JP6080304B2 - Cutting tools - Google Patents
Cutting tools Download PDFInfo
- Publication number
- JP6080304B2 JP6080304B2 JP2013132249A JP2013132249A JP6080304B2 JP 6080304 B2 JP6080304 B2 JP 6080304B2 JP 2013132249 A JP2013132249 A JP 2013132249A JP 2013132249 A JP2013132249 A JP 2013132249A JP 6080304 B2 JP6080304 B2 JP 6080304B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- cutting tool
- central axis
- tip
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005520 cutting process Methods 0.000 title claims description 264
- 229910003460 diamond Inorganic materials 0.000 claims description 16
- 239000010432 diamond Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 description 48
- 238000003754 machining Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005555 metalworking Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- -1 cemented carbide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Milling Processes (AREA)
Description
本発明は、切削機械の回転主軸に取り付けられ、切刃を回転させながら主に金属の被加工物から材料を除去する切削工具に関する。特に、先端側に設けられる切削部位の切削面における外形が正多角形の切削工具に関する。 The present invention relates to a cutting tool that is attached to a rotary main shaft of a cutting machine and removes material from a metal workpiece mainly while rotating a cutting blade. In particular, the present invention relates to a cutting tool having a regular polygonal outer shape on a cutting surface of a cutting site provided on the tip side.
金属の被加工物を切削加工する場合、所望の形状によって使用する切削工具の形状が異なる。例えば、ボール盤のような穴空けを行なう切削機械では、螺旋状の切刃を有するドリルが用いられる。また、旋盤または平削盤のように木工におけるノミやカンナのように平坦面を削りだすような加工を施す切削機械の場合は、基本的に刃数が一刃であるバイトが適用される。また、例えば、フライス盤またはマシニングセンタのように任意の形状の溝もしくは底付穴を加工する切削機械の場合は、主に複数の回転刃を有するフライスが使用される。 When cutting a metal workpiece, the shape of the cutting tool used varies depending on the desired shape. For example, a drill having a spiral cutting edge is used in a cutting machine that drills holes such as a drilling machine. In addition, in the case of a cutting machine that performs a process of cutting a flat surface such as a chisel or plane in a woodwork, such as a lathe or a planer, a cutting tool having a single blade is basically applied. For example, in the case of a cutting machine that processes a groove or bottomed hole having an arbitrary shape such as a milling machine or a machining center, a milling machine having a plurality of rotary blades is mainly used.
各切削工具の材質は、加工対象の被加工物の材質と切削する方向および加工結果に対する要求に対応してそれぞれ異なる。切削工具は、基本的に切刃が被加工物と同等以上の硬度を有し、磨耗量をより少なくすることができる材料で形成されることが要求される。代表的な金属である鉄系の被加工物を加工するときは、被加工物の硬さに対応して、被加工物の硬さを上回る硬度を有する炭素工具鋼、合金工具鋼、高速度工具鋼(ハイス)のような鋼系の切削工具が使用される。 The material of each cutting tool differs depending on the material of the workpiece to be processed, the cutting direction, and the requirements for the processing result. The cutting tool is basically required to be formed of a material in which the cutting edge has a hardness equal to or higher than that of the workpiece and can reduce the amount of wear. When machining ferrous workpieces, which are typical metals, carbon tool steels, alloy tool steels, and high speeds that have a hardness that exceeds the hardness of the workpiece, corresponding to the hardness of the workpiece Steel-based cutting tools such as tool steel (His) are used.
フライス加工では、多くの場合、回転方向に刃先が向けられた複数の切刃を円筒形状の切削部位の中心軸から外周に向けて放射状に延伸して設けた切削工具を使用している。そして、複数の切刃を有する切削工具を中心軸廻りに高速で回転させながら被加工物に対して相対移動させることによって被加工物を切削する。正面フライスあるいはエンドミルのような切削工具の切刃の材料には、被加工物の材料に対応して、高速度工具鋼、超硬合金、多結晶立方晶窒化珪素(PcBN)、多結晶焼結ダイヤモンド(PCD)のように、より高い耐磨耗性を有する高硬度材が選ばれる。 In milling, in many cases, a cutting tool is used in which a plurality of cutting blades whose cutting edges are directed in the rotation direction are radially extended from the central axis of a cylindrical cutting portion toward the outer periphery. Then, the workpiece is cut by moving the cutting tool having a plurality of cutting blades relative to the workpiece while rotating at high speed around the central axis. Depending on the material of the workpiece, high-speed tool steel, cemented carbide, polycrystalline cubic silicon nitride (PcBN), polycrystalline sintering A hard material with higher wear resistance, such as diamond (PCD), is selected.
