode (negative electrode 3) of the present embodiment, between the negative electrode active material layer 31 and / or the electrodes (positive electrode 2 and negative electrode 3) without excessively filling the electrode with an electrolytic solution in advance. It is possible to suppress dripping. Such an advantage is particularly useful when the amount of change in expansion of the negative electrode active material layer 31 is large, that is, when a material alloying with lithium is used as the negative electrode active material.

また、これまで多用されている箔状の集電体では、充放電に伴う活物質層の繰り返しの膨張・収縮の変形により、活物質層内又は活物質層と集電体との界面に亀裂等の損傷が発生しやすい傾向があった。これに対して、本実施形態では、負極活物質層31の膨張・収縮の変形により生じる応力は、隣接する空隙層32へも伝播することで緩和される。したがって、本実施形態の電極では、電極の内部亀裂等の損傷をし、長寿命化を図ることが可能である。 In addition, in foil-shaped current collectors that have been widely used so far, cracks occur in the active material layer or at the interface between the active material layer and the current collector due to the deformation of repeated expansion and contraction of the active material layer due to charging and discharging. There was a tendency for damage such as, etc. to occur easily. On the other hand, in the present embodiment, the stress generated by the deformation of the expansion / contraction of the negative electrode active material layer 31 is alleviated by propagating to the adjacent void layer 32 as well. Therefore, in the electrode of the present embodiment, it is possible to damage the internal cracks and the like of the electrode and extend the life of the electrode.

空隙層32は、上述のように、電解液を保持し、必要なときに負極活物質層31へ供給する機能(電解液保持機能)、自らの弾性的な形状復元による負極活物質層31を充電前形状へ回復させる機能(形状復元機能)、及び、負極活物質層31の体積変化に対する緩衝機能を担う。このような機能をより効果的に実現させるために、キャリア放出状態(電池が放電した状態)での空隙層32の空隙率は、好ましくは、40%〜80%、さらに好ましくは60%〜80%の範囲とされる。 As described above, the void layer 32 has a function of holding the electrolytic solution and supplying it to the negative electrode active material layer 31 when necessary (electrolyte solution holding function), and a negative electrode active material layer 31 by its own elastic shape restoration. It has a function of restoring the shape before charging (shape restoration function) and a buffer function against a volume change of the negative electrode active material layer 31. In order to realize such a function more effectively, the porosity of the void layer 32 in the carrier discharge state (state in which the battery is discharged) is preferably 40% to 80%, more preferably 60% to 80. It is in the range of%.

負極活物質層31の空隙率が5%未満の場合、層内により多くの活物質量を確保できる利点があるものの、負極活物質層31の膨張変形時の体積変化を緩衝できず、充放電、すなわち、膨張・収縮の繰り返しに伴う亀裂や活物質層の脱離、剥落等の原因となる。一方、負極活物質層31の空隙率が60%以上であると、層内に十分な活物質量が確保できないおそれがある。したがって、負極活物質層31は、電解液を保持しつつ十分な表面積を提供するために、キャリア放出状態(電池が放電した状態)での空隙率は、5%〜50%の範囲とされるのが望ましい。 When the porosity of the negative electrode active material layer 31 is less than 5%, there is an advantage that a larger amount of active material can be secured in the layer, but the volume change at the time of expansion and deformation of the negative electrode active material layer 31 cannot be buffered, and charging and discharging cannot be performed. That is, it causes cracks due to repeated expansion and contraction, detachment and peeling of the active material layer, and the like. On the other hand, if the porosity of the negative electrode active material layer 31 is 60% or more, a sufficient amount of active material may not be secured in the layer. Therefore, in order to provide a sufficient surface area of the negative electrode active material layer 31 while holding the electrolytic solution, the porosity in the carrier discharge state (state in which the battery is discharged) is in the range of 5% to 50%. Is desirable.

好ましい態様では、空隙層32は、ステンレス鋼からなる金属繊維の不織布で構成される。ステンレス鋼の種類としては、特に限定されないが、耐食性、溶接性及び加工性等に優れたオーステナイト系ステンレス鋼が好適であり、とりわけSUS316Lが望ましい。 In a preferred embodiment, the void layer 32 is made of a non-woven fabric of metal fibers made of stainless steel. The type of stainless steel is not particularly limited, but austenitic stainless steel having excellent corrosion resistance, weldability, workability, etc. is preferable, and SUS316L is particularly preferable.

他の態様では、空隙層32は、銅、ニッケル、クロム、チタン又はこれらいずれかの合金からなる金属繊維が適用されても良い。 In another aspect, a metal fiber made of copper, nickel, chromium, titanium or an alloy thereof may be applied to the void layer 32.

