JP5967539B2 - 光ビーコン - Google Patents

光ビーコン Download PDF

Info

Publication number
JP5967539B2
JP5967539B2 JP2012219991A JP2012219991A JP5967539B2 JP 5967539 B2 JP5967539 B2 JP 5967539B2 JP 2012219991 A JP2012219991 A JP 2012219991A JP 2012219991 A JP2012219991 A JP 2012219991A JP 5967539 B2 JP5967539 B2 JP 5967539B2
Authority
JP
Japan
Prior art keywords
uplink
frame
optical
vehicle
downlink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012219991A
Other languages
English (en)
Other versions
JP2014029657A (ja
Inventor
幸治 葉山
幸治 葉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric System Solutions Co Ltd
Original Assignee
Sumitomo Electric System Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric System Solutions Co Ltd filed Critical Sumitomo Electric System Solutions Co Ltd
Priority to JP2012219991A priority Critical patent/JP5967539B2/ja
Publication of JP2014029657A publication Critical patent/JP2014029657A/ja
Application granted granted Critical
Publication of JP5967539B2 publication Critical patent/JP5967539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、走行中の車両の車載機と光信号による無線通信を行う光ビーコンに関する。
路車間通信システムを利用した交通情報サービスとして、光ビーコン、電波ビーコン又はFM多重放送を用いたいわゆるVICS(Vehicle Information and Communication System:(財)道路交通情報通信システムセンターの登録商標)が既に展開されている。
このうち、光ビーコンは、近赤外線を通信媒体とした光通信を採用しており、車載機との双方向通信が可能である。具体的には、車両の保持するビーコン間の旅行時間情報等を含むアップリンク情報が車載機からインフラ側の光ビーコンに送信される。
逆に、光ビーコンからは、渋滞情報、区間旅行時間情報、事象規制情報及び車線通知情報等を含むダウンリンク情報が車載機に送信されるようになっている(例えば、特許文献1参照)。
このため、光ビーコンは、車載機との間で光信号を送受するビーコンヘッド(投受光器)を備え、投受光器には、ビーコン制御機から入力された送信信号を発光ダイオードに入力してダウンリンク光を送出する光送信部と、フォトダイオードが受光した光信号を電気信号に変換してビーコン制御機に出力する光受信部が搭載されている。
一方、光ビーコンを利用した安全運転支援システム(DSSS)の一環として、光ビーコンの通信領域の基準位置、下流側の交差点の停止線位置、基準位置からアップリンク位置(光ビーコンが受信できた上りフレームの送信位置)までの「UL位置補正情報」(以下、単に「位置補正情報」という場合がある。)、ダウンリンク切り替え後の下りフレームの累積送信フレームである「DL送信フレーム数」、及び、交差点の信号の予定秒数である「信号情報」を、「安全運転支援情報」として下りフレームに含める場合がある。
それらの情報を提供された車載機は、基準位置から停止線位置までの距離から、位置補正情報の距離とDL送信フレーム数から求めた距離を減算することにより、現時点の車両位置から停止線位置までの距離を正確に求めることができる。
この場合、停止線位置までの距離が正確に求まるので、赤信号の直前で交差点に進入することがないように、ドライバに制動を促すなどの安全運転の支援制御を正確に実行できるようになる。
特開2005−268925号公報
1993年から現在までの間に、約54000ヘッドの光ビーコンが全国各地の道路に配備されているが、かかる既設の光ビーコンを用いた従来の光通信システムよりも、通信容量を拡大してシステムを高度化することが検討されている。
通信容量を拡大する方策としては、アップリンク及びダウンリンクそれぞれについての伝送速度の高速化、通信領域の拡張あるいは通信プロトコルの変更などの方策がある。このうち、アップリンク速度を現状(64kbps)よりも高速化すれば、通信領域をさほど広げなくても、大容量のプローブデータを車載機から収集でき、交通信号制御の高度化に役立てることができる。
このように、アップリンク速度の高速化を実現するためには、高速アップリンク受信に対応する光ビーコン(以下、「新光ビーコン」ともいう。)と、高速アップリンク送信に対応する車載機(以下、「新車載機」ともいう。)を新たに導入する必要がある。
しかし、新光ビーコンや新車載機を導入するとしても、これらの新型の機器が、低速アップリンク通信しかできない従来の機器と互換性がなければ、既存の路車間通信システムと整合しなくなるため、アップリンク速度の高速化が阻害される。
そこで、新車載機の上位互換性を確保するため、低速アップリンク送信のみを行う車載機(以下、「旧車載機」ともいう。)からの低速フレームのみをアップリンク受信できる光ビーコン(以下、「旧光ビーコン」ともいう。)が認識可能な、車両の識別情報(以下、「車両ID」ともいう。)を格納した低速フレームを、高速フレームの前にアップリンク送信する通信規約を採用すれば、旧光ビーコンにダウンリンク切り替えを行わせることができ、新車載機が旧光ビーコンとも通信できるようになる。
ところで、新車載機が低速フレームの後に高速フレームを送信する場合のように、1回の路車間通信で複数の上りフレームの送信が行われる場合において、後続の上りフレームのアップリンク位置が求まる毎に動的に更新される「位置補正情報」を、ダウンリンク切り替えのタイミングとは無関係に下りフレームに含めると、「位置補正情報」と「DL送信フレーム数」との関係性が崩れてしまい、これらの情報を用いた実距離の算出を正確に行うことができなくなるという問題がある。
なお、上記において、「位置補正情報」と「DL送信フレーム数」の関係性が崩れるとは、具体的には、「DL送信フレーム数」はダウンリンク切り替え時の上りフレームが基準となっているのに対し、「位置補正情報」はダウンリンク切り替え時の上りフレームが基準となっていない場合のことをいう。
本発明は、かかる従来の問題点に鑑み、正確な安全運転支援情報を車載機に提供することができる、DSSS対応の光ビーコンを提供することを目的とする。
(1) 本発明の光ビーコンは、走行中の車両の車載機と光信号による無線通信を行う光ビーコンであって、上りの光信号を電気信号に変換する受光素子を含む光受信部と、電気信号を下りの光信号に変換する発光素子を含む光送信部と、複数の上りフレームのうちいずれかの受信を契機として行うダウンリンク切り替えと、アップリンク位置の生成とを実行可能な通信制御部と、を備えており、前記通信制御部は、前記ダウンリンク切り替えの契機となる前記上りフレームを受信した場合に、その受信時における前記アップリンク位置を前記下りフレームに含めることを特徴とする。
本発明の光ビーコンによれば、通信制御部が、ダウンリンク切り替えの契機となる上りフレームを受信した場合に、その受信時におけるアップリンク位置を下りフレームに含めるので、ダウンリンク切り替えの契機とならない上りフレームを受信しても、その受信時におけるアップリンク位置が車載機に提供されない。
従って、車載機が、1回の路車間通信にて複数の上りフレームを送信する場合において、ダウンリンク切り替えの契機とならない上りフレームのアップリンク位置から求められた、誤ったアップリンク位置が車載機に伝送されることがない。このため、車載機は、正しいアップリンク位置を用いて所定位置までの実距離を正確に算出することができ、DSSSを適切に運用することができる。
換言すると、「DL送信フレーム数」と「位置補正情報」(アップリンク位置)がともにダウンリンク切り替え時の上りフレームを基準とすることになるので、これらの情報に基づいて車載機が所定位置までの実距離を正しく算出できるようになる。
(2) 本発明の光ビーコンにおいて、前記光受信部が、高低2種類の伝送速度の光信号に対応している場合(高速アップリンク受信に対応する新光ビーコンの場合)には、前記通信制御部は、低速の前記上りフレームを受信した場合は前記ダウンリンク切り替えを行い、高速の前記上りフレームを受信した場合は前記ダウンリンク切り替えを行わないことが好ましい。
この場合、低速フレームでのダウンリンク切り替えが行われるので、新光ビーコンの通信相手が新車載機か旧車載機かに関係なく、適切に路車間通信を行うことができる。
また、高速フレームでのダウンリンク切り替えが行われないので、高速フレームの受信によってもダウンリンク切り替えを行う場合に比べて、新光ビーコンの処理負荷を軽減できる。また、ダウンリンク切り替えの時期が遅くなって、その後にダウンリンク送信される下りフレームの受信機会が減少するのを防止することができる。
なお、低速フレームの場合にダウンリンク切り替えを行い、高速フレームの場合にダウンリンク切り替えを行わない実装の場合には、アップリンク受信した上りフレームが低速か高速かにより、ダウンリンク切り替えの契機となる上りフレームか否かを判定することにすればよい。
(3) 本発明の光ビーコンにおいて、前記光受信部は、具体的には、例えば次の2種類の受光系を含む回路構成を採用することができる。
通信用の受光系:受光素子が出力する電気信号からビットデータを抽出する受光系
測定用の受光系:受光素子が出力する電気信号からアップリンク位置の測定に用いる測定データを生成する受光系
(4) この場合、前記受光素子として、通信用の第1の変換素子と、これとは別個の測定用の第2の変換素子とを含む回路構成とする場合には、前記測定用の第2の変換素子は、光信号の受光面上の入射位置が車両進行方向における光信号の送信位置と対応するように配置され、その入射位置に応じた電気信号を出力する位置検出素子よりなることが好ましい。
かかる位置検出素子を採用すれば、後述の「分割PD」を用いた測定用の受光系の場合に比べて、位置標定の分解能が高まるとともに、道路側のアップリンク領域との位置合わせが容易な光ビーコンが得られる。
(5) また、前記光受信部が、高低2種類の伝送速度の光信号に対応している場合、前記第1の変換素子は、高低両方の光信号に対して通信用として用いられ、前記第2の変換素子は、伝送速度が高速の光信号に対しては測定用として用いられ、伝送速度が低速の光信号に対しては測定用に加えて通信用として用いられてもよい。
一般に、通信用に用いられる変換素子は、正確なビットデータを抽出するために光信号に対して高い追従性能が要求される。上記のような位置検出素子である第2の変換素子は、伝送速度が高速の光信号に対しては比較的追従性能が悪いが、低速の光信号に対してはビットデータを抽出できる程度の追従性能を有している。従って、当該第2の変換素子は、低速の光信号に対しては測定用として利用するだけでなく、通信用としても利用することができる。このような利用形態を採用することにより、低速フレームに対しては第1の変換素子と第2の変換素子との双方の出力信号から二重にビットデータを取得することができ、当該ビットデータの取得の確実性をより高めることが可能となる。また、車載機から低速フレームが送信され、第1及び第2の変換素子の一方の出力信号のみからビットデータが抽出された場合には、他方の変換素子に故障等の不具合があることを認識することができ、当該不具合に対して早期に対処することが可能となる。
(6) 上記(3)の光ビーコンにおいて、前記受光素子は、通信用と測定用に兼用可能な変換素子よりなる回路構成であってもよく、この場合、前記変換素子は、車両進行方向に並ぶ道路上の分割領域に対応する受光面をそれぞれ有する複数のフォトダイオードよりなるもの(分割PD)を採用すればよい。
かかる分割PDよりなる変換素子を採用すれば、通信用の受光系と測定用の受光系に用いる受光素子を1種類の変換素子で兼用できるので、回路規模をコンパクト化できるという利点がある。
(7) 本発明の光ビーコンにおいて、前記通信制御部は、例えば次の3種類の処理部を含むチップ構成を採用することができる。
通信処理部:抽出されたビットデータから上りデータを再生する処理部
位置処理部:生成された測定データからアップリンク位置の位置データを演算する処理部
判定処理部:再生された上りデータの内容に応じて、演算された位置データに対応するアップリンク位置を下りフレームに含めるか否かを判定する処理部
(8) この場合、前記判定処理部は、再生された上りデータの内容から前記上りフレームがダウンリンク切り替えの契機となるか否かを判定し、その判定結果が肯定的である場合は前記アップリンク位置を前記下りフレームに含め、その判定結果が否定的である場合は前記アップリンク位置を前記下りフレームに含めないことにすればよい。
(9) また、ダウンリンク切り替えの契機となる前記上りフレームの伝送速度が通信規約で規定されている場合には、前記判定処理部は、受信した前記上りフレームの伝送速度が低速か高速かにより、当該上りフレームがダウンリンク切り替えの契機となるか否かを判定するようにすればよい。
(10) 上記(5)の光ビーコンにおいて、前記通信制御部は、低速の前記上りフレームを受信した場合は前記ダウンリンク切り替えを行い、高速の前記上りフレームを受信した場合は前記ダウンリンク切り替えを行わないように構成されており、さらに、前記通信制御部は、次の3種類の処理部を含むチップ構成を採用することができる。
通信処理部:抽出されたビットデータから上りデータを再生する処理部
位置処理部:生成された測定データからアップリンク位置の位置データを演算する処理部
判定処理部:前記第1及び第2の変換素子のそれぞれの出力信号から上りデータが再生されたか否かにより、演算された位置データに対応するアップリンク位置を下りフレームに含めるか否かを判定する処理部
(11) そして、この場合、前記判定処理部は、少なくとも前記第2の変換素子の出力信号から上りデータが再生されたか否かにより、前記アップリンク位置を下りフレームに含めるか否かを判定することができる。
前述したように、第2の変換素子の出力信号から上りデータが再生されたときは、当該第2の変換素子によって受信された上りフレームが低速であると判断することができ、逆に第2の変換素子の出力信号から上りデータが再生されなかったときは、当該上りフレームが高速であると判断することができる。従って、判定処理部は、この上りフレームの伝送速度に応じて当該上りフレームがダウンリンク切り替えの契機となるか否かを判断し、前記アップリンク位置を下りフレームに含めるか否かを判定することができる。
(12) 上記の(11)において、少なくとも第2の変換素子の出力信号から上りデータが再生される場合とは、第1及び第2の変換素子の双方の出力信号から上りデータが再生される場合と、第2の変換素子の出力信号のみから上りデータが再生される場合との2つのケースが考えられる。後者のケースの場合、上りフレームが低速であるにも関わらず、第1の変換素子の出力信号から適切に上りデータが再生されていないことになるので、第1の変換素子に故障等の不具合が生じていると認識することが可能となる。
したがって、本発明の前記判定処理部は、前記第2の変換素子の出力信号のみから前記上りデータが再生された場合には、前記第1の変換素子を故障と判断するように構成することも可能である。
(13) また、前記判定処理部は、前記第1の変換素子の出力信号のみから前記上りデータが再生された場合には、受信した前記上りフレームが低速か高速かを判定してもよい。
第1の変換素子の出力信号のみから上りデータが再生された場合、すなわち、第2の変換素子の出力信号からは上りデータが再生されなかった場合は、受信した上りフレームは高速であると判断することができる。しかし、第2の変換素子の故障等が原因で、上りフレームが低速であるにも関わらず第2の変換素子の出力信号から上りデータが再生されないこともあり得る。従って、本発明では、第1の変換素子の出力信号のみから前記上りデータが再生された場合には、受信した上りフレームが低速か高速かをさらに判定する。そして、上りフレームが低速であると判定された場合には、第2の変換素子に故障等の不具合を生じていると認識することができる。