超硬合金のように非鉄系の高硬度材を切削加工するときは、切刃がダイヤモンドの切削工具が有利であるが、被削材として超合金のような高硬度鋼材等やセラミックス、ガラスのような高脆性材に切り込み加工をすると、被削材が硬いので、切刃の寿命が短く、長期に渉っての高精度な加工も困難であった。 When cutting non-ferrous high-hardness materials such as cemented carbide, diamond cutting tools are advantageous. However, as the work material, high-hardness steel materials such as superalloys, ceramics, and glass When cutting into such a highly brittle material, the work material is hard, so the life of the cutting edge is short, and high precision machining over a long period of time is difficult.
特許文献1の発明は、切削工具の天面に形成された多結晶焼結ダイヤモンドの層に多数の島を形成し、各島を切刃とする切削工具を開示している。特許文献1の発明の切削工具によると、多数の島形状の切刃によって加工効率が相当向上するとともに、切削粉の排出を促進することができ、研削面も綺麗になる、としている。
The invention of
しかし、切刃がダイヤモンドで構成される従来の切削工具は、切削工具の底面に形成された多数の島形状の切刃と側面部にエッジ形成されたネガティブ形状の外周刃にて研削作用を利用し材料を加工することとなり、削り面には細かい材料の残り(いわゆるバリ)が発生していた。 However, conventional cutting tools with diamond cutting edges use grinding action with a number of island-shaped cutting edges formed on the bottom of the cutting tool and negative outer peripheral edges formed on the sides. However, a fine material residue (so-called burrs) was generated on the cut surface.
また、一般にネガティブ形状の切刃(以下、ネガ刃とする)は研削抵抗が大きく、島形状の切刃部に高負荷が作用するために、刃先とともに工具外周刃を広範囲に破損してしまう懸念があった。 In general, negative-shaped cutting edges (hereinafter referred to as negative blades) have high grinding resistance, and a high load acts on the island-shaped cutting edge, which may cause damage to the tool peripheral edge along with the cutting edge in a wide range. was there.
また、切削加工において要求される加工形状精度が高いほど、切削部位の外周の形状と切刃の形状に対してより高い精度が求められる。ダイヤモンドのように切削が困難な高硬度材料で成る切削部位に多数の微小な切刃を精密に加工することは相当に大変な作業であり、この種の切削工具の製作における作業性の向上が望まれている。 In addition, the higher the machining shape accuracy required in cutting, the higher the accuracy required for the shape of the outer periphery of the cutting site and the shape of the cutting edge. Precise machining of a large number of minute cutting edges in a cutting part made of a high-hardness material that is difficult to cut, such as diamond, is a very difficult task, and the improvement of workability in the production of this type of cutting tool It is desired.
本発明は、上記課題に鑑みて、回転させて使用する微細加工に適する高精度の切削工具であって、被削材の切削面の加工精度をより向上し、切刃の破損のおそれが低減され、より長時間の使用に耐える改良された切削工具を提供することを主たる目的とする。本発明の切削工具のいくつかの有利な点は、好適な実施の形態の説明において、その都度具体的に記述される。 In view of the above problems, the present invention is a high-precision cutting tool suitable for fine processing that is rotated and used, further improving the processing accuracy of the cutting surface of the work material and reducing the risk of breakage of the cutting blade. It is a main object to provide an improved cutting tool that can withstand longer use. Some of the advantages of the cutting tool of the present invention are specifically described each time in the description of the preferred embodiment.
