JP5978713B2 - Terminal-modified vinyl alicyclic hydrocarbon polymer hydride - Google Patents

Terminal-modified vinyl alicyclic hydrocarbon polymer hydride Download PDF

Info

Publication number
JP5978713B2
JP5978713B2 JP2012080287A JP2012080287A JP5978713B2 JP 5978713 B2 JP5978713 B2 JP 5978713B2 JP 2012080287 A JP2012080287 A JP 2012080287A JP 2012080287 A JP2012080287 A JP 2012080287A JP 5978713 B2 JP5978713 B2 JP 5978713B2
Authority
JP
Japan
Prior art keywords
terminal
hydrocarbon polymer
alicyclic hydrocarbon
modified vinyl
vinyl alicyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012080287A
Other languages
Japanese (ja)
Other versions
JP2013209501A (en
Inventor
卓士 寳川
卓士 寳川
謙治 梅田
謙治 梅田
澤口 太一
太一 澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2012080287A priority Critical patent/JP5978713B2/en
Publication of JP2013209501A publication Critical patent/JP2013209501A/en
Application granted granted Critical
Publication of JP5978713B2 publication Critical patent/JP5978713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ビニル脂環式炭化水素重合体水素化物の分子鎖末端を変性した重合体に関し、さらに詳しくは、ビニル脂環式炭化水素重合体水素化物の分子鎖末端を変性した重合体からなるナノ構造体に関する。また、本発明は、該ナノ構造体からなる光学材料に関する。   The present invention relates to a polymer obtained by modifying the molecular chain terminal of a vinyl alicyclic hydrocarbon polymer hydride, and more specifically, a polymer obtained by modifying the molecular chain terminal of a vinyl alicyclic hydrocarbon polymer hydride. It relates to nanostructures. The present invention also relates to an optical material comprising the nanostructure.

ビニル脂環式炭化水素重合体水素化物は、例えば、ポリスチレンなどのビニル芳香族重合体の芳香環を水素化することにより製造される。ビニル脂環式炭化水素重合体水素化物は、耐熱性、透明性、低吸水性、低複屈折性などに優れているため、光学材料として様々な分野に使用されている。近年、光学用材料への要求はますます高度になり、上記の性能のみならず、より高い屈折率が求められるようになっている。   The hydrogenated vinyl alicyclic hydrocarbon polymer is produced, for example, by hydrogenating the aromatic ring of a vinyl aromatic polymer such as polystyrene. Vinyl alicyclic hydrocarbon polymer hydrides are excellent in heat resistance, transparency, low water absorption, low birefringence, and the like, and are therefore used in various fields as optical materials. In recent years, the demand for optical materials has become increasingly high, and not only the above performance but also a higher refractive index has been demanded.

高屈折率を達成する方法としては、高分子マトリックス中に無機微粒子を分散させることが挙げられる。例えば特許文献1には、マックスウェル−ガーネット理論に基づき、基材となる樹脂に対し無機系の微粒子を分散させ、高屈折率を有する有機系光学材料を調製することが記載されている。   A method for achieving a high refractive index includes dispersing inorganic fine particles in a polymer matrix. For example, Patent Document 1 describes the preparation of an organic optical material having a high refractive index by dispersing inorganic fine particles in a resin serving as a base material based on Maxwell-Garnet theory.

国際公開第WO2007/032217号International Publication No. WO2007 / 032217

ビニル脂環式炭化水素重合体水素化物は、極性基を有しないため、低吸水性の観点で有利である。本発明の課題は、ビニル脂環式炭化水素重合体水素化物に無機微粒子を分散させて、より高い屈折率のナノ構造体を提供することである。   A hydride of a vinyl alicyclic hydrocarbon polymer is advantageous from the viewpoint of low water absorption because it does not have a polar group. An object of the present invention is to provide a nanostructure having a higher refractive index by dispersing inorganic fine particles in a hydride of a vinyl alicyclic hydrocarbon polymer.

本発明者らは、ビニル脂環式炭化水素重合体水素化物を用いて、高屈折率の成形体を得るべく鋭意検討した結果、ビニル脂環式炭化水素重合体水素化物の場合、極性基がないために多くの無機化合物の微粒子を分散させることが困難で、屈折率の高い成形体を得ることが困難であることを把握した。そこで、ビニル脂環式炭化水素重合体水素化物の分子鎖の末端を官能基で変性すると、無機化合物の微粒子を多量に分散させることが可能となり、高い屈折率のナノ構造体を与えることを見出し、本発明を完成するに至った。ビニル脂環式炭化水素重合体水素化物に導入される官能基が末端のみであるため、官能基の割合は低く抑えられることから、低吸水性へも実質的な変化を与えないものと考えられる。   The inventors of the present invention have intensively studied to obtain a molded article having a high refractive index using a vinyl alicyclic hydrocarbon polymer hydride. As a result, in the case of a vinyl alicyclic hydrocarbon polymer hydride, the polar group is Therefore, it was difficult to disperse many inorganic compound fine particles, and it was difficult to obtain a molded article having a high refractive index. Thus, it has been found that modifying the molecular chain end of a vinyl alicyclic hydrocarbon polymer hydride with a functional group makes it possible to disperse a large amount of fine particles of an inorganic compound and give a nanostructure having a high refractive index. The present invention has been completed. Since the functional group introduced into the hydride of the vinyl alicyclic hydrocarbon polymer is only the terminal, the ratio of the functional group can be kept low, so it is considered that there is no substantial change to low water absorption. .

かくして本発明によれば、下記一般式(1)で表される脂環式構造を有する繰り返し単位(a)の含有量が90重量%以上であり、下記一般式(2)及び/又は下記一般式(3)で表される鎖状構造の繰り返し単位(b)の含有量が10重量%以下であり、分子鎖の末端に官能基を含有することを特徴とする末端変性オレフィン系重合体水素化物が提供される。   Thus, according to the present invention, the content of the repeating unit (a) having an alicyclic structure represented by the following general formula (1) is 90% by weight or more, and the following general formula (2) and / or the following general formula A terminal-modified olefin polymer hydrogen characterized in that the content of the repeating unit (b) of the chain structure represented by the formula (3) is 10% by weight or less and contains a functional group at the end of the molecular chain A chemical is provided.

Figure 0005978713
Figure 0005978713

〔式中、Rは、水素原子又は炭素原子数1〜20個のアルキル基であり、R〜R12は、それぞれ独立に、水素原子、炭素原子数1〜20個のアルキル基、又はハロゲン原子である。〕 [Wherein, R 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom. ]

Figure 0005978713
Figure 0005978713

〔式中、R13は、水素原子又は炭素原子数1〜20個のアルキル基である。〕 [Wherein, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]

Figure 0005978713
Figure 0005978713

〔式中、R14及びR15はそれぞれ独立に、水素原子又は炭素原子数1〜20個のアルキル基である。〕
前記官能基は、酸素原子を含有する官能基であるのが好ましく、特にカルボキシル基又はヒドロキシル基であるのが好ましい。
[Wherein, R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]
The functional group is preferably a functional group containing an oxygen atom, and particularly preferably a carboxyl group or a hydroxyl group.

末端の官能基がカルボキシル基である末端変性ビニル脂環式炭化水素重合体水素化物は、芳香族ビニル単量体90重量%以上、共重合可能な単量体10重量%以下を含む単量体をアニオン重合した後に、重合体の活性末端を炭酸ガスと反応させることで分子鎖末端にカルボキシル基を導入し、次いで主鎖及び芳香環中の炭素−炭素二重結合を水素添加することにより得ることができる。   The terminal-modified vinyl alicyclic hydrocarbon polymer hydride in which the terminal functional group is a carboxyl group is a monomer containing 90% by weight or more of an aromatic vinyl monomer and 10% by weight or less of a copolymerizable monomer. After anionic polymerization of the polymer, it is obtained by reacting the active terminal of the polymer with carbon dioxide gas to introduce a carboxyl group at the molecular chain terminal, and then hydrogenating the carbon-carbon double bond in the main chain and aromatic ring. be able to.

末端の官能基がヒドロキシル基である末端変性ビニル脂環式炭化水素重合体水素化物は、芳香族ビニル単量体90重量%以上、共重合可能な単量体10重量%以下を含む単量体をアニオン重合した後に、重合体の活性末端をエポキシ化合物と反応させることで分子鎖末端に水酸基を導入し、次いで主鎖及び芳香環中の炭素−炭素二重結合を水素添加することにより得ることができる。   The terminal-modified vinyl alicyclic hydrocarbon polymer hydride whose terminal functional group is a hydroxyl group is a monomer containing 90% by weight or more of an aromatic vinyl monomer and 10% by weight or less of a copolymerizable monomer. After anionic polymerization of the polymer, it is obtained by reacting the active end of the polymer with an epoxy compound to introduce a hydroxyl group at the end of the molecular chain, and then hydrogenating the carbon-carbon double bond in the main chain and aromatic ring. Can do.