(14) したがって、本発明の前記判定処理部は、上記(13)において、受信した前記上りフレームが低速であると判定した場合には、前記第2の変換素子を故障と判断するように構成することもできる。
(15) 他の観点から見た本発明の光ビーコンは、走行中の車両の車載機と光信号による無線通信を行う光ビーコンであって、上りの光信号を電気信号に変換する受光素子を含む光受信部と、電気信号を下りの光信号に変換する発光素子を含む光送信部と、前記光受信部が出力するビットデータから上りフレームを再生し、前記光受信部が出力する測定データからアップリンク位置を生成する通信制御部と、備えており、前記光受信部は、次の2種類の受光系を含むことを特徴とする。
通信用の受光系:通信用の変換素子が出力する電気信号からビットデータを抽出する受光系
測定用の受光系:通信用の変換素子とは別個に設けられた測定用の変換素子が出力する電気信号からアップリンク位置の測定に用いる測定データを生成する受光系
受光面内の入力位置に応じた電気信号を出力する位置検出素子としてPSD(Position Sensitive Detector)が知られており、このPSDを用いてアップリンク位置を測定できる光ビーコンの従来例として、例えば特開2009−26033号公報に記載された光ビーコンがある。
この光ビーコンでは、1つの位置検出素子(PSD)が出力する電気信号を、アップリンク位置の測定と上りフレームの再生の双方に利用している。しかし、一般にPSDは、高速帯域での追従性能が悪いため、上りフレームが高速化されると、PSDが出力する電気信号からは上りフレームを適切に再生できない。
この点、本発明の光ビーコンでは、光受信部が通信用の受光系と測定用の受光系を含み、これらの受信系で別個の変換素子を使用しているので、測定用の変換素子の性能に関係なく、通信用の受光系が出力する電気信号の品質を確保することができる。
このため、アップリンク位置を測定可能な光ビーコンにおいて、上りフレームの高速化に適切に対応することができる、アップリンク方向の受信性能に優れたマルチレート対応の光ビーコンが得られる。
なお、本発明の光ビーコンにおいて、通信用の変換素子としては、例えばPDを採用することができ、測定用の変換素子としては、例えばPSDを採用することができる。また、低速の上りフレームを再生する場合には、通信用の変換素子としてPSDを採用することも可能である。
また、測定用の受光系からは上りフレームのデータ再生を行う必要がないので、測定用の変換素子として、例えばCCDなどの、画像を取得可能なイメージセンサを採用することにしてもよい。
以上の通り、本発明によれば、ダウンリンク切り替えの契機とならない上りフレームのアップリンク位置から求められた、誤ったアップリンク位置が車載機に伝送されることがないので、正確な安全運転支援情報を車載機に提供することができる、DSSS対応の光ビーコンを提供することができる。
路車間通信システムの概略構成を示すブロック図である。 光ビーコンの設置部分を上から見た道路の平面図である。 光ビーコンの通信領域を示す側面図である。 従来の通信手順を示すシーケンス図である。 新旧の光ビーコンと車載機の混在状態を示す図である。 新光ビーコンの上位互換制御を示すフローチャートである。 アップリンク情報のフレーム構成図である。 ダウンリンク情報のフレーム構成図である。 送信中断期間を設けない場合の路車間通信を示すシーケンス図である。 送信中断期間を設ける場合の路車間通信を示すシーケンス図である。 安全運転支援システムにおける提供情報の一例を示す説明図である。 第1実施形態に係る新光ビーコンの回路構成図である。 位置検出素子を用いたアップリンク位置の測定原理の説明図である。 メインCPUによる判定処理の一例を示すフローチャートである。 第2実施形態に係る新光ビーコンの回路構成図である。 分割PDを用いたアップリンク位置の測定原理の説明図である。 第3実施形態に係る新光ビーコンの回路構成図である。 メインCPUによる判定処理の一例を示すフローチャートである。
以下、図面を参照しつつ、本発明の実施形態を説明する。
〔システムの全体構成〕
図1は、本発明の実施形態に係る路車間通信システムの全体構成を示すブロック図である。図1に示すように、本実施形態の路車間通信システムは、インフラ側の交通管制システム1と、道路Rを走行する車両20に搭載された車載機2とを備えている。
交通管制システム1は、交通管制室等に設けられた中央装置3と、道路Rの各所に多数設置された光ビーコン(光学式車両感知器)4とを備え、光ビーコン4は、近赤外線を通信媒体とした光通信によって車載機2との間で無線通信を行うことができる。
光ビーコン4は、ビーコン制御機7と、このビーコン制御機7のセンサ用インタフェースに接続された複数(図1では4つ)のビーコンヘッド(投受光器ともいう。)8とを有している。
ビーコン制御機7は、インフラ側の通信部6に接続されており、通信部6は電話回線等の通信回線5によって中央装置3と接続されている。
通信部6は、例えば、信号灯器の灯色を制御する交通信号制御機や、インフラ側における交通情報の中継処理を行う情報中継装置等より構成することができる。
本実施形態の光ビーコン4は、全二重通信方式を採用している。すなわち、後述のビーコン制御機7は、光送信部10に対するダウンリンク方向の送信制御と、光受信部11に対するアップリンク方向の受信制御とを同時に行うことができる。
これに対して、本実施形態の車載機2は、半二重通信方式を採用している。すなわち、後述の車載制御機21は、光送信部23に対するアップリンク方向の送信制御と、光受信部24に対するダウンリンク方向の受信制御とを同時には行わない。
なお、光送信部23に対するアップリンク方向の送信制御と、光受信部24に対するダウンリンク方向の受信制御は同時に行われていても良いが、実態として、どちらかのみしか機能しないように構成されているものとする。すなわち、アップリンクの送信中にはダウンリンクを受信することが困難な構成である。
〔光ビーコンの構成〕
光ビーコン4のビーコンヘッド8は、電気光変換が可能な光送信部10と、光電気変換が可能な光受信部11とを筐体の内部に有している。
このうち、光送信部10は、近赤外線よりなるダウンリンク光(ダウンリンク方向の光信号)をダウンリンク領域DA(図3参照)に送出する発光素子を有し、光受信部11は、アップリンク領域UA(図3参照)にある車載機2からの近赤外線よりなるアップリンク光(アップリンク方向の光信号)を受光する受光素子を有する。
光送信部10は、ビーコン制御機7から送出される下りフレームを所定の伝送速度のシリアルな送信信号に変換する送信回路と、出力された送信信号をダウンリンク方向の光信号に変換する、発光ダイオード等よりなる発光素子とから構成されている。
本実施形態の光ビーコン4では、光送信部10が送信する光信号の伝送速度は、従来の旧光ビーコンと同様に1024kbpsである。
光受信部11は、フォトダイオード等よりなる受光素子と、この受光素子が出力する電気信号を増幅してデジタルの受信信号を生成する受信回路とを備えている。
本実施形態の光ビーコン4では、光受信部11は、高低2種類の伝送速度での光電気変換が可能なマルチレート対応であり、低い方の伝送速度は従来の旧光ビーコンと同様に64kbpsである。高い方の伝送速度は、128kbps、192kbps、256kbps、384kbps、512kbps、1024kbpsなどの速度を採用し得るが、本実施形態では256kbpsであるとする。
図2は、本実施形態の光ビーコン4の設置部分を上から見た道路Rの平面図である。
図2に示すように、本実施形態の光ビーコン4は、同じ方向の複数(図例では4つ)の車線R1〜R4を有する道路Rに設置されており、車線R1〜R4に対応して設けられた複数のビーコンヘッド8と、これらのビーコンヘッド8を一括制御する制御部である1台のビーコン制御機7とを備えている。
ビーコン制御機7は、信号処理部、CPU及びメモリなどを有するコンピュータ装置よりなり、通信部6(図1参照)を介した中央装置3との双方向通信と、車載機2との路車間通信を行う通信制御部としての機能を有する。
また、ビーコン制御機7は、通信制御のためのコンピュータプログラムを記憶装置に格納しており、このプログラムをCPUが読み出して実行することにより、当該CPUが上記通信制御部として機能する。
ビーコン制御機7は、道路脇に立設した支柱13に設置されている。また、各ビーコンヘッド8は、支柱13から道路R側に水平に架設した架設バー14に取り付けられ、道路Rの各車線R1〜R4の直上に配置されている。
ビーコンヘッド8の発光素子は、車線R1〜R4の直下よりも車両進行方向の上流側に向けて近赤外線を発光しており、これにより、車載機2との間で路車間通信を行うための通信領域Aが当該ヘッド8の上流側に設定されている。
〔光ビーコンの通信領域〕
図3は、光ビーコン4の通信領域Aを示す側面図である。
図3に示すように、光ビーコン4の通信領域Aは、ダウンリンク領域(図3において実線のハッチングを設けた領域)DAと、アップリンク領域(図3において破線のハッチングを設けた領域)UAとからなる。
このうち、ダウンリンク領域DAは、ビーコンヘッド8が送出するダウンリンク方向の光信号を、車載機2の投受光器である車載ヘッド22にて受信できる領域であり、ビーコンヘッド8の投受光位置d、地上1m高さの位置a及びcを頂点とする△dacで示された範囲である。
また、アップリンク領域UAは、車載ヘッド22が送出するアップリンク方向の光信号を、ビーコンヘッド8にて受信できる領域であり、上記投受光位置dと、地上1m高さの位置b及びcを頂点とする△dbcで示された範囲である。
従って、ダウンリンク領域DAとアップリンク領域UAの上流端cは互いに一致し、アップリンク領域UAは、ダウンリンク領域DAの車両進行方向の上流部分(図3の右側部分)に重複している。また、ダウンリンク領域DAの車両進行方向長さは、通信領域A全体の同方向長さと一致している。
旧光ビーコン(光学式車両感知器)の場合、ダウンリンク領域DA及びアップリンク領域UAの正式な領域寸法が規約によって規定されている。
例えば、一般道向けの旧光ビーコンの場合、ダウンリンク領域DAの下流端aが、ビーコンヘッド8の直下の1.0〜1.3m上流側に位置し、ダウンリンク領域DAの下流端aからアップリンク領域UAの下流端bまでの距離が2.1mと規定されている。
また、アップリンク領域UAの下流端bから同領域UAの上流端cまでの距離は1.6mと規定されている。従って、正式な通信領域Aの車両進行方向の全長(ac間の長さ)は3.7mとなる。
これに対して、本実施形態の光ビーコン4(新光ビーコン)では、ダウンリンク領域DAの下流端aをビーコン直下まで延ばし上流端cを上記規定よりも上流側に延ばすことにより、ダウンリンク領域DAの車両進行方向の範囲を、高速アップリンク受信に非対応の旧光ビーコンの場合よりも広く設定している。
具体的な数値で例示すると、ビーコンヘッド8の真下を0m(原点)として、そこから上流方向を正の方向とした場合、本実施形態のダウンリンク領域DAの範囲(図3の位置aから位置cまでの範囲)は、0.70〜6.04mとなっている。
このようにダウンリンク領域DAを広めに設定すると、車載機2がダウンリンク方向の光信号を受信する確実性が増すとともに、通信時間が長くなるのでダウンリンク方向の通信容量を拡大することができる。
また、本実施形態のアップリンク領域UAの範囲(図3の位置bから位置cまでの範囲)は、3.04〜6.04mとなっており、上流端cの位置が従来よりも1.04mだけ上流側に拡張されている。
このようにアップリンク領域UAを広めに設定すると、光ビーコン4がアップリンク方向の光信号を受信する確実性が増とともに、通信時間が長くなるのでアップリンク方向の通信容量を拡大することができる。
〔車載機の構成〕
図3に示すように、本実施形態の車載機2は、車載制御機21と車載ヘッド22とを備えており、車載ヘッド22の内部には、光送信部23と光受信部24が収容されている。
このうち、光送信部23は、近赤外線よりなるアップリンク光(アップリンク方向の光信号)を発光する発光素子を有し、光受信部24は、ダウンリンク領域DAに送出された近赤外線よりなるダウンリンク光(ダウンリンク方向の光信号)を受光する受光素子を有する。
光送信部23は、車載制御機21から出力される上りフレームを所定の伝送速度のシリアルな送信信号に変換する送信回路と、出力された送信信号をアップリンク方向の光信号に変換する、発光ダイオード等よりなる発光素子とから構成されている。
本実施形態の車載機2では、光送信部23は、高低2種類の伝送速度での電気光変換が可能なマルチレート対応であり、低い方の伝送速度は従来の旧車載機と同様に64kbpsである。高い方の伝送速度は、128kbps、192kbps、256kbps、384kbps、512kbps、1024kbpsなどの速度を採用し得るが、本実施形態では256kbpsであるとする。
光受信部24は、フォトダイオード等よりなる受光素子と、この受光素子が出力する電気信号を増幅してデジタルの受信信号を生成する受信回路とを備えている。
本実施形態の車載機2では、光受信部24が受信する光信号の伝送速度は、従来の旧車載機と同様に1024kbpsである。
車載制御機21は、信号処理部、CPU及びメモリなどを有するコンピュータ装置よりなり、光ビーコン4との路車間通信を行う通信制御部としての機能を有する。
また、車載制御機21は、通信制御のためのコンピュータプログラムを記憶装置に格納しており、このプログラムをCPUが読み出して実行することにより、当該CPUが上記通信制御部として機能する。
更に、車載制御機21は、アップリンクデータとして、自車両の走行データ(例えば、通過位置と通過時刻を時系列に並べた走行軌跡データであるプローブ情報など)を生成して、光送信部23にアップリンク送信させる機能も有する。
この場合、アップリンク速度を高速化することで、より多くのプローブ情報(走行軌跡を記録する道路区間を長くしたり、同一道路区間における通過位置と通過時刻の記録密度を高くしたりした情報)を送信することが可能になる。
なお、本実施形態の車載制御機21は、上記CPUを含む本体制御部とは別に、ASIC(Application Specific Integrated Circuit )等を含む簡易制御部を設けた回路構成であってもよい。
この簡易制御部は、例えば、光受信部24が何らかの下りフレームを受信した場合に、自機の車両20の識別情報(以下、「車両ID」という。)を含む低速の上りフレームを生成する機能を有する。
〔用語の定義等〕
ここで、本明細書で用いる用語の定義を行う。
下りフレームDL1:光ビーコン4が、後述するダウンリンク切り替え前に、ダウンリンク領域DAに向けて繰り返し送信する下りフレームのことをいう。
上りフレームUL1:下りフレームDL1の受信に応じて車載機2が送信する上りフレームのうち、伝送速度が低速のものをいう。「低速フレームUL1」ともいう。
上りフレームUL2:下りフレームDL1の受信に応じて車載機2が送信する上りフレームのうち、伝送速度が高速のものをいう。「高速フレームUL2」ともいう。
車載機2が高速アップリンク送信に対応する新車載機2A(図5参照)の場合は、上りフレームとして、低速フレームUL1と高速フレームUL2の双方を送信でき、車載機2が高速アップリンク送信に非対応の旧車載機2B(図5参照)の場合には、上りフレームとして低速フレームUL1しか送信できない。
下りフレームDL2:光ビーコン4が、後述するダウンリンク切り替え後に、ダウンリンク領域DAに向けて繰り返し送信する下りフレーム(一連のフレーム群の場合を含む。)のことをいう。
ID格納フレーム:車載機2が、自車両の車両IDの値を所定の格納領域(例えば、アップリンク情報のヘッダ部の「車両ID」(図7参照))に記して生成した、「低速」の上りフレームUL1のことをいう。
折り返しフレーム:光ビーコン4が、ID格納フレームを受信した場合に、そのフレームに含まれる車両IDと同じ値を所定の格納領域に記して生成した下りフレームDL2のことをいう。
ID折り返し:光ビーコン4が、ID格納フレームを受信した場合に、折り返しフレームを生成してダウンリンク送信する処理のことをいう。
なお、光ビーコン4が、ID格納フレームを受信した場合に、折り返しフレームの連送を行わずにダウンリンク切り替えを行う場合もある(例えば、図11に示す2回目のダウンリンク切り替え参照)。
車両IDのループバック:車載機2がID格納フレームを生成し、生成したID格納フレームをアップリンク送信し、光ビーコン4がID折り返しを行うことにより、車両IDを送信元の車載機2にループバックさせる一連の処理のことをいう。
ダウンリンク切り替え:光ビーコン4が繰り返して送信する下りフレームDL1,DL2に含める実質的なデータ内容を、当該切り替えの前後で変化させることをいう。
本実施形態では、ダウンリンク切り替え後の下りフレームDL2には、折り返しフレームと、車両IDに対応する車両向けの提供情報を含む下りフレームDL2とが含まれる。この提供情報には、例えば、渋滞情報、区間旅行時間情報及び事象規制情報などの情報を含めることができる。
これらの情報は、高速アップリンク送信に非対応の旧車載機に対しても提供されるものである。
もっとも、本実施形態の光ビーコン4(新光ビーコン)では、高速アップリンク送信に対応する新車載機を搭載した車両向けの提供情報として、例えば、交差点における信号灯色の切り替えタイミングを含む信号情報や、車両20が電気自動車の場合に有用な情報である直近の充電ステーションまでの経路を示す充電ステーション情報など、新車載機用として予め定めた専用情報を提供することもできる(図9及び図10参照)。
上りフレームUL1及び下りフレームDL1,DL2における車両IDのデータ格納領域は、どの領域を使用してもよいが、例えば「ヘッダ部」や「車線通知情報」を使用することができる。
下りフレームDL1,DL2の車線通知情報には、車線R1〜R4(図2)ごとに車両IDを格納するフィールドがあり、各車両IDに対して車線番号を付与できる。このため、異なる車線R1〜R4を走行する車両20の車載機2は、格納フィールド内のいずれに自車両の車両IDが含まれるかを読み取ることで、自車両がどの車線R1〜R4を走行中かを判定できる。
〔上りフレームのフレーム構成〕
図7は、アップリンク情報(上りフレーム)のフレーム構成図である。
図7に示すように、上りフレームUL1は、先頭から順に、受信側と同期を取るための同期用の伝送制御部(以下、「同期部」という。)、ヘッダ部、実データ部及びCRC(Cyclic Redundancy Check )用の伝送制御部(以下、「CRC部」という。)を有する。
図7に示すように、上りフレームUL1の場合は、同期部に1バイトが割り当てられ、ヘッダ部に10バイトが割り当てられ、実データ部に最大59バイトが割り当てられ、CRC部には4バイト(1バイトのアイドル部+2バイトのCRC+1バイトの最終同期部)が割り当てられている。
アップリンク情報のヘッダ部には、「サブシステムキー情報数」、「車両ID」、「車載機種別」、「情報種別」及び「最終フレームフラグ」などの格納領域が含まれる。
「サブシステムキー情報数」(以下、「情報数」と略記することがある。)には、実データ部の先頭から順に格納する「サブシステムキー情報」の数が格納される。
すなわち、情報数がゼロの場合は、実データ部に「サブシステムキー情報」が含まれず、情報数が「1」の場合は、実データ部に1つの「サブシステムキー情報」が含まれ、情報数が「n」の場合は、実データ部にn個の「サブシステムキー情報」が含まれる。
上記「サブシステムキー情報」は、光ビーコン4が、公共車両優先システム(PTPS)、車両運行管理システム(MOCS)、現場急行支援システム(FAST)及び安全運転支援システム(DSSS)などのダウンリンク情報の付加情報を選択するためのキー情報である。
車載機2は、自車両がUTMS規格のどのシステムに対応しているかに応じて、「サブシステムキー情報数」と「サブシステムキー情報」の内容を決定する。
例えば、車載機2は、自車両がUTMS規格の1つのシステムに対応する場合は、ヘッダ部の「サブシステムキー情報数」の値を「1」に設定し、当該1つのシステムの規格に従った内容の「サブシステムキー情報(1)」を、実データ部に格納する。
また、車載機2は、自車両がUTMS規格の2つのシステムに対応する場合は、ヘッダ部の「サブシステムキー情報数」の値を「2」に設定し、当該2つのシステムの規格にそれぞれ従った内容の「サブシステムキー情報(1)」及び「サブシステムキー情報(2)」を、実データ部に格納する。
なお、「サブシステムキー情報」のデータ形式は、各々のシステムの規格によって相違するので詳細は割愛するが、例えば、安全運転支援システム(DSSS)の場合には、ブレーキ状態、ターンシグナル状態、ハザード状態、車速、進行方向、加減速度及びアクセルペダル位置などの情報が含まれる。
一方、光ビーコン4は、アップリンク情報に含まれる「サブシステムキー情報」の種別により、車載機2が、UTMS規格に含まれるどのシステムに対応するかを判断し、当該システムの規格に応じた提供情報を、ダウンリンク切り替え後の下りフレームDL2に格納してダウンリンク送信する。なお、この提供情報は、サブシステムキー情報の対価として提供されるという意味で、「対価サービス情報」ということがある。
このように、「サブシステムキー情報」は、ダウンリンク切り替え後の提供情報の種類を新旧の光ビーコン4が決定するのに使用される。
「車両ID」は、車載機2が自身で生成した、或いは、光ビーコン4が自動生成した車両IDの値を格納する領域であり、車載機2は、アップリンク送信時に記憶している車両IDの値を、上りフレームUL1のヘッダ部の車両IDに格納する。
「車載機種別」は、車載機2の種別を格納する領域であり、「情報種別」は、アップリンク情報の種別を格納する領域であり、本実施形態では、これらの領域の値により、アップリンク送信主体の新旧と、アップリンク情報が高速か低速かを表す。
具体的には、本実施形態の車載機2(新車載機2A)は、低速の上りフレームUL1を送信する場合は、「車載機種別」に新車載機2Aを示す所定値(例えば、「6」)を格納し、「情報種別」に低速であることを示す所定値(例えば、「1」)を格納する。
また、新車載機2Aは、高速の上りフレームUL2を送信する場合は、「車載機種別」に新車載機2Aを示す所定値(例えば、「6」)を格納し、「情報種別」に高速であることを示す所定値(例えば、「4」)を格納する。
従って、本実施形態の光ビーコン4(新光ビーコン4A)は、受信した上りフレームULの車載機種別の値が「6」でかつ情報種別の値が「1」の場合は、新車載機2Aからの低速フレームUL1であると判定でき、受信した上りフレームULの車載機種別の値が「6」でかつ情報種別の値が「4」の場合は、新車載機2Aからの高速フレームUL2であると判定することができる。
なお、旧車載機2Bの場合は、車載機種別の値を「6」以外に設定するので、新光ビーコン4Aは、「車載機種別」の値が「6」以外の上りフレームULを受信した場合は、旧車載機2Bからの低速フレームUL1であると判定することができる。
新光ビーコン4Aは、新車載機2A及び旧車載機2Bからの低速フレームUL1の受信を完了すると、ヘッダ部に含まれる車両IDの値を車線通知情報に格納した折り返しフレームを生成し、このフレームの連続送信を伴うダウンリンク切り替えを行う。
一方、本実施形態では、新光ビーコン4Aは、新車載機2Aからの高速フレームUL2の受信を完了した場合には、ダウンリンク切り替えを行わない。もっとも、高速フレームUL2の受信完了に応じて、ダウンリンク切り替えを行う規約を採用してもよい。
このように、本実施形態では、新車載機2A及び旧車載機2Bからの低速フレームUL1の受信完了は、新光ビーコン4Aが折り返しフレームの連続送信を伴うダウンリンク切り替えを行うための条件(契機ないしトリガー)となっている。
また、新車載機2Aからの高速フレームUL2の受信完了は、新光ビーコン4Aが折り返しフレームの連続送信やダウンリンク切り替えを行うための条件(契機ないしトリガー)になっていない。
「最終フレームフラグ」は、車載機2(新旧いずれでもよい。)が複数の上りフレームULよりなる上りフレーム群を送信する場合に、その上りフレーム群のどれが最終フレームであるかを示すための格納領域である。
すなわち、車載機2は、上りフレーム群を構成する複数の上りフレームULのうち、最終フレームの「最終フレームフラグ」にのみ所定のフラグ値(例えば、「1」)を格納し、それ以外の上りフレームULにはそのフラグ値を格納しない。
〔下りフレームのフレーム構成〕
図8は、ダウンリンク情報(下りフレーム)のフレーム構成図である。
図8に示すように、下りフレームDL1,DL2のフレーム構成も、上りフレームUL1のフレーム構成(図7)の場合と同様に、先頭から順に、同期部、ヘッダ部、実データ部及びCRC部とからなる。
下りフレームDL1,DL2の場合は、同期部に1バイトが割り当てられ、ヘッダ部に5バイトが割り当てられ、実データ部に123バイトが割り当てられ、CRC部に4バイト(1バイトのアイドル部+2バイトのCRC+1バイトの最終同期部)が割り当てられている。
下りフレームDL1,DL2の実データ部には、車両20向けの提供情報として、図8に示す各種情報のうちのいずれか1つが格納される。
具体的には、光ビーコン4(新旧いずれでもよい。)は、ダウンリンク切り替え前の下りフレームDL1の実データ部には、「車線通知情報」を含める。
また、光ビーコン4は、ダウンリンク切り替え後の下りフレームDL2の実データ部には、その下りフレームDL2が折り返しフレームである場合を除き、車載機2からアップリンクされたサブシステムキー情報に対応する提供情報を選択し、選択した提供情報を実データ部に含める。
なお、光ビーコン4は、提供情報が実データ部の容量(123バイト)に収まる場合は、1つの下りフレームDL2で提供情報を送信するが、収まらない場合は、複数の下りフレームDL2にて提供情報を送信することもある。
図8に示すように「車線通知情報」の格納領域には、「車両ID」、「車線番号」及び「ビーコン識別フラグ」などが含まれる。
光ビーコン4は、ダウンリンク切り替え前の下りフレームDL1の場合は、「車線通知情報」の「車両ID」に値を格納せず、車載機2からID格納フレームを受信すると、そのヘッダ部に含まれる車両IDの値を、「車線通知情報」の「車両ID」に格納して折り返しフレームを生成する。光ビーコン4は、アップリンク情報を取得したビーコンヘッド8に対応する車線番号値を「車線番号」に記す。
「ビーコン識別フラグ」は、自機が高速アップリンク受信に対応するか否かを示す格納領域である。
すなわち、光ビーコン4は、自機が高速アップリンク受信に対応する「新光ビーコン4Aの場合は、下りフレームDL1,DL2の「ビーコン識別フラグ」に所定のフラグ値(例えば、「01」)を格納し、自機が高速アップリンク受信に対応しない旧光ビーコン4Bの場合は、下りフレームDL1,DL2の「ビーコン識別フラグ」にそれ以外の値(例えば、「00」)を格納する。
従って、高速アップリンク送信に対応する本実施形態の車載機2(新車載機2A)は、下りフレームDL1,DL2の「車線通知情報」に含まれる「ビーコン識別フラグ」の値により、通信相手の光ビーコン4が、新光ビーコン4Aであるか旧光ビーコン4Bであるかを判定することができる。
ダウンリンク切り替え後に光ビーコン4の光送信部10から繰り返し送信される下りフレーム群は、1〜80個の下りフレームDL2で構成され、その繰り返し送信の送信可能時間は250msである。
また、下りフレームDL2は、ダウンリンク方向に送出すべきデータ量に応じた任意数のフレームで構成され、上記送信可能時間の範囲内で繰り返し送信される。また、下りフレームDL2の送信周期は約1msである。
従って、例えば、3つの下りフレームDL2で1つの有意なデータを構成する場合は、その送信周期が約3msになるので、そのデータは所定の送信可能時間(250ms)内に約80回繰り返して送信されることになる。
もっとも、本実施形態のように、ダウンリンク領域DAをビーコンヘッド8の直下付近まで拡大すれば(図3参照)、繰り返し送信する下りフレームDL2の個数を最大200個程度まで増加させることができる。
なお、後述の図10の路車間通信に示すように、光ビーコン4がID格納フレームに応じてダウンリンク切り替えを行う場合には、後続フレームのアップリンク送信の時間とダウンリンク切り替え後のダウンリンク送信の時間が重複し得るので、ダウンリンク切り替え後の下りフレームDL2の送信可能期間は(250+α)ms(例えば、350ms)とすることが好ましい。
〔従来の路車間通信〕
図4は、通信領域Aで行われる従来の通信手順を示すシーケンス図である。
ここで、図4において、白丸を付したフレームは、車両IDを含まないフレーム(車両IDなしの車線通知情報を有するフレーム)であることを示し、黒丸を付したフレームは、路車間のID折り返しに利用するフレーム(上りの「ID格納フレーム」又は下りの「折り返しフレーム」)であることを示す。図9〜図11においても同様である。
また、以下の路車間通信の説明では、動作主体が光ビーコン4と車載機2であるとして説明するが、実際の通信制御は、光ビーコン4のビーコン制御機(通信制御部)7と、車載機2の車載制御機(通信制御部)21が実行する。この点も、図9〜図11の路車間通信においても同様である。
図4に示すように、光ビーコン4(図4の場合は旧光ビーコン4B)は、車線R1〜R4ごとに設けられたビーコンヘッド8から、下りフレームDL1を所定の送信周期で送信し続けている。この段階では、車線通知情報に車両IDが格納されていない。
車両20がダウンリンク領域DAに入ると、車載機2(図4の場合は旧車載機2B)が車線通知情報(車両ID無し)を含む下りフレームDL1或いはその他の下りフレームDL1を受信し、車両20が光ビーコン4の通信領域A内に入ったことを察知する。
この際、車載機2は、ヘッダ部に車両IDを格納した低速の上りフレームUL1(図4のID格納フレームU1)を生成し、自機の通信をいったん受信から送信に切り替えて、生成した低速の上りフレームUL1をアップリンク送信し、その後、自機の通信を送信から受信に戻す。
なお、旅行時間情報などの光ビーコン4に提供すべき情報がある場合には、ID格納フレームU1の実データ部にその情報が格納される。
受信フレームのCRCチェック等を経てID格納フレームU1が光ビーコン4において正規に受信されると、光ビーコン4は、遅くとも10m秒以内でダウンリンク切り替えを行ったあと、下りフレームDL2の繰り返し送信を開始する。
ダウンリンク切り替えの後に繰り返し送信させる複数の下りフレームDL2は、先頭部分で連送される複数の折り返しフレーム(黒丸付きの下りフレームDL2)と、その後に繰り返し送信される所定の提供情報を含む下りフレームDL2とからなる。
この下りフレームDL2の繰り返し送信は、前記した所定時間内において可能な限り繰り返される。
また、図4に示すように、折り返しフレーム(黒丸付きの下りフレームDL2)は、提供情報の送信期間中においてダウンリンク情報を構成する一連の複数の下りフレームDL2(例えば5個の下りフレームDL2)の1つであり、従来は、一連の複数の下りフレームDL2の先頭にのみ含まれて繰り返し(図4の例では5フレームごと)送信される。
なお、ダウンリンク情報を構成する一連の下りフレームDL2は最大で80個まで格納できるため、折り返しフレーム(黒丸付きの下りフレームDL2)は、最も少ない頻度の場合には80フレームに1つの割合で格納されることとなる。
車載機2は、光ビーコン4から複数の下りフレームDL2を受信し、その複数の下りフレームDL2の中で、自車両の車両IDが記された車線通知情報を含むものがあるか否かを判定する。
車載機2は、その判定結果が肯定的である場合に、自車両の車両IDのループバックが成功したことを確認し、この時点で自機の通信を受信のままに維持する。
逆に、車載機2は、その判定結果が否定的である間は、自車両の車両IDのループバックが成功していないと判断し、自機の通信を受信から送信に切り替えて、上りフレームUL1を再送する。この場合、車載機2は、例えば、先に送信した上りフレームU1の送信後所定時間(例えば30ms)後に、再び上りフレームUL1を送信する。車載機2は、この再送の動作を車両IDのループバックが成功するまで繰り返す。
〔混在状況における問題点〕
図5は、新旧の光ビーコン4A,4Bと車載機2A,2Bの混在状態を示す図である。
図5に示すように、新光ビーコン4Aは、低速の伝送速度(64kbps)だけでなく高速の伝送速度(例えば256kbps)でのアップリンク受信に対応している。本実施形態の光ビーコン4は、新光ビーコン4Aに該当する。
同様に、新車載機2Aは、低速の伝送速度(64kbps)だけでなく高速の伝送速度(例えば256kbps)でのアップリンク送信に対応している。本実施形態の車載機2は新車載機2Aに該当する。
これに対して、旧光ビーコン4Bは、低速の伝送速度(64kbps)でのアップリンク受信のみを行う光ビーコン、すなわち、高速の伝送速度(例えば256kbps)でのアップリンク受信に非対応の光ビーコンである。
同様に、旧車載機2Bは、低速の伝送速度(64kbps)でのアップリンク送信のみを行う車載機、すなわち、高速の伝送速度(例えば256kbps)でのアップリンク送信に非対応の車載機である。
上述の用語の定義で記載した通り、図5の「DL1」は、ダウンリンク切り替え前に新旧の光ビーコン4A,4Bが送信する下りフレームを示し、図5の「UL1」は、下りフレームDL1の受信を契機として、新旧の車載機2A,2Bが送信可能な低速フレームを示し、図5の「UL2」は、新車載機2Aのみが送信可能な高速フレームを示している。
また、図5の「DL2」は、ダウンリンク切り替え後に新旧の光ビーコン4A,4Bが送信する下りフレームを示している。
ここで、新光ビーコン4Aと新車載機2Aが路車間通信する場合を想定する。そして、光ビーコン4の新旧タイプを判別不能な場合は、新車載機2Aは、上りフレームを確実に受信して貰うために低速でアップリンク送信を行うとする。
この場合、ダウンリンク方向の伝送速度は、新旧いずれの場合も「1024kbps」であるから、新車載機2Aは、新光ビーコン4Aから下りフレームDL1を受信しただけでは、通信相手が新光ビーコン4Aであることを察知できない。
このように、新車載機2Aが、新光ビーコン4Aのダウンリンク領域DAを通過する間に新光ビーコン4Aと通信していることを認識できなければ、高速のアップリンク送信が可能である筈の新車載機2Aが、新光ビーコン4Aに対しても低速でアップリンク送信を行ってしまい、アップリンク速度の高速化が実現できなくなる。
そこで、本実施形態では、自機が高速アップリンク受信に対応する新光ビーコン4Aである旨のビーコン識別情報(例えば、図8の「ビーコン識別フラグ」)を、ビーコン制御機7が下りフレームDL1,DL2に含めることができる。
具体的には、前述の通り、光送信部10にダウンリンク送信させる下りフレームDL1,DL2の「車線通知情報」(「ヘッダ部」でもよい。)に、光ビーコン4の新旧タイプを示すフラグフィールドを予め定義しておく。
そして、ビーコン制御機7は、自機を新光ビーコン4Aとして動作させる場合には、繰り返し送信するすべての下りフレームDL1,DL2又は所定周期ごとの下りフレームDL1,DL2のフラグフィールドをオンにし、自機を旧光ビーコン4Bとして動作させる場合には、その下りフレームDL1,DL2のフラグフィールドをオフにする。
このため、新車載機2Aは、受信した下りフレームDL1,DL2のフラグフィールドがオンである場合には、通信相手が新光ビーコン4Aであると判定でき、オフの場合や当該フラグフィールドが検出できなかった場合には、通信相手が旧光ビーコン4Bであると判定できる。
もっとも、上りフレーム群に必ず低速フレームUL1が含まれておれば、通信相手の光ビーコン4の新旧タイプを判定しなくても、両タイプの光ビーコン4との通信が可能である。
その理由は、低速フレームUL1を利用すれば新旧双方の光ビーコン4A,4Bと従来通りの通信ができるし、上りフレーム群の他のフレームを一律に高速フレームUL2としても、旧光ビーコン4Bがそれを受信できないだけで、特に問題はないからである。
本実施形態では、新車載機2Aは、光ビーコン4の新旧判定を行わないタイプであると仮定するが、新車載機2Aは、下りフレームDL1のフラグフィールドに基づいて光ビーコン4の新旧判定を行った結果、通信相手が新光ビーコン4Aであると判明した場合に限り、高速フレームUL2を送信するものであってもよい。
〔新光ビーコンの上位互換制御〕
図6は、本実施形態の光ビーコン4である、新光ビーコン4Aのビーコン制御機7が行う上位互換制御を示すフローチャートである。
図6に示すように、新光ビーコン4Aのビーコン制御機7は、フラグフィールドをオンに設定した下りフレームDL1を所定周期で繰り返しダウンリンク送信することにより(図6のステップST1)、自機が新光ビーコン4Aであることを外部に通知している。
この状態で、ビーコン制御機7は、上りフレームUL1を受信したか否かを判定し(図6のステップST2)、その受信を検出するまで、ステップST1のダウンリンク送信を継続する。
上りフレームUL1の受信を検出すると、ビーコン制御機7は、受信した上りフレームUL1の送信主体が、高速の伝送速度(本実施形態では、256kbps)に対応する新車載機2Aであるか否かを判定する(図6のステップST3)。
このステップST3の判定は、例えば、光受信部11で受信された上りフレームUL1の伝送速度が、高速であったか低速であったかによって行うことができる。この場合、受信した上りフレームUL1が高速であれば、送信主体が新車載機2Aであると判定でき、低速であれば、送信主体が旧車載機2Bであると判定できる。
また、新車載機2Aの車載制御機21が、自機が高速アップリンク送信対応の新車載機2Aである旨の車載機識別情報を、上りフレームUL1に含める規約を採用してもよい。
具体的には、光送信部23がアップリンク送信する上りフレームUL1のヘッダ部に、車載機2の新旧タイプを示すフラグフィールド(例えば、図7の「車載機種別」)を予め定義しておく。
そして、新車載機2Aの車載制御機21は、自機を新車載機2Aとして動作させる場合は、高速で送信する上りフレームUL1のフラグフィールドをオンにし、自機を旧車載機2Bとして動作させる場合は、上りフレームUL1のフラグフィールドをオフにする。
このため、かかる規約を採用すれば、ビーコン制御機7は、受信した上りフレームUL1のフラグフィールドがオンである場合には、その送信主体が新車載機2Aであると判定でき、上りフレームUL1のフラグフィールドがオフの場合や当該フラグフィールドが検出できなかった場合には、その送信主体が旧車載機2Bであると判定できる。
ステップST3の判定結果が肯定的である場合、すなわち、上りフレームUL1の送信主体が新車載機2Aの場合は、ビーコン制御機7は、ダウンリンク切り替え後に新車載機用のダウンリンク送信を行う(図6のステップST4)。
新車載機用のダウンリンク送信は、渋滞情報、区間旅行時間情報及び事象規制情報などの旧車載機向けの提供情報に加え、信号情報や充電ステーション情報などの新車載機向けの提供情報を含む下りフレームDL2を、繰り返し送信することによって行われる。
ステップST3の判定結果が否定的である場合、すなわち、上りフレームUL1の送信主体が旧車載機2Bの場合は、ビーコン制御機7は、ダウンリンク切り替え後に旧車載機用のダウンリンク送信を行う(図6のステップST5)。
この旧車載機用のダウンリンク送信は、渋滞情報、区間旅行時間情報及び事象規制情報などの旧車載機向けの提供情報を含む下りフレームDL2だけを、繰り返し送信することによって行われる。
なお、前述の通り、ダウンリンク切り替え後に行われるステップST4,ST5の下りフレームDL2のダウンリンク送信は、ダウンリンク切り替え時点から所定時間(例えば、250ms)が経過するまで行われる。
〔送信中断期間を設けない場合の路車間通信〕
図9は、新車載機2Aが「送信中断期間」を設けずに上りフレームUL1,UL2を送信するため、新車載機2AがID確認を失敗する場合の路車間通信を示すシーケンス図である。
図9において、U0〜U3は、下りフレームDL1を検出した新車載機2Aがアップリンク送信する、複数の上りフレーム(上りフレーム群)UL1,UL2を示している。
図9では、上りフレーム群のフレーム数が4フレームになっているが、そのフレーム数は4つに限定されるものではなく、例えば、高速フレームUL2が3つ以上送信される場合もあるし、比較的長いデータ長である高速フレームUL2が1つだけ送信される場合もあり得る。
また、ハッチングを付していない上りフレームU0は、伝送速度が低速(本実施形態では64kbps)の「低速フレーム」であることを示し、ハッチングを付した上りフレームU1〜U3は、伝送速度が高速(本実施形態では256kbps)の「高速フレーム」であることを示している。
なお、低速フレームU0と高速フレームU1〜U3の図示上の区別については、図10の路車間通信においても同様である。
プローブ情報などの大容量のデータをアップリンク送信する場合には、低速フレームU0にデータを格納しきれないことが多い。そこで、図9の例では、新車載機2Aが合計3つの高速フレームU1〜U3を低速フレームU0の後に続けて送信している。
具体的には、新車載機2Aは、ダウンリンク領域DAにおいて下りフレームDL1を受信すると、低速フレームU0を即座に低速でアップリンク送信し、それに続けて高速フレームU1〜U3をアップリンク送信する。
なお、本実施形態では、新車載機2Aが通信相手の新旧を判定しない場合を想定しているので、低速フレームU0と高速フレームU1〜U3の連続送信は、新車載機2Aの通信相手が新光ビーコン4Aか旧光ビーコン4Bかに拘わらず実行される。
新車載機2Aの通信相手の光ビーコン4は、上りフレーム群に含まれる低速フレームU0の受信完了を契機として、そのヘッダ部から車両ID値を抽出し、その値を車線通知情報に格納した折り返しフレームの連送とダウンリンク切り替えを行う。
すなわち、光ビーコン4が新光ビーコン4Aの場合は、低速フレームU0の「車載機種別」の値が「6」でかつ「情報種別」の値が「1」であることを検出すると、折り返しフレームの連送とダウンリンク切り替えを行う。
また、光ビーコン4が旧光ビーコン4Bの場合は、上記のような種別判定を行うことができないので、低速フレームU0の受信が完了すると、従来通り、即座に折り返しフレームの連送とダウンリンク切り替えを行う。
このように、旧光ビーコン4Bは、大容量のアップリンク送信はされないという想定の下で、ID格納フレームである低速フレームU0を受信すると、即座に折り返しフレームを連送してダウンリンク切り替えを出来るだけ素早く行う運用になっており、新光ビーコン4Aも、旧車載機2Bとの互換性を維持するため、低速フレームU0の受信完了を契機としてダウンリンク切り替えを即座に行うようになっている。
従って、図9に示すように、高速フレームU1〜U3の送信期間(図9の例ではU3)によっては、その送信中に折り返しフレームが新車載機2Aに到達することがある。
この場合、新車載機2Aが半二重通信方式を採用している場合には、光受信部24に折り返しフレームが届いているにも拘わらず、新光ビーコン4Aが車両IDを認識済みであることを新車載機2Aが察知できない。
また、この場合、図9に破線で示すように、新車載機2Aは、ID格納フレームである低速フレームU0を含む大容量の上りフレーム群U0〜U3を再送信する。
この現象は、ダウンリンク情報に含めるべき車線通知情報以外の提供情報のデータ量が多いほど発生しやすくなる。
その理由は、提供情報のデータ量が多くなるほど、新光ビーコン4Aが繰り返し送信する下りフレームDL2に折り返しフレームを含める頻度が少なくなるため、新車載機2Aがループバックを認識できない確率が高くなるためである。
従って、ダウンリンク切り替え後に定期的(図9の例では5フレームごと)にダウンリンク送信される折り返しフレームについても、上りフレーム群U0〜U3の送信期間と重なるタイミングになって、新車載機2Aが受信できる可能性が低くなることがある。
この場合、上りフレーム群U0〜U3を再送信した後でも、新車載機2Aが折り返しフレームに気付かず、上りフレーム群U0〜U3のアップリンク送信(再送)が無駄に継続されることになる。
そして、新車載機2Aがアップリンク送信するフレーム数が多いほど、折り返しフレームに気付かないままアップリンク領域UAにおいて上りフレーム群U0〜U3の送信が継続される可能性が増すことになる。
従って、より多くのデータを新光ビーコン4Aにアップリンクしようとする新車載機2Aほど、限られた期間(例えば250ms)にしか送信されない下りフレームDL2の受信機会を大幅に喪失したり、極端な場合は、下りフレームDL2を受信できずに通信領域Aを通過したりするという、不合理な結果になるおそれがある。
〔送信中断期間を設ける場合の路車間通信〕
図10は、新車載機2Aが「送信中断期間」を設けて上りフレームUL1,UL2を送信するため、新車載機2Aが、ID確認を成功する場合の路車間通信を示すシーケンス図である。
図10の例では、新車載機2Aが低速フレームU0の後に高速フレームU1〜U3を連送する場合に、最初の低速フレームU0と高速フレームU1の間に「送信中断期間」を設けることにより、折り返しフレームの不達に伴う上述の問題点を解決している。
この「送信中断期間」は、新車載機2Aが、自機が行う車両IDのループバックの成功を確認するとともに、高速フレームU1の送信の準備をするために必要な所定の時間長に設定される。
例えば、新光ビーコン4AがID格納フレームU0の受信から下りフレームDL2の送信開始までに5〜10m秒程度要すると仮定し、さらに、新車載機2Aが自車の車両IDのループバックを確認し、高速フレームU1の送信を開始するのに必要な遅延時間を10m秒と仮定すれば、送信中断期間は概ね15〜20m秒の範囲で設定すればよい。
かかる送信中断期間を設けることにすれば、ダウンリンク切り替え後に連送される折り返しフレームが当該期間中に新車載機2Aの光受信部24に到達し、新車載機2Aは、受信した折り返しフレームに含まれる車両IDが自機のものと一致するか否かを判定することにより、車両IDのループバックの成功を確認できる。
上記の確認の後、新車載機2Aは、高速フレームU1〜U3を連送し、その連送が終了したあと、自機の通信を受信に切り替える。
このように、低速フレームU0と高速フレームU1の間に送信中断期間を設ける新車載機2Aによれば、送信中断期間に新光ビーコン4Aから受信した折り返しフレームにより、新光ビーコン4Aが車両IDを認識済みであることを確実に察知することができる。
このため、複数の上りフレームU0〜U3の送信を新車載機2Aが無駄に継続することによる、下りフレームDL2の受信機会の喪失を未然に防止することができる。
送信中断期間を設定する方法としては、車載制御機21が消灯状態を示す信号をその期間中に光送信部23に出力し続ける方法や、その期間の始期に光送信部23の発光素子への電源供給を停止して消灯させ、その期間の終期に発光素子への電源供給を再開して再発光させる方法がある。
また、光信号が光ビーコン4に到達できない程度に、発光素子のパワーを低下させる方法を採用してもよい。このようにすれば、発光素子の再発光時のパワーの復帰を迅速に行え、上りフレームU1の先頭側の同期部の乱れを抑制できるという利点がある。
一方、何らかの原因(車両20のフロントガラスの曇り等)で、ID格納フレームである低速フレームU0が新光ビーコン4Aに届かなかった場合には、光ビーコン4が折り返しフレームを返して来ないので、新車載機2Aはループバックの成功を確認できない。
そこで、新車載機2Aは、送信中断期間にループバックの成功を確認できなかった場合には、図10に破線で示すように、ID格納フレームである低速フレームU0のみを光送信部23に再送信させ、再送信した低速フレームU0の後を送信中断期間とする。
従って、再送信した低速フレームU0を新光ビーコン4Aが正規に受信できた場合は、上述と同様に、送信中断期間に新光ビーコン4Aから受信した折り返しフレームにより、車両IDのループバックの成功を確認することができる。
図10の例において、最初の上りフレームである低速フレームU0のデータサイズは、できるだけ小さいことが好ましい。例えば、多くても高速フレームU1〜U3のいずれか1つよりも小さいことが好ましい。
より好ましくは、例えば、低速フレームU0に格納するデータを、車両ID情報、ビーコン間の旅行時間や新車載機2Aが対応するサービス種別等の必要最小限とすることにより、低速フレームU0のデータサイズを、1回の通信で送信する複数の上りフレームU0〜U3の中で最小(例えば、実データ部で5バイト程度)に設定することが好ましい。
その理由は、再送信の可能性がある低速フレームU0のフレーム長が長ければ、その分だけ、低速フレームU0を再送信した場合の、アップリンク送信が可能な残り時間が少なくなり、アップリンク送信する予定の複数の高速フレームU1〜U3のうちの、例えば最後の高速フレームU3が新光ビーコン4Aに正常に到達しなくなる可能性があるからである。
なお、図10の例において、新車載機2Aが、下りフレームDL1や送信中断期間中に受信した下りフレームDL2に含まれるビーコン識別フラグに基づいて、通信相手が高速アップリンク受信に対応する新光ビーコン4Aか非対応の旧光ビーコン4Bかを判定し、その判定結果に応じて、送信中断期間の後に高速フレームU1〜U3を送信するか否かを決定するようにしてもよい。
上記の通り、新光ビーコン4Aの通信相手としては、低速フレームU0と高速フレームU1〜U3の間に送信中断期間を設けてアップリンク送信する新車載機2A(図10)であることが好ましいが、送信中断期間を設けずに上りフレームU0〜U3を連続送信する新車載機2A(図9)であってもよい。
その理由は、高速フレームUL2のフレーム数や送信時間を少なめに設定すれば、特に送信中断期間を設けなくても、低速フレームUL1に対応してダウンリンクされた折り返しフレームを、新車載機2Aが適切に受信し得るからである。
〔DSSSにおける提供情報の内容とその問題点〕
図11は、安全運転支援システム(DSSS)における提供情報の一例を示す説明図である。
図11において、P0は、アップリンク領域UAの代表点を表す「基準位置」であり、P1は、アップリンク領域UAから下流側に離れた所にある所定物(例えば、交差点の停止線)の代表点を表す「所定位置」を示している。
また、図11において、h1は、光ビーコン4が赤外光として検出(従って、データ内容の抽出までは不要。)した上りフレームUL1の送信位置(以下、「第1のアップリンク位置」ともいう。)を示し、h2は、光ビーコン4が赤外光として検出した上りフレームUL2の送信位置(以下、「第2のアップリンク位置」ともいう。)を示す。
h3は、車載機2が受信に成功した下りフレームDL2の受信開始位置(以下、「ダウンリンク位置」ともいう。)を示している。
更に、図11において、L0,Lh1,Lh2,Ln及びLは、それぞれ次の距離を表している。
L0 :基準位置P0から所定位置P1までの距離
Lh1:基準位置P0から第1のアップリンク位置h1までの距離
Lh2:基準位置P0から第2のアップリンク位置h2までの距離
Ln :第1のアップリンク位置h1からダウンリンク位置h3までの距離
L :ダウンリンク位置h3から所定位置P1までの実距離
DSSSでは、光ビーコン4は、ダウンリンク切り替え後に繰り返し送信する複数の下りフレームDL2のうちの一部の実データ部に、「安全運転支援情報」を含める。
かかる「安全運転支援情報」には、車載機2が交差点の手前でドライバに制動を促すなどの安全運転の支援制御を行えるように、上記各位置P0,P1の座標を含む静的情報(固定値)である「道路線形情報」と、交差点の信号の予定秒数を表す動的情報である「信号情報」とを含めることになっている。
しかし、図11に示すように、安全運転支援情報を含む下りフレームDL2を車載機2が実際に取得するのは、ダウンリンク位置h3である。
このため、基準位置P0と所定位置P1だけを車載機2に提供しても、車載機2は、ダウンリンク位置h3への移動によって短縮した実距離Lを求めることができず、これでは、実際の車両20の現在位置から所定位置P1までの距離が不正確になり、安全運転支援を正しく行うことができない。
そこで、DSSSでは、固定値の道路線形情報だけでなく、車載機2との通信ごとに光ビーコン4が算出する動的情報として、次の「UL位置補正情報」と「DL送信フレーム番号」を安全運転支援情報に含める。
「UL位置補正情報」
「UL位置補正情報」は、車載機2ごとの光量の個体差や通信タイミング(通信周期)などが原因で位置ずれが生じるアップリンク位置h1と、固定的な基準位置P0との差分を表す情報であり、図11の距離Lh1がこれに相当する。すなわち、「位置補正情報」は、基準位置P0を起点とした車両進行方向の距離値でアップリンク位置h1を表現したものである。
光ビーコン4は、上りフレームUL1を赤外光として検出すると、その光信号の送信位置を測定して位置補正情報Lh1を生成し、生成した位置補正情報Lh1を安全運転支援情報に含める。
「DL送信フレーム数」
光ビーコン4は、上りフレームUL1を受信すると即座(10m秒以下)にダウンリンク切り替えを行うので、通常は、アップリンク位置h1からダウンリンク位置h3までの移動距離Lnは比較的小さい。
しかし、車両20のワイパー動作による遮蔽等が発生した場合や、太陽光の直射などによって、車載機2が下りフレームDL2の受信に失敗する場合があり、この場合は、移動距離Lnが無視できない程度に大きくなる。
そこで、DSSSでは、車載機2側で移動距離Lnを算出して、実距離Lを補正できるようにするため、下りフレームDL2のダウンリンク送信の開始時点から積算した累積送信フレーム数である、「DL送信フレーム数」を安全運転支援情報に含める。
下りフレームUL2の1フレーム分の送信時間は、約1m秒である。従って、DL送信フレーム数をn、車両速度をVとすると、Ln=V×n×1m秒の算出式により、アップリンク位置h1からダウンリンク位置h3までの移動距離Lnを求めることができる。
上述のDSSSの通信規約では、旧車載機2Bの場合を想定して、上りフレームUL1が1つだけ送信されるということが暗黙の前提となっている。
この場合には、車載機2は、L=L0−Lh1−Lnの算出式により、実距離Lを正しく算出することができる。
これに対して、本実施形態のように、新車載機2Aが、低速フレームUL1の後に高速フレームUL2を送信する場合において、新光ビーコン4Aが、旧車載機2Bとの互換を担保するため、低速フレームUL1の受信を契機としたダウンリンク切り替えを行うが、高速フレームUL2ではダウンリンク切り替えを行わないとすると、「DL送信フレーム数」はダウンリンク切り替え時の上りフレームUL1が基準となっているのに対し、「位置補正情報」はダウンリンク切り替え時の上りフレームUL1が基準となっていないことから、「位置補正情報」と「DL送信フレーム数」との関係性が崩れてしまい、これらの情報を用いた実距離Lの算出を正確に行えなくなるという問題がある。
すなわち、図11の例において、「DL送信フレーム数」は、ダウンリンク切り替えを伴う上りフレームUL1の受信を契機として提供されるが、「位置補正情報」は、ダウンリンク切り替えとは無関係に逐次更新される。
このため、後から受信した高速フレームUL2により、新光ビーコン4Aが位置補正情報をLh1からLh2に更新してそれを新車載機2Aに提供すると、新車載機2Aは、L=L0−Lh2−Lnという誤った算出式によって実距離Lを算出することになり、実距離Lを正確に算出できなくなる。
そこで、本実施形態では、高速フレームUL2を受信した場合はダウンリンク切り替えを行わない新光ビーコン4Aが、ダウンリンク切り替えの契機となる低速フレームUL1を受信した場合に、その受信時における位置補正情報Lh1を下りフレームDL2に含めることにして、新車載機2Aが、誤った位置補正情報Lh2を用いて実距離Lを算出するのを防止し、DSSSを適切に運用できるようにしている。
以下、上記の考え方を採用した、DSSSを適切に運用可能な新光ビーコン4Aの構成例を説明する。
〔第1実施形態〕
図12は、第1実施形態に係る新光ビーコン4Aの回路構成図である。
図12に示すように、第1実施形態の新光ビーコン4Aでは、光受信部11は、通信用の受光系(受光回路)である第1受光系26と、測定用の受光系(受光回路)である第2受光系27とを含む。
また、ビーコン制御機7は、通信IC(通信処理部)28と、位置IC(位置処理部)29と、メインCPU(判定処理部)30とを含む。
図12では図示していないが、ビーコン制御機7は、各IC28,29が出力する「位置データ」や「上りデータ」を一時的に記憶するメモリも備えている。
第1受光系26は、図12の左側から順に、通信用の変換素子(第1の変換素子)32、増幅器33、フィルタ34及びコンパレータ35を有する。通信用の変換素子32は、受光したアップリンク方向の光信号を電気信号に変換する受光素子(例えば、フォトダイオード(Photo Diode ):以下、「PD」ともいう。)よりなる。
増幅器33は、高速帯域(本実施形態では、256kbps)で動作する高速用増幅回路よりなる。増幅器33は、PD32にて変換された電気信号を高速帯域で動作して増幅し、増幅後の電気信号を後段のフィルタ34に出力する。
フィルタ34は、少なくとも高速帯域(本実施形態では、256kbps)の成分を抽出できるローパスフィルタよりなる。フィルタ34は、低速成分から高速成分までをカバーするバンドパスフィルタであってもよい。
フィルタ34は、増幅された電気信号から低速成分又は高速成分を抽出し、抽出した低速信号又は高速信号を後段のコンパレータ35出力する。
コンパレータ35は、高速信号と閾値との比較が可能な高速用コンパレータよりなる。コンパレータ35は、入力された低速信号又は高速信号を閾値と比較し、この比較によって抽出したデジタルの受信信号(ビットデータ)を後段の通信IC28に出力する。
通信IC28は、先頭5バイトのアイドルパターンを用いて受信信号の伝送速度を判定し、判定した伝送速度にてビットデータをサンプリングし、上りフレームUL1,UL2に含まれる上りデータを再生する。通信IC28は、再生した上りデータを後段のメインCPU30に送る。
第2受光系27は、図12の左側から順に、測定用の変換素子(第2の変換素子)36、増幅器37及びピークホールド回路38を有する。
測定用の変換素子36は、上りフレームUL1,UL2の受光面内の入力位置に応じた電気信号を出力する位置検出素子(Position Sensitive Detector:以下、「PSD」ともいう。)よりなる。なお、PSD36を用いたアップリンク位置h1,h2の測定原理(図13)ついては後述する。
本実施形態のPSD36は、2次元PSDよりなり、受光面に入射されたスポット光の2次元座標の演算に必要となる4つの電流値を出力可能である。
PSD36の4つの出力端子から出力される電流値は、その後段の増幅器37にてそれぞれ増幅される。増幅器37が増幅した電気信号は、その後段のピークホールド回路38にそれぞれ入力される。ピークホールド回路38は、増幅信号の最大振幅を所定時間だけ保持して測定データを生成し、生成した測定データを後段の位置IC29に送る。
位置IC29は、各ピークホールド回路38から入力された測定データ(PSD36の各出力端子の電流値)を用いてアップリンク位置を測定する。位置IC29は、その測定結果である位置データをメインCPU30に送る。
位置IC29が出力する位置データは、PSD36の受光面上の座標(x,y)又は道路側の座標(X,Y)(図13参照)のいずれに基づくものであってもよい。
本実施形態では、位置データは座標(x,y)に基づいている。この場合、メインCPU30にて、座標(x,y)を座標(X,Y)に変換する演算を行う必要がある。
メインCPU30は、通信IC28から取得した「上りデータ」の内容に応じて、位置IC29から取得した「位置データ」から求まる位置補正情報Lh1,Lh2を下りフレームDL2に含めるか否かを判定する。なお、この判定処理の詳細(図14のフローチャート)については後述する。
〔アップリンク位置の測定原理〕
図13は、位置検出素子(PSD)36を用いたアップリンク位置の測定原理の説明図である。
図13に示すように、道路側の座標(X,Y)は、道路Rの路面から所定高さH(例えば、H=1.0m)の平面内の2次元座標であり、X方向は道路Rの延長方向(車両進行方向)に沿い、Y方向は道路Rの幅方向に沿っている。
2次元のPSD36は、その受光面のx方向が道路側のX方向に対応し、その受光面のy方向が道路側のY方向に対応するように、ビーコンヘッド8の内部に配置されている。
2次元のPSD36では、出力端子x1,x2,y1,y2の電流値を、それぞれIx1,Ix2,Iy1,Iy2とすると、受光面に入射されたスポット光の入射位置の座標(x,y)を、次の関係式によって算出することができる。
2x/Lx={(Ix2+Iy1)-(Ix1+Iy2)}/(Ix1+Ix2+Iy1+Iy2)
2y/Ly={(Ix2+Iy2)-(Ix1+Iy1)}/(Ix1+Ix2+Iy1+Iy2)
なお、上記関係式において、Lxは受光面のx方向の長さであり、Lyは受光面のy方向の長さである。
そこで、位置IC29は、光受信部24のピークホールド回路38から得られた測定データIx1,Ix2,Iy1,Iy2の値が所定の閾値を超えると、それらの値に上記関係式に代入して、スポット光の入射位置の座標(x,y)の値を算出する。本実施形態では、この座標値が位置データである。
一方、図13に示すように、アップリンク領域UA内の任意の位置(X,Y)でビーコンヘッド8に向けて送出された光信号は、レンズで集光されて、PSD36の受光面内のいずれかの1つの位置(x,y)にスポット光となって入射される。
従って、アップリンク領域UAで送信される上りの光信号(アップリンク光)の入射位置(x,y)は、道路側の送信位置(X,Y)と1対1で対応しており、入射位置(x,y)の値が判明すれば、幾何学的な線形関係に基づく座標変換により、光信号の送信位置(X,Y)(アップリンク位置h1,h2の道路側の座標値)を求めることができる。
そこで、メインCPU30は、位置ICから位置データを取得すると、その位置データの座標(x,y)の値を上記座標変換によって道路側の座標(X,Y)の値に変換し、アップリンク位置h1,h2を求める。
なお、位置IC29にて道路側の座標(X,Y)を求める場合には、上記の座標変換についても位置IC29が行う。この場合、位置IC29が出力する位置データは、道路側の座標(X,Y)に基づく値となる。
〔位置補正情報の採用可否の判定処理〕
図14は、メインCPU30が行う、位置補正情報Lh1,Lh2を採用するか否かの判定処理の一例を示すフローチャートである。
図14に示すように、メインCPU30は、通信IC28から上りデータを取得したか否かを常に判定しており(ステップST11)、上りデータを取得した場合は、更に、位置IC29から位置データを取得したか否かを判定する(ステップST12)。
ステップST12の判定結果が否定的である場合は、位置データの採用可否を判定する必要がないので、メインCPU30は、後述のステップST13〜ST15の処理を行わずに、所定の提供情報を格納した下りフレームDL2を生成する(ステップST16)。
ステップST12の判定結果が肯定的である場合は、メインCPU30は、取得した上りデータが高速フレームUL2か否かを判定する(ステップST13)。なお、この判定は、上りフレームの車載機種別の値が「6」でかつ情報種別の値が「4」であるか否かによって行われる。
ステップST13の判定結果が否定的である場合、つまり、上りフレームがダウンリンク切り替えの契機となる低速フレームUL1である場合は、メインCPU30は、その時点でメモリが記憶している最新の位置データの座標値(X,Y)を採用した上で(ステップST14)、下りフレームDL2を生成する(ステップST16)。
より具体的には、メインCPU30は、採用した位置データの座標値(X,Y)と基準位置P0(図11参照)の座標値の差から位置補正情報Lh1を算出し、算出した位置補正情報Lh1を、下りフレームDL2に格納する安全運転支援情報に含める。
ステップST13の判定結果が肯定的である場合、つまり、上りフレームがダウンリンク切り替えの契機とならない高速フレームUL2である場合は、メインCPU30は、その時点でメモリが記憶している位置データの座標値(X,Y)を破棄した上で(ステップST14)、下りフレームDL2を生成する(ステップST16)。このように、位置データの座標値(X,Y)が破棄されると、下りフレームDL2の生成時には、前回の位置補正情報Lh1がそのまま使用されることになる。
従って、この場合、ダウンリンク切り替えの契機とならない高速フレームUL2のアップリンク位置h2に基づく位置補正情報Lh2が、下りフレームDL2の安全運転支援情報に採用されず、位置補正情報Lh2は車載機2に提供されない。
〔第1実施形態の効果〕
以上の通り、本実施形態の新光ビーコン4Aによれば、高速フレームUL2を受信した場合はダウンリンク切り替えを行わないビーコン制御機7のメインCPU30が、ダウンリンク切り替えの契機となる低速フレームUL1を受信した場合に、その受信時における位置補正情報Lh1を下りフレームDL2に含める。
このため、ダウンリンク切り替えの契機とならない高速フレームUL2を受信しても、
その受信時における位置補正情報Lh2が新車載機2Aに提供されない。
従って、新車載機2Aが1回の路車間通信において複数の上りフレームUL1,UL2を送信する場合において、ダウンリンク切り替えの契機とならない上りフレームUL2のアップリンク位置から求められた、誤った位置補正情報Lh2が新車載機2Aに伝送されることがなく、新車載機2Aは、正しい位置補正情報Lh1を用いて実距離Lを正確に算出することができる。よって、DSSSを適切に運用できるようになる。
本実施形態の新光ビーコン4Aによれば、低速フレームUL1の受信を契機としてダウンリンク切り替えが行われるので、新光ビーコン4Aの通信相手が新車載機2Aか旧車載機2Bかに関係なく、適切に路車間通信を行うことができる。
また、高速フレームUL2でのダウンリンク切り替えが行われないので、高速フレームUL2を受信した時もダウンリンク切り替えを行う場合に比べて、新光ビーコン4Aの処理負荷を軽減できるし、ダウンリンク切り替えの時期が遅くなって、その後にダウンリンク送信される下りフレームDL2の受信機会が減少するのを防止できる利点がある。
更に、本実施形態の新光ビーコン4Aによれば、通信用の第1受光系26の受光素子としてPD32を採用し、測定用の第2受光系27の受光素子として、PD32とは別個の測定用の変換素子であるPSD36を採用している。
このため、後述の第2実施形態(図15及び図16)のように、分割PD40を用いた第2受光系27の場合に比べて、位置標定の分解能が高めることができる。
また、PSD36を用いた第2受光系27では、分割PD40を用いた第2受光系27に比べて、道路側のアップリンク領域UAとの位置合わせが容易になり、光ビーコン4の設置手間が少なくて済むという利点もある。
すなわち、分割PDよりなる受光素子では、複数のPD1〜PD4の受光面が各分割領域UA1〜UA4に正しく対応するようにビーコンヘッド8を位置合わせする必要があるので、ビーコンヘッド8の設置に手間がかかるという欠点がある。
これに対して、PSD36では、受光面の座標(x,y)と道路側の座標(X,Y)との変換式の補正係数をコンピュータプログラムにて調整することにより、道路側との対応付けを微調整できるので、ビーコンヘッド8の位置合わせをそれほど厳密に行う必要がない。従って、かかるソフトウェア上の微調整ができない分割PDの場合に比べて、ビーコンヘッド8の設置手間を省ける。
また、本実施形態の新光ビーコン4Aによれば、光受信部11が、第1受光系26と第2受光系27とで別個の変換素子32,36を使用しているので、例えばPSD36のように、高速帯域の追従性が比較的悪い変換素子を第2受光系27に採用しても、第1受光系26が出力する電気信号の品質に影響が及ばない。
従って、アップリンク位置h1,h2を測定可能な光ビーコン4を構成する場合において、上りフレームUL2の高速化に適切に対応することができ、アップリンク方向の受信性能に優れた新光ビーコン4Aが得られる。
〔第1実施形態の変形例〕
上述の第1実施形態では、位置測定用のPSD36として2次元PSDを採用しているが、受光面のx方向が車両進行方向に沿うように配置された、1次元PSDを採用することにしてもよい。
その理由は、光ビーコン4が位置補正情報Lh1,Lh2を生成するためには、車両進行方向におけるアップリンク位置を測定できれば足り、道路幅方向(Y方向)の位置は特に問題にならないからである。
もっとも、2次元PSDを使用すれば、道路幅方向(Y方向)のアップリンク位置につても測定できるので、予め定めたY方向の所定範囲を逸脱する位置データについては、別の車線を走行する車両20からのアップリンク光であると判断し、当該位置データを破棄するなどの、より精度の高い運用が可能となる。
上述の第1実施形態において、PSD36を測定用のみに使用し、その出力信号を通信用の第1受光系26に入力しない理由は、次の通りである。
すなわち、現状では、高速(256kbps)の光信号に対して良好に追従するPSDが見あたらず、PSD36の出力信号を通信用にも使用すると、高速アップリンク受信に対応する新光ビーコン4Aを構成できないからである。
従って、高速(256kbps)の光信号に対して、立ち上がりと立ち下がりがさほど鈍らない高性能なPSDが実現すれば、PSD36の出力を第1受光系26にも使用する回路構成を採用することにより、PD32を省略することができる。
〔第2実施形態〕
図15は、第2実施形態に係る新光ビーコン4Aの回路構成図である。
図15の第2実施形態が図12の第1実施形態と異なる主な相違点は、測定用の変換素子として、PSD36の代わりに分割PD40を採用している点にある。
以下、第1実施形態と実質的に同じ機能部については、図15に同じ参照符号を付して詳細な説明を省略し、第1実施形態との相違点を重点的に説明する。
図15に示すように、第2受光系27の分割PD40は、4つのPD1〜PD4を幅方向に接合することにより面一な受光面が構成されている。
各PD1〜PD4の出力端子はそれぞれ後段の増幅器37に接続され、各PD1〜PD4が光電変換した電気信号は、増幅器37で増幅されてピークホールド回路38に入力される。ピークホールド回路38は、増幅信号の最大振幅を所定時間だけ保持して測定データを生成し、生成した測定データを後段の位置IC29に送る。
位置IC29は、各ピークホールド回路38から入力された測定データ(各PD1〜PD4の出力端子の電圧値)を用いてアップリンク位置を測定する。位置IC29は、その測定結果である位置データをメインCPU30に送る。
なお、分割PD40を構成するPD1〜PD4の出力端子の電圧値(測定データ)からアップリンク位置を測定する場合の測定原理(図16)については後述する。
図15に示すように、第1受光系26は加算器41を有する。各増幅器37の出力端子が加算器41に接続され、加算器41の出力端子は後段のフィルタ34に接続されている。
すなわち、受光素子がPDの場合は、比較的高速(本実施形態では、256kpbs)の光信号に対しても、良好な立ち上がりと立ち下がりとなる追従性能を有する。そこで、本実施形態では、PD1〜PD4の増幅信号を加算した加算信号を、第1受光系26のフィルタ34に送る回路構成を採用し、分割PD40を通信用の変換素子としても共用するようにしている。
このように、分割PDよりなる変換素子40を採用すれば、第1受光系26と第2受光系27とで用いる受光素子を1種類の変換素子40で共用できる。
このため、第1及び第2受光系26,27について異なる変換素子32,36を採用する第1実施形態(図12)の場合に比べて、回路規模をコンパクト化することができ、実装基板をサイズダウンできるという利点がある。
なお、第1受光系26におけるフィルタ34及びコンパレータ35の機能と、ビーコン制御機7の通信IC28の機能は、図12の第1実施形態の場合と同様であるから、その詳細な説明を省略する。
また、ビーコン制御機7のメインCPU30が行う判定処理についても、図14の第1実施形態の場合と同様であるから、その詳細な説明を省略する。
〔アップリンク位置の測定原理〕
図16は、分割PDを用いたアップリンク位置の測定原理の説明図である。
図16に示すように、道路側の分割領域UA1〜UA4は、道路Rの路面から所定高さH(例えば、H=1.0m)の平面を車両進行方向に沿ってほぼ等分した領域であり、分割PD40を構成するPD1〜PD4は、その受光領域が分割領域UA1〜UA4とほぼ対応するように、ビーコンヘッド8の内部に配置されている。
このため、例えば図16に示すように、分割PD40に入射されたスポット光がPD1の受光面にて検出された場合には、そのスポット光の送信位置は、アップリンク領域UAの分割領域UA1であったことが判明する。
同様に、スポット光の照射位置がPD2,PD3又はPD4であれば、その送信位置が分割領域UA2,UA3又はUA4であったことが判明する。
そこで、位置IC29は、光受信部24のピークホールド回路38から得られた測定データV1,V2,V3,V4の値が所定の閾値を超えると、それらの電圧値がどのPDi(i=1〜4)で生じたかを判定し、判定されたPDiに対応する分割領域UAiの基準位置を光信号のアップリンク位置とする。
従って、本実施形態では、各々の分割領域UAiの代表点として予め定められた基準位置が、位置IC29から出力される位置データとなる。
なお、本出願と同じ発明者による特開2012−84072号に示すように、PD1〜PD4のうちの隣接するもの同士の電圧値の比率に対応する、更に細かい分割領域を予め設定しておけば、分割PD40の分割数(本実施形態では、4つ)を超えた車両進行方向の領域数にて、光信号のアップリンク位置を特定することができる。
〔第3実施形態〕
図17は、第3実施形態に係る新光ビーコン4Aの回路構成図である。
図17に示すように、第3実施形態の新光ビーコン4Aでは、光受信部11は、通信用の受光系(受光回路)である第1受光系26と、測定用の受光系(受光回路)である第2受光系27とを含む。以下、第1実施形態と実質的に同じ機能部については、図17に同じ参照符号を付して詳細な説明を省略し、第1実施形態と相違点を重点的に説明する。
第2受光系27は、第1実施形態の第2受光系27(図12参照)と同様の構成であり、PSDよりなる変換素子36、増幅器37,及びピークホールド回路38を有している。また、第2受光系27におけるアップリンク位置の測定原理は、図13を参照して説明した通りである。
一方、第1受光系26は、第1実施形態の第1受光系26(図12参照)と略同様の構成を含み、PDよりなる変換素子32、増幅器33、フィルタ34、及びコンパレータ35を有している。そして、第1実施形態と同様の手順により、PD32から出力された電気信号を処理し、コンパレータ35からデジタルの受信信号(ビットデータ)を通信IC28に出力する。
更に、本実施形態においては、第2受光系27に用いられているPSD36が第1受光系26用(通信用)の変換素子としても兼用されるようになっている。より具体的には、第1受光系26は、上記構成のほか、PSD36、加算器41、フィルタ34、及びコンパレータ35を更に備えている。加算器41は、増幅器37の出力端子に接続されている。また、加算器41の出力端子はフィルタ34に接続されている。そして、PSD36から出力された信号は、増幅器37によって増幅された後に加算器41において加算される。加算器41において生成された信号は、フィルタ34において所定の速度成分が抽出された後にコンパレータ35に出力される。コンパレータ35は入力された信号を閾値と比較し、この比較によって抽出したデジタルの受信信号(ビットデータ)を通信IC28に出力する。なお、図17には、PD32を含む第1受光系を符号26Aで示し、PSD36を含む第1受光系を符号26Bで示している。
第1実施形態において説明したように、PSD36は高速帯域(256kbps)における追従性能が比較的悪く、受信した高速帯域の光信号から上りデータを再生することは困難であるが、低速帯域(64kbps)の光信号に対しては十分な追従性能を有しているので、受信した低速帯域の光信号から上りデータを再生することが可能である。
従って、本実施形態では、低速帯域(64kbps)の光信号、つまり低速フレームUL1に対してはPSD36を測定用としてだけでなく通信用としても利用し、PD32とPSD36とによって通信用受光系26A,26Bの二重化が図られている。
このような通信用受光系26A,26Bの二重化は、「上りデータ」を取得するうえでの確実性を高めるほか、以下に説明するようにPD32及びPSD36の故障等の不具合を早期に発見するためにも役立てることができる。
以下、本実施形態の新光ビーコン4Aのビーコン制御機7(メインCPU30)による判定処理について説明する。図18は、メインCPU30による判定処理の一例を示すフローチャートである。
まず、メインCPU30は、PD32の出力信号から再生された上りデータと、PSD36の出力信号から再生された上りデータとの双方を通信ICから取得したか否かを判定する(ステップST21)。PD32とPSD36との双方の上りデータを取得した場合は、更に、メインCPU30は、位置IC29から位置データを取得したか否かを判定する(ステップST22)。
ステップST22の判定結果が否定的である場合は、メインCPU30は、所定の提供情報を格納した下りフレームDL2を生成する(ステップST27)。
一方、ステップST22の判定結果が肯定的である場合には、メインCPU30は、その時点でメモリが記憶している最新の位置データの座標値(X,Y)(図13参照)を採用した上で(ステップST23)位置補正情報Lh1(図11参照)を算出し、当該情報Lh1を含めた下りフレームDL2を生成する(ステップST27)。
ここで、ステップST21において、メインCPU30が、PSD36の出力信号から再生された上りデータを通信ICから取得できた場合、その上りデータは、低速フレームUL1に基づくものであると判断することができる。前述したように、PSD36は、低速帯域の光信号に対しては十分な追従性を有し、その出力信号から上りデータを再生することができるからである。そして、その低速フレームUL1は、ダウンリンク切り替えの契機となる上りフレームであることから、当該低速フレームUL1のアップリンク位置から算出した位置補正情報Lh1を下りフレームDL2に含めることができる。
ステップST21の判定結果が否定的である場合、次に、メインCPU30は、PD32の出力信号から再生された上りデータのみを通信ICから取得したか否かを判定する(ステップST24)。
ステップST24の判定結果が肯定的である場合、更に、メインCPU30は、当該上りデータが高速フレームUL2に基づくものであるか否かを判定する(ステップST25)。そして、この判定結果が肯定的である場合、当該上りデータは、ダウンリンク切り替えの契機となる低速フレームUL1に基づくものではないので、位置データを含めることなく下りフレームDL2を生成する(ステップST27)。
一方、ステップST25の判定結果が否定的である場合、上りデータは低速フレームUL1に基づくものであるため、ステップST22に処理を進める。そして、前述したように、メインCPU30は、位置IC29から位置データを取得した場合には、所定の提供情報とともに位置補正情報Lh1を含めた下りフレームDL2を生成し、位置データを取得しない場合には、所定の提供情報を含めた下りフレームDL2を生成する(ステップST23,ST27)。
なお、ステップST24における判定結果が肯定的である場合、すなわち、PD32の出力信号のみから上りデータが再生されている場合は、当該上りデータは高速フレームUL2に基づくものであると推定することができるので、次のステップST25を経ることなくステップST27に処理を進めることも可能である。しかしながら、ステップST25の判定を行うことによって、次のような効果を得ることができる。
すなわち、ステップST25の判定結果が否定的である場合、上りデータは低速フレームUL1に基づくものであるにも関わらず、PSD36の出力信号からは上りデータが再生されていないことになる。従って、この場合にはPSD36の故障等の不具合を疑うことができる。メインCPU30は、例えば、PSD36の不具合を示すエラー信号を中央装置3に送信する処理を行うことによって、当該不具合をオペレータに早期に報知することができる。
ステップST24において判定結果が否定的である場合、次に、メインCPU30は、PSD36の出力信号から再生された上りデータのみを通信ICから取得したか否かを判定する(ステップST26)。そして、この判定結果が肯定的である場合、当該上りデータは低速フレームUL1に基づくものであると判断することができるので、ステップST22に処理を進める。
また、ステップST26の判定結果が肯定的である場合、PD32の出力信号からも上りデータを再生できる状況であるにも関わらず、それができていないことになる。従って、この場合にはPD32の故障等の不具合を疑うことができる。そのため、メインCPU30は、例えば、PD32の不具合を示すエラー信号を中央装置3に送信する処理を行うことによって、当該不具合をオペレータに早期に報知することができる。
ステップST26の判定結果が否定的である場合、PD32及びPSD36のいずれの出力信号からも上りデータが再生されていないので、再び処理をステップST21に戻し、以上の動作を繰り返し行う。
〔その他の変形例〕
今回開示した実施形態(変形例を含む。)はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
例えば、上述の実施形態では、アップリンク方向でマルチレート対応の新光ビーコン4Aに本発明を適用した場合を例示したが、本発明は、アップリンク方向で単一レートのみに対応する光ビーコン4(例えば、低速フレームUL1のみを受信可能な旧光ビーコン4B)に採用することもできる。
すなわち、旧光ビーコン4Bと旧車載機2Bの通信において、旧車載機2Bが1回の路車間通信で複数の上りフレームを送信でき、旧光ビーコン4Bが最初に受信した上りフレームUL1だけでダウンリンク切り替えを行う場合には、DSSSに則って旧光ビーコン4Bが提供する安全運転支援情報に含める、「位置補正情報」と「DL送信フレーム数」との関係性が崩れるという、前述の問題点がそのまま当てはまる。
従って、旧光ビーコン4Bの場合でも、ダウンリンク切り替えの契機となる低速フレームUL1を受信した場合に限り、その受信時における位置補正情報Lh1を下りフレームDL2に含めることにし、ダウンリンク切り替えの契機とならない位置データに基づく、誤った位置補正情報Lh2が旧車載機2Bに提供されないようにすればよい。
この場合、旧車載機2Bが誤った位置補正情報Lh2を用いて実距離Lを算出するのを防止でき、DSSSを適切に運用できるようになる。
上述の実施形態では、アップリンク位置h1,h2を、基準位置P0を起点とした車両進行方向の距離Lh1,Lh2で表した「位置補正情報」として定義しているが、アップリンク位置h1,h2を地図上の座標値で表すこととし、その座標値を車載機2に通知することにしてもよい。
この場合、基準位置P0の座標が不明でも、アップリンク位置h1,h2を把握できるので、基準位置P0を安全運転支援情報に含めないことにしてもよい。
上述の実施形態では、新車載機2Aが複数の高速フレームU1〜U3を連続して送信することになっているが、フレーム間に所定時間長のインターバルを設けてバースト送信することにしてもよい。
また、本明細書において、「車載機」とは、車両20に搭載されたあと常にその状態に固定されるものを含むことは勿論、ドライバが利用したい時だけ車両20に持ち込まれ、一時的に車両20に搭載されるものも含まれる。
2 車載機
2A 新車載機
2B 旧車載機
4 光ビーコン
4A 新光ビーコン
4B 旧光ビーコン
7 ビーコン制御機(通信制御部)
8 ビーコンヘッド
20 車両
23 光送信部
24 光受信部
26 第1受光系(通信用の受光系)
27 第2受光系(測定用の受光系)
28 通信IC(通信処理部)
29 位置IC(位置処理部)
30 メインCPU(判定処理部)
32 通信用の変換素子(PD)
36 測定用の変換素子(PSD)
40 分割PD(複数のフォトダイオード)

Claims (6)

  1. 走行中の車両の車載機と光信号による無線通信を行う光ビーコンであって、
    上りの光信号を電気信号に変換する受光素子を含む光受信部と、
    電気信号を下りの光信号に変換する発光素子を含む光送信部と、
    複数の上りフレームのうちいずれかの受信を契機として行うダウンリンク切り替えと、アップリンク位置の生成とを実行可能な通信制御部と、を備えており、
    前記通信制御部は、前記ダウンリンク切り替えの契機となる前記上りフレームを受信した場合に、その受信時における前記アップリンク位置を下りフレームに含めるものであり、
    前記光受信部は、下記の2種類の受光系を含み、
    前記受光素子は、通信用の第1の変換素子と、これとは別個の測定用の第2の変換素子とを含み、
    前記測定用の第2の変換素子は、光信号の受光面上の入射位置が車両進行方向における光信号の送信位置と対応するように配置され、その入射位置に応じた電気信号を出力する位置検出素子よりなり、
    前記光受信部が、高低2種類の伝送速度の光信号に対応している場合、前記第1の変換素子は、高低両方の光信号に対して通信用として用いられ、前記第2の変換素子は、伝送速度が高速の光信号に対しては測定用として用いられ、伝送速度が低速の光信号に対しては測定用に加えて通信用としても用いられることを特徴とする光ビーコン。
    通信用の受光系:受光素子が出力する電気信号からビットデータを抽出する受光系
    測定用の受光系:受光素子が出力する電気信号からアップリンク位置の測定に用いる測定データを生成する受光系
  2. 前記通信制御部は、低速の前記上りフレームを受信した場合は前記ダウンリンク切り替えを行い、高速の前記上りフレームを受信した場合は前記ダウンリンク切り替えを行わないように構成されており、さらに、前記通信制御部は、次の3種類の処理部を含む請求項に記載の光ビーコン。
    通信処理部:抽出されたビットデータから上りデータを再生する処理部
    位置処理部:生成された測定データからアップリンク位置の位置データを演算する処理部
    判定処理部:前記第1及び第2の変換素子のそれぞれの出力信号から上りデータが再生されたか否かによって、演算された位置データに対応するアップリンク位置を下りフレームに含めるか否かを判定する処理部
  3. 前記判定処理部は、少なくとも前記第2の変換素子の出力信号から上りデータが再生されたか否かにより、前記アップリンク位置を下りフレームに含めるか否かを判定する、請求項に記載の光ビーコン。
  4. 前記判定処理部は、前記第2の変換素子の出力信号のみから前記上りデータが再生された場合に、前記第1の変換素子を故障と判断する、請求項に記載の光ビーコン。
  5. 前記判定処理部は、前記第1の変換素子の出力信号のみから前記上りデータが再生された場合には、受信した前記上りフレームが低速か高速かを判定する、請求項又はに記載の光ビーコン。
  6. 前記判定処理部は、受信した前記上りフレームが低速であると判定した場合に、前記第2の変換素子を故障と判断する、請求項に記載の光ビーコン。
JP2012219991A 2012-07-02 2012-10-02 光ビーコン Active JP5967539B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012219991A JP5967539B2 (ja) 2012-07-02 2012-10-02 光ビーコン

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012148902 2012-07-02
JP2012148902 2012-07-02
JP2012219991A JP5967539B2 (ja) 2012-07-02 2012-10-02 光ビーコン

Publications (2)

Publication Number Publication Date
JP2014029657A JP2014029657A (ja) 2014-02-13
JP5967539B2 true JP5967539B2 (ja) 2016-08-10

Family

ID=50202169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012219991A Active JP5967539B2 (ja) 2012-07-02 2012-10-02 光ビーコン

Country Status (1)

Country Link
JP (1) JP5967539B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930043B2 (ja) * 2006-12-25 2012-05-09 住友電気工業株式会社 路車間通信システム及び距離認識方法とこれに用いる光ビーコン、車載機
JP4983454B2 (ja) * 2007-07-19 2012-07-25 住友電気工業株式会社 路車間通信システム、光ビーコン、車載機、及び車両
WO2012086151A1 (ja) * 2010-12-20 2012-06-28 パナソニック株式会社 通信装置、通信方法、端末装置、及び、通信システム

Also Published As

Publication number Publication date
JP2014029657A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2020063979A1 (zh) 列车及其安全定位系统
JP5300107B1 (ja) 光ビーコン
CN103021182A (zh) 机动车闯红灯违章监测方法及装置
JP6364686B2 (ja) 光ビーコン
JP2018007275A (ja) 車載機
JPWO2018092307A1 (ja) 通信制御装置、料金収受システム、通信制御方法及びプログラム
JP5950344B2 (ja) 光ビーコン
JP5967539B2 (ja) 光ビーコン
JP2009205443A (ja) 路車間通信システムとこれに用いる光ビーコン、及び、光受信部の異常判定方法
JP2018055547A (ja) 光ビーコン及び車載機
JP5995316B2 (ja) 光ビーコン
JP5949301B2 (ja) 路車間通信システム、光ビーコン及び路車間通信方法
JP2018129095A (ja) 光ビーコン及び車載機
KR101855088B1 (ko) 비콘을 활용한 gps 음영지역 해소 방법 및 시스템
JP6007661B2 (ja) 車載機
JP2016225992A5 (ja)
JP2017073030A (ja) 車載機及び光ビーコン
JP6725111B2 (ja) 光ビーコン
JP6358653B2 (ja) 光ビーコン
JP2011204051A (ja) 路車間通信システムとこれに用いる光ビーコンの通信領域の測定装置及び方法
JP6447913B2 (ja) 光ビーコン
JP2018013903A (ja) 路車間通信システム、光ビーコン及び車載機
JP2014212401A (ja) 限界値の検査方法、投受光器の検査方法、これらの検査方法に用いる検査用治具
JP2014160441A (ja) 光ビーコン
JP2016167316A (ja) 路車間通信システムに用いられる車載機

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160624

R150 Certificate of patent or registration of utility model

Ref document number: 5967539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250