請求項1に係わる切削工具では、上記課題を解決するために、先端側に設けられ横断面における外周(10C)の形状が正多角形の切削部位(10)と、後端側に設けられ切削部位(10)を保持する外径が切削部位(10)の最小幅よりも小さいシャンク(20)と、を含んで成る切削工具であって、切削部位(10)が、先端面において正多角形の各頂点(P)から切削工具の中心軸(O)に向かって形成され互いに結合しない複数の第1の切刃(2A)を有する複数の同形の先端切削部位(10A)と、側面の各頂点(P)のそれぞれに形成され中心軸(O)に対して所定のねじれ角度(β)を持って設けられ先端切削部位(10A)との交点部(P)においてポジティブ形状の第2の切刃(2B)を有する複数の同形の側面切削部位(10B)と、で成り、切削部位(10)の第2の切刃(2B)を含む全部が多結晶焼結ダイヤモンドにて形成されているとともに、先端切削部位(10A)が中心軸(O)に対して平行な方向に第1の切刃(2A)の刃高に相当する深さの平坦面を有し、前記先端切削部位(10)が、前記中心軸(O)を通り前記正多角形の一辺に直交する前記平坦面に平行な直線を前記中心軸(O)廻りに前記切削工具の回転方向(R)と反対方向に所定の回転角度(δ)回転させてから前記頂点(P)の1つを通るように前記回転方向と反対方向に平行移動させた直線上に前記第1の切刃(2A)を形成するとともに、前記中心軸(O)を通り前記正多角形の前記一辺と前記回転方向と反対方向に隣接する一辺に直交する前記平坦面に平行な直線を前記頂点(P)の方向(3C)に所定距離平行移動させた直線上に後縁を形成してなる多角形状の切刃(2)を前記中心軸(O)を中心に放散同形に設けたことを特徴とする。
In order to solve the above-mentioned problems, the cutting tool according to
請求項2に係わる切削工具では、第1の切刃(2A)が切削工具の回転方向(R)に対して反対方向に所定の角度(α)で傾斜する傾斜面(2C)を有することを特徴とする。
In the cutting tool according to
請求項3に係わる切削工具では、先端切削部位(10A)が先端面において第1の切刃(2A)を一辺とする三角形以上の多角形であることを特徴とする。
The cutting tool according to
請求項1に係わる切削工具は、切削面の外形が正多角形である。切削部位の先端面において、正多角形の各頂点から切削工具の中心軸に向かって形成され互いに結合しない複数の第1の切刃を有する複数の同形の先端切削部位を形成している。この先端切削部位は、切削面において切刃と被加工物とが接触しない領域が比較的広く、切刃同士が繋がっていないので、摩擦抵抗をより小さくできるとともに、摩擦熱をより効率よく逃がすことができるので、磨耗量をより少なくすることができる。 In the cutting tool according to the first aspect, the outer shape of the cutting surface is a regular polygon. On the front end surface of the cutting part, a plurality of the same front end cutting parts having a plurality of first cutting edges which are formed from each vertex of the regular polygon toward the central axis of the cutting tool and are not coupled to each other are formed. This tip cutting part has a relatively wide area where the cutting edge does not contact the workpiece on the cutting surface, and the cutting edges are not connected to each other, so that the frictional resistance can be reduced and the frictional heat can be released more efficiently. Therefore, the amount of wear can be reduced.
さらに、側面の各頂点のそれぞれに形成され中心軸に対して所定のねじれ角度を持って設けられ、先端切削部位との交点部においてポジティブ形状の第2の切刃を有する複数の同形の側面切削部位を形成している。このように生成されたポジティブ形状の切刃(以下、ポジ刃とする)は研削加工ではなく、切削加工が可能となり、切削抵抗が低減できるとともに加工性が向上するため、被削材のバリが低減できる。 Further, a plurality of identical side-surface cuttings formed at each vertex of the side surface and provided with a predetermined twist angle with respect to the central axis and having a positive second cutting edge at the intersection with the tip cutting site The site is formed. The positive-shaped cutting blade generated in this way (hereinafter referred to as a positive blade) can be cut, not ground, and can reduce cutting resistance and improve workability. Can be reduced.
