JP2018080094A - Thermal insulation material - Google Patents

Thermal insulation material Download PDF

Info

Publication number
JP2018080094A
JP2018080094A JP2016225149A JP2016225149A JP2018080094A JP 2018080094 A JP2018080094 A JP 2018080094A JP 2016225149 A JP2016225149 A JP 2016225149A JP 2016225149 A JP2016225149 A JP 2016225149A JP 2018080094 A JP2018080094 A JP 2018080094A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
heat
thermal conductivity
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016225149A
Other languages
Japanese (ja)
Other versions
JP6607839B2 (en
Inventor
篤 末吉
Atsushi Sueyoshi
篤 末吉
角村 尚紀
Hisanori Tsunomura
尚紀 角村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2016225149A priority Critical patent/JP6607839B2/en
Publication of JP2018080094A publication Critical patent/JP2018080094A/en
Application granted granted Critical
Publication of JP6607839B2 publication Critical patent/JP6607839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermal insulation material having excellent heat insulation property, small bulk specific gravity, and hardness enough to allow handling.SOLUTION: The thermal insulation material comprises a heat insulation aggregate having a porous structure containing pores with a pore diameter of 0.01-5 μm, preferably, a fireproof fiber as a reinforcement material, and a binder for binding these and, after firing, exhibits a bulk specific gravity of 0.3-0.5, has a ratio of pores having a pore diameter of 10-30 μm being 40-70 vol.% of the volume of all the pores, the thermal conductivity at 800°C being 0.18 W/(m K) or under, and the thermal conductivity at 1400°C being 0.26 W/(m K) or under.SELECTED DRAWING: None

Description

本発明は、運転時に内部が高温になる工業炉等の機器に使用される断熱材に関し、特に、1400℃程度の高温域での断熱性に優れた断熱材に関する。   The present invention relates to a heat insulating material used for equipment such as an industrial furnace whose inside becomes high temperature during operation, and particularly relates to a heat insulating material excellent in heat insulating properties in a high temperature range of about 1400 ° C.

運転時に内部が高温状態になる工業炉等の高温用機器では省エネルギーのため断熱材が使われており、特に800〜1400℃の温度範囲で使用される機器には、耐火断熱れんが、不定形耐火組成物(キャスタブル)、繊維質断熱材等の断熱材が用いられている。これら断熱材には、800℃程度の低温域のみならず1400℃程度の高温域においても熱伝導率が小さく且つかさ比重の小さいものが一般的に望まれている。   Heat-insulating materials are used for energy saving in high-temperature equipment such as industrial furnaces that become hot inside during operation. Especially for equipment used in the temperature range of 800 to 1400 ° C, fire-resistant and heat-insulating bricks, irregular-shaped fireproof Thermal insulation materials such as compositions (castable) and fibrous thermal insulation materials are used. These heat insulating materials are generally desired to have low thermal conductivity and low bulk specific gravity not only in a low temperature range of about 800 ° C. but also in a high temperature range of about 1400 ° C.

しかしながら、一般的な耐火断熱れんがや不定形耐火組成物は、かさ比重が0.4以上であって蓄熱損失が大きく、また、熱伝導率が大きいので伝熱性が高いという問題をかかえている。特に高温になるほど熱伝導率が大きくなるので、より高温で使用する際に断熱性能が不足することがあった。その対策として、例えば特許文献1には、耐火断熱れんがの材料に可燃性の気孔付与材や発泡剤等を添加することによって小孔径側の気孔率を増やし、これにより熱伝導率を小さくする技術が開示されている。   However, general fireproof insulating bricks and irregular refractory compositions have a problem that the bulk specific gravity is 0.4 or more, the heat storage loss is large, and the heat conductivity is large, so that the heat transfer is high. In particular, since the thermal conductivity increases as the temperature increases, the thermal insulation performance may be insufficient when used at higher temperatures. For example, Patent Document 1 discloses a technique for increasing the porosity on the small pore diameter side by adding a flammable pore-providing material or a foaming agent to the material of the refractory heat-insulating brick, thereby reducing the thermal conductivity. Is disclosed.