空隙層32を構成する金属繊維の繊維径は、例えば、12μm以下であるのが望ましい。このように、繊維径を細線化することにより、電解液を吸収・放出可能な多数の孔を容易に形成できる。また、空隙層32の剛性を低下させ、ひいては、その緩衝機能を高めるのに役立つ。なお、前記金属繊維の繊維径は、空隙層32の耐久性などを考慮すると、例えば、1μm以上とされるのが望ましい。 The fiber diameter of the metal fibers constituting the void layer 32 is preferably 12 μm or less, for example. By thinning the fiber diameter in this way, it is possible to easily form a large number of holes capable of absorbing and releasing the electrolytic solution. Further, it is useful for lowering the rigidity of the void layer 32 and, by extension, enhancing its cushioning function. The fiber diameter of the metal fiber is preferably 1 μm or more, for example, in consideration of the durability of the void layer 32 and the like.

好ましい態様では、負極活物質層31を固定するための負極集電体30は、図5に示されるように、第1金属繊維311を用いて形成された第1層310と、第2金属繊維321を用いて形成された第2層320とを隣接して備えた不織布からなる。第1層310と第2層320とは、予め一体に形成されても良いし、それぞれ別体で形成された後、互いに積層されても良い。図5の実施形態では、好ましい例として、第1層310が、第2層320の両側に形成されている。 In a preferred embodiment, the negative electrode current collector 30 for fixing the negative electrode active material layer 31 is a first layer 310 formed by using the first metal fiber 311 and a second metal fiber, as shown in FIG. It is made of a non-woven fabric provided with a second layer 320 formed by using 321 adjacent to the second layer 320. The first layer 310 and the second layer 320 may be integrally formed in advance, or may be formed separately and then laminated with each other. In the embodiment of FIG. 5, as a preferred example, the first layer 310 is formed on both sides of the second layer 320.

好ましい態様では、第2金属繊維321の繊維径は、第1金属繊維311の繊維径よりも小さく構成される。そして、第1層310は、負極活物質を含む合剤が塗布、硬化されることで負極活物質層31(図2に示す)として形成される。また、第2層320は、前記合剤が塗布されないことで、空隙層32(図2に示す)として形成される。 In a preferred embodiment, the fiber diameter of the second metal fiber 321 is configured to be smaller than the fiber diameter of the first metal fiber 311. Then, the first layer 310 is formed as the negative electrode active material layer 31 (shown in FIG. 2) by applying and curing the mixture containing the negative electrode active material. Further, the second layer 320 is formed as a void layer 32 (shown in FIG. 2) by not applying the mixture.

このような実施形態では、空隙層32を構成する第2層320が、負極活物質層31を固定する第1層310よりも低い剛性を有する。したがって、空隙層32は、負極活物質層31の膨張変形時に、優れた緩衝機能を発揮することができる。 In such an embodiment, the second layer 320 constituting the void layer 32 has a lower rigidity than the first layer 310 for fixing the negative electrode active material layer 31. Therefore, the void layer 32 can exhibit an excellent buffering function when the negative electrode active material layer 31 is expanded and deformed.

第2金属繊維321の繊維径は、好ましくは1μm以上とされ、より好ましくは2μm以上とされる。第2金属繊維321の繊維径の上限値は、前述のように、12μm以下とされるのが望ましい。 The fiber diameter of the second metal fiber 321 is preferably 1 μm or more, and more preferably 2 μm or more. As described above, the upper limit of the fiber diameter of the second metal fiber 321 is preferably 12 μm or less.

第1金属繊維311の繊維径は、好ましくは5μm以上とされ、より好ましくは7μm以上とされる。第1金属繊維311の繊維径の上限値は、例えば、20μm以下とされるのが望ましい。このように、相対的に太い第1金属繊維311を用いた第1層310は、負極活物質層31の大きな膨張・収縮による塑性変形が抑制され、負極活物質層31の弾性変形機能を維持するのに役立つ。 The fiber diameter of the first metal fiber 311 is preferably 5 μm or more, and more preferably 7 μm or more. The upper limit of the fiber diameter of the first metal fiber 311 is preferably 20 μm or less, for example. As described above, in the first layer 310 using the relatively thick first metal fiber 311, the plastic deformation due to the large expansion and contraction of the negative electrode active material layer 31 is suppressed, and the elastic deformation function of the negative electrode active material layer 31 is maintained. Helps to do.

好ましい態様では、負極集電体30において、第2層320は、第1層310よりも高い空隙率を有するように構成されても良い。このような第2層320は、負極活物質層31に比して、相対的に多くの電解液を保持することができる。また、負極活物質層31の膨張変形時に、優れた緩衝機能を発揮する空隙層32を形成する。 In a preferred embodiment, in the negative electrode current collector 30, the second layer 320 may be configured to have a higher porosity than the first layer 310. Such a second layer 320 can hold a relatively large amount of electrolytic solution as compared with the negative electrode active material layer 31. Further, when the negative electrode active material layer 31 is expanded and deformed, the void layer 32 that exhibits an excellent buffering function is formed.