請求項2に係わる切削工具では、切削工具の回転方向に対して反対方向に所定の角度で傾斜する傾斜面を構成している。この傾斜面は切削粉を逃がす機能を持ち、被加工物の加工面との間に噛みにくくなり、チッピングの発生が抑えられる。
In the cutting
請求項3に係わる切削工具では、第1の切刃を一辺とする三角形以上の多角形としているので、特にワイヤカットによって切削部位の外周と切刃を成形することができる。そのため、より容易に高硬度材料で成る微細加工に適する精密な切削工具を製作することができる。特に、本発明の切削工具は、真円度がより高く、複数の切刃の形状誤差がより小さい。したがって、加工形状精度と加工速度が向上する。 In the cutting tool according to the third aspect, since the first cutting edge is a polygon of a triangle or more with one side, the outer periphery and the cutting edge of the cutting site can be formed by wire cutting in particular. Therefore, a precise cutting tool suitable for micromachining made of a high hardness material can be manufactured more easily. In particular, the cutting tool of the present invention has higher roundness and smaller shape errors of the plurality of cutting blades. Therefore, the machining shape accuracy and the machining speed are improved.
図1および図2に、本発明の好適な実施の形態の切削工具が示されている。図3は、図1および図2に示される実施の形態の切削工具の切刃を示す。本発明では、切削工具の長手方向の中心線を中心軸とし、切刃が設けられて加工に供される側を先端側とし、切削機械に取り付けられる側を後端側とする。そして、切削工具の先端面を天面と称し、天面に直交する面を側面とする。また、切削部位における天面と同一の面を切削面という。 1 and 2 show a cutting tool according to a preferred embodiment of the present invention. FIG. 3 shows the cutting blade of the cutting tool of the embodiment shown in FIGS. 1 and 2. In the present invention, the center line in the longitudinal direction of the cutting tool is used as the central axis, the side provided with the cutting blade and used for processing is the front end side, and the side attached to the cutting machine is the rear end side. And the front end surface of a cutting tool is called a top surface, and let the surface orthogonal to a top surface be a side surface. Further, the same surface as the top surface at the cutting site is called a cutting surface.
切削工具1は、フライス盤あるいはマシニングセンタのような数値制御切削機械の回転主軸(スピンドル)に取り付けられる。切削工具1は、主に切削部位10とシャンク20とから成る。切削部位10は、切削工具1の先端側に設けられる。シャンク20は、切削工具1の後端側に設けられる。実施の形態の切削工具1では、切削部位10とシャンク20とが一体で成形されている。
The
切削部位10は、多結晶焼結ダイヤモンドにて形成されている。切削工具1では、切削面10Aと側面10Bに沿って切刃2が設けられているので、少なくとも切削部位10の切削面10Aと側面10Bとを含めた表面の全体にわたって多結晶焼結ダイヤモンドの層を有する。したがって、切刃2は、多結晶焼結ダイヤモンドで形成されている。切削部位10の多結晶焼結ダイヤモンドの層以外の部位は、超硬合金で形成される。
The
