JP5963704B2 - Refractory insulation and method for producing the same - Google Patents

Refractory insulation and method for producing the same Download PDF

Info

Publication number
JP5963704B2
JP5963704B2 JP2013073011A JP2013073011A JP5963704B2 JP 5963704 B2 JP5963704 B2 JP 5963704B2 JP 2013073011 A JP2013073011 A JP 2013073011A JP 2013073011 A JP2013073011 A JP 2013073011A JP 5963704 B2 JP5963704 B2 JP 5963704B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
weight
ceramic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013073011A
Other languages
Japanese (ja)
Other versions
JP2014196878A (en
Inventor
角村 尚紀
尚紀 角村
浩史 塩野
浩史 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2013073011A priority Critical patent/JP5963704B2/en
Publication of JP2014196878A publication Critical patent/JP2014196878A/en
Application granted granted Critical
Publication of JP5963704B2 publication Critical patent/JP5963704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、主に熱処理炉の炉内面などに使用される耐火断熱材、特に抄造法による無機繊維質の耐火断熱材及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a refractory heat insulating material mainly used for a furnace inner surface of a heat treatment furnace, and more particularly to an inorganic fibrous refractory heat insulating material by a papermaking method and a manufacturing method thereof.

工業用の熱処理炉など中高温域において使用される耐火断熱材としては、抄造法を用いて湿式成形により製造され、主に無機繊維と無機粉末を無機バインダーで結合して構成された耐火断熱材が一般的に広く使用されている。特に無機繊維と無機バインダーに熱輻射散乱材として無機粉末を加えることによって、断熱性能を向上させた耐火断熱材も知られている。   As a refractory heat insulating material used in medium and high temperature ranges such as industrial heat treatment furnaces, it is manufactured by wet forming using a papermaking method, and is mainly composed of inorganic fibers and inorganic powders combined with an inorganic binder. Is generally widely used. In particular, a refractory heat insulating material having improved heat insulating performance by adding inorganic powder as a heat radiation scattering material to an inorganic fiber and an inorganic binder is also known.

例えば特許文献1には、シリカアルミナ繊維等の無機繊維を水に分散させたスラリーに、酸化チタン等の無機粒子を加え、更にシリカゾルのような無機バインダーと凝集剤を添加して、脱水成形することにより製造された断熱材が記載されている。特に酸化チタンは熱輻射を散乱させる機能を有するため、断熱材中に含有させることによって輻射熱が散乱され、断熱性能を向上させることができるとされている。しかし、その600℃での熱伝導率は0.09W/(m・K)を超え、満足できる断熱性能ではない。   For example, in Patent Document 1, dehydration molding is performed by adding inorganic particles such as titanium oxide to a slurry in which inorganic fibers such as silica alumina fibers are dispersed in water, and further adding an inorganic binder and a flocculant such as silica sol. The heat insulating material manufactured by this is described. In particular, since titanium oxide has a function of scattering thermal radiation, it is said that the radiation heat is scattered by containing it in the heat insulating material, and the heat insulating performance can be improved. However, its thermal conductivity at 600 ° C. exceeds 0.09 W / (m · K), which is not a satisfactory heat insulating performance.

一方、特許文献2には、600℃での熱伝導率が0.09W/(m・K)を下回るマイクロポーラス系断熱材として、Bを含有せず、膨張したバーミキュライト30〜70重量%、無機結合剤15〜40重量%、赤外線不透明剤0〜20重量%、微孔質物質15〜50重量%、ガラス強化繊維の重量に対してアルカリ金属酸化物を最高で2重量%を含有するガラス強化繊維0.5〜8重量%を有する断熱成形体が記載されている。 On the other hand, in Patent Document 2, as a microporous heat insulating material whose thermal conductivity at 600 ° C. is less than 0.09 W / (m · K), B 2 O 3 is not contained, and expanded vermiculite is 30 to 70 weights. %, Inorganic binder 15 to 40% by weight, infrared opaque agent 0 to 20% by weight, microporous material 15 to 50% by weight, alkali metal oxide up to 2% by weight with respect to the weight of glass reinforcing fiber A heat-insulated molded body having 0.5 to 8% by weight of glass reinforcing fibers is described.

上記マイクロポーラス系断熱材は従来にない優れた断熱性能を有しているが、強度が低い、粉塵が発生しやすい、加工性や施工性に劣るなどの問題点がある。この問題点を補う技術として、例えば特許文献3には、マイクロポーラス系断熱材を無機繊維製の外装で覆う方法が記載されている。しかし、この方法は加工が難しく、また断熱材のコスト増を招く要因にもなっている。   The microporous heat insulating material has an excellent heat insulating performance which has not been obtained conventionally, but has problems such as low strength, easy generation of dust, and poor workability and workability. As a technique to compensate for this problem, for example, Patent Document 3 describes a method of covering a microporous heat insulating material with an inorganic fiber sheath. However, this method is difficult to process, and causes an increase in the cost of the heat insulating material.

特開2012−140311号公報JP 2012-144031 A 特許第3328295号公報Japanese Patent No. 3328295 特開2012−149658号公報JP 2012-149658 A

上記したように中高温域において使用される従来の耐火断熱材は主に無機繊維と無機粉末を無機バインダーで結合した構造のものであり、断熱性能向上のために酸化チタン粉末のような熱輻射散乱材を加えることも知られている。しかし、その600℃での熱伝導率は0.09W/(mK)を超えているため、更に大幅な断熱性能の向上が望まれている。   As described above, the conventional fire-resistant heat insulating material used in the middle and high temperature range has a structure in which inorganic fibers and inorganic powder are mainly bonded with an inorganic binder, and heat radiation like titanium oxide powder is used to improve heat insulating performance. It is also known to add scattering material. However, since the thermal conductivity at 600 ° C. exceeds 0.09 W / (mK), further significant improvement in heat insulation performance is desired.

また、従来の無機粉末を含む無機繊維質耐火断熱材では、無機粉末や非繊維状粒子(繊維になりきれなかった球状粒子;ショットとも呼ばれる)などに由来する微粒子や微粉が離脱する粉立ち(表面に微粉が付着していたり、付着している微粉が飛散する現象:主に無機粉末に由来)やボロフリ(粒子が表面から脱離する現象:主に非繊維状粒子に由来)の原因となり、熱処理炉内面の炉壁材として使用した場合には被焼成物に付着するという不都合があった。   In addition, in the conventional inorganic fibrous refractory insulation material containing inorganic powder, fine particles and fine powder derived from inorganic powder and non-fibrous particles (spherical particles that could not be made into fibers; also called shots) are separated ( Causes fine powder adhering to the surface or scattering of adhering fine powder: mainly derived from inorganic powder) or borofuri (phenomenon that particles are detached from the surface: mainly derived from non-fibrous particles) When used as a furnace wall material on the inner surface of the heat treatment furnace, there is a disadvantage that it adheres to the object to be fired.

一方、マイクロポーラス系断熱材は、従来にない優れた断熱性能を有しているが、強度が低いうえに、粉立ちが多い、加工性が悪い、施工性に劣るなどの問題点があった。そのため、マイクロポーラス系断熱材は、熱処理炉内面の炉壁材など強度を有する用途に用いることはできなかった。   On the other hand, the microporous heat insulating material has an excellent heat insulating performance that has not been obtained before, but has problems such as low strength, much powdering, poor workability, and poor workability. . Therefore, the microporous heat insulating material could not be used for applications having strength such as a furnace wall material on the inner surface of the heat treatment furnace.