好ましい態様では、第2層320を構成する第2金属繊維321は、第1層310を構成する第1金属繊維311よりも小さい弾性率を有するように構成されても良い。このような第2層320は、負極活物質層31の膨張・収縮変形時に、それに追従するように柔軟に変形し、優れた緩衝機能を発揮する空隙層32を形成する。 In a preferred embodiment, the second metal fiber 321 constituting the second layer 320 may be configured to have a smaller elastic modulus than the first metal fiber 311 constituting the first layer 310. Such a second layer 320 flexibly deforms to follow the expansion / contraction deformation of the negative electrode active material layer 31 to form a void layer 32 exhibiting an excellent buffering function.

また、負極集電体30は、さらに、銅、ニッケル、クロム、チタンのいずれかの遷移金属元素からなる金属、又は、これら遷移金属元素を主成分とする合金で被覆されたものでも良い。このような金属を被覆することで、弾性変形機能を有する負極集電体でありながら、導電性に優れる集電体となり、これを用いた電極は金属被覆していない集電体と比べて、オーミック成分の抵抗値が低くなる。 Further, the negative electrode current collector 30 may be further coated with a metal composed of any transition metal element such as copper, nickel, chromium or titanium, or an alloy containing these transition metal elements as main components. By coating with such a metal, it becomes a current collector having excellent conductivity while being a negative electrode current collector having an elastic deformation function, and an electrode using this becomes a current collector without metal coating, as compared with a current collector without metal coating. The resistance value of the ohmic component becomes low.

[正極]
二次電池1の電極の一例として、これまで、負極3について詳述したが、上記負極3の構成は、正極2についても同様に適用されても良い。正極2は、負極3に比べると充放電時の体積変化は小さいものの、放電時にはリチウムイオンを吸蔵することで体積膨張が生じるので、上記負極で説明された構成が正極2に適用されても良い。
[Positive electrode]
As an example of the electrode of the secondary battery 1, the negative electrode 3 has been described in detail so far, but the configuration of the negative electrode 3 may be similarly applied to the positive electrode 2. Although the positive electrode 2 has a smaller volume change during charging and discharging than the negative electrode 3, volume expansion occurs due to occlusion of lithium ions during discharging. Therefore, the configuration described for the negative electrode may be applied to the positive electrode 2. ..

図6には、上述のような正極2の部分拡大図を示す。図6に示されるように、正極2は、導電性を有する集電体(以下、「正極集電体」という。)20と、正極集電体20に固定された活物質(以下、「正極活物質」という。)を含む活物質層(以下、「正極活物質層」という。)21と、正極活物質層21に隣接して配された空隙層22とを含む。ここで、正極集電体20及び空隙層22は、それぞれ、負極集電体30及び空隙層32と同様の構成を有するもので、ここでは、繰り返しの説明が省略される。 FIG. 6 shows a partially enlarged view of the positive electrode 2 as described above. As shown in FIG. 6, the positive electrode 2 includes a conductive current collector (hereinafter, referred to as “positive electrode current collector”) 20 and an active material fixed to the positive electrode current collector 20 (hereinafter, “positive electrode”). It includes an active material layer (hereinafter, referred to as “positive electrode active material layer”) 21 containing (referred to as “active material”) and a void layer 22 arranged adjacent to the positive electrode active material layer 21. Here, the positive electrode current collector 20 and the void layer 22 have the same configurations as the negative electrode current collector 30 and the void layer 32, respectively, and the repeated description is omitted here.

正極活物質は、正極2にてイオンの授受を行わせることを目的とした酸化剤であり、例えば、粉末状の活物質を導電助剤やバインダーなどと混合し、圧粉成型したものが用いられる。正極活物質としては、例えば、コバルト酸リチウム(LiCoO)やリン酸鉄リチウム(LiFePO)、三元系材料(Li(Ni,Co,Mn)O)などが好適である。また、正極活物質は、二次電池の容量や高エネルギー密度化を図るために、キャリアを吸蔵して大きな体積変化を示す材料、例えば、硫黄系材料やシリケート系材料、バナジウム系材料などでも良い。なお、これらの正極活物質は、1種単独でまたは2種以上を組み合わせて用いることもできる。なお、正極として用いる場合では、空隙層22は、ステンレス鋼からなる金属繊維の不織布で構成されることが好ましい。他の態様では、空隙層22は、アルミニウム又はこの合金からなる金属繊維が適用されても良い。 The positive electrode active material is an oxidizing agent for the purpose of transferring ions to and from the positive electrode 2. For example, a powdered active material mixed with a conductive auxiliary agent, a binder, or the like and compacted is used. Be done. As the positive electrode active material, for example, lithium cobalt oxide (LiCoO 2 ), lithium iron phosphate (LiFePO 4 ), a ternary material (Li (Ni, Co, Mn) O 2 ) and the like are suitable. Further, the positive electrode active material may be a material that absorbs carriers and exhibits a large volume change, for example, a sulfur-based material, a silicate-based material, or a vanadium-based material, in order to increase the capacity and energy density of the secondary battery. .. In addition, these positive electrode active materials may be used individually by 1 type or in combination of 2 or more types. When used as a positive electrode, the void layer 22 is preferably made of a non-woven fabric of metal fibers made of stainless steel. In another aspect, a metal fiber made of aluminum or an alloy thereof may be applied to the void layer 22.