シャンク20は、超硬合金で形成されている。シャンク20は、切削部位10を直接または間接的に保持する。シャンク20は、円柱形状である。シャンク20の外径dは、切削部位10の最小幅wよりも小さい。シャンク20は、切削機械の回転主軸または回転主軸に装着される工具ホルダのチャックに締め付けられる切削工具1の後端側の部位である。シャンク20をチャックに締め付けて固定することによって切削工具1を回転主軸に取り付けることができる。
The
切削部位10の形状は、正多角柱である。したがって、切削部位10の横断面における外周10Cの形状、端的に言うと、切削部位10の切削面10Aの外形は、正多角形である。具体的に、実施の形態の切削工具1において、切削面10Aの外形は、正六角形である。そのため、実施の形態の切削工具1は、比較的容易に複数の切刃2の切削量のバランスを得ることができる利点を有する。
The shape of the cutting
切刃2は、切削部位10の外周10Cの正多角形の各頂点Pに設けられる。したがって、切削工具1は、外周10Cの正多角形の各頂点Pに設けられる。したがって、切削工具1は、外周10Cの正多角形の頂点Pの数と同じ数の同形の切刃2を有する。例えば、図1に示される外形が正六角形の切削工具1では、刃数が6である。複数の同形の切刃2は、回転軸Oを中心とする回転方向Rに向かって刃先2Aを有する。刃先2Aは、回転軸Oに対して直交する方向(加工送り方向)に設けられる。また、切刃2は、側面10Bに刃先2Bを有する。刃先2Bは、回転軸に対して平行な方向(加工深さ方向)に設けられる。刃先2Bは、側面10Bの各頂点Pに形成され、中心軸Oに対して所定のねじれ角度βを持って設けられ、刃先2Aとの交点部においてポジティブ形状の切刃を構成する。
The
複数の同形の各切刃2は、それぞれ切削部位10の外周10Cの正多角形の各頂点Pを一頂点とする三角形以上の多角形状同形の切刃部2が回転方向に対し反対方向に所定の角度αで傾斜する傾斜面2Cを形成している。
Each of the plurality of
傾斜面2Cは、複数の切刃2がそれぞれ標準的な摩擦に因る均等な磨耗によって、より長時間連続して切削能力を維持するために必要である。ただし、傾斜面2Cは加工面に当接しないので、傾斜面2Cと加工面との間に入り込む切削粉を逃がす役割を担う。
The
複数の切刃2は、各切刃2同士が中心軸O廻りにおいてそれぞれ互いにつながらない状態で各頂点Pに放散同形に設けられる。本発明でいう放散同形とは、切削面10Aにおいて各切刃2が中心軸Oを中心に放射状に同一間隔で均等に分散して配設されることをいう。切削工具1では、各切刃2が放散同形に配置されているため、摩擦抵抗が比較的小さく、より広くされた切刃2と被加工物とが接触しない空間を通して摩擦熱が効率よく逃がされる。その結果、切削工具1では、磨耗量をより少なくすることができる。
The plurality of
刃数が多いほど切削工具1の1回転当たりの切削量が多いと言える。実施の形態の切削工具1では、刃先2Bの切刃2が切削面10Aの外周10Cの正多角形の頂点Pの数だけ設けられているので、十分な切削効率を有しながら、磨耗量がより小さくされている。
It can be said that the greater the number of blades, the greater the cutting amount per rotation of the
また、実施の形態の切削工具1では、正多角形の各頂点Pに多角形形状の切刃2を配設しているので、切刃2を比較的容易により均一に高精度に加工しやすい利点がある。そして、切削工具1が回転したときに、複数の切刃2の刃先2Bが作る軌道10Dの真円度をより高くすることができるので、見掛け上の芯振れが小さく抑えられた状態で切削することができ、高い加工形状精度を得ることができる。
In the
図4および図5は、ワイヤカットによって切刃を切り出すプロセスを模式的に示す。図4は、切削工具を製作するための素材の側面を示す。図4は、具体的に、円柱形状の素材から切削工具の原型を形成するまでのプロセスを示す。図5は、切削工具の天面に当たる素材の先端面を示す。 4 and 5 schematically show the process of cutting the cutting edge by wire cutting. FIG. 4 shows the side of the material for producing the cutting tool. FIG. 4 specifically shows a process from forming a cutting tool prototype to a cylindrical material. FIG. 5 shows the leading end surface of the material that hits the top surface of the cutting tool.