また、末端変性ビニル脂環式炭化水素重合体水素化物は、官能基での変性率が70%以上であることが好ましい。   The terminal-modified vinyl alicyclic hydrocarbon polymer hydride preferably has a functional group modification rate of 70% or more.

さらに、本発明によれば、前記末端変性ビニル脂環式炭化水素重合体水素化物のマトリックス内に、平均粒径100nm以下の無機化合物の粒子が分散していることを特徴とするナノ構造体が提供される。
前記ナノ構造体は、厚さ3mmにおける光線透過率が80%以上であることが好ましい。
また、本発明によれば、前記のナノ構造体からなる光学材料が提供される。
Further, according to the present invention, there is provided a nanostructure characterized in that particles of an inorganic compound having an average particle size of 100 nm or less are dispersed in a matrix of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride. Provided.
The nanostructure preferably has a light transmittance of 80% or more at a thickness of 3 mm.
Moreover, according to this invention, the optical material which consists of said nanostructure is provided.

ビニル脂環式炭化水素重合体水素化物の、耐熱性、透明性、低吸水性、低複屈折性といった特性を維持しつつ、より高い屈折率を達成しうる重合体及びナノ構造体が提供される。   Provided are polymers and nanostructures that can achieve higher refractive index while maintaining the heat resistance, transparency, low water absorption, and low birefringence characteristics of the hydrogenated vinyl alicyclic hydrocarbon polymer. The

本発明の末端変性ビニル脂環式炭化水素重合体水素化物は、ビニル芳香族炭化水素重合体の分子末端を官能基で変性した末端変性ビニル芳香族炭化水素重合体の、炭素−炭素不飽和結合を水素添加してなる。   The terminal-modified vinyl alicyclic hydrocarbon polymer hydride of the present invention is a carbon-carbon unsaturated bond of a terminal-modified vinyl aromatic hydrocarbon polymer obtained by modifying a molecular end of a vinyl aromatic hydrocarbon polymer with a functional group. Is hydrogenated.

<ビニル芳香族炭化水素重合体>
前記一般式(1)で表される脂環式構造を有する繰り返し単位(a)はビニル基を有する芳香族炭化水素化合物由来の構造単位であり、前記一般式(2)及び(3)で表される鎖状構造の繰り返し単位(b)は、ビニル基を有する芳香族炭化水素化合物と共重合可能な単量体由来の構造単位である。
本発明に係わるビニル脂環式炭化水素重合体は、ビニル基を有する芳香族炭化水素化合物(以下、「ビニル芳香族化合物」と略記)、又はビニル芳香族化合物及び該ビニル芳香族化合物と共重合可能な単量体を含有する単量体混合物をビニル付加重合することで製造することができる。
<Vinyl aromatic hydrocarbon polymer>
The repeating unit (a) having an alicyclic structure represented by the general formula (1) is a structural unit derived from an aromatic hydrocarbon compound having a vinyl group, and represented by the general formulas (2) and (3). The chain-structured repeating unit (b) is a structural unit derived from a monomer copolymerizable with an aromatic hydrocarbon compound having a vinyl group.
The vinyl alicyclic hydrocarbon polymer according to the present invention is an aromatic hydrocarbon compound having a vinyl group (hereinafter abbreviated as “vinyl aromatic compound”), or a vinyl aromatic compound and a copolymer with the vinyl aromatic compound. It can be produced by vinyl addition polymerization of a monomer mixture containing possible monomers.

本発明で用いることができるビニル芳香族化合物の具体例としては、スチレン、α−メチルスチレン、α−エチルスチレン、α−プロピルスチレン、α−イソプロピルスチレン、α−t−ブチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、4−フェニルスチレンなどのスチレン類が挙げられる。   Specific examples of the vinyl aromatic compound that can be used in the present invention include styrene, α-methylstyrene, α-ethylstyrene, α-propylstyrene, α-isopropylstyrene, α-t-butylstyrene, and 2-methylstyrene. 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, mono Examples thereof include styrenes such as fluorostyrene and 4-phenylstyrene.

本発明で用いることができる共重合可能な単量体の具体例としては、エチレン、プロピレン、イソブテン、2−メチル−1−ブテン、2−メチル−1−ペンテン、4−メチル−1−ペンテンなどのα−オレフィン系単量体;シクロペンタジエン、1−メチルシクロペンタジエン、2−メチルシクロペンタジエン、2−エチルシクロペンタジエン、5−メチルシクロペンタジエン、5,5−ジメチルシクロペンタジエン、ジシクロペンタジエンなどのシクロペンタジエン系単量体;シクロブテン、シクロペンテン、シクロヘキセンなどのモノ環状オレフィン系単量体;ブタジエン、イソプレン、1,3−ペンタジエン、フラン、チオフェン、1,3−シクロヘキサジエンなどの共役ジエン系単量体;などが挙げられる。これらの中でも、共役ジエン系単量体は重合活性が高く、重合体の吸水率も低くなるため、好ましい。   Specific examples of the copolymerizable monomer that can be used in the present invention include ethylene, propylene, isobutene, 2-methyl-1-butene, 2-methyl-1-pentene, 4-methyl-1-pentene, and the like. Α-olefin monomers of cyclopentadiene, 1-methylcyclopentadiene, 2-methylcyclopentadiene, 2-ethylcyclopentadiene, 5-methylcyclopentadiene, 5,5-dimethylcyclopentadiene, dicyclopentadiene and the like Pentadiene monomers; monocyclic olefin monomers such as cyclobutene, cyclopentene, and cyclohexene; conjugated diene monomers such as butadiene, isoprene, 1,3-pentadiene, furan, thiophene, and 1,3-cyclohexadiene; Etc. Among these, a conjugated diene monomer is preferable because of high polymerization activity and low water absorption of the polymer.

重合に用いる上記単量体の混合物は、耐熱性、低複屈折性、機械強度等の観点から、ビニル芳香族化合物を、90重量%以上、好ましくは95重量%以上含有するものが好ましい。   From the viewpoint of heat resistance, low birefringence, mechanical strength, etc., the monomer mixture used for the polymerization preferably contains 90% by weight or more, preferably 95% by weight or more of a vinyl aromatic compound.

本発明に係わるビニル芳香族炭化水素重合体は、ラジカル重合、アニオン重合、カチオン重合などの公知の重合方法により得られ、アニオン重合やカチオン重合の場合には、アニオンリビング重合やカチオンリビング重合を採用することもできるが、末端変性反応の容易さから、アニオンリビング重合が好ましい。   The vinyl aromatic hydrocarbon polymer according to the present invention is obtained by a known polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization. In the case of anionic polymerization or cationic polymerization, anionic living polymerization or cationic living polymerization is adopted. However, anionic living polymerization is preferred because of the ease of terminal modification reaction.

重合体の様式としては、ランダム、ブロックのいずれでも良い。   The polymer may be either random or block.

重合の形態としては、塊状重合、乳化重合、懸濁重合、溶液重合などのいずれでもよいが、その後に水素化反応を行ない場合には、水素化反応を連続して行うことができるため、溶液重合が好ましい。   The form of polymerization may be any of bulk polymerization, emulsion polymerization, suspension polymerization, solution polymerization, etc., but since the hydrogenation reaction can be carried out continuously when the hydrogenation reaction is performed thereafter, the solution Polymerization is preferred.

アニオン重合は、不活性溶剤中、重合開始剤の存在下、通常0〜200℃、好ましくは20〜100℃、特に好ましくは20〜80℃の温度範囲において行う。開始剤としては、例えば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウムなどのモノ有機リチウム;ジリチオメタン、1,4−ジオブタン、1,4−ジリチオ−2−エチルシクロヘキサン等の多官能性有機リチウム化合物;などが使用可能である。   Anionic polymerization is carried out in an inert solvent in the presence of a polymerization initiator in a temperature range of usually 0 to 200 ° C., preferably 20 to 100 ° C., particularly preferably 20 to 80 ° C. Examples of the initiator include monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, and phenyllithium; dilithiomethane, 1,4-diobtan, 1,4-dilithio-2-ethyl A polyfunctional organolithium compound such as cyclohexane can be used.

使用する不活性溶媒としては、例えば、n−ブタン、n−ペンタン、iso−ペンタン、n−ヘキサン、n−ヘプタン、iso−オクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;等が挙げられる。これらの中でも、溶媒として脂肪族炭化水素類や脂環式炭化水素類を用いると、水素化反応にも不活性な溶媒であるため、反応混合物を次の水素化反応にそのまま供することができる。これらの溶媒は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。溶媒は、全単量体100重量部に対して、通常200〜10,000重量部の割合で用いられる。   Examples of the inert solvent used include aliphatic hydrocarbons such as n-butane, n-pentane, iso-pentane, n-hexane, n-heptane and iso-octane; cyclopentane, cyclohexane, methylcyclopentane, And alicyclic hydrocarbons such as methylcyclohexane and decalin; aromatic hydrocarbons such as benzene and toluene; Among these, when aliphatic hydrocarbons or alicyclic hydrocarbons are used as the solvent, the solvent is inactive to the hydrogenation reaction, so that the reaction mixture can be directly used for the next hydrogenation reaction. These solvents can be used alone or in combination of two or more. A solvent is normally used in the ratio of 200-10,000 weight part with respect to 100 weight part of all the monomers.

