JP2012160292A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012160292A
JP2012160292A JP2011018093A JP2011018093A JP2012160292A JP 2012160292 A JP2012160292 A JP 2012160292A JP 2011018093 A JP2011018093 A JP 2011018093A JP 2011018093 A JP2011018093 A JP 2011018093A JP 2012160292 A JP2012160292 A JP 2012160292A
Authority
JP
Japan
Prior art keywords
winding
porous layer
positive electrode
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011018093A
Other languages
Japanese (ja)
Inventor
Kota Ogawa
広太 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011018093A priority Critical patent/JP2012160292A/en
Publication of JP2012160292A publication Critical patent/JP2012160292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is excellent in cycle characteristic.SOLUTION: The nonaqueous electrolyte secondary battery stores, in a bottomed cylindrical armor, a nonaqueous electrolyte containing nonaqueous solvent and electrolyte salt as well as a winding electrode body on which a positive electrode plate, in which a positive electrode active material layer is formed in a band-like positive electrode core body, a negative electrode plate, in which a negative electrode active material layer is formed in a band-like negative electrode core body, and a separator which separates the positive electrode plate from the negative electrode plate. A porous layer containing inorganic particles is formed on an active material layer of at least one of the positive electrode active material layer and the negative electrode active material layer. The following conditions are established: 3≤x≤5, and 1≤y<x, where x is thickness at a winding center side end part of the porous layer and y is thickness at a winding terminal side end part of the porous layer. The thickness of the porous layer reduces gradually from the winding center side end part toward the winding terminal side end part.

Description

本発明は、非水電解質二次電池の改良に関する。   The present invention relates to an improvement in a non-aqueous electrolyte secondary battery.

近年、携帯電話、ノートパソコン等の移動情報端末の高機能化・小型化および軽量化が急速に進展している。これらの端末の駆動電源として、高いエネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。   In recent years, mobile information terminals such as mobile phones and notebook personal computers have been rapidly advanced in function, size and weight. As a driving power source for these terminals, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having high energy density and high capacity are widely used.

非水電解質二次電池は、さらなる高容量化が求められており、この要望に応えるため、正極や負極の活物質充填密度を高めることがなされている。しかしながら、活物質充填密度を高めると、その分電極内の空隙体積が減少し、電極内に保持される非水電解質量が減少する。電極内で非水電解質量不足が生じると、非水電解質量が不足する部位において充放電がスムースに進行せず、且つ、非水電解質量が不足していない部位において局所的に大きな電流が流れることになる。このように、極板内で電流のアンバランスが生じると、極板表面にリチウムが析出し易くなったり、活物質が劣化し易くなったりするので、充放電サイクル特性が低下するという問題がある。   Non-aqueous electrolyte secondary batteries are required to have higher capacities, and in order to meet this demand, the active material filling density of the positive electrode and the negative electrode is increased. However, when the active material packing density is increased, the void volume in the electrode is reduced accordingly, and the nonaqueous electrolytic mass retained in the electrode is reduced. When the non-aqueous electrolysis mass shortage occurs in the electrode, charging / discharging does not proceed smoothly in the region where the non-aqueous electrolysis mass is insufficient, and a large current flows locally in the region where the non-aqueous electrolysis mass is not insufficient. It will be. Thus, when current imbalance occurs in the electrode plate, lithium tends to precipitate on the surface of the electrode plate or the active material is likely to be deteriorated, so that there is a problem that charge / discharge cycle characteristics are deteriorated. .

ここで、非水電解質電池に関する技術としては、下記特許文献1〜4が挙げられる。   Here, the following patent documents 1-4 are mentioned as a technique regarding a nonaqueous electrolyte battery.

特開2009-38016号公報JP 2009-38016 A 特開2006-12703号公報JP 2006-12703 特開平9-180704号公報JP-A-9-80704 特開2007-172880号公報JP 2007-172880 JP

特許文献1は、長尺状の芯材と、その上に形成された合剤層と、芯材の長手方向に平行な一方の辺に沿って設けられた芯材の露出部を有する電極板において、芯材の露出部の少なくとも合剤層の端面付近および合剤層に、多孔質膜が形成する技術である。この技術によると、振動などによって正極と負極との位置のずれが発生した場合にも、高い信頼性を維持できる非水電解質二次電池が得られるとされる。   Patent Document 1 discloses an electrode plate having a long core material, a mixture layer formed thereon, and an exposed portion of the core material provided along one side parallel to the longitudinal direction of the core material. In this technique, a porous film is formed at least in the vicinity of the end face of the mixture layer and at the mixture layer in the exposed portion of the core material. According to this technology, it is said that a non-aqueous electrolyte secondary battery that can maintain high reliability can be obtained even when displacement between the positive electrode and the negative electrode occurs due to vibration or the like.

特許文献2は、合剤層の厚みが電極群の内側より外側が大きく、かつ、合剤層のかさ密度がそれぞれ略均一である正、負極板を用い、集電タブを電極群の端面から集電体の一定長さに対して1つずつ導出された電極群を用いる技術である。この技術によると、高出力及び高容量を両立可能な二次電池が得られるとされる。   Patent Document 2 uses positive and negative electrode plates in which the thickness of the mixture layer is larger than the inside of the electrode group and the bulk density of the mixture layer is substantially uniform, and the current collecting tab is formed from the end face of the electrode group. This is a technique using an electrode group derived one by one for a certain length of the current collector. According to this technique, a secondary battery capable of achieving both high output and high capacity is obtained.

特許文献3は、正極シート、負極シートの少なくともひとつの電極シートの少なくともひとつの面に塗布された電極材料量が電極シート長さ方向で変化させる技術である。この技術によると、高容量かつサイクル特性が良好で、安全性の高い電池が得られるとされる。   Patent Document 3 is a technique in which the amount of electrode material applied to at least one surface of at least one electrode sheet of a positive electrode sheet and a negative electrode sheet is changed in the electrode sheet length direction. According to this technology, it is said that a battery having high capacity, good cycle characteristics, and high safety can be obtained.