素材3は、高硬度の導電性の材料で形成されている。また、素材3は、切刃2を含めて切削工具1の全体が同一の材料で形成されるときを除いて、切刃2の材料を接合ないし被覆することができる材料でなる。具体的に、素材3の材質は、高速度工具鋼あるいは超硬合金である。切刃2は、多結晶焼結ダイヤモンドのような高硬度の導電性の材料で形成される。一方、ワイヤ電極4は、タングステンあるいは黄銅の高抗張力を有する導電性の金属ないし合金から成るφ0.1mm以下の線である。
The
図4Aに示されるように、素材3を図示しないワイヤカット放電加工機の主軸に装着するとともに、ワイヤ電極4を水平に張架する。そして、主軸を所定の回転数で回転させながら、素材3とワイヤ電極4とを水平方向Xと垂直方向Zに相対移動させ、放電加工によって素材3の表面を均一に除去する。さらに、そのまま素材3を主軸に取り付けた状態で、素材3のシャンク20に該当する部位の表面をシャンク20の予定されている外径dよりもある程度大きい適当な外径になるまで均一に除去する。
As shown in FIG. 4A, the
次に、段付の円柱形状に形成された素材3を一旦主軸から取り外し、後の工程で段付の外径が大きい部位を外形が正多角形になるように切断することを見込んで、同部位の表面に切刃2の刃高hよりも大きい所要の厚さの多結晶焼結ダイヤモンドの層3Aを形成する。そして、素材3を主軸に装着し直して、ワイヤ電極4を水平に張架する。
Next, the
図4Bに示されるように、主軸を所定の回転数で回転させながら、素材3とワイヤ電極4とを水平方向Xと垂直方向Zに相対移動させ、放電加工によって段付の外径が小さい部位の表面をシャンク20の外径dになるまで均一に除去する。さらに、そのまま素材3を主軸に取り付けた状態で、素材3の外径が大きい部位の表面を刃先2Bが作る軌道10Dの直径2rになるまで表面を均一に除去する。したがって、真円度が高い外形を有する段付の円柱形状の素材3を得ることができる。
As shown in FIG. 4B, the
このとき、予め未加工の柱形状の素材3の天面と側面の全面に所要の厚さの多結晶焼結ダイヤモンドの層を形成させておいてから、ワイヤカットによる表面の除去を行なうようにすることができる。また、予め素材3の全部または切削部位10に該当する部位の全部を多結晶焼結ダイヤモンドで形成させておくことができる。この場合は、材料費がより高くなる欠点があるが、切削工具1を製作するプロセスで素材3を主軸から取り外す必要がなくなるので、作業にかかる負担が一層軽減される利益がある。
At this time, a layer of polycrystalline sintered diamond having a required thickness is formed on the entire top and side surfaces of the raw
図4Cに示されるように、主軸を所定角度ずつ回転角度割出を行なって回転させ、素材3と水平軸に対し角度β傾けたワイヤ電極4とを水平方向Xと垂直方向Zに相対移動させ、放電加工によって段付の外径が大きい部位における多結晶焼結ダイヤモンドの層3Aの表面を正多角形に切断する。実施の形態の切削工具1は、外周10Cの形状が正六角形であるので、主軸を60度ずつ回転角度割出を行ないながら各面を切り出す。なお、合わせて切刃2の刃先2Bに当たる正多角形の各頂点3Bの面取りをしておくとよい。
As shown in FIG. 4C, the main shaft is rotated by indexing the rotation angle by a predetermined angle, and the
図5に示されるように、素材3を主軸に取り付けたまま水平に張架しているワイヤ電極4を素材3の先端面に対向配置する。素材3の先端面は、切削工具1の切削面10Aになる。回転角度割出の基準位置を水平に張架されている原点の位置にあるワイヤ電極4と外周10Cの形状の正多角形の一辺とが平行になる位置に設定する。そして、素材3に対してワイヤ電極4を水平に維持したまま平行に相対移動させ、放電加工によって切刃2を部分的に切り出す。
As shown in FIG. 5, the
例えば、ワイヤ電極4を方向3Cに平行に相対移動させて放電加工する場合は、図5(A)に示すように、切刃21の刃端から主軸の高さを相対的に徐々に変化させながら刃高さを得た後に、ワイヤ電極4を3C方向に相対移動させワイヤカットで放電加工される領域Σ1とする平坦面を得る。その後に、図5(B)に示すように、回転角度δで主軸の回転角度割出を行ない、同様な主軸の高さの相対移動とワイヤ電極の3C方向への相対移動によりΣ2とする平坦面を得る。さらに、上記の加工を完了する毎に、外周10Cの形状の正多角形に依存する回転角度で主軸の回転角度割出を行なって、方向3Cの加工と同じようにして、各切刃2を部分的に切り出す。実施の形態の切削工具1は、外周10Cの形状が正六角形であるので、割出角度は60度である。このようにして、順次回転角度割出を行なって一定の方向で加工していき、主軸を1周360度回転させたところで、所要の数の同形の切刃2が放散同形に切り出される。
For example, when electric discharge machining is performed by relatively moving the
基本的に、一度位置決めされた素材3とワイヤ電極4との相対位置関係を崩さずにワイヤカットだけで一気に複数の切刃2を放散同形に加工することができる。その結果、真円度が高く、複数の切刃2のばらつきが小さい高精度な切削工具を比較的容易に得ることができる。
Basically, a plurality of
以上に示される切削工具1は、外周10Cの形状の正多角形の各頂点Pから中心軸Oに向かって複数の同形の切刃2を各切刃2が繋がらない状態で放散同形に設けて成るので、切削が困難な素材3を高精度に切断可能なワイヤカットによって精密な複数の切刃2を同時に形成することができる。その結果、切削工具1を製作するにあたって作業性が向上し、作業の負担が軽減される。
In the
本発明の切削工具は、詳しく説明された実施の形態の切削工具に限定されるべきではない。既にいくつかの例が挙げられているが、本発明の技術思想を逸脱しない範囲で実施の形態の切削工具を変形ないし応用して実施することができる。 The cutting tool of the present invention should not be limited to the cutting tool of the embodiment described in detail. Although some examples have already been given, the cutting tool of the embodiment can be modified or applied without departing from the technical idea of the present invention.