<末端変性ビニル芳香族炭化水素重合体>
本発明に係わる末端変性ビニル芳香族炭化水素重合体は、前記ビニル芳香族炭化水素重合体の分子鎖末端を官能基で変性してなる。
<Terminal modified vinyl aromatic hydrocarbon polymer>
The terminal-modified vinyl aromatic hydrocarbon polymer according to the present invention is obtained by modifying the molecular chain terminal of the vinyl aromatic hydrocarbon polymer with a functional group.

分子末端の官能基としては、カルボキシル基(−COOH)、ヒドロキシル基(−OH)、スルホ基(−SOH)、第一級アミノ基(−NH)、第二級アミノ基(−NHR、ここでRは、炭素鎖1〜20のアルキル基)、第三級アミノ基(−N(R)、ここでRは、炭素鎖1〜20のアルキル基)又はチオール基(−SH)など、酸素原子、窒素原子又は硫黄原子を有する基が挙げられる。この中でも、酸素原子を有する基であるカルボキシル基及びヒドロキシル基が分子末端への導入が容易で好ましい。 The functional group at the molecular end includes a carboxyl group (—COOH), a hydroxyl group (—OH), a sulfo group (—SO 3 H), a primary amino group (—NH 2 ), and a secondary amino group (—NHR). Where R is an alkyl group having 1 to 20 carbon chains), a tertiary amino group (—N (R) 2 , where R is an alkyl group having 1 to 20 carbon chains) or a thiol group (—SH). A group having an oxygen atom, a nitrogen atom or a sulfur atom. Among these, a carboxyl group and a hydroxyl group, which are groups having an oxygen atom, are preferable because they can be easily introduced into the molecular terminals.

カルボキシル基の導入方法に格別な制限はないが、簡便な方法としては、アニオンリビング重合後のビニル芳香族炭化水素重合体の反応液に、炭酸ガスを導入する方法が挙げられる。   Although there is no particular limitation on the method for introducing the carboxyl group, a simple method is a method of introducing carbon dioxide gas into the reaction liquid of the vinyl aromatic hydrocarbon polymer after anionic living polymerization.

炭酸ガスの導入方法としては、ビニル芳香族炭化水素重合体の反応液の入った反応器に炭酸ガスを導入して加圧攪拌することが好ましく、その際の圧力としては、通常10kPa(G)以上、好ましくは100kPa(G)〜1MPa(G)が好ましい。圧力が低すぎるとカルボキシル基の導入率が低くなる恐れがある。   As a method for introducing carbon dioxide gas, it is preferable to introduce carbon dioxide gas into a reactor containing a reaction liquid of vinyl aromatic hydrocarbon polymer and stir under pressure. The pressure at that time is usually 10 kPa (G). As described above, preferably 100 kPa (G) to 1 MPa (G). If the pressure is too low, the carboxyl group introduction rate may be low.

炭酸ガス導入時の反応液の温度としては、通常−100℃〜50℃、好ましくは−80〜20℃である。反応液の温度が低すぎると、カルボキシル基の導入率が低くなる恐れがあり、反応液の温度が高すぎると、副反応により高分子量体が生成する恐れがある。   The temperature of the reaction liquid at the time of introducing carbon dioxide is usually −100 ° C. to 50 ° C., preferably −80 to 20 ° C. If the temperature of the reaction solution is too low, the carboxyl group introduction rate may be low, and if the temperature of the reaction solution is too high, a high molecular weight product may be generated due to a side reaction.

ヒドロキシル基の導入方法としては、アニオンリビング重合後のビニル芳香族炭化水素重合体の反応液に、エポキシ化合物、アルデヒド化合物、ケトン化合物を添加することで製造することができる。この中でも反応性の面でエポキシ化合物とアルデヒド化合物が好ましく、エポキシ化合物がより好ましい。   As a method for introducing a hydroxyl group, it can be produced by adding an epoxy compound, an aldehyde compound, or a ketone compound to a reaction liquid of a vinyl aromatic hydrocarbon polymer after anion living polymerization. Among these, an epoxy compound and an aldehyde compound are preferable in terms of reactivity, and an epoxy compound is more preferable.

本発明で用いることができるエポキシ化合物の具体例としては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、ペンタンオキサイド、スチレンオキサイド、シクロヘキサンオキサイド、ノルボルネンオキサイドなどが挙げられる。   Specific examples of the epoxy compound that can be used in the present invention include ethylene oxide, propylene oxide, butylene oxide, pentane oxide, styrene oxide, cyclohexane oxide, norbornene oxide, and the like.

本発明で用いることができるアルデヒド化合物の具体例としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒドなどが挙げられる。   Specific examples of the aldehyde compound that can be used in the present invention include formaldehyde, acetaldehyde, propionaldehyde, and benzaldehyde.

本発明で用いることができるケトン化合物の具体例としては、アセトン、メチルエチルケトン、3−ペンタノン、アセトフェノンなどが挙げられる。   Specific examples of the ketone compound that can be used in the present invention include acetone, methyl ethyl ketone, 3-pentanone, acetophenone, and the like.

ヒドロキシル基導入時の反応液の温度としては、通常−100℃〜100℃、好ましくは−50〜50℃である。反応液の温度が低すぎると、ヒドロキシル基の導入率が低くなる恐れがあり、反応液の温度が高すぎると、副反応により高分子量体が生成する恐れがある。   The temperature of the reaction solution at the time of introducing a hydroxyl group is usually −100 ° C. to 100 ° C., preferably −50 to 50 ° C. If the temperature of the reaction solution is too low, the introduction rate of hydroxyl groups may be lowered, and if the temperature of the reaction solution is too high, a high molecular weight product may be generated due to a side reaction.

末端変性ビニル芳香族炭化水素重合体の変性率(導入率)は、末端カルボキシル化物は酸価、末端ヒドロキシル化物は水酸基価と、重量平均分子量(Mw)から求められる分子末端の数とから、計算で求めることができる。変性率は好ましくは70〜100%、より好ましくは80〜100%である。   The modification rate (introduction rate) of the terminal-modified vinyl aromatic hydrocarbon polymer is calculated from the acid value of the terminal carboxylated product, the hydroxyl value of the terminal hydroxylated product, and the number of molecular ends determined from the weight average molecular weight (Mw). Can be obtained. The modification rate is preferably 70 to 100%, more preferably 80 to 100%.

<末端変性ビニル脂環式炭化水素重合体水素化物>
本発明の末端変性ビニル芳香族炭化水素重合体水素化物は、前記末端変性ビニル芳香族炭化水素重合体の炭素−炭素不飽和結合を水素添加してなる。
<Terminal modified vinyl alicyclic hydrocarbon polymer hydride>
The terminal-modified vinyl aromatic hydrocarbon polymer hydride of the present invention is obtained by hydrogenating the carbon-carbon unsaturated bond of the terminal-modified vinyl aromatic hydrocarbon polymer.

水素添加方法は、格別な制限はなく、常法に従って行うことができる。具体的には、例えば、有機溶媒中で、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム及びレニウムから選ばれる少なくとも1種の金属を含む水素化触媒を用いて水素化反応を行うと、水素化率が高くすることができ、しかも、水素化反応に伴う重合体鎖の切断を抑制することができる。これらの水素化触媒の中でも、ニッケル触媒を用いると、分子量分布(Mw/Mn)小さくすることができるので好適である。水素化触媒は、不均一触媒及び均一触媒のいずれでもよい。   The hydrogenation method is not particularly limited and can be performed according to a conventional method. Specifically, for example, a hydrogenation reaction is performed in an organic solvent using a hydrogenation catalyst containing at least one metal selected from nickel, cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium and rhenium. In addition, the hydrogenation rate can be increased, and the polymer chain breakage associated with the hydrogenation reaction can be suppressed. Among these hydrogenation catalysts, it is preferable to use a nickel catalyst because the molecular weight distribution (Mw / Mn) can be reduced. The hydrogenation catalyst may be a heterogeneous catalyst or a homogeneous catalyst.

水素化反応は、反応温度を通常10〜250℃、好ましくは50〜200℃、より好ましくは80〜180℃の範囲とし、水素圧力を通常0.01〜30MPa、好ましくは0.05〜20MPa、より好ましくは0.1〜10MPaの範囲として実施する。上記方法により得られた重合体水素化物の水素化率は、通常80%以上、好ましくは90%以上、より好ましくは95%以上である。   In the hydrogenation reaction, the reaction temperature is usually 10 to 250 ° C., preferably 50 to 200 ° C., more preferably 80 to 180 ° C., and the hydrogen pressure is usually 0.01 to 30 MPa, preferably 0.05 to 20 MPa. More preferably, it implements as the range of 0.1-10 MPa. The hydrogenation rate of the polymer hydride obtained by the above method is usually 80% or more, preferably 90% or more, more preferably 95% or more.

末端変性ビニル脂環式炭化水素重合体水素化物の水素化率は、H−NMRによる測定において、主鎖及び側鎖の炭素−炭素不飽和結合、芳香環やシクロアルケン環の炭素−炭素不飽和結合のいずれも、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。水素化率が低いと、得られるブロック共重合体の低複屈折性、熱安定性などが低下傾向を示す。 The hydrogenation rate of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride is determined by the carbon-carbon unsaturated bond of the main chain and the side chain, the carbon-carbon unsaturation of the aromatic ring and the cycloalkene ring, as measured by 1 H-NMR. Any of the saturated bonds is usually 90% or more, preferably 95% or more, more preferably 97% or more. When the hydrogenation rate is low, the low birefringence and thermal stability of the resulting block copolymer tend to be reduced.

末端変性ビニル脂環式炭化水素重合体水素化物の分子量は、GPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常12,000以上であり、好ましくは12,000〜400,000、より好ましくは19,000〜350,000、特に好ましくは25,000〜300,000の範囲である。重量平均分子量(Mw)が過度に小さいと、機械強度が低下し、過度に大きいと、水素添加率を充分に高めることが困難になる。   The molecular weight of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride is a polystyrene-reduced weight average molecular weight (Mw) measured by GPC and is usually 12,000 or more, preferably 12,000 to 400,000. More preferably, it is 19,000-350,000, Most preferably, it is the range of 25,000-300,000. If the weight average molecular weight (Mw) is excessively small, the mechanical strength decreases, and if it is excessively large, it is difficult to sufficiently increase the hydrogenation rate.

末端変性ビニル脂環式炭化水素重合体水素化物の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(又はポリイソプレン)換算の重量平均分子量(Mw)と数平均分子量(Mn)との比で表わされる分子量分布(Mw/Mn)は、好ましくは5以下、より好ましくは4以下、特に好ましくは3以下である。分子量分布(Mw/Mn)が過度に大きいと、機械強度が低下する。   The molecular weight distribution of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride can be appropriately selected according to the purpose of use, but the weight average molecular weight (Mw) and number average molecular weight in terms of polystyrene (or polyisoprene) measured by GPC. The molecular weight distribution (Mw / Mn) represented by the ratio to (Mn) is preferably 5 or less, more preferably 4 or less, and particularly preferably 3 or less. If the molecular weight distribution (Mw / Mn) is excessively large, the mechanical strength decreases.

末端変性ビニル脂環式炭化水素重合体水素化物の重量平均分子量(Mw)と分子量分布(Mw/Mn)は、前記末端変性ビニル脂環式炭化水素重合体の重量平均分子量(Mw)と分子量分布(Mw/Mn)により適宜調整することができる。   The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride are the weight average molecular weight (Mw) and molecular weight distribution of the terminal-modified vinyl alicyclic hydrocarbon polymer. It can adjust suitably by (Mw / Mn).

末端変性ビニル脂環式炭化水素重合体水素化物のガラス転移温度(Tg)は、使用目的に応じて適宜選択されるが、DSCによる高温側の測定値で、好ましくは70〜150℃、より好ましくは80〜140℃、特に好ましくは90〜130℃である。末端変性ビニル脂環式炭化水素重合体水素化物のガラス転移温度は、前記末端変性ビニル脂環式炭化水素重合体を製造する際の、ビニル芳香族化合物及び共重合可能な単量体の種類及び比率により適宜調整することができる。   The glass transition temperature (Tg) of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride is appropriately selected according to the purpose of use, but is a measured value on the high temperature side by DSC, preferably 70 to 150 ° C., more preferably. Is 80 to 140 ° C, particularly preferably 90 to 130 ° C. The glass transition temperature of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride is the kind of vinyl aromatic compound and copolymerizable monomer used in the production of the terminal-modified vinyl alicyclic hydrocarbon polymer. It can adjust suitably with a ratio.

かくして合成される本発明の末端変性ビニル脂環式炭化水素重合体水素化物は、下記一般式(1)で表される脂環式構造を有する繰り返し単位(a)の含有量が90重量%以上であり、下記一般式(2)及び/又は下記一般式(3)で表される鎖状構造の繰り返し単位(b)の含有量が10重量%以下であるオレフィン系重合体であって、
分子鎖の末端に官能基を含有することを特徴とする。
The terminal-modified vinyl alicyclic hydrocarbon polymer hydride of the present invention thus synthesized has a content of the repeating unit (a) having an alicyclic structure represented by the following general formula (1) of 90% by weight or more. The content of the repeating unit (b) having a chain structure represented by the following general formula (2) and / or the following general formula (3) is 10% by weight or less,
It contains a functional group at the end of the molecular chain.

Figure 0005978713
Figure 0005978713

〔式中、Rは、水素原子又は炭素原子数1〜20個のアルキル基であり、R〜R12は、それぞれ独立に、水素原子、炭素原子数1〜20個のアルキル基、又はハロゲン原子である。〕 [Wherein, R 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom. ]

Figure 0005978713
Figure 0005978713

〔式中、R13は、水素原子又は炭素原子数1〜20個のアルキル基である。〕 [Wherein, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]

Figure 0005978713
Figure 0005978713

〔式中、R14及びR15はそれぞれ独立に、水素原子又は炭素原子数1〜20個のアルキル基である。〕 [Wherein, R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]

水素化反応終了後、末端変性ビニル脂環式炭化水素重合体水素化物は、例えば、濾過、遠心分離等の方法により反応溶液から水素化触媒を除去した後、溶媒を直接乾燥により除去する方法、反応溶液を、ブロック共重合体にとっての貧溶媒中に注ぎ、凝固させる方法等によって回収される。   After the hydrogenation reaction, the terminal-modified vinyl alicyclic hydrocarbon polymer hydride is, for example, a method of removing the hydrogenation catalyst from the reaction solution by a method such as filtration or centrifugation, and then removing the solvent directly by drying. The reaction solution is recovered by pouring it into a poor solvent for the block copolymer and coagulating it.

末端変性ビニル芳香族炭化水素重合体水素化物の変性率(導入率)は、末端カルボキシル化物は酸価、末端ヒドロキシル化物は水酸基価と、重量平均分子量(Mw)とから求められる分子末端の数とから、計算で求めることができる。変性率は好ましくは70〜100%、より好ましくは80〜100%である。尚、酸価及び水酸基価はJIS K 0070(1992)に従って測定される。   The modification rate (introduction rate) of the terminal-modified vinyl aromatic hydrocarbon polymer hydride is as follows. The terminal carboxylated product has an acid value, the terminal hydroxylated product has a hydroxyl value, and the number of molecular ends determined from the weight average molecular weight (Mw). From this, it can be calculated. The modification rate is preferably 70 to 100%, more preferably 80 to 100%. The acid value and hydroxyl value are measured in accordance with JIS K 0070 (1992).

<各種添加剤>
本発明の末端変性ビニル脂環式炭化水素重合体水素化物に必要に応じて配合される添加剤としては、適用する用途分野で一般的に使用されているものであれば特に制限なく用いることができる。このような添加剤としては、例えば、安定剤、滑剤、紫外線吸収剤、結晶核剤、塩酸吸収剤、帯電防止剤、染料、顔料、有機又は無機の充填剤、スリップ剤、防曇剤、天然油、合成油、ワックス、難燃剤、難燃助剤、相溶化剤、架橋剤、架橋助剤、可塑剤、などが挙げられる。
<Various additives>
Additives to be blended as necessary in the terminal-modified vinyl alicyclic hydrocarbon polymer hydride of the present invention can be used without particular limitation as long as they are generally used in the application field to which they are applied. it can. Such additives include, for example, stabilizers, lubricants, ultraviolet absorbers, crystal nucleating agents, hydrochloric acid absorbers, antistatic agents, dyes, pigments, organic or inorganic fillers, slip agents, antifogging agents, natural Examples thereof include oils, synthetic oils, waxes, flame retardants, flame retardant aids, compatibilizers, crosslinking agents, crosslinking aids, plasticizers, and the like.

(イ)安定剤
安定剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、1,2−ヒドロキシステアリン酸カルシウムなどの脂肪酸金属塩;グリセリンモノステアレート、グリセリンジステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレートなどの多価アルコール脂肪酸エステル;フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でも、フェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤が特に好ましい。
これらの安定化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。安定化剤の配合割合は、末端変性ビニル脂環式炭化水素重合体水素化物100重量部に対して、通常0.001〜5重量部、好ましくは0.01〜1重量部の範囲である。
(A) Stabilizer Examples of the stabilizer include fatty acid metal salts such as zinc stearate, calcium stearate, and 1,2-hydroxycalcium stearate; glycerin monostearate, glycerin distearate, pentaerythritol distearate, pentaerythritol. Polyalcohol fatty acid esters such as tristearate; phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. Among them, phenolic antioxidants are preferred, alkyl-substituted phenolic oxidations Inhibitors are particularly preferred.
These stabilizers can be used alone or in combination of two or more. The blending ratio of the stabilizer is usually in the range of 0.001 to 5 parts by weight, preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride.

(ロ)滑剤
滑剤としては、脂肪族アルコールのエステル、多価アルコールのエステルあるいは部分エステル等の有機化合物を用いることができる。
有機化合物としては、例えば、グリセリンモノステアレート、グリセリンモノラウレート、グリセリンジステアレート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート等が挙げられる。
これらの滑剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。その滑剤の配合割合は、使用目的に応じて適宜選択されるが、末端変性ビニル脂環式炭化水素重合体水素化物100重量部に対して、通常0.001〜5重量部、好ましくは0.005〜3重量部である。
(B) Lubricant As the lubricant, an organic compound such as an ester of an aliphatic alcohol, an ester of a polyhydric alcohol, or a partial ester can be used.
Examples of the organic compound include glycerin monostearate, glycerin monolaurate, glycerin distearate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate and the like.
These lubricants can be used alone or in combination of two or more. The blending ratio of the lubricant is appropriately selected according to the purpose of use, but is usually 0.001 to 5 parts by weight, preferably 0. 0 to 100 parts by weight of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride. 005 to 3 parts by weight.

<ナノ構造体>
本発明のナノ構造体には、末端変性ビニル脂環式炭化水素重合体水素化物のマトリックス中に無機化合物の微粒子(以下、単に「無機微粒子」ということがある)が分散しているものである。
<Nanostructure>
In the nanostructure of the present invention, fine particles of an inorganic compound (hereinafter sometimes simply referred to as “inorganic fine particles”) are dispersed in a matrix of a terminal-modified vinyl alicyclic hydrocarbon polymer hydride. .

無機微粒子の成分としては、SiO、TiO、ZrOなどが挙げられるが、中でも屈折率の高さの面でTiO、ZrOが好ましく、末端変性ビニル脂環式炭化水素重合体水素化物の光劣化を防止する観点からZrOが特に好ましい。 Examples of the inorganic fine particle component include SiO 2 , TiO 2 , ZrO 2, etc. Among them, TiO 2 and ZrO 2 are preferable in terms of a high refractive index, and terminal-modified vinyl alicyclic hydrocarbon polymer hydride. ZrO 2 is particularly preferable from the viewpoint of preventing photodegradation.

無機微粒子の平均粒子経は100nm以下、好ましくは50nm以下であり、好ましくは1nm以上、より好ましくは5nm以上である。粒子経が大きすぎるとナノ構造体の透明性が低下し、粒子系が小さすぎると屈折率を上げる効果が小さくなる恐れがある。
無機微粒子の配合割合は、好ましくは5〜50重量%、より好ましくは10〜40重量%、特に好ましくは10〜35重量%である。
The average particle size of the inorganic fine particles is 100 nm or less, preferably 50 nm or less, preferably 1 nm or more, more preferably 5 nm or more. If the particle diameter is too large, the transparency of the nanostructure is lowered, and if the particle system is too small, the effect of increasing the refractive index may be reduced.
The blending ratio of the inorganic fine particles is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and particularly preferably 10 to 35% by weight.

無機微粒子は表面修飾されている方が好ましい。表面修飾する方法としては無機微粒子をシランカップリング剤で処理する方法、カルボン酸やアミン類を無機微粒子に担持させるなどの公知の方法を用いることができる。   The inorganic fine particles are preferably surface-modified. As a method for surface modification, a known method such as a method of treating inorganic fine particles with a silane coupling agent or a method of supporting carboxylic acid or amine on inorganic fine particles can be used.

本発明で用いる無機微粒子は、トルエンに均一分散しているものが好ましく、無機微粒子10重量%のトルエン溶液の1cm光路長の全光線透過率が80%以上であることが特に好ましい。   The inorganic fine particles used in the present invention are preferably uniformly dispersed in toluene, and the total light transmittance of a 1 cm optical path length of a 10% by weight inorganic fine particle toluene solution is particularly preferably 80% or more.

無機微粒子と末端変性脂環式炭化水素重合体水素化物を混合する方法としては、溶融混練、溶液混合法などの公知の方法を用いることができる。中でも溶液混合方がナノ構造体の透明性の面で好ましい。溶液混合法は、通常、無機微粒子の分散液と末端変性脂環式炭化水素重合体水素化物の溶液を混合したのちに、溶媒を除去すること方法がとられる。その際の温度は通常50〜300℃、好ましくは100〜250℃であり、圧力は通常−101.33kPa(G)〜100kPa、好ましくは−101,33kPa〜10kPaである。   As a method of mixing the inorganic fine particles and the terminal-modified alicyclic hydrocarbon polymer hydride, known methods such as melt kneading and solution mixing can be used. Among these, the solution mixing method is preferable in terms of the transparency of the nanostructure. The solution mixing method is usually a method of removing the solvent after mixing the dispersion of inorganic fine particles and the solution of the terminal-modified alicyclic hydrocarbon polymer hydride. The temperature at that time is usually 50 to 300 ° C., preferably 100 to 250 ° C., and the pressure is usually −101.33 kPa (G) to 100 kPa, preferably −101,33 kPa to 10 kPa.

本発明のナノ構造体は、熱可塑性樹脂の一般的な成形方法、例えば、射出成形、押し出し成形、熱プレス成形、溶剤キャスト成形、インフレーションなどの公知の方法で成形することができる。成形品の厚さ3mmにおける全光線透過率は、好ましくは80%以上、より好ましくは85%以上である。   The nanostructure of the present invention can be molded by a known method such as injection molding, extrusion molding, hot press molding, solvent cast molding, inflation, etc., by a general molding method of a thermoplastic resin. The total light transmittance at a thickness of 3 mm of the molded product is preferably 80% or more, more preferably 85% or more.

本発明のナノ構造体は、末端変性ビニル脂環式炭化水素重合体水素化物が有する透明性、低吸水性、耐熱性、低複屈折性を維持しつつ、高屈折率性に優れることから光学レンズに好適である。具体例としては、ブルーレーザーを用いる光ピックアップ装置に用いられる対物レンズ、コリメーター、ビームエクスパンダー、ビームシェイバー、回折格子、ミラー、車両用灯具のリフレクター(ミラー)、レンズ、車両用ディスプレイの導光板、拡散板、LRフィルム(低反射フィルム)などが挙げられる。 The nanostructure of the present invention is optical because it has excellent high refractive index while maintaining the transparency, low water absorption, heat resistance, and low birefringence of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride. Suitable for lenses. Specific examples include an objective lens, a collimator, a beam expander, a beam shaver, a diffraction grating, a mirror, a reflector for a vehicle lamp (mirror), a lens, and a light guide plate for a vehicle display, which are used in an optical pickup device using a blue laser. , Diffusion plate, LR film (low reflection film) and the like.

以下、本発明について、実施例及び比較例を挙げて、より具体的に説明する。本発明は、これらの実施例のみに限定されるものではない。以下の実施例及び比較例において、部及び%は、特に断りがない限り、重量基準である。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited only to these examples. In the following examples and comparative examples, parts and% are based on weight unless otherwise specified.

以下に各種物性の測定法を示す。
(1)無機微粒子の平均粒径
平均粒子経は、粒子径測定システム(大塚電子社製、製品名「ELSZ−100」)を用いて測定し、体積平均粒子径(D50)を平均粒子径とした。
(2)ガラス転移温度
ガラス転移温度は、示差走査熱量分析計(SIIナノテクノロジー社製、製品名「DSC6220」)を用いて、JIS K 6911に従って測定した。
(3)分子量
数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(MWD)はテトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)による、標準ポリスチレン換算値として測定した。標準ポリスチレンとしては、東ソー社製標準ポリスチレン、Mw=500、2630、10200、37900、96400、427000、1090000、5780000の計8点を用いた。
測定には、東ソー社製HLC8120GPCを用い、カラムとして東ソー社製TSKgel SuperH5000、TSKgel SuperH4000及びTSKgel SuperH2000を3本直列に繋いで用い、流速0.6ml/分、サンプル注入量20μml、カラム温度40℃の条件で行った。
(4)全光線透過率
全光線透過率は分光光度計(製品名「V−570」、日本分光社製)を用いて測定した。
(5)末端変性率は、末端カルボキシル化物は酸価より、末端ヒドロキシル化物は水酸基価、と重量平均分子量(Mw)から求められる分子末端の数より、計算で求めた。


The measurement methods for various physical properties are shown below.
(1) Average particle diameter of inorganic fine particles The average particle diameter is measured using a particle diameter measurement system (product name “ELSZ-100” manufactured by Otsuka Electronics Co., Ltd.), and the volume average particle diameter (D 50 ) is determined as the average particle diameter. It was.
(2) Glass transition temperature The glass transition temperature was measured in accordance with JIS K 6911 using a differential scanning calorimeter (manufactured by SII Nanotechnology, product name “DSC6220”).
(3) Molecular weight The number average molecular weight (Mn), the weight average molecular weight (Mw) and the molecular weight distribution (MWD) were measured as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. As the standard polystyrene, eight standard polystyrenes manufactured by Tosoh Corporation, Mw = 500, 2630, 10200, 37900, 96400, 427000, 1090000, and 5780000 were used.
For measurement, HLC8120GPC manufactured by Tosoh Corporation was used, and TSKgel SuperH5000, TSKgel SuperH4000 and TSKgel SuperH2000 manufactured by Tosoh Corporation were connected in series. Performed under conditions.
(4) Total light transmittance The total light transmittance was measured using a spectrophotometer (product name "V-570", manufactured by JASCO Corporation).
(5) The terminal modification rate was obtained by calculation from the number of molecular terminals obtained from the acid value of the terminal carboxylated product, the hydroxyl value of the terminal hydroxylated product, and the weight average molecular weight (Mw).


[製造例1]表面修飾ジルコニアナノ結晶粒子分散液Aの製造
酸化塩化ジルコニウム8水和物(ZrOCl・8HO、関東化学社製)1.29g(4mmol)とp−トルエンスルホン酸1水和物(関東化学社製)190mg(1mmol)を、エタノール(和光純薬工業社製)20mlとオルトギ酸トリエチル(関東化学社製)5mlとの混合溶媒に溶解させた。この溶液を加圧容器(50mlテフロン(登録商標)内筒付のステンレススチール製)に充填し、オーブン中、170℃で40時間加熱したのち、室温に放冷後、加圧容器を解放した。この時、反応溶液は無色透明であり、かつ沈殿は見られなかった。反応溶液をエバポレータで減圧にて溶媒除去後、白色の粉末のジルコニアナノ結晶650gが得られた。これをメタノールと塩化メチレンとの容量比10:3の混合溶媒13mlに再分散させ、均一分散溶液を作成し、ステアリン酸(和光純薬工業社製)284mg(1mmol)を溶解させ、さらに炭酸ナトリウム(高純度化学社製)58mg(0.55mmol)を添加し、室温で一晩攪拌することにより、白色沈殿物を有する白濁溶液が得られた。これをエバポレータにかけて溶媒を除去した後、メタノールを過剰(25ml)に添加し、遠心分離を行い、沈殿物を回収した。沈殿にトルエン(関東化学社製)を加えたところ、無色透明の分散溶液となり、表面修飾ジルコニア粒子のトルエン分散液A(濃度10重量%)を作成することができた。表面修飾ジルコニア粒子の平均粒径は6nmであった。トルエン分散の1cm光路長の全光線透過率が85%であった。
[Production Example 1] surface-modified zirconia nanocrystal particle dispersion A manufacturing oxide zirconium chloride octahydrate (ZrOCl 2 · 8H 2 O, manufactured by Kanto Chemical Co., Inc.) 1.29 g (4 mmol) and p- toluenesulfonic acid water 190 mg (1 mmol) of a Japanese product (manufactured by Kanto Chemical Co., Ltd.) was dissolved in a mixed solvent of 20 ml of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) and 5 ml of triethyl orthoformate (manufactured by Kanto Chemical Co., Ltd.). This solution was filled in a pressurized container (made of stainless steel with a 50 ml Teflon (registered trademark) inner cylinder), heated in an oven at 170 ° C. for 40 hours, allowed to cool to room temperature, and then the pressurized container was released. At this time, the reaction solution was colorless and transparent, and no precipitation was observed. After removing the solvent from the reaction solution with an evaporator under reduced pressure, 650 g of white powdery zirconia nanocrystals were obtained. This was re-dispersed in 13 ml of a mixed solvent of methanol and methylene chloride in a volume ratio of 10: 3 to prepare a uniform dispersion solution, and 284 mg (1 mmol) of stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved, and sodium carbonate was further added. A white turbid solution having a white precipitate was obtained by adding 58 mg (0.55 mmol) (manufactured by High-Purity Chemical Co., Ltd.) and stirring overnight at room temperature. After removing the solvent using an evaporator, methanol was added in excess (25 ml), and the mixture was centrifuged to collect the precipitate. When toluene (manufactured by Kanto Chemical Co., Inc.) was added to the precipitate, a colorless and transparent dispersion solution was obtained, and a toluene dispersion A (concentration of 10% by weight) of surface-modified zirconia particles could be prepared. The average particle diameter of the surface-modified zirconia particles was 6 nm. The total light transmittance of 1 cm optical path length of toluene dispersion was 85%.

[製造例2]表面修飾ジルコニアナノ結晶粒子分散液Bの製造
ステアリン酸の代わりに4−tert−ブチルシクロヘキサンカルボン酸を使用した以外は製造例1と同様にして、表面修飾ジルコニア粒子のトルエン分散液B(濃度10重量%)を作成することができた。表面修飾ジルコニア粒子の平均粒径は7nmであった。トルエン分散の1cm光路長の全光線透過率が85%であった。
[Production Example 2] Production of surface-modified zirconia nanocrystal particle dispersion liquid B A toluene dispersion of surface-modified zirconia particles in the same manner as in Production Example 1 except that 4-tert-butylcyclohexanecarboxylic acid was used instead of stearic acid. B (concentration 10% by weight) could be prepared. The average particle diameter of the surface-modified zirconia particles was 7 nm. The total light transmittance of 1 cm optical path length of toluene dispersion was 85%.

[製造例3]ナノクレイ分散液Cの製造
ナノクレイ(製品名「エスベン(登録商標)NX」:ホージュン社製)にトルエンを加え、ナノクレイのトルエン分散液C(濃度10重量%)を作成した。トルエン分散の1cm光路長の全光線透過率が81%であった。
[Production Example 3] Production of nanoclay dispersion C Toluene was added to nanoclay (product name “Esven (registered trademark) NX” manufactured by Hojun Co., Ltd.) to prepare a nanoclay toluene dispersion C (concentration: 10% by weight). The total light transmittance of 1 cm optical path length of toluene dispersion was 81%.

[実施例1]末端変性ビニル脂環式炭化水素重合体水素化物Aの製造(末端カルボキシル化)
撹拌装置を備えたステンレス鋼製反応器を充分に乾燥し、窒素で置換した後、脱水シクロヘキサン960部、スチレンモノマー240部、及びジブチルエーテル3.81部を仕込んだ。反応器の内容物を40℃で撹拌しながら、そこにn−ブチルリチウムの15%ヘキサン溶液1.35部を添加して、重合を開始した。40℃で3時間重合した後、−30℃まで冷却後、炭酸ガスで200kPaまで加圧して1時間反応させた。このようにして得られた末端変性ビニル芳香族炭化水素重合体(末端カルボキシル化ポリスチレン)Mwは180,000で、Mw/Mnは1.04であった。
次いで、上記末端変性ビニル芳香族炭化水素重合体含有の溶液1200部を、攪拌装置を備えた耐圧反応容器に移し、これにニッケル−珪藻土触媒(日揮化学工業社製、製品名「N113」、ニッケル担持量40%)24部を添加混合した。次に、反応容器内部を水素ガスで置換し、撹拌しながら、150℃で水素を供給して、圧力を70kg/cmに保ち、6時間水素化反応を行った。水素化反応終了後、反応溶液を濾過し、水素化触媒を除去した。触媒を除去した後、シクロヘキサン1200部を加えて希釈した。クリーン度クラス1000の環境下で、この希釈された液をさらに孔径1μmのフィルターにて濾過し、異物を除去した。この濾液を、クリーン度クラス1000の環境下で、平均孔径1μmのフィルターにて濾過した9000部のイソプロパノール中に注ぎ、末端変性ビニル脂環式炭化水素重合体水素化物を析出させた。濾過により分離後、減圧乾燥器により、100℃で48時間乾燥させて末端変性ビニル脂環式炭化水素重合体水素化物Aを回収した。得られた末端変性ビニル脂環式炭化水素重合体Aの物性は、Tg=143℃、Mw=153,000、Mw/Mn=1.30、末端変性率は85%であった。
得られた末端変性ビニル脂環式炭化水素重合体水素化物Aを10重量%になるようにしてトルエンに溶解し、これに、表1記載の無機微粒子分散液を、表1記載の量を添加した後に、窒素雰囲気下200℃に過熱してトルエンを除去して各種ナノ構造体を得た。熱プレスにて3mm厚の成形体を作成して全光線透過率を測定した。結果を表1に示す。
[Example 1] Production of terminal-modified vinyl alicyclic hydrocarbon polymer hydride A (terminal carboxylation)
A stainless steel reactor equipped with a stirrer was sufficiently dried and replaced with nitrogen, and then 960 parts of dehydrated cyclohexane, 240 parts of styrene monomer, and 3.81 parts of dibutyl ether were charged. While stirring the contents of the reactor at 40 ° C., 1.35 parts of a 15% hexane solution of n-butyllithium was added thereto to initiate polymerization. After polymerization at 40 ° C. for 3 hours, the mixture was cooled to −30 ° C., pressurized with carbon dioxide gas to 200 kPa, and reacted for 1 hour. The terminal-modified vinyl aromatic hydrocarbon polymer (terminal carboxylated polystyrene) Mw thus obtained was 180,000 and Mw / Mn was 1.04.
Subsequently, 1200 parts of the solution containing the above-mentioned terminal-modified vinyl aromatic hydrocarbon polymer was transferred to a pressure-resistant reaction vessel equipped with a stirrer, and a nickel-diatomite catalyst (product name “N113” manufactured by JGC Chemical Industries, Ltd., nickel) 24 parts) was added and mixed. Next, the inside of the reaction vessel was replaced with hydrogen gas, hydrogen was supplied at 150 ° C. while stirring, and the hydrogenation reaction was performed for 6 hours while maintaining the pressure at 70 kg / cm 2 . After completion of the hydrogenation reaction, the reaction solution was filtered to remove the hydrogenation catalyst. After removing the catalyst, it was diluted by adding 1200 parts of cyclohexane. In an environment of cleanliness class 1000, the diluted liquid was further filtered through a filter having a pore diameter of 1 μm to remove foreign matters. The filtrate was poured into 9000 parts of isopropanol filtered through a filter having an average pore size of 1 μm in an environment of cleanliness class 1000 to precipitate a terminal-modified vinyl alicyclic hydrocarbon polymer hydride. After separation by filtration, the residue was dried at 100 ° C. for 48 hours in a vacuum dryer to recover terminal-modified vinyl alicyclic hydrocarbon polymer hydride A. The physical properties of the obtained terminal-modified vinyl alicyclic hydrocarbon polymer A were Tg = 143 ° C., Mw = 153,000, Mw / Mn = 1.30, and the terminal modification rate was 85%.
The obtained terminal-modified vinyl alicyclic hydrocarbon polymer hydride A was dissolved in toluene so as to be 10% by weight, and the inorganic fine particle dispersion shown in Table 1 was added thereto in the amount shown in Table 1. After that, it was heated to 200 ° C. in a nitrogen atmosphere to remove toluene and obtain various nanostructures. A molded body having a thickness of 3 mm was prepared by hot pressing, and the total light transmittance was measured. The results are shown in Table 1.

[実施例2]末端変性ビニル脂環式炭化水素重合体水素化物Bの製造(末端ヒドロキシル化)
撹拌装置を備えたステンレス鋼製反応器を充分に乾燥し、窒素で置換した後、脱水シクロヘキサン960部、スチレンモノマー240部、及びジブチルエーテル3.81部を仕込んだ。反応器の内容物を40℃で撹拌しながら、そこにn−ブチルリチウムの15%ヘキサン溶液0.65部を添加して、重合を開始した。40℃で3時間重合した後、プロピレンオキサイド1.26部を添加して1時間反応させた。このようにして得られた末端変性ビニル芳香族炭化水素重合体(末端ヒドロキシル化ポリスチレン)のMwは180,000で、Mw/Mnは1.04であった。
次いで、上記末端変性ビニル芳香族炭化水素重合体含有の溶液1200部を、攪拌装置を備えた耐圧反応容器に移し、これにニッケル−珪藻土触媒(日揮化学工業社製、製品名「N113」、ニッケル担持量40%)24部を添加混合した。次に、反応容器内部を水素ガスで置換し、撹拌しながら、150℃で水素を供給して、圧力を70kg/cmに保ち、6時間水素化反応を行った。水素化反応終了後、反応溶液を濾過し、水素化触媒を除去した。触媒を除去した後、シクロヘキサン1200部を加えて希釈した。クリーン度クラス1000の環境下で、この希釈された液をさらに孔径1μmのフィルターにて濾過し、異物を除去した。この濾液を、クリーン度クラス1000の環境下で、平均孔径1μmのフィルターにて濾過した9000部のイソプロパノール中に注ぎ、末端変性ビニル脂環式炭化水素重合体水素化物を析出させた。濾過により分離後、減圧乾燥器により、100℃で48時間乾燥させて末端変性ビニル脂環式炭化水素重合体水素化物Bを回収した。得られた末端変性ビニル脂環式炭化水素重合体Bの物性は、Tg=143℃、Mw=153,000、Mw/Mn=1.09、末端変性率は95%であった。
この末端変性ビニル脂環式炭化水素重合体Bを用い、無機微粒子分散液を表1の通りにすること以外は、実施例1と同様にして3mm厚の成形体を作成して全光線透過率を測定した。結果を表1に示す。
[Example 2] Production of terminal-modified vinyl alicyclic hydrocarbon polymer hydride B (terminal hydroxylation)
A stainless steel reactor equipped with a stirrer was sufficiently dried and replaced with nitrogen, and then 960 parts of dehydrated cyclohexane, 240 parts of styrene monomer, and 3.81 parts of dibutyl ether were charged. While stirring the contents of the reactor at 40 ° C., 0.65 part of a 15% hexane solution of n-butyllithium was added thereto to initiate polymerization. After polymerization at 40 ° C. for 3 hours, 1.26 parts of propylene oxide was added and reacted for 1 hour. The terminal-modified vinyl aromatic hydrocarbon polymer (terminal hydroxylated polystyrene) thus obtained had Mw of 180,000 and Mw / Mn of 1.04.
Subsequently, 1200 parts of the solution containing the above-mentioned terminal-modified vinyl aromatic hydrocarbon polymer was transferred to a pressure-resistant reaction vessel equipped with a stirrer, and a nickel-diatomite catalyst (product name “N113” manufactured by JGC Chemical Industries, Ltd., nickel) 24 parts) was added and mixed. Next, the inside of the reaction vessel was replaced with hydrogen gas, hydrogen was supplied at 150 ° C. while stirring, and the hydrogenation reaction was performed for 6 hours while maintaining the pressure at 70 kg / cm 2 . After completion of the hydrogenation reaction, the reaction solution was filtered to remove the hydrogenation catalyst. After removing the catalyst, it was diluted by adding 1200 parts of cyclohexane. In an environment of cleanliness class 1000, the diluted liquid was further filtered through a filter having a pore diameter of 1 μm to remove foreign matters. The filtrate was poured into 9000 parts of isopropanol filtered through a filter having an average pore size of 1 μm in an environment of cleanliness class 1000 to precipitate a terminal-modified vinyl alicyclic hydrocarbon polymer hydride. After separation by filtration, the product was dried at 100 ° C. for 48 hours with a vacuum dryer to recover terminal-modified vinyl alicyclic hydrocarbon polymer hydride B. The physical properties of the obtained terminal-modified vinyl alicyclic hydrocarbon polymer B were Tg = 143 ° C., Mw = 153,000, Mw / Mn = 1.09, and the terminal modification rate was 95%.
Using this terminal-modified vinyl alicyclic hydrocarbon polymer B, a molded product having a thickness of 3 mm was prepared in the same manner as in Example 1 except that the inorganic fine particle dispersion was as shown in Table 1. Was measured. The results are shown in Table 1.

[実施例3]末端変性ビニル脂環式炭化水素重合体水素化物Cの製造(末端ヒドロキシル化)
スチレンモノマー240部の代わりに、スチレンモノマー/イソプレン(95:5重量比)240部用いた以外は実施例2と同様にして、得られた末端変性ビニル脂環式炭化水素重合体水素化物Cの物性は、Tg=129℃、Mw=143,000、Mw/Mn=1.11、末端変性率は96%であった。
この末端変性ビニル脂環式炭化水素重合体水素化物Cを用い、無機微粒子分散液を表1の通りにすること以外は、実施例1と同様にして3mm厚の成形体を作成して全光線透過率を測定した。結果を表1に示す。
[Example 3] Production of terminal-modified vinyl alicyclic hydrocarbon polymer hydride C (terminal hydroxylation)
The terminal-modified vinyl alicyclic hydrocarbon polymer hydride C was obtained in the same manner as in Example 2 except that 240 parts of styrene monomer / isoprene (95: 5 weight ratio) was used instead of 240 parts of styrene monomer. The physical properties were Tg = 129 ° C., Mw = 143,000, Mw / Mn = 1.11, and the terminal modification rate was 96%.
Using this terminal-modified vinyl alicyclic hydrocarbon polymer hydride C and making the inorganic fine particle dispersion liquid as shown in Table 1, a molded product having a thickness of 3 mm was prepared in the same manner as in Example 1 to produce a total light beam. The transmittance was measured. The results are shown in Table 1.

[比較例]ビニル脂環式炭化水素重合体水素化物Dの製造
プロピレンオキサイドの代わりに、イソプロパノールを用いた以外は実施例2と同様にして、得られたビニル脂環式炭化水素重合体水素化物Dの物性は、Tg=144℃、Mw=148,000、Mw/Mn=1.08、末端変性率は0%であった。
このビニル脂環式炭化水素重合体水素化物Dを用い、無機微粒子分散液を表1の通りにすること以外は、実施例1と同様にして、3mm厚の成形体を作成して全光線透過率を測定した。結果を表1に示す。
[Comparative Example] Production of hydride of vinyl alicyclic hydrocarbon polymer D. Obtained hydride of vinyl alicyclic hydrocarbon polymer in the same manner as in Example 2 except that isopropanol was used instead of propylene oxide. The physical properties of D were Tg = 144 ° C., Mw = 148,000, Mw / Mn = 1.08, and the terminal modification rate was 0%.
Using this vinyl alicyclic hydrocarbon polymer hydride D and making the inorganic fine particle dispersion liquid as shown in Table 1, a 3 mm-thick molded product was prepared and transmitted through all light in the same manner as in Example 1. The rate was measured. The results are shown in Table 1.

Figure 0005978713
Figure 0005978713

この結果から、分子末端を官能基で変性した末端変性ビニル脂環式炭化水素重合体水素化物は、無機微粒子量を増加させても光線透過率の低下が少なく、屈折率が上昇する(実施例1〜3)一方で、分子末端を官能基で変性していないビニル脂環式炭化水素重合体水素化物は、無機微粒子の量を増やすと透明性の低下が大きくなることがわかる(比較例)。   From this result, the terminal-modified vinyl alicyclic hydrocarbon polymer hydride whose molecular terminal is modified with a functional group has little decrease in light transmittance and increased refractive index even when the amount of inorganic fine particles is increased (Examples). 1-3) On the other hand, it can be seen that the hydride of a vinyl alicyclic hydrocarbon polymer whose molecular terminal is not modified with a functional group has a large decrease in transparency when the amount of inorganic fine particles is increased (Comparative Example). .

Claims (3)

下記一般式(1)で表される脂環式構造を有する繰り返し単位(a)の含有量が90重量%以上であり、下記一般式(2)及び/又は下記一般式(3)で表される鎖状構造の繰り返し単位(b)の含有量が10重量%以下であり、分子鎖の末端に、カルボキシル基又はヒドロキシル基を含有する末端変性ビニル脂環式炭化水素重合体水素化物のマトリックス内に、平均粒径100nm以下の無機化合物の粒子が分散していることを特徴とするナノ構造体であって、
厚さ3mmにおける光線透過率が80%以上であるナノ構造体。
Figure 0005978713
〔式中、Rは、水素原子又は炭素原子数1〜20個のアルキル基であり、R〜R12は、それぞれ独立に、水素原子、炭素原子数1〜20個のアルキル基、又はハロゲン原子である。〕
Figure 0005978713
〔式中、R13は、水素原子又は炭素原子数1〜20個のアルキル基である。〕
Figure 0005978713
〔式中、R14及びR15はそれぞれ独立に、水素原子又は炭素原子数1〜20個のアルキル基である。〕
The content of the repeating unit (a) having an alicyclic structure represented by the following general formula (1) is 90% by weight or more, and is represented by the following general formula (2) and / or the following general formula (3). In the matrix of the terminal-modified vinyl alicyclic hydrocarbon polymer hydride having a chain structure repeating unit (b) content of 10% by weight or less and containing a carboxyl group or a hydroxyl group at the end of the molecular chain In addition, a nanostructure in which particles of an inorganic compound having an average particle size of 100 nm or less are dispersed,
A nanostructure having a light transmittance of 80% or more at a thickness of 3 mm.
Figure 0005978713
[Wherein, R 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom. ]
Figure 0005978713
[Wherein, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]
Figure 0005978713
[Wherein, R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]
前記末端変性ビニル脂環式炭化水素重合体水素化物の変性率が70%以上である請求項1に記載のナノ構造体。   The nanostructure according to claim 1, wherein the terminal-modified vinyl alicyclic hydrocarbon polymer hydride has a modification rate of 70% or more. 請求項1又は2に記載のナノ構造体からなる光学材料。   An optical material comprising the nanostructure according to claim 1.
JP2012080287A 2012-03-30 2012-03-30 Terminal-modified vinyl alicyclic hydrocarbon polymer hydride Active JP5978713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080287A JP5978713B2 (en) 2012-03-30 2012-03-30 Terminal-modified vinyl alicyclic hydrocarbon polymer hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080287A JP5978713B2 (en) 2012-03-30 2012-03-30 Terminal-modified vinyl alicyclic hydrocarbon polymer hydride

Publications (2)

Publication Number Publication Date
JP2013209501A JP2013209501A (en) 2013-10-10
JP5978713B2 true JP5978713B2 (en) 2016-08-24

Family

ID=49527650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080287A Active JP5978713B2 (en) 2012-03-30 2012-03-30 Terminal-modified vinyl alicyclic hydrocarbon polymer hydride

Country Status (1)

Country Link
JP (1) JP5978713B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146925A1 (en) * 2014-03-28 2015-10-01 日本ゼオン株式会社 Resin composition, resin molded article, and optical component
EP3858914A4 (en) 2018-09-27 2022-07-13 Mitsui Chemicals, Inc. Cyclic olefin-based resin composition, molded body and optical component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497957B1 (en) * 2000-10-04 2002-12-24 Eastman Kodak Company Antireflection article of manufacture
WO2005021600A1 (en) * 2003-08-27 2005-03-10 Mitsui Chemicals, Inc. Polyolefin functional at one end
JP2005239851A (en) * 2004-02-26 2005-09-08 Nippon Zeon Co Ltd Terminal-modified vinyl alicyclic hydrocarbon polymer and manufacturing method of the same
JP2005298717A (en) * 2004-04-14 2005-10-27 Konica Minolta Opto Inc Thermoplastic resin material, its production method and optical element using the same
US7864425B2 (en) * 2005-09-16 2011-01-04 Panasonic Corporation Composite material and optical component using the same
JP2007204739A (en) * 2006-01-06 2007-08-16 Hitachi Chem Co Ltd Transparent polymer composition and optical member using the same

Also Published As

Publication number Publication date
JP2013209501A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5232583B2 (en) Nanoparticle production method and application
US7417081B2 (en) Asphalt composition
TW201120073A (en) Production method for modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition
TWI453224B (en) Terminal modified conjugated diene-vinyl aromatic hydrocarbon copolymer and manufacturing method of the same
JP2018131516A (en) Rubber composition for tire
JP6870365B2 (en) Hydrogenated styrene copolymer resin
TW200829617A (en) β-pinene polymer and process for production thereof
JP5978713B2 (en) Terminal-modified vinyl alicyclic hydrocarbon polymer hydride
JP4224655B2 (en) Alicyclic hydrocarbon copolymer
WO2001023437A1 (en) Optical material comprising star-shaped hydrogenated polystyrene block copolymer, process for producing the same, and substrate for optical disk
JP7151199B2 (en) Partially hydrogenated dicyclopentadiene resin and rubber composition containing the same
KR20130095693A (en) Partially hydrogenated polymer and method thereof
JP5478249B2 (en) Hydrogenated β-pinene-based polymer and molded article comprising the same
TW201041914A (en) Branched conjugated diene-aromatic vinyl copolymer and method for producing same
TWI475065B (en) Alicyclic hydrocarbon random copolymer ,method for producing the same , resin composition , and the moldings
EP1169358A1 (en) Hydrogenated block copolymers
JPWO2007119512A1 (en) Optical element and optical resin lens
JP4985397B2 (en) Resin composition and molded body
JP4447224B2 (en) Optical materials and optical products
US6806322B2 (en) Hydrogenated styrene polymer, process for producing the same, and molded object obtained therefrom
JP7104318B2 (en) Vulcanized rubber
US8153727B2 (en) Block copolymer, resin composition comprising same, and process for producing the resin composition
JP7380121B2 (en) rubber composition
JP2021193169A (en) Antistatic resin composition, method for producing antistatic resin composition, and electronic component packaging material
JP2023172108A (en) Abs-based resin composition, and molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250