[組電池]
以上のように構成された二次電池(単電池)1を複数個接続して、組電池(図示省略)が構成されても良い。組電池の形状や接続方法については、用途に応じて適宜設計され得る。このような組電池は、例えば、高エネルギー密度、高容量が求められる電気自動車やハイブリッド自動車のモーター電源として好適に利用される。
[Battery set]
A plurality of secondary batteries (single batteries) 1 configured as described above may be connected to form an assembled battery (not shown). The shape and connection method of the assembled battery can be appropriately designed according to the application. Such an assembled battery is suitably used, for example, as a motor power source for an electric vehicle or a hybrid vehicle that requires high energy density and high capacity.

[電気機器]
本実施形態の二次電池1又は前記組電池を内蔵する各種の電気機器が構成され得る。このような電気機器としては、例えば、電気自動車、ハイブリッド自動車、携帯電話、スマートフォン、コンピュータ、蓄電設備などが挙げられるが、これらに限定されるものではない。
[Electrical equipment]
The secondary battery 1 of the present embodiment or various electric devices incorporating the assembled battery can be configured. Examples of such electric devices include, but are not limited to, electric vehicles, hybrid vehicles, mobile phones, smartphones, computers, power storage equipment, and the like.

以上、本発明の実施形態が詳細に説明されたが、本発明は、上記の具体的な開示に限定されるものではなく、特許請求の範囲に記載された技術的思想の範囲内において、種々変更して実施することができる。また、上記実施形態では、リチウムイオン二次電池を例にとって説明したが、本発明は、例えば、ナトリウムイオン二次電池、カリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などの非水電解質二次電池にも適用可能である。また、本明細書において開示されたいくつかの態様は、それぞれ単独で実施される他、相互に組み合わせることも可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned specific disclosure, and is various within the scope of the technical idea described in the claims. It can be changed and implemented. Further, in the above embodiment, the lithium ion secondary battery has been described as an example, but the present invention describes, for example, a sodium ion secondary battery, a potassium ion secondary battery, a magnesium ion secondary battery, an aluminum ion secondary battery, and the like. It is also applicable to non-aqueous electrolyte secondary batteries. In addition, some of the embodiments disclosed herein can be implemented independently or combined with each other.

本発明の効果を確認するため、3種類の二次電池(比較例、実施例1、2)を試作し、それぞれについて定電流充放電試験が実施された。 In order to confirm the effect of the present invention, three types of secondary batteries (Comparative Examples, Examples 1 and 2) were prototyped, and constant current charge / discharge tests were carried out for each.

比較例の二次電池は、負極集電体として、ステンレス鋼の箔が用いられた。 In the secondary battery of the comparative example, a stainless steel foil was used as the negative electrode current collector.

一方、実施例の二次電池の負極の構成は、図7に示されるとおりである。図7に示されるように、負極3は、空隙層32と、その両側に形成された一対の負極活物質層31とからなる。負極活物質層31は、負極集電体に固定されている。この例では、負極集電体及び空隙層は、いずれもステンレス鋼(SUS316L)の金属繊維の不織布が用いられている。 On the other hand, the configuration of the negative electrode of the secondary battery of the embodiment is as shown in FIG. As shown in FIG. 7, the negative electrode 3 is composed of a void layer 32 and a pair of negative electrode active material layers 31 formed on both sides thereof. The negative electrode active material layer 31 is fixed to the negative electrode current collector. In this example, a stainless steel (SUS316L) metal fiber non-woven fabric is used for both the negative electrode current collector and the void layer.

負極活物質として一酸化ケイ素(SiO、粒子径2〜3μm、粒子表面にカーボン被覆(SiO:カーボン(C)=99:1(重量%)))、導電助剤としてアセチレンブラック(AB、デンカ(株)、デンカブラック)、バインダーとしてポリイミド前駆体(ポリアミック酸)を85:5:15 (重量%)の割合で秤量し、溶媒にN−メチル−2−ピロリドン(NMP)を用いて、自公転式ミキサー((株)シンキー、ARE−310)を使用して混練し、負極スラリーを作製した。 Silicon monoxide (SiO, particle diameter 2-3 μm, carbon coating on particle surface (SiO: carbon (C) = 99: 1 (% by weight))) as negative electrode active material, acetylene black (AB, denka) as conductive aid , Denka Black), polyimide precursor (polyamic acid) as a binder was weighed at a ratio of 85: 5: 15 (% by weight), and self-revolving using N-methyl-2-pyrrolidone (NMP) as a solvent. A negative electrode slurry was prepared by kneading using a formula mixer (Sinky Co., Ltd., ARE-310).