本発明は、金属を切削加工する金属加工機械の技術分野において利用される。本発明の切削工具は、切刃が高硬度材料で成り、耐磨耗性に優れるとともに、製作がより容易で作業の負担が軽減され、加工形状精度と加工速度に優れる。本発明は、金属加工機械の技術分野の発展に寄与する。 The present invention is used in the technical field of metal working machines for cutting metal. In the cutting tool of the present invention, the cutting edge is made of a high-hardness material, and is excellent in wear resistance. Further, the cutting tool is easier to manufacture, the work load is reduced, and the processing shape accuracy and processing speed are excellent. The present invention contributes to the development of the technical field of metal working machines.
1 切削工具
2 切刃
2A 刃先
2B 刃先
2C 傾斜面
2D 逃げ加工部
2E 外周残し部
10 切削部位
10A 切削面
10B 側面
10C 外周
20 シャンク
3 素材
4 ワイヤ電極
DESCRIPTION OF
Claims (3)
後端側に設けられ前記切削部位を保持する外径が前記切削部位の最小幅よりも小さいシャンクと、
を含んで成る切削工具であって、
前記切削部位が、先端面において前記正多角形の各頂点から前記切削工具の中心軸に向かって形成され互いに結合しない複数の第1の切刃を有する複数の同形の先端切削部位と、
側面の前記各頂点のそれぞれに形成され前記中心軸に対して所定のねじれ角度を持って設けられ先端切削部位との交点部においてポジティブ形状の第2の切刃を有する複数の同形の側面切削部位と、で成り、
前記切削部位の前記第2の切刃を含む全部が多結晶焼結ダイヤモンドにて形成されているとともに、前記先端切削部位が前記中心軸に対して平行な方向に前記第1の切刃の刃高に相当する深さの平坦面を有し、
前記先端切削部位が、前記中心軸を通り前記正多角形の一辺に直交する前記平坦面に平行な直線を前記中心軸廻りに前記切削工具の回転方向と反対方向に前記所定の回転角度回転させてから前記頂点の1つを通るように前記回転方向と反対方向に平行移動させた直線上に前記第1の切刃を形成するとともに、
前記中心軸を通り前記正多角形の前記一辺と前記回転方向と反対方向に隣接する一辺に直交する前記平坦面に平行な直線を前記頂点の方向に所定距離平行移動させた直線上に後縁を形成してなる多角形状の切刃を前記中心軸を中心に放散同形に設けたことを特徴とする切削工具。 A cutting part having a regular polygonal shape on the outer periphery in the cross section provided on the tip side,
A shank provided on the rear end side and holding the cutting portion, the outer diameter being smaller than the minimum width of the cutting portion;
A cutting tool comprising:
A plurality of identical tip cutting sites having a plurality of first cutting edges that are formed from each vertex of the regular polygon toward the central axis of the cutting tool on the tip surface and are not coupled to each other;
A plurality of isomorphous side cutting parts formed at each vertex of the side surface and having a predetermined twist angle with respect to the central axis and having a positive second cutting edge at the intersection with the tip cutting part And
All of the cutting part including the second cutting edge is formed of polycrystalline sintered diamond, and the cutting edge of the first cutting edge is in a direction parallel to the central axis. have a flat surface having a depth corresponding to the height,
The tip cutting part rotates a straight line parallel to the flat surface passing through the central axis and orthogonal to one side of the regular polygon at a predetermined rotation angle around the central axis in a direction opposite to the rotation direction of the cutting tool. Forming the first cutting edge on a straight line translated in a direction opposite to the rotation direction so as to pass through one of the vertices;