特許文献4は、正極板および負極板において合剤層に、ともに短辺に平行な断面においてその幅方向の一端側には他端側に比べてその厚みを厚くした厚肉部を形成し、かつ、正極板と負極板とは厚肉部が互いに反対側に位置するように配する技術である。この技術によると、正極板と負極板の巻きずれを防止できるとされる。   Patent Document 4 forms a thick portion in the positive electrode plate and the negative electrode plate, both of which are thicker than the other end side at one end side in the width direction in the cross section parallel to the short side, In addition, the positive electrode plate and the negative electrode plate are techniques that are arranged so that the thick portions are located on opposite sides. According to this technique, it can be said that winding of the positive electrode plate and the negative electrode plate can be prevented.

しかしながら、上記特許文献1〜4にかかる技術では、サイクル特性を十分に高めることはできなかった。   However, the techniques according to Patent Documents 1 to 4 cannot sufficiently improve cycle characteristics.

本発明は、上記に鑑みなされたものであって、サイクル特性に優れた非水電解質二次電池を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the nonaqueous electrolyte secondary battery excellent in cycling characteristics.

上記課題を解決するための本発明は、帯状の正極芯体に正極活物質層が形成された正極板と、帯状の負極芯体に負極活物質層が形成された負極板と、前記正極板と前記負極板を離隔するセパレータと、が巻回されてなる巻回電極体と、非水溶媒及び電解質塩を有する非水電解質と、が有底円筒形の外装体内に収納された非水電解質二次電池において、前記正極活物質層と前記負極活物質層の少なくともいずれか一方の活物質層上には、無機粒子を有する多孔質層が形成され、前記多孔質層の巻回中心側端部における厚みをx、前記多孔質層の巻回終端側端部における厚みをyとするとき、3≦x≦5、且つ、1≦y<xが成立し、前記多孔質層の厚みは、巻回中心側端部から巻回終端側端部に向かって小さくなっていることを特徴とする。   In order to solve the above problems, the present invention provides a positive electrode plate in which a positive electrode active material layer is formed on a belt-like positive electrode core, a negative electrode plate in which a negative electrode active material layer is formed on a belt-like negative electrode core, and the positive electrode plate And a separator separating the negative electrode plate, a wound electrode body wound, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt are housed in a bottomed cylindrical outer package In the secondary battery, a porous layer having inorganic particles is formed on at least one of the positive electrode active material layer and the negative electrode active material layer, and a winding center side end of the porous layer is formed. Where x is the thickness at the part and y is the thickness at the winding end side end of the porous layer, 3 ≦ x ≦ 5 and 1 ≦ y <x are satisfied, and the thickness of the porous layer is It is characterized by decreasing from the winding center side end toward the winding end side end.

巻回電極体を用いる電池の場合、巻き終わり側(巻回終端側)よりも巻き始め側(巻回中心側)に大きな巻回圧が加わり、巻回圧により活物質層の空隙がさらに小さくなるので、上述した非水電解質不足は巻き始め側においてより起き易い。   In the case of a battery using a wound electrode body, a larger winding pressure is applied to the winding start side (winding center side) than the winding end side (winding end side), and the voids in the active material layer are further reduced by the winding pressure. Therefore, the above non-aqueous electrolyte shortage is more likely to occur on the winding start side.

ここで、正極や負極の活物質層表面に多孔質層を形成すると、当該多孔質層が良好に非水電解質を保持し、保持した非水電解質を活物質層に供給する作用を有するので、非水電解質不足を防止できる。この多孔質層は、厚みが厚いほど保持できる非水電解質量が増加するが、多孔質層自体は充放電反応に直接関与しないため、厚みを厚くしすぎると、放電容量が低下する。   Here, when the porous layer is formed on the surface of the active material layer of the positive electrode or the negative electrode, the porous layer favorably holds the nonaqueous electrolyte, and has the action of supplying the held nonaqueous electrolyte to the active material layer. A shortage of non-aqueous electrolyte can be prevented. As the thickness of the porous layer increases, the non-aqueous electrolytic mass that can be retained increases. However, since the porous layer itself does not directly participate in the charge / discharge reaction, if the thickness is increased too much, the discharge capacity decreases.

上記本発明の構成では、多孔質層の厚みが、巻回中心側端部>巻回終端側端部であり、且つ、巻回終端側端部に向かって厚みが小さくなっている構成となっており、巻回中心から巻回終端にかけての非水電解質の供給量のバランスが良好に保たれる。これにより、多孔質層の総体積を大きくしすぎることなく極板内での電流のアンバランスを防止できる。すなわち、放電容量を犠牲にすることなくリチウムの析出や活物質の劣化を抑制し、サイクル特性を顕著に高めることができる。   In the configuration of the present invention, the thickness of the porous layer is such that the winding center side end> the winding end side end, and the thickness decreases toward the winding end side end. Therefore, the balance of the amount of nonaqueous electrolyte supplied from the winding center to the winding end is well maintained. Thereby, current imbalance in the electrode plate can be prevented without increasing the total volume of the porous layer. That is, it is possible to suppress the precipitation of lithium and the deterioration of the active material without sacrificing the discharge capacity, and to remarkably improve the cycle characteristics.

ここで、巻回圧が大きく作用する巻回中心側において十分な量の非水電解質を保持するためには、巻回中心側端部における多孔質層の厚みを3μm以上とする。また、作用する巻回圧が小さい巻回終端側において十分な量の非水電解質を保持するためには、巻回終端側端部における多孔質層の厚みを1μm以上とする。また、放電容量低下を防止する観点から、多孔質層の厚みの上限は5μmとする。   Here, in order to hold a sufficient amount of the non-aqueous electrolyte on the winding center side where the winding pressure acts greatly, the thickness of the porous layer at the winding center side end is set to 3 μm or more. Further, in order to retain a sufficient amount of the nonaqueous electrolyte on the winding end side where the acting winding pressure is small, the thickness of the porous layer at the winding end side end is set to 1 μm or more. From the viewpoint of preventing the discharge capacity from decreasing, the upper limit of the thickness of the porous layer is 5 μm.