次に、実施例については、得られた負極スラリーが、ステンレス鋼の金属繊維の不織布(繊維径φ5.6μmまたは9.2μm)に充填された。比較例については、前記負極スラリーが、ステンレス鋼の金属箔(厚さ10μm)の両面に塗工された。次に、実施例及び比較例について、真空乾燥器を用いて、真空下 240℃で10時間の条件で熱処理された。負極活物質層を形成した面積は、5cm×5cmとした。 Next, in the examples, the obtained negative electrode slurry was filled in a non-woven fabric of stainless steel metal fibers (fiber diameter φ5.6 μm or 9.2 μm). In the comparative example, the negative electrode slurry was applied to both sides of a stainless steel metal foil (thickness 10 μm). Next, Examples and Comparative Examples were heat-treated in a vacuum at 240 ° C. for 10 hours using a vacuum dryer. The area where the negative electrode active material layer was formed was 5 cm × 5 cm.

得られた各電極を試験極として、対極に金属リチウム(厚さ500μm)、セパレータにガラスフィルター(アドバンテック、GA−100)とポリオレフィン系微多孔膜、電解液に1M LiPFEC(炭酸エチレン)/DEC(炭酸ジエチル)(=1/1、v/v)、外装材にアルミニウムラミネートフィルムをそれぞれ用いて、ラミネート型電池を作製した。作製した各電池について、環境温度を30℃、充放電レートを0.1Cレート、電圧範囲を0.01−1.2Vとして、定電流充放電試験を実施した。充放電試験の評価として、放電容量維持率が採用された。放電容量維持率は、4回目の放電容量を100%としたときに対する10回目、20回目、40回目の放電容量の比率を表す。数値が大きいほど、良好であることを示す。テストの結果は、表1に示される。 Using each of the obtained electrodes as a test electrode, metallic lithium (thickness 500 μm) was used as the counter electrode, a glass filter (Advantech, GA-100) and a polyolefin-based microporous membrane were used as the separator, and 1M LiPF 6 EC (ethylene carbonate) was used as the electrolytic solution. A laminated battery was produced by using DEC (diethyl carbonate) (= 1/1, v / v) and an aluminum laminated film as an exterior material. A constant current charge / discharge test was carried out for each of the manufactured batteries, with an environmental temperature of 30 ° C., a charge / discharge rate of 0.1 C rate, and a voltage range of 0.01-1.2 V. The discharge capacity retention rate was adopted as the evaluation of the charge / discharge test. The discharge capacity retention rate represents the ratio of the 10th, 20th, and 40th discharge capacities to the case where the 4th discharge capacity is 100%. The larger the value, the better. The test results are shown in Table 1.

表1から明らかなように、実施例1及び2は、比較例に比べて、放電容量の低下が抑制されていることが確認できた。 As is clear from Table 1, it was confirmed that in Examples 1 and 2, the decrease in discharge capacity was suppressed as compared with Comparative Examples.

また、テストの後、各電池を分解し、それぞれの負極の状態を肉眼で観察した。観察の結果、比較例の負極は、図8に示されように、シワや変形、亀裂が発生し、負極集電体からの負極活物質層の剥離も確認された(図中の白っぽい模様がシワや亀裂を示す)。これは、充電時の負極活物質層の約4倍の体積膨張と収縮によるものと推察される。一方、実施例1の負極は、図9に示されるように、電極にシワや変形、亀裂、集電体からの活物質層の剥離はいずれも確認できなかった。 After the test, each battery was disassembled and the state of each negative electrode was visually observed. As a result of observation, as shown in FIG. 8, the negative electrode of the comparative example had wrinkles, deformations, and cracks, and peeling of the negative electrode active material layer from the negative electrode current collector was also confirmed (the whitish pattern in the figure is confirmed). Shows wrinkles and cracks). It is presumed that this is due to the volume expansion and contraction of about four times that of the negative electrode active material layer during charging. On the other hand, in the negative electrode of Example 1, as shown in FIG. 9, no wrinkles, deformations, cracks, or peeling of the active material layer from the current collector could be confirmed on the electrodes.

1 非水電解質二次電池
2 正極
3 負極
4 セパレータ
5 ケーシング
20 正極集電体
21 正極活物質層
22 空隙層
30 負極集電体
31 負極活物質層
22、32 空隙層
310 第1層
311 第1金属繊維
320 第2層
321 第2金属繊維
1 Non-aqueous electrolyte secondary battery 2 Positive electrode 3 Negative electrode 4 Separator 5 Casing 20 Positive electrode current collector 21 Positive electrode active material layer 22 Void layer 30 Negative electrode current collector 31 Negative electrode active material layer 22, 32 Void layer 310 First layer 311 First Metal fiber 320 Second layer 321 Second metal fiber

Claims (24)