A trailing edge on a straight line that is parallel to the flat surface that is orthogonal to the one side of the regular polygon that passes through the central axis and that is adjacent to the side opposite to the rotation direction, by a predetermined distance in the direction of the vertex. A cutting tool characterized in that a polygonal cutting blade is formed in a diffused shape with the central axis as a center .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013132249A JP6080304B2 (en) | 2013-06-25 | 2013-06-25 | Cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013132249A JP6080304B2 (en) | 2013-06-25 | 2013-06-25 | Cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015006704A JP2015006704A (en) | 2015-01-15 |
JP6080304B2 true JP6080304B2 (en) | 2017-02-15 |
Family
ID=52337414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013132249A Expired - Fee Related JP6080304B2 (en) | 2013-06-25 | 2013-06-25 | Cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6080304B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111037222B (en) * | 2019-12-16 | 2021-10-15 | 西安航天发动机有限公司 | Machining method of six-blade intersection scoring cutter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2505803B2 (en) * | 1987-04-15 | 1996-06-12 | 住友電気工業株式会社 | End mill |
JPH0326413A (en) * | 1989-06-20 | 1991-02-05 | Hitachi Tool Eng Ltd | End mill |
GB8916263D0 (en) * | 1989-07-15 | 1989-08-31 | Technicut Limited | Router type cutter |
JPH07204920A (en) * | 1994-01-25 | 1995-08-08 | Hitachi Ltd | End mill |
JP2011200955A (en) * | 2010-03-25 | 2011-10-13 | Dijet Industrial Co Ltd | Cutting tool |
JP5814611B2 (en) * | 2011-05-10 | 2015-11-17 | 日進工具株式会社 | End mill |
-
2013
- 2013-06-25 JP JP2013132249A patent/JP6080304B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015006704A (en) | 2015-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6575674B2 (en) | Reaming tool and process for its production | |
JPWO2005102572A1 (en) | Ball end mill | |
US20140356081A1 (en) | End mill with high ramp angle capability | |
CN102574243A (en) | Three-dimensional surface shaping of rotary cutting tool edges with lasers | |
JP2009113120A (en) | Cutting tool, and cutting method using the same | |
JP4879493B2 (en) | Ball nose end mill | |
JP2018199198A (en) | Ball end mill | |
JP5946984B1 (en) | Groove processing method | |
WO2021066046A1 (en) | Rotary cutting tool | |
JP2008062369A (en) | Method of producing tip to be mounted on boring tool, method of producing boring tool, and boring tool | |
JP6080304B2 (en) | Cutting tools | |
JP2010046733A (en) | Thread milling cutter | |
JP2010094766A (en) | Boring tool | |
JP5939687B2 (en) | Cutting tools | |
EP2532461A1 (en) | Cutting insert having a plurality of cutting elements thereon and cutting tool therefor | |
CN114131289B (en) | Method for machining annular groove of high-temperature alloy casing | |
JP2006231504A (en) | End mill, machining apparatus, cutting method, and workpiece | |
JP5953173B2 (en) | Cutting tools | |
JP2012218083A (en) | Cutting tool, and method for manufacturing workpiece using the same | |
JP5964794B2 (en) | Cutting tools | |
JP6335654B2 (en) | Fine tool | |
JP3639227B2 (en) | Drilling tools for brittle materials | |
JP6626853B2 (en) | Rotary cutting tool | |
KR20120020911A (en) | A reamer of asymmetric construction | |
JP2016155178A (en) | Rotary tool and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6080304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |