JP5964794B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5964794B2
JP5964794B2 JP2013186836A JP2013186836A JP5964794B2 JP 5964794 B2 JP5964794 B2 JP 5964794B2 JP 2013186836 A JP2013186836 A JP 2013186836A JP 2013186836 A JP2013186836 A JP 2013186836A JP 5964794 B2 JP5964794 B2 JP 5964794B2
Authority
JP
Japan
Prior art keywords
cutting
cutting tool
central axis
shape
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013186836A
Other languages
Japanese (ja)
Other versions
JP2015054352A (en
Inventor
喜彦 平角
喜彦 平角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2013186836A priority Critical patent/JP5964794B2/en
Publication of JP2015054352A publication Critical patent/JP2015054352A/en
Application granted granted Critical
Publication of JP5964794B2 publication Critical patent/JP5964794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、切削機械の回転主軸に取り付けられ、切刃を回転させながら主にガラスやセラミックスなどの高脆性材料からなる被加工物から材料を除去する切削工具に関する。特に、先端側に設けられる切削部位の切削面における外形が正三角形状の切削工具に関する。   The present invention relates to a cutting tool that is attached to a rotary spindle of a cutting machine and removes material from a workpiece mainly made of a highly brittle material such as glass or ceramics while rotating a cutting blade. In particular, the present invention relates to a cutting tool having an equilateral triangular outer shape on a cutting surface of a cutting site provided on the tip side.

被加工物を切削加工する場合、所望の形状によって使用する切削工具の形状が異なる。例えば、ボール盤のような穴開けを行なう切削機械では、螺旋状の切刃を有するドリルが用いられる。また、旋盤または平削盤のように木工におけるノミやカンナのように平坦面を削りだすような加工を施す切削機械の場合は、基本的に刃数が一刃であるバイトが適用される。また、例えば、フライス盤またはマシニングセンタのように任意の形状の溝もしくは底付穴を加工する切削機械の場合は、主に複数の回転刃を有するフライスが使用される。   When cutting a workpiece, the shape of the cutting tool used varies depending on the desired shape. For example, in a cutting machine that performs drilling such as a drilling machine, a drill having a spiral cutting edge is used. In addition, in the case of a cutting machine that performs a process of cutting a flat surface such as a chisel or plane in a woodwork, such as a lathe or a planer, a cutting tool having a single blade is basically applied. For example, in the case of a cutting machine that processes a groove or bottomed hole having an arbitrary shape such as a milling machine or a machining center, a milling machine having a plurality of rotary blades is mainly used.

各切削工具の材質は、加工対象の被加工物の材質と切削する方向および加工結果に対する要求に対応してそれぞれ異なる。切削工具は、基本的に切刃が被加工物と同等以上の硬度を有し、磨耗量をより少なくすることができる材料で形成されることが要求される。代表的な金属である鉄系の被加工物を加工するときは、被加工物の硬さに対応して、被加工物の硬さを上回る硬度を有する炭素工具鋼、合金工具鋼、高速度工具鋼(ハイス)のような鋼系の切削工具が使用される。   The material of each cutting tool differs depending on the material of the workpiece to be processed, the cutting direction, and the requirements for the processing result. The cutting tool is basically required to be formed of a material in which the cutting edge has a hardness equal to or higher than that of the workpiece and can reduce the amount of wear. When machining ferrous workpieces, which are typical metals, carbon tool steels, alloy tool steels, and high speeds that have a hardness that exceeds the hardness of the workpiece, corresponding to the hardness of the workpiece Steel-based cutting tools such as tool steel (His) are used.

フライス加工では、多くの場合、回転方向に刃先が向けられた複数の切刃を円筒形状の切削部位の中心軸から外周に向けて放射状に延伸して設けた切削工具を使用している。そして、複数の切刃を有する切削工具を中心軸廻りに高速で回転させながら被加工物に対して相対移動させることによって被加工物を切削する。正面フライスあるいはエンドミルのような切削工具の切刃の材料には、被加工物の材料に対応して、高速度工具鋼、超硬合金、多結晶立方晶窒化珪素(PcBN)、多結晶焼結ダイヤモンド(PCD)のように、より高い耐磨耗性を有する高硬度材が選ばれる。   In milling, in many cases, a cutting tool is used in which a plurality of cutting blades whose cutting edges are directed in the rotation direction are radially extended from the central axis of a cylindrical cutting portion toward the outer periphery. Then, the workpiece is cut by moving the cutting tool having a plurality of cutting blades relative to the workpiece while rotating at high speed around the central axis. Depending on the material of the workpiece, high-speed tool steel, cemented carbide, polycrystalline cubic silicon nitride (PcBN), polycrystalline sintering A hard material with higher wear resistance, such as diamond (PCD), is selected.

セラミックス、ガラスのような高脆性材を切削加工するときは、切刃がダイヤモンドの切削工具が有利であるが、このような高脆性材に切込み加工をすると、被削材が硬いので、切刃の寿命が短く、長期にわたっての高精度な加工も困難であった。 When cutting highly brittle materials such as ceramics and glass, a cutting tool with a diamond cutting edge is advantageous, but when cutting into such a highly brittle material, the work material is hard. The life of the steel was short, and high-precision machining over a long period was difficult.

特許文献1は、工具本体の多角形の断面を有する先端部の角部に外周刃が形成され、工具本体の先端面には隣接する角部と角部の間に切屑(切削粉)を排出するための凹部が形成され、凹部で仕切られた角部を有する凸部の稜線に底刃が形成されていることを特徴とする切削工具を開示している。特許文献1の発明の切削工具によると、工具本体の先端部が多角形断面形状を有し、その角部に外周刃が形成されており、しかも先端面の角部間に形成された凹溝で仕切られた角部を有する凸部の稜線に底刃を形成したから、先端面が逃げ面とされ、切削加工時に外周刃による切削材への切り込みは比較的浅くて底刃による切削が高精度で高い仕上げ加工を行え、しかも外周刃と底刃の剛性と強度が高いので刃先の欠損や摩耗を防止して高寿命になる、としている。なお、特許文献1の発明では、工具本体の先端部は4角以上の多角形であることが好ましい、としている。   In Patent Document 1, an outer peripheral blade is formed at a corner portion of a tip portion having a polygonal cross section of a tool body, and chips (cutting powder) are discharged between adjacent corner portions on the tip surface of the tool body. A cutting tool is disclosed, in which a recess is formed, and a bottom blade is formed on a ridge line of a protrusion having corners partitioned by the recess. According to the cutting tool of the invention of Patent Document 1, the tip end portion of the tool body has a polygonal cross-sectional shape, the outer peripheral blade is formed at the corner portion, and the recessed groove formed between the corner portions of the tip end surface. Since the bottom blade is formed on the ridge line of the convex part with the corners partitioned by, the tip surface is the flank, and the cutting to the cutting material by the outer peripheral blade during cutting is relatively shallow, and cutting by the bottom blade is high. It is said that high-precision finishing can be performed with high precision, and the rigidity and strength of the outer peripheral edge and bottom edge are high, so that the cutting edge can be prevented from being broken and worn, resulting in a long life. In the invention of Patent Document 1, the tip of the tool body is preferably a polygon having four or more corners.

特開2012−236242号公報JP 2012-236242 A

しかし、セラミックス、ガラスのような高脆性材料を加工すると、加工時の切屑は細かい粉末状となり、その切屑を切削工具が巻き込むことで被削材と切削材間で負荷が掛かり、被加工物と切削工具のいずれにも細かい欠けや割れ(いわゆるチッピング)が発生する懸念がある。   However, when processing highly brittle materials such as ceramics and glass, the chips at the time of processing become fine powder, and the cutting tool entrains the chips, and a load is applied between the work material and the work material. There is a concern that fine chips and cracks (so-called chipping) occur in any of the cutting tools.

また、切刃がダイヤモンドで構成される従来の切削工具を用いて高脆性材を被削材として加工すると、被加工物の表面にクラックが発生し無数の凹部を形成してしまい、加工面の面粗さが悪くなる懸念がある。また、被加工物の側面も、切削加工の際に発生する細かい粉末状の切屑によりチッピングが発生し、欠けた加工形状となる懸念がある。   In addition, if a highly brittle material is processed as a work material using a conventional cutting tool whose cutting edge is made of diamond, cracks are generated on the surface of the work piece, forming innumerable recesses, There is a concern that the surface roughness will deteriorate. In addition, the side surface of the workpiece may have a chipped shape due to chipping caused by fine powdery chips generated during cutting.

また、切削加工において要求される加工形状精度が高いほど、切削部位の外周の形状と切刃の形状に対してより高い精度が求められる。ダイヤモンドのように切削が困難な高硬度材料で成る切削部位に多数の微小な切刃を精密に加工することは相当に大変な作業であり、この種の切削工具の製作における作業性の向上が望まれている。   In addition, the higher the machining shape accuracy required in cutting, the higher the accuracy required for the outer peripheral shape of the cutting site and the shape of the cutting edge. Precise machining of a large number of minute cutting edges in a cutting part made of a high-hardness material that is difficult to cut, such as diamond, is a very difficult task, and the improvement of workability in the production of this type of cutting tool It is desired.

本発明は、上記課題に鑑みて、回転させて使用する微細加工に適する高脆性材加工用の高精度の切削工具であって、被加工物の切削面の加工精度をより向上し、切刃の破損のおそれが低減され、より長時間の使用に耐える改良された高脆性材加工用の切削工具を提供することを主たる目的とする。本発明の高脆性材加工用の切削工具のいくつかの有利な点は、好適な実施の形態の説明において、その都度具体的に記述される。   In view of the above problems, the present invention is a high-accuracy cutting tool for processing a highly brittle material suitable for fine processing that is rotated and used, which further improves the processing accuracy of the cutting surface of the workpiece, The main object of the present invention is to provide an improved cutting tool for processing a highly brittle material that can be used for a longer time. Some of the advantages of the cutting tool for machining highly brittle materials of the present invention will be specifically described each time in the description of the preferred embodiment.

請求項1に係る切削工具では、上記課題を解決するために、先端側に設けられた切削部位(10)と、後端側に設けられ切削部位を保持するシャンク(20)と、を含んでなる高脆性材料の加工に用いる切削工具(1)であって、切削部位(10)が、横断面外周形状が正三角形でありその三角形の頂点(P)に形成する三箇所の側面外周刃(10B)と、先端面において正三角形の各頂点(P)から中心軸(O)に向かって正三角形状の平坦面で形成する三箇所の先端面切刃部(2B)と、先端面切刃部(2B)の正三角形の中心軸側に位置する一辺を上底として中心軸(O)に向かって等脚台形形状をなす三箇所の傾斜部位(2C)と、三箇所の傾斜部位(2C)の中心軸(O)側に位置する台形の下底線にて形成される平面部位(2D)と、でなることを特徴とする。   In order to solve the above problems, the cutting tool according to claim 1 includes a cutting part (10) provided on the front end side and a shank (20) provided on the rear end side and holding the cutting part. A cutting tool (1) used for processing a highly brittle material, wherein the cutting part (10) has an outer peripheral shape of an equilateral triangle and three side peripheral blades (P) formed at the apex (P) of the triangle ( 10B), three tip face cutting edges (2B) formed by a flat face of an equilateral triangle shape from each vertex (P) of the regular triangle toward the central axis (O) on the tip face, and the tip face cutting edge Three inclined portions (2C) having an isosceles trapezoidal shape toward the central axis (O) with one side positioned on the central axis side of the regular triangle of the part (2B) as an upper base, and three inclined portions (2C ) In the plane part (2D) formed by the lower base line of the trapezoid located on the central axis (O) side When, characterized by comprising in.