非水電解質二次電池用の電極であって、
導電性を有する集電体と、
前記集電体に固定された活物質を含む活物質層と、
前記活物質層に隣接して配された空隙層とを含み、
前記集電体は、多数の孔を有する三次元構造体であり、
前記活物質層は、電解液を吸収・放出可能な多数の孔を有するように前記集電体に形成されており、
前記空隙層は、電解液を吸収・放出可能な多数の孔を有する弾性変形可能な材料からなり、かつ、前記活物質層の空隙率よりも高い空隙率を有する、
非水電解質二次電池用の電極。
Electrodes for non-aqueous electrolyte secondary batteries
With a conductive current collector,
An active material layer containing an active material fixed to the current collector, and
Including a void layer arranged adjacent to the active material layer,
The current collector is a three-dimensional structure having a large number of holes.
The active material layer is formed in the current collector so as to have a large number of pores capable of absorbing and releasing the electrolytic solution.
The void layer is made of an elastically deformable material having a large number of pores capable of absorbing and releasing an electrolytic solution, and has a porosity higher than the porosity of the active material layer.
Electrodes for non-aqueous electrolyte secondary batteries.
前記空隙層は、その多数の孔の体積が小さくなるように、収縮変形が可能な弾性骨格を有する、請求項1記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the void layer has an elastic skeleton that can be contracted and deformed so that the volume of a large number of pores is reduced. 前記空隙層は、前記活物質層が膨張変形したときの外力を受けたときに、自らの見かけ体積が減じるように収縮変形可能な弾性骨格を有する、請求項1又は2に記載の非水電解質二次電池用の電極。 The non-aqueous electrolyte according to claim 1 or 2, wherein the void layer has an elastic skeleton that can be contracted and deformed so as to reduce its own apparent volume when the active material layer receives an external force when it expands and deforms. Electrodes for secondary batteries. 前記空隙層の両側に、前記活物質層が形成されている、請求項1ないし3のいずれか1項に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the active material layer is formed on both sides of the void layer. キャリア放出状態での前記活物質層の空隙率が5%〜50%の範囲にある、請求項1ないし4のいずれか1項に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the porosity of the active material layer in the carrier-releasing state is in the range of 5% to 50%. キャリア放出状態での前記空隙層の空隙率が40%〜80%の範囲にある、請求項1ないし5のいずれか1項に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the porosity of the void layer in the carrier-releasing state is in the range of 40% to 80%. 前記空隙層が、金属繊維の不織布からなる、請求項1ないし6のいずれか1項に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the void layer is made of a non-woven fabric of metal fibers. 前記金属繊維の材質がステンレス鋼である、請求項7に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to claim 7, wherein the material of the metal fiber is stainless steel. 前記金属繊維の繊維径が12μm以下である、請求項7又は8に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to claim 7 or 8, wherein the metal fiber has a fiber diameter of 12 μm or less. 前記集電体は、第1金属繊維を用いて形成された第1層と、第2金属繊維を用いて形成された第2層とを隣接して備え、
前記第1層には、前記活物質層が形成されており、
前記第2層は、前記活物質を含まない前記空隙層であり、
前記第2金属繊維の繊維径は、前記第1金属繊維の繊維径よりも小さい、請求項7ないし9のいずれか1項に記載の非水電解質二次電池用の電極。
The current collector includes a first layer formed by using the first metal fiber and a second layer formed by using the second metal fiber adjacent to each other.
The active material layer is formed in the first layer.
The second layer is the void layer that does not contain the active material.
The electrode for a non-aqueous electrolyte secondary battery according to any one of claims 7 to 9, wherein the fiber diameter of the second metal fiber is smaller than the fiber diameter of the first metal fiber.
前記第2金属繊維の繊維径が1μm以上であり、前記第1金属繊維の繊維径が5μm以上である、請求項10に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to claim 10, wherein the second metal fiber has a fiber diameter of 1 μm or more and the first metal fiber has a fiber diameter of 5 μm or more. 前記不織布は、さらに、銅、ニッケル、クロム、チタンのいずれかの遷移金属元素からなる金属、又は、これら遷移金属元素を主成分とする合金で被覆されている、請求項7ないし11のいずれか1項に記載の非水電解質二次電池用の電極。 Any of claims 7 to 11, wherein the non-woven fabric is further coated with a metal composed of any of copper, nickel, chromium, and titanium as a transition metal element, or an alloy containing these transition metal elements as a main component. The electrode for a non-aqueous electrolyte secondary battery according to item 1. 前記活物質は、ケイ素を含む材料である、請求項1ないし12のいずれか1項に記載の非水電解質二次電池用の電極。 The electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 12, wherein the active material is a material containing silicon. 前記活物質層は、前記活物質及びバインダーを含む合剤の層、又は、前記活物質及び固体電解質を含む合剤の層である、請求項1ないし13のいずれか1項に記載の非水電解質二次電池用の電極。 The non-water-free layer according to any one of claims 1 to 13, wherein the active material layer is a layer of a mixture containing the active material and a binder, or a layer of a mixture containing the active material and a solid electrolyte. Electrode for electrolyte secondary batteries. 請求項1ないし14のいずれか1項に記載の電極の前記空隙層に、電解液が充填されている、非水電解質二次電池。 A non-aqueous electrolyte secondary battery in which the void layer of the electrode according to any one of claims 1 to 14 is filled with an electrolytic solution. 充電時又は放電時において、前記空隙層は、前記活物質層が膨張変形したときの外力を受けたときに、自らの見かけ体積が減じるように収縮変形可能な弾性骨格を有する、請求項15に記載の非水電解質二次電池。 15. The void layer has an elastic skeleton that can be contracted and deformed so as to reduce its own apparent volume when the active material layer receives an external force when the active material layer is expanded and deformed during charging or discharging. The non-aqueous electrolyte secondary battery described. 正極と負極との間に、固体電解質又はゲル電解質を備えている、請求項15又は16に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 15 or 16, wherein a solid electrolyte or a gel electrolyte is provided between the positive electrode and the negative electrode. リチウムイオンをキャリアとする請求項15ないし17のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 15 to 17, wherein the carrier is lithium ion. 請求項15ないし18のいずれか1項に記載の非水電解質二次電池を用いた組電池。 An assembled battery using the non-aqueous electrolyte secondary battery according to any one of claims 15 to 18. 請求項19に記載された非水電解質二次電池を用いた組電池を用いた電気機器。 An electric device using an assembled battery using the non-aqueous electrolyte secondary battery according to claim 19. 非水電解質二次電池用の電極に用いるための集電体であって、
導電性を有し、かつ、多数の孔を有する構造体からなり、前記構造体は、活物質を固定するための第1層と、電解液を吸収・放出可能な第2層とを隣接して含み、
前記第2層は、前記第1層よりも高い空隙率を有する、
集電体。
A current collector for use as an electrode for a non-aqueous electrolyte secondary battery.
It is composed of a structure having conductivity and having a large number of holes, and the structure is adjacent to a first layer for fixing an active material and a second layer capable of absorbing and releasing an electrolytic solution. Including
The second layer has a higher porosity than the first layer.
Current collector.
前記第2層の両側に、前記第1層を備えてなる、請求項21に記載の集電体。 The current collector according to claim 21, wherein the first layer is provided on both sides of the second layer. 前記第1層は、第1金属繊維を用いて形成されており、
前記第2層は、前記第1金属繊維よりも小さい繊維径を有する第2金属繊維を用いて形成されている、請求項21又は22に記載の集電体。
The first layer is formed by using the first metal fiber, and is formed.
The current collector according to claim 21 or 22, wherein the second layer is formed by using a second metal fiber having a fiber diameter smaller than that of the first metal fiber.
前記第1層は、第1金属繊維を用いて形成されており、
前記第2層は、前記第1金属繊維よりも小さい弾性率を有する第2金属繊維を用いて形成されている、請求項21ないし23のいずれか1項に記載の集電体。
The first layer is formed by using the first metal fiber, and is formed.
The current collector according to any one of claims 21 to 23, wherein the second layer is formed by using a second metal fiber having an elastic modulus smaller than that of the first metal fiber.
JP2019150082A 2019-08-20 2019-08-20 Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries Active JP7426039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019150082A JP7426039B2 (en) 2019-08-20 2019-08-20 Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019150082A JP7426039B2 (en) 2019-08-20 2019-08-20 Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JP2021034143A true JP2021034143A (en) 2021-03-01
JP7426039B2 JP7426039B2 (en) 2024-02-01

Family

ID=74678777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019150082A Active JP7426039B2 (en) 2019-08-20 2019-08-20 Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
JP (1) JP7426039B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975854A (en) * 2022-06-13 2022-08-30 珠海冠宇电池股份有限公司 Negative plate containing metal fibers and battery comprising negative plate
CN115832187A (en) * 2022-07-20 2023-03-21 宁德时代新能源科技股份有限公司 Electrode, method for producing same, secondary battery, battery module, battery pack, and electric device
WO2024018982A1 (en) * 2022-07-19 2024-01-25 マクセル株式会社 All-solid-state battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693305A (en) * 1992-09-11 1994-04-05 Tomoegawa Paper Co Ltd Production of metallic-fiber sintered sheet
JPH0945334A (en) * 1995-07-26 1997-02-14 Katayama Tokushu Kogyo Kk Base material for lithium secondary battery plate, electrode plate using this base material and secondary battery using this electrode plate
JP2000129311A (en) * 1998-10-28 2000-05-09 Bridgestone Corp Metallic fiber non-woven fabric sintered sheet
JP2005294168A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode and battery using it
JP2010153140A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2012089303A (en) * 2010-10-18 2012-05-10 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery using the same
JP2012160320A (en) * 2011-01-31 2012-08-23 Nissan Motor Co Ltd Electrode, electric device, and method for manufacturing electrode
JP2016519399A (en) * 2013-05-03 2016-06-30 ジェナックス インコーポレイテッド Nonwoven fabric current collector, battery manufacturing method and system using the same
JP2017529663A (en) * 2014-08-30 2017-10-05 ジェナックス インコーポレイテッド Flexible secondary battery and manufacturing method thereof
JP2018113108A (en) * 2017-01-06 2018-07-19 学校法人早稲田大学 Secondary battery
JP2018526791A (en) * 2015-09-01 2018-09-13 ジェナックス インコーポレイテッド Secondary battery electrode and manufacturing method thereof
JP2018535535A (en) * 2016-09-09 2018-11-29 エルジー・ケム・リミテッド Electrode including three-dimensional network electrode collector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914059B2 (en) 2005-01-14 2012-04-11 住友電気工業株式会社 Current collector, battery electrode substrate, and manufacturing method thereof
JP2010257839A (en) 2009-04-27 2010-11-11 Toyota Motor Corp Positive electrode for air battery, and air battery
ES2881271T3 (en) 2017-03-08 2021-11-29 Evonik Operations Gmbh Process for preparing tris [3- (alkoxysilyl) propyl] isocyanurates

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693305A (en) * 1992-09-11 1994-04-05 Tomoegawa Paper Co Ltd Production of metallic-fiber sintered sheet
JPH0945334A (en) * 1995-07-26 1997-02-14 Katayama Tokushu Kogyo Kk Base material for lithium secondary battery plate, electrode plate using this base material and secondary battery using this electrode plate
JP2000129311A (en) * 1998-10-28 2000-05-09 Bridgestone Corp Metallic fiber non-woven fabric sintered sheet
JP2005294168A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode and battery using it
JP2010153140A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2012089303A (en) * 2010-10-18 2012-05-10 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery using the same
JP2012160320A (en) * 2011-01-31 2012-08-23 Nissan Motor Co Ltd Electrode, electric device, and method for manufacturing electrode
JP2016519399A (en) * 2013-05-03 2016-06-30 ジェナックス インコーポレイテッド Nonwoven fabric current collector, battery manufacturing method and system using the same
JP2017529663A (en) * 2014-08-30 2017-10-05 ジェナックス インコーポレイテッド Flexible secondary battery and manufacturing method thereof
JP2018526791A (en) * 2015-09-01 2018-09-13 ジェナックス インコーポレイテッド Secondary battery electrode and manufacturing method thereof
JP2018535535A (en) * 2016-09-09 2018-11-29 エルジー・ケム・リミテッド Electrode including three-dimensional network electrode collector
JP2018113108A (en) * 2017-01-06 2018-07-19 学校法人早稲田大学 Secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975854A (en) * 2022-06-13 2022-08-30 珠海冠宇电池股份有限公司 Negative plate containing metal fibers and battery comprising negative plate
CN114975854B (en) * 2022-06-13 2023-07-18 珠海冠宇电池股份有限公司 Negative plate containing metal fibers and battery comprising same
WO2024018982A1 (en) * 2022-07-19 2024-01-25 マクセル株式会社 All-solid-state battery
CN115832187A (en) * 2022-07-20 2023-03-21 宁德时代新能源科技股份有限公司 Electrode, method for producing same, secondary battery, battery module, battery pack, and electric device

Also Published As

Publication number Publication date
JP7426039B2 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP7329803B2 (en) lithium secondary battery
JP5504708B2 (en) Bipolar secondary battery
JP5333576B2 (en) Bipolar secondary battery and manufacturing method thereof
KR101689496B1 (en) Non-aqueous electrolyte secondary battery
KR101758002B1 (en) Non-aqueous electrolyte secondary battery
JP5458605B2 (en) Bipolar secondary battery
JP7014169B2 (en) Lithium secondary battery
KR101647910B1 (en) Bipolar electrode and bipolar lithium-ion secondary battery using same
JP5286972B2 (en) Negative electrode for lithium ion secondary battery
JP7426039B2 (en) Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries
KR20090049023A (en) Electrical storage device
JP6201642B2 (en) Power storage device
JP2010192255A (en) Electrode structure, and lithium-ion secondary battery
JP2020135974A (en) All-solid-state battery
JP2017033773A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP2020013637A (en) battery
WO2018212027A1 (en) Electrolyte solution for lithium ion secondary batteries and lithium ion secondary battery using same
US20220407047A1 (en) Lithium secondary battery
JP6004088B2 (en) Nonaqueous electrolyte secondary battery
JP2021099958A (en) All-solid-state lithium-ion secondary battery
JP2019212603A (en) Lithium secondary battery
KR20170019349A (en) Sodium ion secondary battery
WO2013005358A1 (en) Power storage apparatus and vehicle
JP7378032B2 (en) lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240112

R150 Certificate of patent or registration of utility model

Ref document number: 7426039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150