本発明は、上記した従来の無機繊維質耐火断熱材やマイクロポーラス系断熱材の問題点に鑑みてなされたものであり、従来一般的に広く使用されている無機繊維と無機バインダーからなる耐火断熱材や、これに熱輻射を散乱させるため酸化チタンを添加した耐火断熱材に比べて熱伝導率が大幅に低下され、加工性や施工性に優れるうえ、粉立ちやボロフリがなく、高強度であって、マイクロポーラス系断熱材と同等程度の優れた断熱性能を有する耐火断熱材を提供することを目的とする。   The present invention has been made in view of the problems of the above-described conventional inorganic fiber refractory heat insulating materials and microporous heat insulating materials, and has been made refractory heat insulating materials comprising inorganic fibers and inorganic binders that have been widely used in the past. Compared to refractory insulation materials with titanium oxide added to scatter the heat radiation to this material, the thermal conductivity is greatly reduced, and it is excellent in workability and workability, and there is no dusting or borofuri and high strength Then, it aims at providing the fireproof heat insulating material which has the heat insulation performance comparable as a microporous heat insulating material.

上記目的を達成するため、本発明が提供する第1の耐火断熱材は、セラミック繊維と無機バインダー(結合材)とから成形されてなる耐火断熱材であって、セラミック繊維の平均繊維径が1.5〜5μmであり、セラミック繊維に含まれる非繊維状粒子の合計量が該繊維全体の20重量%以下であり、600℃における熱伝導率が0.060〜0.090W/(m・K) であり該成形後に100〜120℃で乾燥したとき、該乾燥後のかさ密度が250〜400kg/m乾燥後の曲げ強度が0.6MPa以上であり、該セラミック繊維が成形面において2次元にランダムに配向していることを特徴とする。 To achieve the above object, a first insulating refractory material provided by the present invention, a refractory heat insulating material formed by molding from a ceramic fiber and an inorganic binder (binding material), an average fiber diameter of the ceramic fibers 1 0.5 to 5 μm, the total amount of non-fibrous particles contained in the ceramic fiber is 20% by weight or less of the whole fiber, and the thermal conductivity at 600 ° C. is 0.060 to 0.090 W / (m · K ), and when dried at 100 to 120 ° C. after the molding, the bulk density of 250~400kg / m 3 after said drying straight, bending strength after the drying straight is at least 0.6 MPa, the ceramic fibers It is characterized by being randomly oriented two-dimensionally on the molding surface .

また、本発明が提供する第2の耐火断熱材は、セラミック繊維と無機バインダー(結合材)と有機高分子凝集剤とから成形されてなる耐火断熱材であって、セラミック繊維の平均繊維径が1.5〜5μmであり、セラミック繊維に含まれる非繊維状粒子の合計量が該繊維全体の20重量%以下であり、600℃における熱伝導率が0.060〜0.090W/(m・K) であり該成形後に100〜120℃で乾燥したとき、該乾燥後のかさ密度が150〜300kg/m乾燥後の曲げ強度が0.8MPa以上であり、該セラミック繊維が成形面において2次元にランダムに配向していることを特徴とする。 The second insulating refractory material provided by the present invention, a refractory heat insulating material formed by molding from a ceramic fiber and an inorganic binder (binding material) and an organic polymer flocculant, the average fiber diameter of the ceramic fiber 1.5 to 5 μm, the total amount of non-fibrous particles contained in the ceramic fiber is 20% by weight or less of the whole fiber, and the thermal conductivity at 600 ° C. is 0.060 to 0.090 W / (m · a K), when dried at 100 to 120 ° C. after the molding, the bulk density of 150~300kg / m 3 after said drying straight, bending strength after the drying straight is at least 0.8 MPa, the ceramic fibers Are randomly oriented in a two-dimensional manner on the molding surface .

上記本発明による第1の耐火断熱材は、セラミック繊維を70〜85重量%、無機バインダーを15〜30重量%含有することが好ましい。また、上記本発明による第2の耐火断熱材は、セラミック繊維を85〜99.5重量%、無機バインダーを0.5〜15重量%、有機高分子凝集剤を0.4〜12重量%含有することが好ましい。また、前記セラミック繊維としては、シリカアルミナ繊維、シリカアルミナジルコニア繊維若しくは生体溶解性繊維が好ましい。   The first refractory heat insulating material according to the present invention preferably contains 70 to 85% by weight of ceramic fibers and 15 to 30% by weight of inorganic binder. The second refractory heat insulating material according to the present invention contains 85 to 99.5% by weight of ceramic fiber, 0.5 to 15% by weight of an inorganic binder, and 0.4 to 12% by weight of an organic polymer flocculant. It is preferable to do. Moreover, as said ceramic fiber, a silica alumina fiber, a silica alumina zirconia fiber, or a biosoluble fiber is preferable.

また、本発明が提供する第1の耐火断熱材の製造方法は、セラミック繊維と無機バインダーとから成形され、該セラミック繊維が成形面において2次元にランダムに配向している耐火断熱材の製造方法であって、平均繊維径1.5〜5μmのセラミック繊維を分級処理して非繊維状粒子の合計を繊維全体の20重量%以下とした後、該セラミック繊維を水に分散させ、無機バインダー(結合材)を添加混合し、型を用いた真空吸引により脱水成形することを特徴とする。 Moreover, the manufacturing method of the 1st fireproof heat insulating material which this invention provides is manufactured from the ceramic fiber and the inorganic binder, and the manufacturing method of the fireproof heat insulating material in which this ceramic fiber is orientated randomly two-dimensionally in the molding surface Then, after classifying ceramic fibers having an average fiber diameter of 1.5 to 5 μm to make the total of non-fibrous particles 20% by weight or less of the whole fibers, the ceramic fibers are dispersed in water, and an inorganic binder ( A binder is added and mixed, and dehydration molding is performed by vacuum suction using a mold.

また、本発明が提供する第2の耐火断熱材の製造方法は、セラミック繊維と無機バインダーと有機高分子凝集剤とから成形され、該セラミック繊維が成形面において2次元にランダムに配向している耐火断熱材の製造方法であって、平均繊維径1.5〜5μmのセラミック繊維を分級処理して非繊維状粒子の合計を繊維全体の20重量%以下とした後、該セラミック繊維を水に分散させ、無機バインダー(結合材)を添加混合し、更に有機高分子凝集剤を添加して、型を用いた真空吸引により脱水成形することを特徴とする。 The second method for producing a refractory heat insulating material provided by the present invention is formed from ceramic fibers, an inorganic binder, and an organic polymer flocculant, and the ceramic fibers are randomly oriented in two dimensions on the molding surface. A method for producing a refractory heat insulating material, comprising classifying ceramic fibers having an average fiber diameter of 1.5 to 5 μm so that the total of non-fibrous particles is 20% by weight or less of the total fibers, and then using the ceramic fibers in water The dispersion is characterized by adding and mixing an inorganic binder (binding material), further adding an organic polymer flocculant, and performing dehydration molding by vacuum suction using a mold.