なお、正極側に設けた多孔質層は、保持した非水電解質を正極側のみではなく、対向配置された負極側にも供給し、負極側に設けた多孔質層は、保持した非水電解質を負極側のみではなく、正極側にも供給する。よって、多孔質層は正負電極板のいずれに設けてもよく、双方に設けてもよい。双方に設けたときは、双方に設けられた多孔質の合計が5μm以下であることが好ましい。   The porous layer provided on the positive electrode side supplies the retained nonaqueous electrolyte not only to the positive electrode side, but also to the negative electrode side disposed oppositely, and the porous layer provided on the negative electrode side provides the retained nonaqueous electrolyte. Is supplied not only to the negative electrode side but also to the positive electrode side. Therefore, the porous layer may be provided on either the positive or negative electrode plate, or may be provided on both. When provided on both sides, the total of the porous provided on both sides is preferably 5 μm or less.

また、多孔質層の厚み分布は、連続的に厚みが変化していてもよく、不連続に厚みが変化していてもよい。   In addition, the thickness distribution of the porous layer may change continuously or discontinuously.

多孔質層には、無機粒子が必須成分として含まれるが、これに加えて結着剤やその他の添加剤を含んでいてもよい。また、多孔質層を構成する材料が全て絶縁性材料であると、セパレータに加えて多孔質層もまた正負電極間の短絡を防止するように作用するので好ましい。   In the porous layer, inorganic particles are included as an essential component, but in addition to this, a binder and other additives may be included. In addition, it is preferable that the material constituting the porous layer is an insulating material because the porous layer also acts to prevent a short circuit between the positive and negative electrodes in addition to the separator.

無機粒子としては、アルミニウム酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物、ケイ素酸化物からなる群より選択された少なくとも一種を含むことが好ましい。より具体的にはアルミナ、チタニア、マグネシア、ジルコニア、シリカ等を用いることができる。無機粒子の平均粒径は、0.1〜1.0μmとすることが好ましい。   The inorganic particles preferably include at least one selected from the group consisting of aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide, and silicon oxide. More specifically, alumina, titania, magnesia, zirconia, silica, or the like can be used. The average particle size of the inorganic particles is preferably 0.1 to 1.0 μm.

また、多孔質層が良好に非水電解質を保持するために、多孔質層の空隙率は30〜80%とすることが好ましい。   Moreover, in order for a porous layer to hold | maintain a non-aqueous electrolyte favorably, it is preferable that the porosity of a porous layer shall be 30-80%.

また、放電容量を高めるために正極の充電電位を高めると、放電容量当たりの非水電解質量が不足し易くなる。しかしながら、本発明の構成を採用することにより、非水電解質不足を防止できるので、本発明を正極板の充電時の電位が、リチウム基準で4.35〜4.45Vである電池に適用することにより、放電容量が大きくサイクル特性に優れた非水電解質二次電池を実現できる。   Further, when the charge potential of the positive electrode is increased in order to increase the discharge capacity, the nonaqueous electrolytic mass per discharge capacity tends to be insufficient. However, since the non-aqueous electrolyte shortage can be prevented by adopting the configuration of the present invention, the present invention is applied to a battery in which the potential at the time of charging the positive electrode plate is 4.35 to 4.45 V with respect to lithium. Thus, a nonaqueous electrolyte secondary battery having a large discharge capacity and excellent cycle characteristics can be realized.

また、このような高電位充電を行う電池においては、負極活物質として、リチウム基準での充電電位が約0.1Vである炭素材料を用いると、電力量の大きい電池を実現できるため、好ましい。   In a battery that performs such high-potential charging, it is preferable to use a carbon material having a charging potential of about 0.1 V based on lithium as the negative electrode active material because a battery with a large amount of electric power can be realized.

炭素系材料としては、人造黒鉛、天然黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、あるいはこれらの焼成体等の炭素質物等を用いることができる。   As the carbon-based material, artificial graphite, natural graphite, carbon black, coke, glassy carbon, carbon fiber, or a carbonaceous material such as a fired body thereof can be used.

一方で、黒鉛よりもリチウム基準の電位が高いケイ素やすず、その他合金や酸化物を含む負極活物質を用いる非水電解質二次電池は、電池電圧を高めるために正極活物質を高い電位まで用いることがある。そのため、このような非水電解質二次電池であっても炭素系材料を負極活物質に用いたものと同様に本発明の効果が得られる。   On the other hand, non-aqueous electrolyte secondary batteries using a negative electrode active material containing silicon or tin, which has a higher lithium reference potential than graphite, and other alloys and oxides, use the positive electrode active material to a higher potential in order to increase the battery voltage. Sometimes. Therefore, even if it is such a nonaqueous electrolyte secondary battery, the effect of this invention is acquired similarly to what used the carbonaceous material for the negative electrode active material.

また、本発明は、X線回折法により算出される活物質の真密度の70%以上の充填密度で充填されるような高密度充填の(非水電解質不足が起き易い)非水電解質二次電池に適用すると、その効果がより顕著に発揮される。   In addition, the present invention provides a non-aqueous electrolyte secondary filled with a high density (which tends to cause a shortage of non-aqueous electrolyte) such that it is filled at a packing density of 70% or more of the true density of the active material calculated by the X-ray diffraction method. When applied to a battery, the effect is more prominent.

本発明によると、巻回電極体の非水電解質保持量を均一化し、これによりサイクル特性に優れた非水電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a uniform non-aqueous electrolyte retention amount of the wound electrode body, and thereby excellent cycle characteristics.

以下に、本発明を実施するための形態を、実施例を用いて詳細に説明する。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated in detail using an Example.

(実施例1)
<正極の作製>
炭酸コバルトを550℃で熱分解反応させて、四酸化三コバルト(Co)を得た。これに、リチウム源としての炭酸リチウム(LiCO)を、CoとLiとのモル比が1:1となるように混合し、空気雰囲気で850℃で20間焼成して、コバルト酸リチウム(LiCoO)を得た。これを乳鉢で平均粒径が15μmとなるように粉砕した。
Example 1
<Preparation of positive electrode>
Cobalt carbonate was pyrolyzed at 550 ° C. to obtain tricobalt tetroxide (Co 3 O 4 ). Lithium carbonate (Li 2 CO 3 ) as a lithium source was mixed with this so that the molar ratio of Co and Li was 1: 1, and calcined at 850 ° C. for 20 hours in an air atmosphere to obtain lithium cobalt oxide. (LiCoO 2 ) was obtained. This was pulverized with a mortar so that the average particle size was 15 μm.