請求項2に係る切削工具では、切削工具(1)が中心軸(O)廻りに回転したときに、中心軸(O)を中心にして放射状に120度の間隔にあって切削部位(10)の横断面外周形状(10C)となる正三角形の各頂点(P)が作る軌道の円の外形直径をDとして、先端面切刃(2B)の三角形高さが0.05D〜0.2Dとなることを特徴とする。 In the cutting tool according to claim 2, when the cutting tool (1) rotates around the central axis (O), the cutting sites (10) are spaced at intervals of 120 degrees radially about the central axis (O). The outer diameter of the circle of the orbit made by each apex (P) of the equilateral triangle having a cross-sectional outer peripheral shape (10C) of D is D, and the triangle height of the tip face cutting edge (2B) is 0.05D to 0.2D. It is characterized by becoming.

請求項3に係る切削工具では、傾斜部位(2C)の等脚台形形状の両脚部に逃げ部位(2E)を設けたことを特徴とする。   The cutting tool according to claim 3 is characterized in that relief portions (2E) are provided on both leg portions of the isosceles trapezoidal shape of the inclined portion (2C).

請求項4に係る切削工具では、切削部位(10)が多結晶焼結ダイヤモンドで形成されることを特徴とする。   The cutting tool according to claim 4 is characterized in that the cutting part (10) is formed of polycrystalline sintered diamond.

請求項1に係る高脆性材料の加工に用いる切削工具は、外周形状を正三角形として、切削部位の先端面において、正三角形の各頂点から切削工具の中心軸に向かって形成され互いに結合しない三箇所の正三角形形状の先端面切刃部を放散同形に均等配置として形成しているので、切削部位の強度を確保し、摩耗を均等にできるとともに、高脆性材料を被削体として切削加工する場合の高硬度な刃の当たりを最小化し、被削対表面のクラックやひび割れなどの発生を抑える効果を有する。
また、先端面切刃部は、傾斜部位と平面部位により、切刃部同士が繋がっていないので、切削面において切刃と被加工物とが接触しない領域が比較的広く、摩擦抵抗をより小さくできるとともに、切屑をより効率よく逃がすことができるので、磨耗量をより少なくすることができる。
The cutting tool used for processing the highly brittle material according to claim 1 is formed such that the outer peripheral shape is an equilateral triangle and is formed from each vertex of the equilateral triangle toward the central axis of the cutting tool on the tip surface of the cutting portion and is not coupled to each other. Since the regular triangular cutting edges of the equilateral triangle shape are formed in an evenly distributed shape, the strength of the cutting part can be secured, the wear can be made uniform, and a highly brittle material can be cut as a workpiece. In this case, the effect of minimizing the contact of the high-hardness blade and suppressing the occurrence of cracks and cracks on the surface of the workpiece is obtained.
In addition, since the cutting edge portion of the distal end surface is not connected to each other by the inclined portion and the flat portion, the region where the cutting blade does not contact the workpiece on the cutting surface is relatively wide, and the frictional resistance is further reduced. As well as being able to escape chips more efficiently, the amount of wear can be reduced.

請求項2に係る切削工具は、切削工具の中心軸廻りに回転したときに、当該中心軸を中心にして放射状に120度の間隔にあって切削部位の横断面外周形状となる正三角形の各頂点が作る軌道の円の外形直径をDとして、先端面切刃の三角形高さを0.05D〜0.2Dとして先端面切刃部の面積を小さくすることにより、切屑の捌け性の向上を図ることができる。特に、本発明の切削工具は、ワイヤ電極を水平方向に張架して被加工物を切断加工する横型ワイヤ放電加工機を用いて回転と角度割出にて切削部位の外周と切刃をワイヤカット加工によって製作することができるため、高硬度材料で成る微細加工に適する精密な切削工具でありながらもより容易に製作することができる。特に、本発明の切削工具は、真円度がより高く、三箇所の切刃の形状誤差がより小さい。したがって、加工形状精度と加工速度が向上する。
When the cutting tool according to claim 2 is rotated around the central axis of the cutting tool, each of the equilateral triangles that are radially spaced 120 degrees around the central axis and have a cross-sectional outer peripheral shape of the cutting site. The outer diameter of the circle of the orbit formed by the apex is D, the triangle height of the tip face cutting blade is 0.05D to 0.2D, and the area of the tip face cutting blade is reduced, thereby improving chip burnability. Can be planned. In particular, the cutting tool of the present invention uses a horizontal wire electric discharge machine that stretches a wire electrode in the horizontal direction to cut a workpiece, and wire the outer periphery and cutting edge of the cutting site by rotation and angle indexing. Since it can be manufactured by cutting, it can be manufactured more easily even though it is a precise cutting tool suitable for fine processing made of a high-hardness material. In particular, the cutting tool of the present invention has higher roundness and smaller shape errors of the three cutting edges. Therefore, the machining shape accuracy and the machining speed are improved.

請求項3に係る切削工具では、傾斜部位の等脚台形形状の両脚部に逃げ部位を設けている。この逃げ部は切屑をより積極的に排出させるので、微細なガラス粉あるいはセラミックス粉のような高硬度の切屑が先端面切刃部と被削材との間に残って発生するチッピングを抑えることができる。   In the cutting tool according to the third aspect, the escape portions are provided on both legs of the isosceles trapezoidal shape of the inclined portion. This escape section discharges chips more actively, so that chipping with high hardness such as fine glass powder or ceramic powder remains between the cutting edge of the tip surface and the work material is suppressed. Can do.

請求項4に係る切削工具では、切削部位を多結晶焼結ダイヤモンドにて形成しているので、セラミックス、ガラスのような高脆性材の精度の高い加工も期待できる。また、超硬合金のように非鉄系の高硬度鋼材等への適用も期待できる。   In the cutting tool according to the fourth aspect, since the cutting site is formed of polycrystalline sintered diamond, high-precision processing of highly brittle materials such as ceramics and glass can be expected. Also, application to non-ferrous high hardness steel materials such as cemented carbide can be expected.

本発明の切削工具を先端側から見た平面図である。It is the top view which looked at the cutting tool of this invention from the front end side. 本発明の切削工具の側面図である。It is a side view of the cutting tool of the present invention. 本発明の切削工具を先端側から見た斜視図である。It is the perspective view which looked at the cutting tool of this invention from the front end side. 本発明の切削工具をワイヤカットで加工するプロセスを示す模式図である。It is a schematic diagram which shows the process which processes the cutting tool of this invention by a wire cut. 本発明の切削工具の切刃をワイヤカットで加工するプロセスを示す模式図である。It is a schematic diagram which shows the process which processes the cutting blade of the cutting tool of this invention by a wire cut.

図1および図2に、本発明の好適な実施の形態の切削工具が示されている。図3は、図1および図2に示される実施の形態の切削工具の切刃を示す。本発明では、切削工具の長手方向の中心線を中心軸とし、切刃が設けられて加工に供される側を先端側とし、切削機械に取り付けられる側を後端側とする。そして、切削工具の先端面を天面と称し、天面に直交する面を側面とする。また、切削部位における天面と同一の面を切削面という。   1 and 2 show a cutting tool according to a preferred embodiment of the present invention. FIG. 3 shows the cutting blade of the cutting tool of the embodiment shown in FIGS. 1 and 2. In the present invention, the center line in the longitudinal direction of the cutting tool is used as the central axis, the side provided with the cutting blade and used for processing is the front end side, and the side attached to the cutting machine is the rear end side. And the front end surface of a cutting tool is called a top surface, and let the surface orthogonal to a top surface be a side surface. Further, the same surface as the top surface at the cutting site is called a cutting surface.

切削工具1は、フライス盤あるいはマシニングセンタのような数値制御切削機械の回転主軸(スピンドル)に取り付けられる。切削工具1は、主に切削部位10とシャンク20とから成る。切削部位10は、切削工具1の先端側に設けられる。シャンク20は、切削工具1の後端側に設けられる。実施の形態の切削工具1では、切削部位10とシャンク20とが一体で成形されている。   The cutting tool 1 is attached to a rotating spindle (spindle) of a numerically controlled cutting machine such as a milling machine or a machining center. The cutting tool 1 mainly includes a cutting site 10 and a shank 20. The cutting part 10 is provided on the tip side of the cutting tool 1. The shank 20 is provided on the rear end side of the cutting tool 1. In the cutting tool 1 of the embodiment, the cutting site 10 and the shank 20 are integrally formed.

切削部位10は、多結晶焼結ダイヤモンドにて形成されている。切削工具1では、切削面10Aと側面外周刃10Bが設けられているので、少なくとも切削部位10の切削面10Aと側面外周刃10Bとを含めた表面の全体にわたって多結晶焼結ダイヤモンドの層を有する。切削部位10の多結晶焼結ダイヤモンドの層以外の部位は、超硬合金で形成される。   The cutting part 10 is formed of polycrystalline sintered diamond. Since the cutting tool 1 is provided with the cutting surface 10A and the side outer peripheral blade 10B, it has a layer of polycrystalline sintered diamond over the entire surface including at least the cutting surface 10A and the side outer peripheral blade 10B of the cutting site 10. . Parts other than the polycrystalline sintered diamond layer of the cutting part 10 are made of cemented carbide.

シャンク20は、円柱形状の超硬合金で形成されている。シャンク20は、切削部位10を直接または間接的に保持する。シャンク20は、切削機械の回転主軸または回転主軸に装着される工具ホルダのチャックに締め付けられる切削工具1の後端側の部位である。   The shank 20 is formed of a cylindrical cemented carbide. The shank 20 holds the cutting site 10 directly or indirectly. The shank 20 is a part on the rear end side of the cutting tool 1 that is fastened to the rotation main shaft of the cutting machine or a chuck of a tool holder attached to the rotation main shaft.

切削部位10の外周形状は、正三角柱である。したがって、切削部位10の横断面における外周10Cの形状、端的に言うと、切削部位10の切削面10Aの外形は、正三角形である。そのため、実施の形態の切削工具1は、比較的容易に三箇所の切刃2の切削量のバランスを得ることができる利点を有する。   The outer peripheral shape of the cutting part 10 is a regular triangular prism. Therefore, the shape of the outer periphery 10 </ b> C in the cross section of the cutting part 10, simply speaking, the outer shape of the cutting surface 10 </ b> A of the cutting part 10 is a regular triangle. Therefore, the cutting tool 1 according to the embodiment has an advantage that the balance of the cutting amounts of the three cutting edges 2 can be obtained relatively easily.

側面外周刃10Bは、切削部位10の外周10Cの正三角形の各頂点Pに設けられる。したがって、切削工具1は、外周10Cの正三角形の頂点Pの数と同じく三箇所の切刃2を有する。   The side outer peripheral blade 10B is provided at each vertex P of the equilateral triangle of the outer periphery 10C of the cutting site 10. Therefore, the cutting tool 1 has the three cutting edges 2 as well as the number of apexes P of the regular triangle on the outer periphery 10C.

三箇所の各切刃2は、それぞれ切削部位10の外周10Cの正三角形の各頂点Pを一頂点とする正三角形の同形の先端面切刃部2Bを形成している。   Each of the three cutting edges 2 forms a front end face cutting portion 2B having the same shape as a regular triangle with each vertex P of the regular triangle on the outer periphery 10C of the cutting portion 10 as one vertex.

傾斜部位2Cは、先端面切刃部2Bの正三角形の中心軸側の一辺を上底とした台形形状の傾斜部位として形成され、三箇所の切刃2がそれぞれ標準的な摩擦に因る均等な磨耗によって、より長時間連続して切削能力を維持するために必要である。また、傾斜部位2Cは加工面に当接しないので、傾斜部位2Cと加工面との間に入り込む切削粉を逃がす役割を担う。   The inclined portion 2C is formed as a trapezoid-shaped inclined portion with one side of the center axis side of the regular triangle of the front end face cutting edge portion 2B as an upper base, and the three cutting edges 2 are equal to each other due to standard friction. It is necessary to maintain the cutting ability continuously for a longer period of time due to excessive wear. Further, since the inclined portion 2C does not come into contact with the machining surface, it plays a role of releasing cutting powder entering between the inclined portion 2C and the machining surface.

平面部2Dは、三箇所の切刃2の台形形状をなす傾斜部位2Cの下底線にて形成される。この平面部2Dも加工面に当接しないので、加工面との間に入り込む切削粉を逃がす役割を担う。   The flat portion 2D is formed by the lower base line of the inclined portion 2C that forms the trapezoidal shape of the three cutting edges 2. Since the flat surface portion 2D does not come into contact with the processing surface, it plays a role of escaping the cutting powder entering between the processing surface.

逃げ部2Eは、等脚台形形状である傾斜部位2Cの両脚部に設けられ、傾斜部位2Cと加工面との間に入り込む切屑をさらに逃がす役割を担う。   The escape portion 2E is provided on both leg portions of the inclined portion 2C having an isosceles trapezoidal shape, and plays a role of further releasing chips that enter between the inclined portion 2C and the processing surface.

三箇所の切刃2は、各切刃2同士が中心軸O廻りにおいてそれぞれ互いにつながらない状態で各頂点Pに放散同形に設けられる。本発明でいう放散同形とは、切削面10Aにおいて各切刃2が中心軸Oを中心に放射状に同一間隔(120°)で均等に配設されることをいう。切削工具1では、各切刃2が放散同形に配置されているため、摩擦抵抗が比較的小さく、切刃2と被加工物とが接触しない空間を通して切屑が効率よく逃がされる。その結果、切削工具1では、磨耗量をより少なくすることができる。   The three cutting edges 2 are dissipated in the same shape at each vertex P in a state where the cutting edges 2 are not connected to each other around the central axis O. In the present invention, the term “divergence isomorphism” means that the cutting edges 2 are evenly arranged at the same interval (120 °) radially about the central axis O on the cutting surface 10A. In the cutting tool 1, the cutting edges 2 are arranged in the same shape, so that the frictional resistance is relatively small, and the chips are efficiently released through the space where the cutting edge 2 and the workpiece do not contact. As a result, the cutting tool 1 can reduce the amount of wear.

また、実施の形態の切削工具1では、正三角形の各頂点Pに切刃2を配設しているので、切刃2を比較的容易により均一に高精度に加工しやすい利点がある。そして、切削工具1が回転したときに、三箇所の切刃2の刃先Pが作る軌道10Dの真円度をより高くすることができるので、見掛け上の芯振れが小さく抑えられた状態で切削することができ、高い加工形状精度を得ることができる。   Moreover, in the cutting tool 1 of embodiment, since the cutting blade 2 is arrange | positioned at each vertex P of an equilateral triangle, there exists an advantage which is easy to process the cutting blade 2 comparatively easily and uniformly with high precision. And when the cutting tool 1 rotates, the roundness of the track 10D formed by the cutting edges P of the three cutting edges 2 can be made higher, so that the apparent runout is kept small. And high machining shape accuracy can be obtained.

図4および図5は、ワイヤカットによって切刃を切り出すプロセスを模式的に示す。図4は、切削工具を製作するための素材の側面を示す。図4は、具体的に、円柱形状の素材から切削工具の原型を形成するまでのプロセスを示す。図5は、切削工具の天面に当たる素材の先端面を示す。   4 and 5 schematically show the process of cutting the cutting edge by wire cutting. FIG. 4 shows the side of the material for producing the cutting tool. FIG. 4 specifically shows a process from forming a cutting tool prototype to a cylindrical material. FIG. 5 shows the leading end surface of the material that hits the top surface of the cutting tool.

素材3は、高硬度の導電性の材料で形成されている。また、素材3は、切刃2を含めて切削工具1の全体が同一の材料で形成されるときを除いて、切刃2の材料を接合ないし被覆することができる材料でなる。具体的に、素材3の材質は、高速度工具鋼あるいは超硬合金である。切刃2は、多結晶焼結ダイヤモンドのような高硬度の導電性の材料で形成される。一方、ワイヤ電極4は、タングステンあるいは黄銅の高抗張力を有する導電性の金属ないし合金から成るφ0.1mm以下の線である。   The material 3 is formed of a high hardness conductive material. The material 3 is made of a material that can bond or cover the material of the cutting blade 2 except when the entire cutting tool 1 including the cutting blade 2 is formed of the same material. Specifically, the material 3 is high-speed tool steel or cemented carbide. The cutting edge 2 is formed of a conductive material having high hardness such as polycrystalline sintered diamond. On the other hand, the wire electrode 4 is a wire of φ0.1 mm or less made of a conductive metal or alloy having a high tensile strength such as tungsten or brass.

図4Aに示されるように、素材3を図示しないワイヤ放電加工機の主軸に装着するとともに、ワイヤ電極4を水平に張架する。そして、主軸を所定の回転数で回転させながら、素材3とワイヤ電極4とを水平方向Xと垂直方向Zに相対移動させ、放電加工によって素材3の表面を均一に除去する。さらに、そのまま素材3を主軸に取り付けた状態で、素材3のシャンク20に該当する部位の表面をシャンク20の予定されている外径よりもある程度大きい適当な外径になるまで均一に除去する。   As shown in FIG. 4A, the material 3 is mounted on a main shaft of a wire electric discharge machine (not shown), and the wire electrode 4 is stretched horizontally. Then, the material 3 and the wire electrode 4 are relatively moved in the horizontal direction X and the vertical direction Z while rotating the main shaft at a predetermined rotation number, and the surface of the material 3 is uniformly removed by electric discharge machining. Further, with the material 3 attached to the main shaft as it is, the surface of the portion corresponding to the shank 20 of the material 3 is uniformly removed until an appropriate outer diameter somewhat larger than the expected outer diameter of the shank 20 is obtained.

次に、段付の円柱形状に形成された素材3を一旦主軸から取り外し、後の工程で段付の外径が大きい部位を外形が正三角形になるように切断することを見込んで、同部位の表面に切刃2の刃高hよりも大きい所要の厚さの多結晶焼結ダイヤモンドの層3Aを形成する。そして、素材3を主軸に装着し直して、ワイヤ電極4を水平に張架する。   Next, the material 3 formed into a stepped columnar shape is once removed from the main shaft, and the part having a large stepped outer diameter is cut in a later step so that the outer shape becomes an equilateral triangle. A layer 3A of polycrystalline sintered diamond having a required thickness larger than the blade height h of the cutting blade 2 is formed on the surface of. Then, the material 3 is remounted on the main shaft, and the wire electrode 4 is stretched horizontally.

図4Bに示されるように、主軸を所定の回転数で回転させながら、素材3とワイヤ電極4とを水平方向Xと垂直方向Zに相対移動させ、放電加工によって段付の外径が小さい部位の表面をシャンク20の外径dになるまで均一に除去する。さらに、そのまま素材3を主軸に取り付けた状態で、素材3の外径が大きい部位の表面を刃先2Bが作る軌道10Dの直径Dになるまで表面を均一に除去する。したがって、真円度が高い外形を有する段付の円柱形状の素材3を得ることができる。   As shown in FIG. 4B, the material 3 and the wire electrode 4 are moved relative to each other in the horizontal direction X and the vertical direction Z while rotating the main shaft at a predetermined rotational speed, and the stepped outer diameter is small by electric discharge machining. Are uniformly removed until the outer diameter d of the shank 20 is reached. Further, with the material 3 attached to the main shaft as it is, the surface of the portion of the material 3 having a large outer diameter is uniformly removed until the diameter D of the track 10D formed by the cutting edge 2B. Therefore, a stepped cylindrical material 3 having an outer shape with high roundness can be obtained.

このとき、予め未加工の柱形状の素材3の天面と側面の全面に所要の厚さの多結晶焼結ダイヤモンドの層を形成させておいてから、ワイヤカットによる表面の除去を行なうようにすることができる。また、予め素材3の全部または切削部位10に該当する部位の全部を多結晶焼結ダイヤモンドで形成させておくことができる。この場合は、材料費がより高くなる欠点があるが、切削工具1を製作するプロセスで素材3を主軸から取り外す必要がなくなるので、作業にかかる負担が一層軽減される利益がある。   At this time, a layer of polycrystalline sintered diamond having a required thickness is formed on the entire top and side surfaces of the raw columnar material 3 in advance, and then the surface is removed by wire cutting. can do. Further, all of the material 3 or all of the parts corresponding to the cutting part 10 can be formed in advance by polycrystalline sintered diamond. In this case, there is a disadvantage that the material cost becomes higher, but it is not necessary to remove the material 3 from the main shaft in the process of manufacturing the cutting tool 1, so that there is an advantage that the burden on the work is further reduced.

図4Cに示されるように、主軸を所定角度ずつ回転角度割出を行なって回転させ、素材3と水平に張架したワイヤ電極4とを水平方向Xと垂直方向Zに相対移動させ、放電加工によって段付の外径が大きい部位における多結晶焼結ダイヤモンドの層3Aの表面を正三角形に切断する。実施の形態の切削工具1は、外周10Cの形状が正三角形であるので、主軸を120度ずつ回転角度割出を行ないながら各面を切り出す。なお、合わせて切刃2の刃先Pに当たる正三角形の各頂点10Bの面取りをしておくとよい。   As shown in FIG. 4C, the main shaft is rotated by indexing the rotation angle by a predetermined angle, and the material 3 and the wire electrode 4 stretched horizontally are moved relative to each other in the horizontal direction X and the vertical direction Z. To cut the surface of the polycrystalline sintered diamond layer 3A at a portion having a large stepped outer diameter into an equilateral triangle. Since the cutting tool 1 of the embodiment has an equilateral triangle shape on the outer periphery 10C, each surface is cut out while calculating the rotation angle of the main shaft by 120 degrees. In addition, it is good to chamfer each vertex 10B of the equilateral triangle which hits the blade edge | tip P of the cutting blade 2 collectively.

図5に示されるように、素材3を主軸に取り付けたまま水平に張架しているワイヤ電極4を素材3の先端面に対向配置する。素材3の先端面は、切削工具1の切削面10Aになる。回転角度割出の基準位置を水平に張架されている原点の位置にあるワイヤ電極4と外周10Cの形状の正三角形の一辺とが平行になる位置に設定する。そして、素材3に対してワイヤ電極4を水平に維持したまま平行に相対移動させ、放電加工によって切刃2を部分的に切り出す。   As shown in FIG. 5, the wire electrode 4 that is horizontally stretched while the material 3 is attached to the main shaft is disposed to face the front end surface of the material 3. The front end surface of the material 3 becomes the cutting surface 10 </ b> A of the cutting tool 1. The reference position for indexing the rotation angle is set to a position where the wire electrode 4 located at the origin extending horizontally and one side of the equilateral triangle in the shape of the outer periphery 10C are parallel to each other. Then, the wire electrode 4 is moved relative to the material 3 in parallel while being kept horizontal, and the cutting blade 2 is partially cut out by electric discharge machining.

例えば、ワイヤ電極4を方向3Cに平行に相対移動させて放電加工する場合は、図5(A)に示すように、切刃21の刃端部2B(2B1)の端部より主軸の高さを相対的に徐々に変化させながら傾斜部位2C(2C1)を得た後に、ワイヤ電極4を3C方向に相対移動させワイヤカットで放電加工される領域Σ1とする平坦面を得る。その後に、図5(B)に示すように、回転角度δで主軸の回転角度割出を行ない、同様な主軸の高さの相対移動とワイヤ電極の3C方向への相対移動によりΣ2とする平坦面を得た後に、主軸の高さを相対的に徐々に変化させながら傾斜部位2C(2C2)を得て、平坦面2B(2B2)を有する切刃22を得る。さらに、上記の加工を完了する毎に、外周10Cの形状の正三角形に依存する回転角度(60度または120度)で主軸の回転角度割出を行なって、方向3Cの加工と同じようにして、各切刃2を部分的に切り出す。このようにして、順次回転角度割出を行なって一定の方向で加工していき、主軸を1周360度回転させたところで、所要の数の同形の切刃2が放散同形に切り出される。   For example, when the electric discharge machining is performed by relatively moving the wire electrode 4 parallel to the direction 3C, the height of the main shaft is higher than the end of the blade end 2B (2B1) of the cutting blade 21, as shown in FIG. After the inclined portion 2C (2C1) is obtained while gradually changing the angle, the wire electrode 4 is relatively moved in the 3C direction to obtain a flat surface as a region Σ1 to be subjected to electric discharge machining by wire cutting. Thereafter, as shown in FIG. 5 (B), the rotation angle of the main shaft is calculated at the rotation angle δ, and the flatness of Σ2 is obtained by the relative movement of the height of the main shaft and the relative movement of the wire electrode in the 3C direction. After obtaining the surface, the inclined portion 2C (2C2) is obtained while gradually changing the height of the main shaft, and the cutting edge 22 having the flat surface 2B (2B2) is obtained. Further, each time the above machining is completed, the rotation angle of the main shaft is calculated at a rotation angle (60 degrees or 120 degrees) depending on the equilateral triangle of the shape of the outer periphery 10C, and the same as the machining in the direction 3C. Each cutting blade 2 is partially cut out. In this way, the rotation angle is indexed sequentially and machining is performed in a fixed direction, and when the main shaft is rotated 360 degrees per revolution, the required number of the same shape cutting blades 2 are cut into a divergent shape.

基本的に、一度位置決めされた素材3とワイヤ電極4との相対位置関係を崩さずにワイヤカットだけで一気に三箇所の切刃2を放散同形に加工することができる。その結果、真円度が高く、三箇所の切刃2のばらつきが小さい高精度な切削工具を比較的容易に得ることができる。   Basically, the three cutting edges 2 can be processed into a diffused and isomorphic shape at once by only wire cutting without breaking the relative positional relationship between the material 3 and the wire electrode 4 once positioned. As a result, it is possible to relatively easily obtain a highly accurate cutting tool having high roundness and small variations in the three cutting edges 2.

以上に示される切削工具1は、外周10Cの形状の正三角形の各頂点Pから中心軸Oに向かって同形の切刃2を各切刃2が繋がらない状態で放散同形に設けて成るので、切削が困難な素材3を高精度に切断可能なワイヤカットによって精密な三箇所の切刃2を同時に形成することができる。その結果、切削工具1を製作するにあたって作業性が向上し、作業の負担が軽減される。   Since the cutting tool 1 shown above is provided with the same shape of the cutting blades 2 from the vertices P of the equilateral triangle of the shape of the outer periphery 10C toward the central axis O in a dissipative shape with the cutting blades 2 not connected, Three precise cutting edges 2 can be simultaneously formed by wire cutting that can cut the material 3 that is difficult to cut with high accuracy. As a result, workability is improved in manufacturing the cutting tool 1, and the work load is reduced.

本発明の切削工具は、詳しく説明された実施の形態の切削工具に限定されるべきではない。既にいくつかの例が挙げられているが、本発明の技術思想を逸脱しない範囲で実施の形態の切削工具を変形ないし応用して実施することができる。   The cutting tool of the present invention should not be limited to the cutting tool of the embodiment described in detail. Although some examples have already been given, the cutting tool of the embodiment can be modified or applied without departing from the technical idea of the present invention.

本発明は、高脆性材料を切削加工する加工機械の技術分野において利用される。本発明の切削工具は、切刃が高硬度材料で成り、耐磨耗性に優れるとともに、製作がより容易で作業の負担が軽減され、加工形状精度と加工速度に優れる。本発明は、高脆性加工機械の技術分野の発展に寄与する。   The present invention is used in the technical field of processing machines for cutting highly brittle materials. In the cutting tool of the present invention, the cutting edge is made of a high-hardness material, and is excellent in wear resistance. Further, the cutting tool is easier to manufacture, the work load is reduced, and the processing shape accuracy and processing speed are excellent. The present invention contributes to the development of the technical field of highly brittle processing machines.

1 切削工具
2 切刃
2A 刃先
2B 先端面切刃部
2C 傾斜部位
2D 平面部位
2E 逃げ部位
10 切削部位
10A 切削面
10B 側面外周刃
20 シャンク
3 素材
4 ワイヤ電極
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Cutting edge 2A Cutting edge 2B Tip surface cutting edge part 2C Inclined part 2D Plane part 2E Relief part 10 Cutting part 10A Cutting surface 10B Side surface peripheral blade 20 Shank 3 Material 4 Wire electrode

Claims (4)

先端側に設けられた切削部位と、後端側に設けられ前記切削部位を保持するシャンクと、を含んでなる高脆性材料の加工に用いる切削工具であって、前記切削部位が、横断面外周形状が正三角形であり前記三角形の頂点に形成する三箇所の側面外周刃と、先端面において前記正三角形の各頂点から中心軸に向かって正三角形状の平坦面で形成する三箇所の先端面切刃部と、前記先端面切刃部の正三角形の中心軸側に位置する一辺を上底として中心軸に向かって等脚台形形状をなす三箇所の傾斜部位と、三箇所の前記傾斜部位の中心軸側に位置する台形の下底線にて形成される平面部位と、でなることを特徴とする切削工具。   A cutting tool used for processing a highly brittle material comprising a cutting part provided on the front end side and a shank provided on the rear end side and holding the cutting part, wherein the cutting part has a cross-sectional outer periphery. Three side surface outer peripheral blades that are formed in equilateral triangles at the apexes of the triangles, and three tip end surfaces that are formed by equilateral triangle flat surfaces from the apexes of the equilateral triangles toward the central axis on the tip surface A cutting blade portion, three inclined portions that form an isosceles trapezoidal shape toward the central axis with one side located on the central axis side of the regular triangle of the tip surface cutting blade portion as an upper base, and the three inclined portions A cutting tool comprising: a flat portion formed by a trapezoidal lower base line located on the center axis side of the cutting tool. 前記切削工具が前記中心軸廻りに回転したときに、前記中心軸を中心にして放射状に120度の間隔にあって前記切削部位の前記横断面外周形状となる前記正三角形の前記各頂点が作る軌道の円の外形直径をDとして、前記先端面切刃の三角形高さが0.05D〜0.2Dとなることを特徴とする請求項1に記載の切削工具。 When the cutting tool rotates about the central axis, the vertices of the equilateral triangle that form the transverse cross-sectional outer peripheral shape of the cutting portion are formed at intervals of 120 degrees radially around the central axis. The cutting tool according to claim 1, wherein the outer diameter of the circle of the track is D, and the triangular height of the tip face cutting blade is 0.05D to 0.2D. 前記傾斜部位の前記等脚台形形状の両脚部に逃げ部位を設けたことを特徴とする請求項1に記載の切削工具。   The cutting tool according to claim 1, wherein relief portions are provided at both leg portions of the isosceles trapezoidal shape of the inclined portion. 前記切削部位が多結晶焼結ダイヤモンドで形成される請求項1に記載の切削工具。   The cutting tool according to claim 1, wherein the cutting part is formed of polycrystalline sintered diamond.
JP2013186836A 2013-09-10 2013-09-10 Cutting tools Active JP5964794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186836A JP5964794B2 (en) 2013-09-10 2013-09-10 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186836A JP5964794B2 (en) 2013-09-10 2013-09-10 Cutting tools

Publications (2)

Publication Number Publication Date
JP2015054352A JP2015054352A (en) 2015-03-23
JP5964794B2 true JP5964794B2 (en) 2016-08-03

Family

ID=52819117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186836A Active JP5964794B2 (en) 2013-09-10 2013-09-10 Cutting tools

Country Status (1)

Country Link
JP (1) JP5964794B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8916263D0 (en) * 1989-07-15 1989-08-31 Technicut Limited Router type cutter
JP3306443B2 (en) * 1992-10-30 2002-07-24 旭栄研磨加工株式会社 Diamond core drill
JP3884884B2 (en) * 1999-06-22 2007-02-21 東芝機械株式会社 In-corner cutting method and cutting tool
JP2004338010A (en) * 2003-05-14 2004-12-02 Toshiba Corp Cutting tool and cutting method using the same
JP5814611B2 (en) * 2011-05-10 2015-11-17 日進工具株式会社 End mill

Also Published As

Publication number Publication date
JP2015054352A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5346061B2 (en) Anti-rotation tool holder and cutting tip tool
US20140356081A1 (en) End mill with high ramp angle capability
JPWO2005102572A1 (en) Ball end mill
JP4809306B2 (en) Ball end mill
JP2006198767A (en) Milling cutter tool
JP2009113120A (en) Cutting tool, and cutting method using the same
JP2005528988A (en) Milling cutter with wiper round part
JP2005118960A (en) End mill
JP4879493B2 (en) Ball nose end mill
JP2018199198A (en) Ball end mill
JP5974695B2 (en) Drill and method for manufacturing drill tip
JP2015226953A (en) Small diameter end mill
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
US10618120B2 (en) Cutting tool
JP6457257B2 (en) Milling tool and machining method using the same
JP5663377B2 (en) Processed product manufacturing method
JP5964794B2 (en) Cutting tools
JP6080304B2 (en) Cutting tools
JP2007237356A (en) Face milling cutter
JP4734265B2 (en) Radius end mill
JP5939687B2 (en) Cutting tools
JP2010094766A (en) Boring tool
US10131008B2 (en) Reaming element, reaming tool and method for the production thereof
JP3639227B2 (en) Drilling tools for brittle materials
CN114131289B (en) Method for machining annular groove of high-temperature alloy casing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160630

R150 Certificate of patent or registration of utility model

Ref document number: 5964794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250