本発明によれば、従来一般的に広く使用されている無機繊維と無機粉末と無機バインダーを主成分とする耐火断熱材や、これに熱輻射散乱材の酸化チタン粉末を添加した耐火断熱材に比べて、高強度で加工性や施工性に優れると共に、熱伝導率が低く、断熱性能が大幅に改善向上された耐火断熱材を提供することができる。しかも、本発明の耐火断熱材は、無機粉末を含まないため、粉立ちやボロフリがなく、耐スポーリング性にも優れている。   According to the present invention, a fireproof heat insulating material mainly composed of inorganic fibers, inorganic powders, and inorganic binders that are widely used in the past, and a heat resistant heat insulating material obtained by adding titanium oxide powder as a heat radiation scattering material to the heat resistant heat insulating material. In comparison, it is possible to provide a fireproof heat insulating material having high strength, excellent workability and workability, low thermal conductivity, and greatly improved and improved heat insulating performance. Moreover, since the refractory heat insulating material of the present invention does not contain inorganic powder, there is no dusting or battering and excellent spalling resistance.

従って、本発明の耐火断熱材は、極めて低い熱伝導率を有し、加工性や施工性に優れるうえ、粉立ちやボロフリがなく、熱処理炉の炉内面に使用したとき被焼成物の汚染を防ぐことができ、バックライニングの熱負荷を低減することができるため、熱処理炉の炉内面に使用する低熱伝導ボードとして非常に優れたものである。   Therefore, the refractory heat insulating material of the present invention has extremely low thermal conductivity, is excellent in workability and workability, has no dusting and boro-free, and does not contaminate the fired product when used on the furnace inner surface of a heat treatment furnace. This can be prevented and the thermal load of the back lining can be reduced. Therefore, it is very excellent as a low thermal conductive board used on the furnace inner surface of the heat treatment furnace.

本発明において、第1の耐火断熱材は平均繊維径が1.5〜5μmのセラミック繊維と無機バインダー(結合材)とからなり、第2の耐火断熱材は平均繊維径が1.5〜5μmのセラミック繊維と、無機バインダー(結合材)と有機高分子凝集剤とからなり、いずれも酸化チタン粉末などの無機粉末粒子を含んでいない。しかも、セラミック繊維中には繊維の製造過程で生成した非繊維状粒子(ショット)が通常50〜60重量%含まれているが、本発明で用いるセラミック繊維は予め非繊維状粒子の合計を20重量%以下に減らしたものである。尚、セラミック繊維の繊維径はSEM(走査電子顕微鏡)を使用して測定し、繊維250〜300本の平均値をもって平均繊維径とした。   In the present invention, the first refractory heat insulating material comprises ceramic fibers having an average fiber diameter of 1.5 to 5 μm and an inorganic binder (binding material), and the second refractory heat insulating material has an average fiber diameter of 1.5 to 5 μm. These ceramic fibers, an inorganic binder (binding material), and an organic polymer flocculant do not contain inorganic powder particles such as titanium oxide powder. Moreover, the ceramic fibers usually contain 50 to 60% by weight of non-fibrous particles (shots) produced in the fiber production process, but the ceramic fibers used in the present invention have a total of 20 non-fibrous particles in advance. Reduced to less than wt%. In addition, the fiber diameter of the ceramic fiber was measured using SEM (scanning electron microscope), and the average value of 250 to 300 fibers was defined as the average fiber diameter.

平均繊維径が1.5〜5μmであり且つ非繊維状粒子の含有量を20重量%以下に減らしたセラミック繊維を使用することにより、耐火断熱材の断熱性能の向上に大きく寄与することができることを確認した。即ち、セラミック繊維中に50〜60重量%含まれる非繊維状粒子の粒径は、その9割以上が45μm以上である。このように粒径の大きな非繊維状粒子が多量に存在すると、断熱材中に大きな気孔が生じやすくなり、気体の対流による伝熱や、気体分子の衝突による伝熱が促進される。その結果、従来の非繊維状粒子を多量に含む断熱材では、熱輻射を散乱させる目的で酸化チタン粉末を含有させたものであっても、満足すべき断熱性能を得ることができなかった。   The use of ceramic fibers having an average fiber diameter of 1.5 to 5 μm and a non-fibrous particle content reduced to 20% by weight or less can greatly contribute to the improvement of the heat insulation performance of the refractory heat insulating material. It was confirmed. That is, 90% or more of the non-fibrous particles contained in the ceramic fiber in an amount of 50 to 60% by weight are 45 μm or more. When a large amount of non-fibrous particles having a large particle size exists in this manner, large pores are likely to be generated in the heat insulating material, and heat transfer by gas convection and heat transfer by collision of gas molecules are promoted. As a result, in the conventional heat insulating material containing a large amount of non-fibrous particles, satisfactory heat insulating performance could not be obtained even if the titanium oxide powder was contained for the purpose of scattering thermal radiation.

一方、セラミック繊維の平均繊維径は、一般的に上記非繊維状粒子の粒径よりも遥かに小さい。そこで、耐火断熱材中の気孔を小さくして、気体の対流による伝熱や気体分子の衝突による伝熱を抑制するためには、セラミック繊維中に含有される非繊維状粒子の量を減らして、平均繊維径が小さいセラミック繊維の占める割合を増量させることが有効である。   On the other hand, the average fiber diameter of ceramic fibers is generally much smaller than the particle diameter of the non-fibrous particles. Therefore, in order to reduce the pores in the refractory insulation and suppress heat transfer due to gas convection and gas molecule collision, the amount of non-fibrous particles contained in the ceramic fiber is reduced. It is effective to increase the proportion of ceramic fibers having a small average fiber diameter.

上記知見に基づき、本発明者らは、セラミック繊維中に含まれている非繊維状粒子をできる限り取り除き、相対的にセラミック繊維の占める割合を増やすことによって、比表面積が増大し、熱反射効果も大きくなり、熱伝導率が大幅に低下して、断熱材の断熱性能の向上に大きく寄与することを確認した。尚、セラミック繊維の平均繊維径を1.5〜5μmとするのは、5μmを超えると耐火断熱材の熱伝導率が高くなってしまい、逆に1.5μm未満では曲げ強度が低下し、また無機バインダーと共に水に添加して撹拌する際に折れやすいからである。   Based on the above findings, the present inventors removed the non-fibrous particles contained in the ceramic fiber as much as possible, and by increasing the proportion of the ceramic fiber relatively, the specific surface area increased, the heat reflection effect It was confirmed that the thermal conductivity was greatly reduced and greatly contributed to the improvement of the heat insulating performance of the heat insulating material. The average fiber diameter of the ceramic fibers is set to 1.5 to 5 μm. If the average fiber diameter exceeds 5 μm, the thermal conductivity of the refractory heat insulating material increases. Conversely, if it is less than 1.5 μm, the bending strength decreases. This is because it easily breaks when added to water together with an inorganic binder and stirred.

セラミック繊維に含まれる非繊維状粒子の合計量は、使用するセラミック繊維全体の20重量%以下とする。非繊維状粒子の合計量がセラミック繊維全体の20重量%を超えると、耐火断熱材の断熱性能を向上させる効果が不十分となる。セラミック繊維中に含まれている非繊維状粒子は出来る限り取り除くことが望ましいが、処理費用の増大を抑えるため5重量%以上とすることが好ましく、また効果を考慮すると15重量%以下とすることが好ましい。尚、セラミック繊維中の非繊維状粒子(ショット)の含有量は、ISO10635の10(Determination of shot)に準拠して測定することができる。   The total amount of non-fibrous particles contained in the ceramic fiber is 20% by weight or less of the entire ceramic fiber to be used. When the total amount of non-fibrous particles exceeds 20% by weight of the entire ceramic fiber, the effect of improving the heat insulating performance of the refractory heat insulating material becomes insufficient. It is desirable to remove non-fibrous particles contained in the ceramic fiber as much as possible, but it is preferable to make it 5% by weight or more in order to suppress an increase in processing cost, and 15% by weight or less considering the effect. Is preferred. In addition, content of the non-fibrous particle | grains (shot) in a ceramic fiber can be measured based on 10 (Determining of shot) of ISO10635.

セラミック繊維中に含まれている非繊維状粒子を取り除く方法としては、セラミック繊維を水に分散させて分離する方法が簡便であり好ましい。即ち、セラミック繊維を水に分散させると、セラミック繊維は浮上するが、非繊維状粒子は水中に沈降する。従って、非繊維状粒子が十分に沈降した後、水面近くに浮上しているセラミック繊維を回収することによって、簡単且つ効率的に非繊維状粒子を取り除くことができる。
As a method for removing non-fibrous particles contained in the ceramic fiber, a method of dispersing the ceramic fiber in water and separating it is simple and preferable. That is, when the ceramic fiber is dispersed in water, the ceramic fiber floats but the non-fibrous particles settle in the water. Therefore, after the non-fibrous particles have sufficiently settled, the non-fibrous particles can be easily and efficiently removed by collecting the ceramic fibers that have floated near the water surface.

上記セラミック繊維としては、シリカアルミナ繊維、アルミナ繊維、シリカアルミナジルコニア繊維、アルミナシリカクロミア繊維、シリカアルミナチタニア繊維、生体溶解性繊維などを使用することができ、その中でもシリカアルミナ繊維、シリカアルミナジルコニア繊維又は生体溶解性繊維を好適に用いることができる。例えば、シリカアルミナ繊維、シリカアルミナジルコニア繊維としては、イソライト工業(株)製のイソウール(商品名)などがある。また、生体溶解性繊維としては、イソライト工業(株)製のイソウールBSSR(商品名)やUnifrax Co.,Ltd製のInsulfrax、Isofrax(商品名)などを使用することができる。   As the ceramic fiber, silica alumina fiber, alumina fiber, silica alumina zirconia fiber, alumina silica chromia fiber, silica alumina titania fiber, biosoluble fiber, etc. can be used, among them silica alumina fiber, silica alumina zirconia fiber. Alternatively, biosoluble fibers can be preferably used. For example, silica alumina fibers and silica alumina zirconia fibers include Isowool (trade name) manufactured by Isolite Industry Co., Ltd. As the biosoluble fiber, Isowool BSSR (trade name) manufactured by Isolite Industry Co., Ltd., Insulfrax, Isofrax (trade name) manufactured by Unifrax Co., Ltd., and the like can be used.

上記無機バインダー(結合材)としては、シリカゾル、アルミナゾルなど一般的に使用されているものでよい。具体的には、シリカゾルとしては日産化学工業(株)製のコロイダルシリカ、アルミナゾルとしては日産化学工業(株)製のコロイダルアルミナなどを好適に使用することができる。また、上記有機高分子凝集剤としては、澱粉やポリアクリルアミドなど一般的に使用されているものでよい。具体的には、日澱化学工業(株)製の澱粉や、ポリアクリルアミドとしては荒川化学工業(株)製のポリストロン(商品名)などがある。   As the inorganic binder (binding material), commonly used materials such as silica sol and alumina sol may be used. Specifically, colloidal silica manufactured by Nissan Chemical Industries, Ltd. can be preferably used as the silica sol, and colloidal alumina manufactured by Nissan Chemical Industries, Ltd. can be used as the alumina sol. The organic polymer flocculant may be a commonly used one such as starch or polyacrylamide. Specifically, starch produced by Nissho Chemical Industry Co., Ltd. and polyacrylamide include Polystron (trade name) produced by Arakawa Chemical Industries, Ltd.

本発明の第1の耐火断熱材においては、セラミック繊維を70〜85重量%、無機バインダーを15〜30重量%含有することが好ましい。また、本発明の第2の耐火断熱材においては、セラミック繊維を85〜99.5重量%、無機バインダーを0.5〜15重量%、有機高分子凝集剤を0.4〜12重量%含有することが好ましい。上記したように本発明の耐火断熱材ではセラミック繊維中の非繊維状粒子の含有量が従来の50〜60重量%から20重量%以下に低下するため、使用されるセラミック繊維(非繊維状粒子を含む)中のセラミック繊維の含有量を従来一般的であった40〜50重量%から80重量%以上にまで増加させることができ、その結果として耐火断熱材の曲げ強度も向上する。   In the 1st fireproof heat insulating material of this invention, it is preferable to contain 70 to 85 weight% of ceramic fibers, and 15 to 30 weight% of inorganic binders. The second refractory heat insulating material of the present invention contains 85 to 99.5% by weight of ceramic fiber, 0.5 to 15% by weight of an inorganic binder, and 0.4 to 12% by weight of an organic polymer flocculant. It is preferable to do. As described above, in the refractory heat insulating material of the present invention, since the content of non-fibrous particles in the ceramic fiber is reduced from 50 to 60% by weight to 20% by weight or less, the ceramic fiber used (non-fibrous particles) The ceramic fiber content in the refractory insulation material can be increased from 40-50% by weight to 80% by weight or more, which has been conventionally used. As a result, the bending strength of the refractory heat insulating material is also improved.

ただし、セラミック繊維を70〜85重量%及び無機バインダーを15〜30重量%からなる第1の耐火断熱材においては、無機バインダーの含有量が15重量%未満では十分な強度が得られず、無機バインダーの含有量が30%を超えると十分な断熱性能が得られない。また、セラミック繊維を85〜99.5重量%、無機バインダーを0.5〜15重量%、有機高分子凝集剤を0.4〜12重量%からなる第2の耐火断熱材においては、無機バインダーの含有量が0.5重量%未満では凝集が不十分となり、15重量%を超えると成形時のろ過抵抗が大きくなり成形困難となる。また、有機高分子凝集剤の含有量が0.4重量%未満でも無機バインダ−の場合と同様に凝集が不十分となり、12重量%を超えると成形時のろ過抵抗が大きくなるため好ましくない。   However, in the first refractory heat insulating material composed of 70 to 85% by weight of ceramic fiber and 15 to 30% by weight of inorganic binder, if the content of the inorganic binder is less than 15% by weight, sufficient strength cannot be obtained, and inorganic If the binder content exceeds 30%, sufficient heat insulating performance cannot be obtained. In the second refractory heat insulating material comprising 85 to 99.5% by weight of ceramic fiber, 0.5 to 15% by weight of inorganic binder, and 0.4 to 12% by weight of organic polymer flocculant, the inorganic binder If the content is less than 0.5% by weight, aggregation is insufficient, and if it exceeds 15% by weight, filtration resistance at the time of molding increases and molding becomes difficult. Further, even when the content of the organic polymer flocculant is less than 0.4% by weight, aggregation is insufficient as in the case of the inorganic binder, and when it exceeds 12% by weight, the filtration resistance at the time of molding is increased, which is not preferable.

上記本発明による第1の耐火断熱材の製造は、上記のごとく予め非繊維状粒子の含有量を20重量%以下とした平均繊維径1.5〜5μmのセラミック繊維を、水に所定量添加し撹拌してセラミック繊維を分散させた後、無機バインダー(結合材)を所定量投入して撹拌混合する。次に、成形用の型を用いて吸引により脱水成形する。得られた成形体は、そのまま耐火断熱材とすることもできるが、更に100℃〜120℃で乾燥することが好ましい。   The first refractory heat insulating material according to the present invention is manufactured by adding a predetermined amount of ceramic fibers having an average fiber diameter of 1.5 to 5 μm and having a non-fibrous particle content of 20% by weight or less in advance as described above. After stirring and dispersing the ceramic fibers, a predetermined amount of an inorganic binder (binding material) is added and mixed by stirring. Next, dehydration molding is performed by suction using a molding die. Although the obtained molded body can be used as a refractory heat insulating material as it is, it is preferably dried at 100 ° C. to 120 ° C.

また、上記本発明による第2の耐火断熱材の製造は、上記のごとく予め非繊維状粒子の含有量を20重量%以下とした平均繊維径1.5〜5μmのセラミック繊維を、水に所定量添加し撹拌してセラミック繊維を分散させた後、無機バインダー(結合材)を所定量投入して撹拌混合する。次に、有機高分子凝集剤を添加してフロックを形成させた後、成形用の型を用いて吸引により脱水成形する。得られた成形体は、そのまま耐火断熱材とすることができるが、更に100℃〜120℃で乾燥することが好ましい。   In addition, the production of the second refractory heat insulating material according to the present invention is carried out by placing ceramic fibers having an average fiber diameter of 1.5 to 5 μm with a non-fibrous particle content of 20% by weight or less in advance in water as described above. After a constant amount is added and stirred to disperse the ceramic fibers, a predetermined amount of an inorganic binder (binding material) is added and stirred and mixed. Next, after adding an organic polymer flocculant to form a floc, it is dehydrated and molded by suction using a molding die. The obtained molded body can be used as a refractory heat insulating material as it is, but is preferably further dried at 100 ° C to 120 ° C.

本発明による第1及び第2の耐火断熱材では、使用するセラミック繊維に含まれる非繊維状粒子の合計量が繊維全体の20重量%以下に減少されているので、通常の成形用の型を用いた吸引による脱水成形では望ましい密度が得られない場合がある。そのため、上記本発明による第1及び第2の耐火断熱材の製造においては、脱水成形した成形体をローラープレスすることにより、かさ密度を調整することが好ましい。   In the first and second refractory heat insulating materials according to the present invention, the total amount of non-fibrous particles contained in the ceramic fiber used is reduced to 20% by weight or less of the entire fiber. In some cases, the desired density cannot be obtained by dehydration molding using suction. Therefore, in the production of the first and second refractory heat insulating materials according to the present invention, it is preferable to adjust the bulk density by roller pressing the dehydrated molded body.

尚、上記成形用の型を用いた吸引による脱水成形によれば、型の内表面と平行な成形面はセラミック繊維が2次元ランダムに配向した面となる。そのため、耐火断熱材を施行する際に、上記成形面が熱の伝播方向に対して垂直になるように耐火断熱材を配置することによって、熱が伝わり難くなり、断熱性をより向上させることができる。   In addition, according to dehydration molding by suction using the molding die, the molding surface parallel to the inner surface of the die is a surface in which ceramic fibers are two-dimensionally randomly oriented. Therefore, when enforcing the fireproof heat insulating material, by arranging the fireproof heat insulating material so that the molding surface is perpendicular to the heat propagation direction, heat becomes difficult to be transmitted, and the heat insulating property can be further improved. it can.

このようにして製造される本発明の耐火断熱材は、非繊維状粒子の含有量が20重量%以下のセラミック繊維と無機バインダーとで構成され、無機粉末を含んでいないため、従来に比べて粉立ちやボロフリがなく、加工性や施工性に優れ、耐スポーリング性にも優れているうえ、高強度であって、600℃における熱伝導率が0.060〜0.090W/(m・K)と極めて低く、非常に高い断熱性能を有している。従って、本発明の耐火断熱材は、熱処理炉の炉内面に使用する低熱伝導ボードとして非常に優れている。   The refractory heat insulating material of the present invention produced in this way is composed of ceramic fibers having a non-fibrous particle content of 20% by weight or less and an inorganic binder, and does not contain inorganic powder. There is no dusting or battering, excellent workability and workability, excellent spalling resistance, high strength, and thermal conductivity at 600 ° C. of 0.060 to 0.090 W / (m · K) and extremely low heat insulation performance. Therefore, the refractory heat insulating material of the present invention is very excellent as a low heat conduction board used on the inner surface of the heat treatment furnace.

セラミック繊維としてイソライト工業(株)製のイソウール(商品名)と、無機バインダー(結合材)として日産化学工業(株)製のコロイダルシリカ(SiO濃度:40重量%)、及び有機系高分子凝集剤として日澱化学工業(株)製の澱粉を使用して、以下の実施例1〜3及び比較例1〜2により耐火断熱材を製造した。尚、上記セラミック繊維は、Al:45重量%以上、Al+SiO:98重量%以上の組成を有し、平均繊維径が実施例1〜3では2.3μm及び比較例1〜2では2.5μmである。 Isowool (trade name) manufactured by Isolite Industry Co., Ltd. as the ceramic fiber, colloidal silica (SiO 2 concentration: 40% by weight) manufactured by Nissan Chemical Industries, Ltd. as the inorganic binder (binding material), and organic polymer aggregation A fireproof heat insulating material was produced according to Examples 1 to 3 and Comparative Examples 1 and 2 below using starch produced by Nichichu Chemical Co., Ltd. as an agent. The ceramic fiber has a composition of Al 2 O 3 : 45% by weight or more and Al 2 O 3 + SiO 2 : 98% by weight or more, and the average fiber diameter is 2.3 μm in Examples 1 to 3 and a comparative example. In 1-2, it is 2.5 μm.

[実施例1]
まず、上記セラミック繊維を水に投入して分散させ、静置することによってセラミック繊維を浮上させると共に、非繊維状粒子を沈降させた。非繊維状粒子が十分に沈降した後、水面近くに浮上しているセラミック繊維を回収することによって、非繊維状粒子が取り除かれ、非繊維状粒子の含有量が10.7重量%のセラミック繊維を回収した。尚、セラミック繊維中の非繊維状粒子(ショット)の含有量は、ISO10635の10(Determination of shot)に準拠して測定した。
[Example 1]
First, the ceramic fiber was thrown into water to disperse it and allowed to stand to float the ceramic fiber, and the non-fibrous particles were allowed to settle. After the non-fibrous particles have sufficiently settled, the non-fibrous particles are removed by collecting the ceramic fibers floating near the water surface, and the content of the non-fibrous particles is 10.7% by weight. Was recovered. In addition, content of the non-fibrous particle | grains (shot) in a ceramic fiber was measured based on ISO10635 10 (Determination of shot).

次に、上記セラミック繊維(非繊維状粒子の含有量10.7重量%)と無機バインダーを水に添加して数分間撹拌することにより、セラミック繊維95重量%と無機バインダー5重量%を含むスラリーを形成した。このスラリーに有機系高分子凝集剤の水溶液を加えて凝集させ、型を用いて縦900mm×横600mm×厚み25mmの板状に吸引成形した。   Next, a slurry containing 95% by weight of ceramic fibers and 5% by weight of inorganic binder is prepared by adding the ceramic fibers (content of non-fibrous particles 10.7% by weight) and an inorganic binder to water and stirring for several minutes. Formed. An aqueous solution of an organic polymer flocculant was added to the slurry to cause aggregation, and suction molding was performed using a mold into a plate shape of 900 mm long × 600 mm wide × 25 mm thick.

得られた板状の成形体を120℃で乾燥させ、実施例1の耐火断熱材を製造した。乾燥後の耐火断熱材のかさ密度は180kg/mであった。また、この乾燥後の耐火断熱材について、JIS R2216(耐火物製品の蛍光X線分析方法)により化学成分を分析すると共に、熱伝導率(600℃)、3点曲げ強度、加熱線収縮率(1200℃×24時間)及び灼熱減量を測定し、得られた結果を下記表1に示した。尚、熱伝導率はJIS A1412−1(熱絶縁材の熱抵抗及び熱伝導率の測定方法、第1部:保護熱板法(GHP法))、曲げ強度はJIS R2619(耐火断熱れんがの曲げ強さの試験方法)、加熱線収縮率はJIS R3311(セラミックファイバーブランケット)、灼熱減量はJIS R2522(耐火物用アルミナセメントの化学分析方法)に準拠して測定した。 The obtained plate-like molded body was dried at 120 ° C. to produce the fireproof heat insulating material of Example 1. The bulk density of the refractory heat insulating material after drying was 180 kg / m 3 . The dried refractory insulation is analyzed for chemical components by JIS R2216 (fluorescence X-ray analysis method for refractory products), thermal conductivity (600 ° C.), three-point bending strength, heating shrinkage ( 1200 ° C. × 24 hours) and loss on ignition were measured, and the obtained results are shown in Table 1 below. The thermal conductivity is JIS A1412-1 (Method for measuring the thermal resistance and thermal conductivity of thermal insulation, Part 1: Protection hot plate method (GHP method)), and the bending strength is JIS R2619 (bending of refractory insulating bricks). Strength test method), the heating linear shrinkage rate was measured according to JIS R3311 (ceramic fiber blanket), and the loss on ignition was measured according to JIS R2522 (chemical analysis method of alumina cement for refractory).

[実施例2]
上記実施例1と同様の方法により非繊維状粒子の含有量を19.3重量%としたセラミック繊維を使用した以外は上記実施例1と同様にして、縦900mm×横600mm×厚み25mmの実施例2の耐火断熱材を製造した。
[Example 2]
Implementation in the same manner as in Example 1 except that ceramic fibers having a non-fibrous particle content of 19.3% by weight were used in the same manner as in Example 1 and the length was 900 mm × width 600 mm × thickness 25 mm. The refractory insulation of Example 2 was produced.

得られた乾燥後の耐火断熱材のかさ密度は190kg/mであった。また、この乾燥後の耐火断熱材について、上記実施例1と同様にして化学成分、熱伝導率(600℃)、3点曲げ強度、加熱線収縮率及び灼熱減量を測定し、得られた結果を下記表1に示した。 The bulk density of the obtained refractory heat insulating material after drying was 190 kg / m 3 . Moreover, about the fireproof heat insulating material after this drying, it carried out similarly to the said Example 1, and measured a chemical component, thermal conductivity (600 degreeC), 3 point | piece bending strength, a heating linear shrinkage rate, and a loss on ignition, and the result obtained Is shown in Table 1 below.

[実施例3]
上記実施例1と同じセラミック繊維(非繊維状粒子の含有量10.7重量%)と無機バインダーを水に添加して数分間撹拌することにより、セラミック繊維75重量%と無機バインダー25重量%を含むスラリーを形成した。このスラリーを、型を用いて縦900mm×横600mm×厚み25mmの板状に吸引成形した。
[Example 3]
The same ceramic fibers as in Example 1 (content of non-fibrous particles 10.7 wt%) and an inorganic binder were added to water and stirred for several minutes, whereby 75 wt% ceramic fibers and 25 wt% inorganic binder were obtained. A slurry containing was formed. This slurry was suction-molded into a plate shape of 900 mm long × 600 mm wide × 25 mm thick using a mold.

得られた乾燥後の耐火断熱材のかさ密度は300kg/mであった。また、この乾燥後の耐火断熱材について、上記実施例1と同様にして化学成分、熱伝導率(600℃)、3点曲げ強度、加熱線収縮率及び灼熱減量を測定し、得られた結果を下記表1に示した。 The bulk density of the obtained refractory heat insulating material after drying was 300 kg / m 3 . Moreover, about the fireproof heat insulating material after this drying, it carried out similarly to the said Example 1, and measured a chemical component, thermal conductivity (600 degreeC), 3 point | piece bending strength, a heating linear shrinkage rate, and a loss on ignition, and the result obtained Is shown in Table 1 below.

[比較例1]
上記実施例1の方法により非繊維状粒子を取り除く処理を行っていないセラミック繊維(非繊維状粒子含有量53重量%)を使用した以外は上記実施例1と同様にして、縦900mm×横600mm×厚み25mmの比較例1の耐火断熱材を製造した。
[Comparative Example 1]
900 mm in length x 600 mm in width in the same manner as in Example 1 except that ceramic fibers not treated to remove non-fibrous particles by the method of Example 1 (non-fibrous particle content 53 wt%) were used. X A fireproof heat insulating material of Comparative Example 1 having a thickness of 25 mm was produced.

得られた乾燥後の耐火断熱材のかさ密度は270kg/mであった。また、この乾燥後の耐火断熱材について、上記実施例1と同様にして化学成分、熱伝導率(600℃)、3点曲げ強度、加熱線収縮率及び灼熱減量を測定し、得られた結果を下記表1に示した。 The bulk density of the obtained refractory heat insulating material after drying was 270 kg / m 3 . Moreover, about the fireproof heat insulating material after this drying, it carried out similarly to the said Example 1, and measured a chemical component, thermal conductivity (600 degreeC), 3 point | piece bending strength, a heating linear shrinkage rate, and a loss on ignition, and the result obtained Is shown in Table 1 below.

[比較例2]
上記比較例1と同じく非繊維状粒子を取り除く処理を行っていないセラミック繊維(非繊維状粒子含有量53重量%)を使用した。このセラミック繊維(非繊維状粒子の含有量53重量%)75重量%と、熱輻射散乱材としての酸化チタン粉末20重量%と、無機バインダー5重量%を含むスラリーを形成した。こスラリーに有機系高分子凝集剤の水溶液を加えて凝集させ、型を用いて縦900mm×横600mm×厚み25mmの板状に吸引成形した。
[Comparative Example 2]
The ceramic fiber (non-fibrous particle content 53 weight%) which has not performed the process which removes a non-fibrous particle like the said comparative example 1 was used. A slurry containing 75% by weight of the ceramic fiber (non-fibrous particle content 53% by weight), 20% by weight of titanium oxide powder as a heat radiation scattering material, and 5% by weight of an inorganic binder was formed. An aqueous solution of an organic polymer flocculant was added to the slurry to cause aggregation, and suction molding was performed using a mold into a plate having a length of 900 mm × width 600 mm × thickness 25 mm.