上記コバルト酸リチウムと、導電剤としての炭素粉末と、結着剤としてのポリビニリデンフルオライド(PVdF)とを、質量比96:2:2の割合で混合し、これらをN−メチル−2−ピロリドン(NMP)と混合し、正極活物質スラリーを調製した。   The lithium cobaltate, carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are mixed in a mass ratio of 96: 2: 2, and these are mixed with N-methyl-2- A positive electrode active material slurry was prepared by mixing with pyrrolidone (NMP).

次に、ドクターブレードを用いて、帯状のアルミニウム箔(厚さが15μm)からなる正極芯体の両面に、この正極活物質スラリーを均一な厚みで塗布した。このとき、活物質塗布部分の長さを550mm、活物質未塗布部分の長さを75mmとした。この極板を乾燥機内に通して、スラリー調製時に用いた有機溶媒(NMP)を除去し、乾燥極板を作製した。この乾燥極板を、ロールプレス機を用いて厚みが160μmとなるように圧延し、所定のサイズに裁断して、正極板を得た。   Next, using a doctor blade, this positive electrode active material slurry was applied to both surfaces of a positive electrode core made of a strip-shaped aluminum foil (thickness: 15 μm) with a uniform thickness. At this time, the length of the active material application part was 550 mm, and the length of the active material non-application part was 75 mm. This electrode plate was passed through a drier to remove the organic solvent (NMP) used at the time of slurry preparation to produce a dry electrode plate. The dried electrode plate was rolled using a roll press so that the thickness was 160 μm, and cut into a predetermined size to obtain a positive electrode plate.

<負極の作製>
負極活物質としての黒鉛粉末と、結着剤としてのスチレンブタジエンゴムと、増粘剤としてのカルボキシメチルセルロースとを、質量比97.5:1.5:1の割合で混合し、これらを水と混合し、負極活物質スラリーを調製した。
<Production of negative electrode>
Graphite powder as a negative electrode active material, styrene butadiene rubber as a binder, and carboxymethyl cellulose as a thickener are mixed in a mass ratio of 97.5: 1.5: 1, and these are mixed with water. The negative electrode active material slurry was prepared by mixing.

次に、ドクターブレードを用いて、帯状の銅箔(厚さが10μm)からなる負極芯体の両面に、この負極活物質スラリーを均一な厚さで塗布した。このとき、活物質塗布部分の長さを590mm、活物質未塗布部分の長さを60mmとした。この極板を乾燥機内に通して、スラリー調製時に用いた水分を除去し、乾燥極板を作製した。その後、この乾燥極板を、ロールプレス機により厚みが145μmとなるように圧延し、所定のサイズに裁断して、負極板を得た。   Next, this negative electrode active material slurry was applied with a uniform thickness on both surfaces of a negative electrode core made of a strip-shaped copper foil (thickness: 10 μm) using a doctor blade. At this time, the length of the active material application part was 590 mm, and the length of the active material non-application part was 60 mm. The electrode plate was passed through a drier to remove the water used during slurry preparation, and a dried electrode plate was produced. Then, this dry electrode plate was rolled with a roll press so that the thickness was 145 μm, and cut into a predetermined size to obtain a negative electrode plate.

なお、黒鉛の充電時の電位はリチウム基準で約0.1Vであり、正極板及び負極板の活物質量は、設計基準となる正極活物質の電位(本実施例ではリチウム基準で4.40V)において、正極と負極の充電容量比(負極充電容量/正極充電容量)を、1.1となるように調整した。ここで、上記充電容量比は、1.0〜1.1の範囲内とすることが好ましい。   In addition, the electric potential at the time of charge of graphite is about 0.1 V on the basis of lithium, and the amount of active material of the positive electrode plate and the negative electrode plate is the electric potential of the positive electrode active material which is a design standard (in this example, 4.40 V on the basis of lithium). ), The charge capacity ratio between the positive electrode and the negative electrode (negative electrode charge capacity / positive electrode charge capacity) was adjusted to 1.1. Here, the charge capacity ratio is preferably in the range of 1.0 to 1.1.

<多孔質層の形成>
酸化アルミニウム(住友化学製AKP3000)と、カルボキシメチルセルロース(ダイセル化学工業製#1380)と、純水と、を質量比30.0:0.5:69.5で混錬機(PRIMIX社製ハイビスミクス)内に投入し、混錬した。得られたスラリーを、ビーズミル(浅田鉄工製ナノミル分散装置)を用いて分散させた。分散条件は、内容積0.3L、ビーズ直径0.5mm、スリット0.15mm、ビーズ充填量90%、周速40Hz,処理流量1.5kg/minとした。こののち、酸化アルミニウムの質量に対して3.75質量%のアクリル系ゴムバインダーと、純水とを、酸化アルミニウムの質量割合が30質量%となるように加え、上記混錬機で混錬した。
<Formation of porous layer>
Aluminum oxide (AKP3000 manufactured by Sumitomo Chemical Co., Ltd.), carboxymethylcellulose (# 1380 manufactured by Daicel Chemical Industries, Ltd.) and pure water are mixed at a mass ratio of 30.0: 0.5: 69.5 (HIMIX made by PRIMIX) ) And kneaded. The obtained slurry was dispersed using a bead mill (Nanomill dispersing apparatus manufactured by Asada Tekko). The dispersion conditions were an internal volume of 0.3 L, a bead diameter of 0.5 mm, a slit of 0.15 mm, a bead filling amount of 90%, a peripheral speed of 40 Hz, and a treatment flow rate of 1.5 kg / min. After that, 3.75% by mass of acrylic rubber binder with respect to the mass of aluminum oxide and pure water were added so that the mass ratio of aluminum oxide would be 30% by mass and kneaded by the kneader. .

上記正極板の正極活物質層上に、上記分散スラリーをディップコート方式により塗布した。このとき、巻き始めから100mmまでの領域はディップ回数を5回、100〜200mmまでの領域はディップ回数を4回、200〜300mmまでの領域はディップ回数を3回、300〜400mmまでの領域はディップ回数を2回、400mmから巻き終わりまでの領域はディップ回数を1回とし、且つ、多孔質層の厚みは、巻き始めで3μm、巻き終わりで1μmとなるようにした。   The dispersion slurry was applied on the positive electrode active material layer of the positive electrode plate by a dip coating method. At this time, the region from the start of winding to 100 mm has 5 dip times, the region from 100 to 200 mm has 4 dip times, the region from 200 to 300 mm has 3 dip times, and the region from 300 to 400 mm has 3 dip times. The number of dip times was 2, and the region from 400 mm to the end of winding was set to 1 dip, and the thickness of the porous layer was 3 μm at the start of winding and 1 μm at the end of winding.

<電極体の作製>
多孔質層が形成された正極板にアルミニウム製のリードを、上記負極板にニッケル製のリードを、それぞれ溶接した。こののち、正極板と負極板とポリエチレン製微多孔膜からなるセパレータ(厚み22μm)とを重ね合わせ、巻き取り機により巻回し、絶縁性の巻き止めテープを設けて、巻回電極体を完成させた。
<Production of electrode body>
An aluminum lead was welded to the positive electrode plate on which the porous layer was formed, and a nickel lead was welded to the negative electrode plate. After that, the positive electrode plate, the negative electrode plate, and a separator (thickness 22 μm) made of polyethylene are overlapped, wound by a winder, and provided with an insulating winding tape to complete a wound electrode body. It was.

<非水電解質の調製>
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比3:7の割合(1気圧、25℃と換算した場合における)で混合した非水溶媒に、電解質塩としてのLiPFを1.0M(モル/リットル)の割合で溶解して非水電解質となした。
<Preparation of non-aqueous electrolyte>
LiPF 6 as an electrolyte salt is added to a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 3: 7 (when converted to 1 atm and 25 ° C.). A non-aqueous electrolyte was obtained by dissolving at a rate of 0 M (mol / liter).

<電池の組み立て>
上記巻回電極体の上下面にそれぞれ絶縁板を配置し、有底円筒形の外装缶内に上記電極体を挿入し、正極リードを封口板に、負極リードを外装缶にそれぞれ溶接した。こののち、Arを満たしたグローボックス内で、上記非水電解質を外装缶内に注液した。こののち、封口板を絶縁ガスケットを用いてカシメ固定し、直径18mm、高さ65mm、設計容量が2.2Ahである実施例1に係る非水電解質二次電池を作製した。
<Battery assembly>
Insulating plates were respectively arranged on the upper and lower surfaces of the wound electrode body, the electrode body was inserted into a bottomed cylindrical outer can, and the positive electrode lead was welded to the sealing plate and the negative electrode lead was welded to the outer can. After that, the nonaqueous electrolyte was injected into the outer can in a glow box filled with Ar. After that, the sealing plate was caulked and fixed using an insulating gasket to produce a nonaqueous electrolyte secondary battery according to Example 1 having a diameter of 18 mm, a height of 65 mm, and a design capacity of 2.2 Ah.

(実施例2)
上記多孔質層の厚みを、巻き始めで4μm、巻き終わりで1μmとなるようにしたこと以外は、上記実施例1と同様にして、実施例2に係る電池を作製した。
(Example 2)
A battery according to Example 2 was fabricated in the same manner as in Example 1 except that the thickness of the porous layer was 4 μm at the beginning of winding and 1 μm at the end of winding.

(実施例3)
上記多孔質層の厚みを、巻き始めで5μm、巻き終わりで1μmとなるようにしたこと以外は、上記実施例1と同様にして、実施例3に係る電池を作製した。
(Example 3)
A battery according to Example 3 was fabricated in the same manner as in Example 1 except that the thickness of the porous layer was 5 μm at the beginning of winding and 1 μm at the end of winding.

(実施例4)
多孔質層を設けていない正極板を用い、且つ、以下に示す方法で負極活物質層上に多孔質層を形成した負極板を用いたこと以外は、上記実施例1と同様にして、実施例4に係る電池を作製した。
Example 4
Implementation was carried out in the same manner as in Example 1 except that a positive electrode plate having no porous layer was used and a negative electrode plate having a porous layer formed on the negative electrode active material layer by the following method was used. A battery according to Example 4 was produced.

<多孔質層の形成>
酸化アルミニウム(住友化学製AKP3000)と、ポリビニリデンフルオライド(PVdF)と、N−メチル−2−ピロリドン(NMP)と、を質量比30.0:69.5:0.5で混錬機(PRIMIX社製ハイビスミクス)内に投入し、混錬した。得られたスラリーを、ビーズミル(浅田鉄工製ナノミル分散装置)を用いて分散させた。分散条件は、内容積0.3L、ビーズ直径0.5mm、スリット0.15mm、ビーズ充填量90%、周速40Hz,処理流量1.5kg/minとした。
<Formation of porous layer>
Aluminum oxide (AKP3000 manufactured by Sumitomo Chemical), polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) at a mass ratio of 30.0: 69.5: 0.5 The mixture was introduced into PRIMIX Hibismix) and kneaded. The obtained slurry was dispersed using a bead mill (Nanomill dispersing apparatus manufactured by Asada Tekko). The dispersion conditions were an internal volume of 0.3 L, a bead diameter of 0.5 mm, a slit of 0.15 mm, a bead filling amount of 90%, a peripheral speed of 40 Hz, and a treatment flow rate of 1.5 kg / min.

上記負極板に、上記分散スラリーをディップコート方式により塗布した。このとき、巻き始めから100mmまでの領域はディップ回数を5回、100〜200mmまでの領域はディップ回数を4回、200〜300mmまでの領域はディップ回数を3回、300〜400mmまでの領域はディップ回数を2回、400mmから巻き終わりまでの領域はディップ回数を1回とし、且つ、多孔質層の厚みは、巻き始めで3μm、巻き終わりで1μmとなるようにした。   The dispersion slurry was applied to the negative electrode plate by a dip coating method. At this time, the region from the start of winding to 100 mm has 5 dip times, the region from 100 to 200 mm has 4 dip times, the region from 200 to 300 mm has 3 dip times, and the region from 300 to 400 mm has 3 dip times. The number of dip times was 2, and the region from 400 mm to the end of winding was set to 1 dip, and the thickness of the porous layer was 3 μm at the start of winding and 1 μm at the end of winding.

(実施例5)
上記多孔質層の厚みを、巻き始めで4μm、巻き終わりで1μmとなるようにしたこと以外は、上記実施例4と同様にして、実施例5に係る電池を作製した。
(Example 5)
A battery according to Example 5 was fabricated in the same manner as in Example 4 except that the thickness of the porous layer was 4 μm at the start of winding and 1 μm at the end of winding.

(実施例6)
上記多孔質層の厚みを、巻き始めで5μm、巻き終わりで1μmとなるようにしたこと以外は、上記実施例4と同様にして、実施例6に係る電池を作製した。
(Example 6)
A battery according to Example 6 was made in the same manner as in Example 4 except that the thickness of the porous layer was 5 μm at the beginning of winding and 1 μm at the end of winding.

(比較例1)
多孔質層を設けていない正極板を用いたこと以外は、上記実施例1と同様にして、比較例1に係る電池を作製した。
(Comparative Example 1)
A battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that a positive electrode plate without a porous layer was used.

(比較例2)
上記多孔質層の厚みを、巻き始めで1μm、巻き終わりで3μmとなるようにしたこと以外は、上記実施例1と同様にして、比較例2に係る電池を作製した。このとき、巻き始めから100mmまでの領域はディップ回数を1回、100〜200mmまでの領域はディップ回数を2回、200〜300mmまでの領域はディップ回数を3回、300〜400mmまでの領域はディップ回数を4回、400mmから巻き終わりまでの領域はディップ回数を5回とした。
(Comparative Example 2)
A battery according to Comparative Example 2 was fabricated in the same manner as in Example 1 except that the thickness of the porous layer was 1 μm at the beginning of winding and 3 μm at the end of winding. At this time, the region from the start of winding to 100 mm has one dip, the region from 100 to 200 mm has two dips, the region from 200 to 300 mm has three dips, the region from 300 to 400 mm The number of dip times was 4, and the number of dip times was 5 in the region from 400 mm to the end of winding.

(比較例3)
上記多孔質層の厚みを、全ての領域で2μmとなるようにしたこと以外は、上記実施例1と同様にして、比較例3に係る電池を作製した。このとき、ディップ回数は全ての領域で3回とした。
(Comparative Example 3)
A battery according to Comparative Example 3 was fabricated in the same manner as in Example 1 except that the thickness of the porous layer was 2 μm in all regions. At this time, the number of dips was set to 3 in all the areas.

(比較例4)
上記多孔質層の厚みを、巻き始めで1μm、巻き終わりで3μmとなるようにしたこと以外は、上記実施例4と同様にして、比較例4に係る電池を作製した。このとき、巻き始めから100mmまでの領域はディップ回数を1回、100〜200mmまでの領域はディップ回数を2回、200〜300mmまでの領域はディップ回数を3回、300〜400mmまでの領域はディップ回数を4回、400mmから巻き終わりまでの領域はディップ回数を5回とした。
(Comparative Example 4)
A battery according to Comparative Example 4 was produced in the same manner as in Example 4 except that the thickness of the porous layer was 1 μm at the beginning of winding and 3 μm at the end of winding. At this time, the region from the start of winding to 100 mm has one dip, the region from 100 to 200 mm has two dips, the region from 200 to 300 mm has three dips, the region from 300 to 400 mm The number of dip times was 4, and the number of dip times was 5 in the region from 400 mm to the end of winding.

(比較例5)
上記多孔質層の厚みを、全ての領域で2μmとなるようにしたこと以外は、上記実施例4と同様にして、比較例5に係る電池を作製した。このとき、ディップ回数は全ての領域で3回とした。
(Comparative Example 5)
A battery according to Comparative Example 5 was produced in the same manner as in Example 4 except that the thickness of the porous layer was 2 μm in all regions. At this time, the number of dips was set to 3 in all the areas.

〔充放電サイクル試験〕
上記実施例1〜6、比較例1〜5と同じ条件で電池を作製し、これらの電池を下記条件で充放電し、下記式により容量残存率を算出した。なお、この充放電は全て25℃条件で行った。この結果を下記表1に示す。なお、この充放電は全て25℃条件で行った。
[Charge / discharge cycle test]
Batteries were produced under the same conditions as in Examples 1 to 6 and Comparative Examples 1 to 5, and these batteries were charged and discharged under the following conditions, and the capacity remaining rate was calculated according to the following formula. In addition, all this charging / discharging was performed on 25 degreeC conditions. The results are shown in Table 1 below. In addition, all this charging / discharging was performed on 25 degreeC conditions.

充電:定電流0.5It(1.1A)で電圧が4.3Vとなるまで、その後定電圧4.3Vで電流が0.02It(44mA)となるまで
放電:定電流1It(2.2A)で電圧が3.0Vとなるまで
容量維持率(%)=500サイクル目放電容量÷1サイクル目放電容量×100
Charging: constant current 0.5 It (1.1 A) until voltage reaches 4.3 V, then constant voltage 4.3 V until current reaches 0.02 It (44 mA): constant current 1 It (2.2 A) Capacity retention rate (%) until the voltage reaches 3.0V = 500th cycle discharge capacity / first cycle discharge capacity × 100

Figure 2012160292
Figure 2012160292

上記表1から、多孔質層の厚みが、巻き始めで3〜5μm、巻き終わりで1μmである実施例1〜6は、500回の充放電サイクル後の容量維持率が75〜80%であるのに対し、多孔質層を設けていない比較例1、巻き始めにおける多孔質層の厚みが1〜2μmである比較例2〜5は、容量維持率が45〜55%と、実施例1〜6のほうが優れていることがわかる。   From Table 1 above, in Examples 1 to 6, in which the thickness of the porous layer is 3 to 5 μm at the start of winding and 1 μm at the end of winding, the capacity retention rate after 500 charge / discharge cycles is 75 to 80%. On the other hand, Comparative Example 1 in which the porous layer is not provided, and Comparative Examples 2 to 5 in which the thickness of the porous layer at the beginning of winding is 1 to 2 μm have a capacity retention rate of 45 to 55%, and Examples 1 to It can be seen that 6 is better.

このことは、次のように考えられる。活物質に十分な量の非水電解質が供給されない場合、非水電解質量が不足する部位において充放電がスムースに進行せず、他の部位において局所的に大きな電流が流れることになる。これにより負極表面にリチウムが析出し易くなり、且つ、活物質が劣化し易くなる。巻回電極体においては、巻回圧が巻き始め(巻回中心)側により大きく作用し、巻き始め側の非水電解質量が、巻き終わり(巻回終端)側よりも少なくなるので、巻き始め側において特に非水電解質不足が起きやすい。ここで、正極や負極の表面に形成された多孔質層は、良好に非水電解質を保持する性質があり、多孔質層に保持された非水電解質が電極に供給されるので、非水電解質不足を防止する効果がある。   This is considered as follows. When a sufficient amount of non-aqueous electrolyte is not supplied to the active material, charging / discharging does not proceed smoothly in a portion where the non-aqueous electrolytic mass is insufficient, and a large current flows locally in other portions. Thereby, lithium is easily deposited on the negative electrode surface, and the active material is easily deteriorated. In the wound electrode body, the winding pressure acts more on the winding start (winding center) side, and the non-aqueous electrolytic mass on the winding start side becomes smaller than that on the winding end (winding end) side. In particular, a shortage of non-aqueous electrolyte is likely to occur on the side. Here, the porous layer formed on the surface of the positive electrode or the negative electrode has a property of favorably holding the non-aqueous electrolyte, and the non-aqueous electrolyte held in the porous layer is supplied to the electrode. There is an effect to prevent shortage.

実施例1〜6のように、多孔質層の厚み分布が、巻き始め端部>巻き終わり端部、且つ、巻き始めから巻き終わりに向かって厚みが小さくなっている構成に規制されていれば、電極内の非水電解質の供給量バランスが良好に保たれるので、充放電サイクルがスムースに進行し、その後の容量維持率を顕著に高めることができる。なお、多孔質層の厚みが、巻き始め≦巻き終わりである比較例2〜5や、多孔質層を形成しない比較例1では、巻き始めから巻き終わりにかけての非水電解質の供給量がアンバランスとなるので、容量維持率を十分に向上できない。   As in Examples 1 to 6, if the thickness distribution of the porous layer is restricted to a configuration in which the winding start end portion> the winding end end portion and the thickness decreases from the winding start to the winding end. Since the supply amount balance of the nonaqueous electrolyte in the electrode is kept good, the charge / discharge cycle proceeds smoothly, and the capacity retention rate thereafter can be significantly increased. In Comparative Examples 2 to 5 in which the thickness of the porous layer is the winding start ≦ the winding end, and in Comparative Example 1 in which the porous layer is not formed, the supply amount of the nonaqueous electrolyte from the winding start to the winding end is unbalanced. Therefore, the capacity maintenance rate cannot be sufficiently improved.

ここで、巻回圧が大きく作用する巻き始め側において十分な量の非水電解質を保持するためには、巻き始めにおける多孔質層の厚みを3μm以上とする。また、作用する巻回圧が小さい巻き終わり側において十分な量の非水電解質を保持するためには、巻き終わりにおける多孔質層の厚みを1μm以上とする。また、多孔質層の厚みが5μm以上となると、非水電解質保持量の増加による容量維持率向上効果がほぼ上限に達するとともに、リチウムイオンの吸蔵・脱離に直接寄与しない多孔質層体積の増加により体積エネルギー密度が低下する。よって、多孔質層の厚みの上限は、5μmとする。   Here, in order to hold a sufficient amount of the nonaqueous electrolyte on the winding start side where the winding pressure acts greatly, the thickness of the porous layer at the start of winding is set to 3 μm or more. Further, in order to maintain a sufficient amount of the nonaqueous electrolyte on the winding end side where the acting winding pressure is small, the thickness of the porous layer at the winding end is set to 1 μm or more. In addition, when the thickness of the porous layer is 5 μm or more, the capacity retention rate improvement effect due to the increase in the retained amount of the nonaqueous electrolyte reaches almost the upper limit, and the volume of the porous layer that does not directly contribute to the insertion / desorption of lithium ions is increased. As a result, the volume energy density decreases. Therefore, the upper limit of the thickness of the porous layer is 5 μm.

また、正極側に多孔質層を設けた実施例1〜3と、負極側に多孔質層を設けた実施例4〜6とにおいて、容量維持率に大きな差がないことが分かる。よって、正極側、負極側のいずれに設けたとしても、容量維持率を高めることができることがわかった。   Moreover, it turns out that there is no big difference in a capacity | capacitance maintenance factor in Examples 1-3 which provided the porous layer in the positive electrode side, and Examples 4-6 which provided the porous layer in the negative electrode side. Therefore, it was found that the capacity retention ratio can be increased regardless of whether the positive electrode side or the negative electrode side is provided.

(追加事項)
正極活物質としては、リチウム遷移金属複合酸化物、オリビン構造を有するリチウム遷移金属リン酸化合物等を用いることが好ましい。リチウム遷移金属複合酸化物としては、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、スピネル型リチウムマンガン複合酸化物や、これらの化合物に含まれる遷移金属元素の一部を他の金属元素(Zr,Mg,Ti,Al等)に置換した化合物が好ましい。また、オリビン構造を有するリチウム遷移金属リン酸化合物としては、リン酸鉄リチウムが好ましい。これらを単独で用いることができ、又は複数種混合して用いることもできる。
(Additions)
As the positive electrode active material, it is preferable to use a lithium transition metal composite oxide, a lithium transition metal phosphate compound having an olivine structure, or the like. Lithium transition metal composite oxide includes lithium cobalt composite oxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium nickel cobalt manganese composite oxide, spinel type lithium manganese composite oxide, and these compounds A compound in which a part of the transition metal element is substituted with another metal element (Zr, Mg, Ti, Al, etc.) is preferable. The lithium transition metal phosphate compound having an olivine structure is preferably lithium iron phosphate. These can be used alone, or can be used in combination of two or more.

非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステル類、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類、ジメチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、ジノルマルブチルカーボネート等の鎖状炭酸エステル類、ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネート等のカルボン酸エステル類、1,2−ジメトキシエタン等の鎖状エーテル類、N,N’−ジメチルホルムアミド、N−メチルオキサゾリジノン等のアミド類、スルホラン等の含硫黄化合物等を一種又は複数種混合して用いることが好ましい。   Nonaqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, lactones such as γ-butyrolactone, γ-valerolactone, dimethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, dinormal butyl carbonate, and the like. Chain carbonates, carboxylic acid esters such as methyl pivalate, ethyl pivalate, methyl isobutyrate, methyl propionate, chain ethers such as 1,2-dimethoxyethane, N, N′-dimethylformamide It is preferable to use amides such as N-methyloxazolidinone, sulfur-containing compounds such as sulfolane, and the like, or a mixture thereof.

電解質塩としては、LiClO、LiCFSO、LiPF、LiBF、LiAsF、LiN(CFSO、LiN(CFCFSO等を一種又は複数種混合して用いることが好ましい。また、電解質塩の濃度は、0.5〜2.0M(モル/リットル)とすることが好ましい。 As the electrolyte salt, LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (CF 2 CF 3 SO 2 ) 2 , or the like may be mixed. It is preferable to use it. Moreover, it is preferable that the density | concentration of electrolyte salt shall be 0.5-2.0M (mol / liter).

セパレータ材料としては、ポリエチレン、ポリプロピレンやこれらの複合材料等のポリオレフィンを用いることができる。また、厚みは10〜22μm、空孔率は30〜60%であることが好ましい。   As the separator material, polyolefins such as polyethylene, polypropylene, and composite materials thereof can be used. The thickness is preferably 10 to 22 μm and the porosity is preferably 30 to 60%.

また、本発明をポリマー電解質二次電池に適用することもできる。ポリマー電解質としては、ゲル状ポリマー電解質が好ましい。また、ポリマー電解質に用いるポリマー成分としては、アルキレンオキシド系高分子や、ポリビニリデンフルオライド−ヘキサフルオロプロピレン共重合体のようなフッ素系高分子等が好ましい。   The present invention can also be applied to a polymer electrolyte secondary battery. As the polymer electrolyte, a gel polymer electrolyte is preferable. The polymer component used in the polymer electrolyte is preferably an alkylene oxide polymer or a fluorine polymer such as polyvinylidene fluoride-hexafluoropropylene copolymer.

以上説明したように、本発明によると、巻回電極体の正負電極板が保持する非水電解質量を均一化でき、これによりサイクル特性に優れた非水電解質二次電池を実現できる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, the nonaqueous electrolytic mass held by the positive and negative electrode plates of the spirally wound electrode body can be made uniform, thereby realizing a nonaqueous electrolyte secondary battery excellent in cycle characteristics. Therefore, industrial applicability is great.

Claims (4)

帯状の正極芯体に正極活物質層が形成された正極板と、帯状の負極芯体に負極活物質層が形成された負極板と、前記正極板と前記負極板を離隔するセパレータと、が巻回されてなる巻回電極体と、非水溶媒及び電解質塩を有する非水電解質と、が有底円筒形の外装体内に収納された非水電解質二次電池において、
前記正極活物質層と前記負極活物質層の少なくともいずれか一方の活物質層上には、無機粒子を有する多孔質層が形成され、
前記多孔質層の巻回中心側端部における厚みをx、前記多孔質層の巻回終端側端部における厚みをyとするとき、3≦x≦5、且つ、1≦y<xが成立し、
前記多孔質層の厚みは、巻回中心側端部から巻回終端側端部に向かって小さくなっている、
ことを特徴とする非水電解質二次電池。
A positive electrode plate in which a positive electrode active material layer is formed on a belt-like positive electrode core, a negative electrode plate in which a negative electrode active material layer is formed on a belt-like negative electrode core, and a separator that separates the positive electrode plate and the negative electrode plate. In a non-aqueous electrolyte secondary battery in which a wound electrode body wound and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt are housed in a bottomed cylindrical exterior body,
A porous layer having inorganic particles is formed on at least one of the positive electrode active material layer and the negative electrode active material layer,
When the thickness at the winding center side end of the porous layer is x and the thickness at the winding end side end of the porous layer is y, 3 ≦ x ≦ 5 and 1 ≦ y <x are established. And
The thickness of the porous layer decreases from the winding center side end toward the winding end side end,
A non-aqueous electrolyte secondary battery.
請求項1に記載の非水電解質二次電池において、
前記無機粒子が、アルミニウム酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物、ケイ素酸化物からなる群より選択された少なくとも一種を含む、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1,
The inorganic particles include at least one selected from the group consisting of aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide, silicon oxide,
A non-aqueous electrolyte secondary battery.
請求項1又は2に記載の非水電解質二次電池において、
前記多孔質層の空隙率が、30〜80%である、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2,
The porosity of the porous layer is 30 to 80%.
A non-aqueous electrolyte secondary battery.
請求項1、2又は3に記載の非水電解質二次電池において、
前記正極板の電位が、リチウム基準で4.35〜4.45Vである、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1, 2, or 3,
The potential of the positive electrode plate is 4.35 to 4.45 V with respect to lithium,
A non-aqueous electrolyte secondary battery.
JP2011018093A 2011-01-31 2011-01-31 Nonaqueous electrolyte secondary battery Pending JP2012160292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018093A JP2012160292A (en) 2011-01-31 2011-01-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018093A JP2012160292A (en) 2011-01-31 2011-01-31 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2012160292A true JP2012160292A (en) 2012-08-23

Family

ID=46840679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018093A Pending JP2012160292A (en) 2011-01-31 2011-01-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2012160292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058375A (en) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058375A (en) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4213688B2 (en) Nonaqueous electrolyte battery and battery pack
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
JP5247196B2 (en) Nonaqueous electrolyte secondary battery
CN106716684B (en) Negative electrode for nonaqueous electrolyte electricity storage element, and electricity storage device
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
KR20110102832A (en) Nonaqueous electrolyte secondary battery
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
JP5017778B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
KR20110074701A (en) Method of manufacturing positive electrode of nonaqueous electrolyte secondary battery
WO2014156011A1 (en) Non-aqueous electrolyte secondary battery
JPWO2013073288A1 (en) Lithium ion secondary battery
JP2012174416A (en) Nonaqueous electrolyte secondary battery
WO2012133027A1 (en) Non-aqueous electrolyte secondary battery system
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
JP5888512B2 (en) Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US20130323570A1 (en) Nonaqueous electrolyte secondary battery
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP2011181386A (en) Nonaqueous electrolyte secondary battery
WO2015146079A1 (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7134555B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014116101A (en) Nonaqueous electrolyte secondary battery
JP2014067587A (en) Nonaqueous electrolyte secondary battery