得られた乾燥後の耐火断熱材のかさ密度は290g/mであった。また、この乾燥後の耐火断熱材について、上記実施例1と同様にして化学成分、熱伝導率(600℃)、3点曲げ強度、加熱線収縮率及び灼熱減量を測定し、得られた結果を下記表1に示した。 The bulk density of the obtained refractory heat insulating material after drying was 290 g / m 3 . Moreover, about the fireproof heat insulating material after this drying, it carried out similarly to the said Example 1, and measured a chemical component, thermal conductivity (600 degreeC), 3 point | piece bending strength, a heating linear shrinkage rate, and a loss on ignition, and the result obtained Is shown in Table 1 below.

Figure 0005963704
Figure 0005963704

[表1の考察]
上記表1から分るように、非繊維状粒子含有量が20重量%以下のセラミック繊維を使用した実施例1〜3の耐火断熱材における熱伝導率の値は、従来例の非繊維状粒子を取り除いていないセラミック繊維を使用した比較例1の耐火断熱材の50%程度まで低下し、また、更に熱輻射散乱材(酸化チタン)を添加した比較例2の耐火断熱材に対しても20%を超える低下を示した。これらの結果は、非繊維状粒子含有量の減量が耐火断熱材の熱伝導率低下に非常に効果的であることを示している。
[Consideration of Table 1]
As can be seen from Table 1 above, the values of thermal conductivity in the refractory heat insulating materials of Examples 1 to 3 using ceramic fibers having a non-fibrous particle content of 20% by weight or less are the non-fibrous particles of the conventional example. It is reduced to about 50% of the refractory heat insulating material of Comparative Example 1 using the ceramic fiber from which the ceramic fiber has not been removed. % Decrease. These results indicate that reducing the non-fibrous particle content is very effective in reducing the thermal conductivity of the refractory insulation.

尚、耐火断熱材の熱伝導率はかさ密度にも依存する。一般的に耐火断熱材では、かさ密度が350〜400kg/m程度までは、かさ密度が高くなると熱伝導率は低下する傾向にある。それらのことを踏まえると、実施例1〜2における耐火断熱材のかさ密度は比較例の耐火断熱材に比べて低いため、比較例と同程度までかさ密度を高くすると更なる熱伝導率の低下が見込まれ、実施例3はこれを証明している。 The thermal conductivity of the refractory heat insulating material also depends on the bulk density. Generally, in a refractory heat insulating material, when the bulk density increases to about 350 to 400 kg / m 3 , the thermal conductivity tends to decrease as the bulk density increases. Considering those things, the bulk density of the refractory heat insulating material in Examples 1 and 2 is lower than that of the comparative example, and if the bulk density is increased to the same level as the comparative example, the thermal conductivity further decreases. Example 3 proves this.

非繊維状粒子含有量が10.7重量%のセラミック繊維を使用した実施例1の耐火断熱材の曲げ強度は、従来例の非繊維状粒子含有量が53重量%のセラミック繊維を使用した比較例1の耐火断熱材の2倍に達し、非繊維状粒子含有量が19.3重量%のセラミック繊維を使用した実施例2の耐火断熱材の曲げ強度は同じく30%程度の向上を示した。このことは、非繊維状粒子含有量の減量により、耐火断熱材中のセラミック繊維含有量が増加したため曲げ強度も向上した結果である。また、輻射散乱材の酸化チタン粉末を添加した比較例2の耐火断熱材の曲げ強度は、従来例である比較例1の耐火断熱材よりも低い値であるが、これは全体に占めるセラミック繊維の割合が低いためである。   The bending strength of the refractory heat insulating material of Example 1 using ceramic fibers having a non-fibrous particle content of 10.7% by weight was compared with the conventional example using a ceramic fiber having a non-fibrous particle content of 53% by weight. The bending strength of the refractory insulation of Example 2 using ceramic fibers having a non-fibrous particle content of 19.3% by weight, which doubled that of the refractory insulation of Example 1, also showed an improvement of about 30%. . This is a result of an increase in the bending strength due to an increase in the ceramic fiber content in the refractory insulation by reducing the non-fibrous particle content. Further, the bending strength of the refractory heat insulating material of Comparative Example 2 to which the titanium oxide powder of the radiation scattering material is added is lower than that of the refractory heat insulating material of Comparative Example 1 which is a conventional example. This is because the ratio of is low.

曲げ強度は、かさ密度が大きくなるにつれて高くなり、また有機高分子凝集剤を添加したり、その量を増加させたりすると高くなる。実施例3のかさ密度が実施例1〜2に比べ大きくても曲げ強度が小さいのは、有機高分子凝集剤を含まないためである。   The bending strength increases as the bulk density increases, and increases when an organic polymer flocculant is added or the amount thereof is increased. The reason why the bending strength is small even when the bulk density of Example 3 is larger than that of Examples 1 and 2 is that it does not contain an organic polymer flocculant.

Claims (8)

セラミック繊維と無機バインダーとから成形されてなる耐火断熱材であって、セラミック繊維の平均繊維径が1.5〜5μmであり、セラミック繊維に含まれる非繊維状粒子の合計量が該繊維全体の20重量%以下であり、600℃における熱伝導率が0.060〜0.090W/(m・K)であり該成形後に100〜120℃で乾燥したとき、該乾燥後のかさ密度が250〜400kg/m乾燥後の曲げ強度が0.6MPa以上であり、該セラミック繊維が成形面において2次元にランダムに配向していることを特徴とする耐火断熱材。 A fireproof heat insulating material formed from a ceramic fiber and an inorganic binder, wherein the average fiber diameter of the ceramic fiber is 1.5 to 5 μm, and the total amount of non-fibrous particles contained in the ceramic fiber is 20% by weight or less, thermal conductivity at 600 ° C. is 0.060 to 0.090 W / (m · K) , and when dried at 100 to 120 ° C. after the molding, the bulk density after drying is 250 ~400kg / m 3, flexural strength after the drying is at least 0.6 MPa, refractory heat insulating material, characterized in that the ceramic fibers are randomly oriented in two dimensions in the molding surfaces. 前記セラミック繊維を70〜85重量%、無機バインダーを15〜30重量%含有することを特徴とする、請求項1に記載の耐火断熱材。   The refractory heat insulating material according to claim 1, wherein the ceramic fiber is contained in an amount of 70 to 85% by weight and the inorganic binder is contained in an amount of 15 to 30% by weight. セラミック繊維と無機バインダーと有機高分子凝集剤とから成形されてなる耐火断熱材であって、セラミック繊維の平均繊維径が1.5〜5μmであり、セラミック繊維に含まれる非繊維状粒子の合計量が該繊維全体の20重量%以下であり、600℃における熱伝導率が0.060〜0.090W/(m・K)であり該成形後に100〜120℃で乾燥したとき、該乾燥後のかさ密度が150〜300kg/m乾燥後の曲げ強度が0.8MPa以上であり、該セラミック繊維が成形面において2次元にランダムに配向していることを特徴とする耐火断熱材。 A fireproof heat insulating material formed from a ceramic fiber, an inorganic binder, and an organic polymer flocculant, wherein the average fiber diameter of the ceramic fiber is 1.5 to 5 μm, and the total of non-fibrous particles contained in the ceramic fiber When the amount is 20% by weight or less of the whole fiber, the thermal conductivity at 600 ° C. is 0.060 to 0.090 W / (m · K) , and dried at 100 to 120 ° C. after the molding, bulk density 150~300kg / m 3 after the bending strength after the drying is at least 0.8 MPa, refractory heat insulating material, characterized in that the ceramic fibers are randomly oriented in two dimensions in the molding surface . 前記セラミック繊維を85〜99.5重量%、無機バインダーを0.5〜15重量%、有機高分子凝集剤を0.4〜12重量%含有することを特徴とする、請求項3に記載の耐火断熱材。   The ceramic fiber according to claim 3, comprising 85 to 99.5% by weight of the ceramic fiber, 0.5 to 15% by weight of the inorganic binder, and 0.4 to 12% by weight of the organic polymer flocculant. Refractory insulation. 前記セラミック繊維が、シリカアルミナ繊維、シリカアルミナジルコニア繊維若しくは生体溶解性繊維であることを特徴とする、請求項1〜4のいずれかに記載の耐火断熱材。   The fireproof heat insulating material according to any one of claims 1 to 4, wherein the ceramic fibers are silica alumina fibers, silica alumina zirconia fibers, or biosoluble fibers. セラミック繊維と無機バインダーとから成形され、該セラミック繊維が成形面において2次元にランダムに配向している耐火断熱材の製造方法であって、平均繊維径1.5〜5μmのセラミック繊維を分級処理して非繊維状粒子の合計を繊維全体の20重量%以下とした後、該セラミック繊維を水に分散させ、無機バインダーを添加混合して、型を用いた吸引により脱水成形することを特徴とする耐火断熱材の製造方法。 A method for producing a refractory heat insulating material which is formed from ceramic fibers and an inorganic binder , and the ceramic fibers are randomly oriented two-dimensionally on the molding surface, and classifying ceramic fibers having an average fiber diameter of 1.5 to 5 μm Then, the total amount of non-fibrous particles is set to 20% by weight or less of the entire fiber, the ceramic fiber is dispersed in water, an inorganic binder is added and mixed, and dehydration molding is performed by suction using a mold. A method for manufacturing a refractory heat insulating material. セラミック繊維と無機バインダーと有機高分子凝集剤とから成形され、該セラミック繊維が成形面において2次元にランダムに配向している耐火断熱材の製造方法であって、平均繊維径1.5〜5μmのセラミック繊維を分級処理して非繊維状粒子の合計を繊維全体の20重量%以下とした後、該セラミック繊維を水に分散させ、無機バインダーを添加混合し、更に有機高分子凝集剤を添加して、型を用いた吸引により脱水成形することを特徴とする耐火断熱材の製造方法。 A method for producing a refractory heat insulating material, which is molded from ceramic fibers, an inorganic binder, and an organic polymer flocculant , and the ceramic fibers are randomly oriented two-dimensionally on the molding surface, and has an average fiber diameter of 1.5 to 5 μm. After classifying the ceramic fibers to make the total of non-fibrous particles 20% by weight or less of the total fibers, the ceramic fibers are dispersed in water, an inorganic binder is added and mixed, and an organic polymer flocculant is further added. Then, a method for producing a refractory heat insulating material, characterized in that dehydration molding is performed by suction using a mold. 前記脱水成形で得られた成形体のかさ密度をローラープレスにより調整することを特徴とする、請求項6又は7に記載の耐火断熱材の製造方法。   The method for producing a refractory heat insulating material according to claim 6 or 7, wherein the bulk density of the molded body obtained by the dehydration molding is adjusted by a roller press.
JP2013073011A 2013-03-29 2013-03-29 Refractory insulation and method for producing the same Active JP5963704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073011A JP5963704B2 (en) 2013-03-29 2013-03-29 Refractory insulation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073011A JP5963704B2 (en) 2013-03-29 2013-03-29 Refractory insulation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014196878A JP2014196878A (en) 2014-10-16
JP5963704B2 true JP5963704B2 (en) 2016-08-03

Family

ID=52357784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073011A Active JP5963704B2 (en) 2013-03-29 2013-03-29 Refractory insulation and method for producing the same

Country Status (1)

Country Link
JP (1) JP5963704B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6518153B2 (en) * 2015-07-15 2019-05-22 株式会社名古屋正英バンズ Insulation material
KR101668227B1 (en) * 2016-06-13 2016-10-21 주식회사 스탠더드시험연구소 Reflective fire radiant heat shield and method for manufacturing the same
CN113979769B (en) * 2021-11-29 2022-09-23 航天特种材料及工艺技术研究所 Rigid ultrathin heat insulation material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163707A (en) * 1986-12-25 1988-07-07 Ibiden Co Ltd Compact for burner
JPH01252561A (en) * 1987-12-26 1989-10-09 Ibiden Co Ltd Highly heat-resistant roll and production thereof
JPH0387204A (en) * 1989-08-31 1991-04-12 Ibiden Co Ltd Molding process for fiberless molded material
JP2955726B2 (en) * 1991-06-28 1999-10-04 イビデン株式会社 Thermal insulation and method of manufacturing the same
US5945049A (en) * 1997-09-26 1999-08-31 Wes Bond Corporation Bonding of ceramic fibers
JP2008254952A (en) * 2007-04-03 2008-10-23 Isolite Insulating Products Co Ltd Method for producing inorganic fiber formed member

Also Published As

Publication number Publication date
JP2014196878A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP2014228035A (en) Fireproof heat insulation material and manufacturing method
CN108033756B (en) High-density ceramic fiber board and preparation method thereof
JP2533025B2 (en) Insulation product based on inorganic fiber and manufacturing method thereof
CN106747540B (en) Preparation method of aerogel fiber composite material
WO2011083695A1 (en) Inorganic fibrous molded refractory article, method for producing inorganic fibrous molded refractory article, and inorganic fibrous unshaped refractory composition
JP5963704B2 (en) Refractory insulation and method for producing the same
JP5561999B2 (en) Refractory molded body for metal casting, method for producing refractory molded body for metal casting, amorphous refractory composition for metal casting, and molten metal holding member for metal casting
CN114746379A (en) Inorganic fiber molded body, heating furnace, structure, and method for producing inorganic fiber molded body
JP2016061421A (en) Thermal insulation material and its process of manufacture
JP2018080094A (en) Thermal insulation material
JP2022114211A (en) Inorganic fiber molded body, and furnace
WO2007129689A1 (en) Process for producing ceramic fiber board
JP5087709B1 (en) Inorganic fiber shaped body and method for adjusting hardness thereof
US20240166553A1 (en) Thermal insulation
JPH0453993B2 (en)
WO2013099090A1 (en) Highly flexible inorganic fibrous shaped body
JPH06316467A (en) Production of incombustible molding
EP3571360A1 (en) Fire protection boards and structures protected by such boards
Pivinskii Thinning, plastifying, and strengthening additives as effective modifiers in HCBS and ceramic concrete technology
JP4925707B2 (en) Inorganic fiber heat insulating material composition and inorganic fiber heat insulating material
JP6865407B2 (en) Inorganic colloid-containing liquid, composition liquid for inorganic fiber molded body and inorganic fiber molded body
JP2001278676A (en) Inorganic fiber reinforced article
JP2015036587A (en) Heat insulation material and manufacturing method thereof
JP7127084B2 (en) Heat-resistant inorganic fiber soluble in physiological saline
WO2023079860A1 (en) Heat-resistant plate member and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160628

R150 Certificate of patent or registration of utility model

Ref document number: 5963704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250