また、特許文献2には、不定形耐火組成物の材料に非多孔質の骨材の代わりにCaO・6Alを主成分とする断熱性骨材を用い、該断熱性骨材が有する小孔径の気孔群による多孔質構造によって、熱伝導率を小さくする技術が開示されている。一方、一般的な繊維質断熱材は、かさ比重が0.4未満であるため蓄熱損失が小さく、伝熱性も低いという利点を有している。 Further, Patent Document 2 uses a heat-insulating aggregate mainly composed of CaO.6Al 2 O 3 instead of a non-porous aggregate as a material for an amorphous refractory composition, and the heat-insulating aggregate has A technique for reducing the thermal conductivity by a porous structure of pore groups having a small pore diameter is disclosed. On the other hand, since a general fibrous heat insulating material has a bulk specific gravity of less than 0.4, it has an advantage that heat storage loss is small and heat conductivity is low.

近年、かさ比重が小さくて熱伝導率の低い材料の研究開発が進められており、例えば特許文献3には、ナノ粒子、結晶転移抑制材、及びふく射散乱材を断熱材の原料に用いる技術が提案されている。また、より高温において熱伝導率を小さくできる材料として、特許文献4には高耐熱性の組成物を用いて多孔質焼結体からなる断熱材を形成する技術が開示されている。この特許文献4には、多孔質焼結体の気孔の大きさと割合を調整し、これにより伝導伝熱と赤外線の散乱による放射伝熱とを抑制することで、高温においても熱伝導率の増加を抑制できると記載されている。   In recent years, research and development of materials having a low bulk specific gravity and a low thermal conductivity have been promoted. For example, Patent Document 3 discloses a technique of using nanoparticles, a crystal transition suppressing material, and a radiation scattering material as a heat insulating material. Proposed. Further, as a material capable of reducing the thermal conductivity at higher temperatures, Patent Document 4 discloses a technique for forming a heat insulating material made of a porous sintered body using a highly heat-resistant composition. In Patent Document 4, the size and ratio of the pores of the porous sintered body are adjusted, thereby suppressing the conduction heat transfer and the radiation heat transfer due to the scattering of infrared rays, thereby increasing the thermal conductivity even at high temperatures. It is described that can be suppressed.

特開2014−062018号公報JP 2014-062018 A 特開2009−203090号公報JP 2009-203090 A 特開2016−040226号公報JP, 2006-040226, A 特開2016−104682号公報Japanese Patent Laid-Open No. 2006-104682

上記特許文献1や特許文献2に記載の耐火断熱れんがや不定形耐火組成物の熱伝導率は、一般に800℃において0.3W/(m・K)以上であり、1400℃においては0.5W/(m・K)以上である。一方、繊維質断熱材は低温域では熱伝導率が小さいものの、高温域になると放射伝熱が増加するため高温域で使用する際に断熱性能が不足することがあった。すなわち、繊維質断熱材の熱伝導率は、一般に800℃において0.1W/(m・K)以上であり、1400℃においては0.5W/(m・K)以上である。   The thermal conductivity of the refractory insulating bricks and the irregular refractory compositions described in Patent Document 1 and Patent Document 2 is generally 0.3 W / (m · K) or higher at 800 ° C. and 0.5 W at 1400 ° C. / (M · K) or more. On the other hand, although the heat insulating property of the fibrous heat insulating material is low in the low temperature region, radiation heat transfer increases in the high temperature region, so that the heat insulating performance may be insufficient when used in the high temperature region. That is, the thermal conductivity of the fibrous heat insulating material is generally 0.1 W / (m · K) or more at 800 ° C. and 0.5 W / (m · K) or more at 1400 ° C.

また、上記特許文献3の断熱材は800℃での熱伝導率が0.05W/(m・K)と優れた断熱性を示すものの、耐熱温度が1200℃程度であるため、1400℃程度の高温域では使用できなかった。特許文献4の断熱材の熱伝導率は800℃で0.21W/(m・K)、1400℃で0.25W/(m・K)であり、高温域においても優れた断熱性を有している。しかしながら、特許文献4の多孔質焼結体からなる断熱材は、かさ比重が0.8と大きいため、800℃では従来品である繊維質断熱材よりも熱伝導率が大きく、この熱伝導率を小さくするためにかさ比重を小さくすると強度が低下し、ハンドリング性の点において不具合を生じるおそれがあった。   Moreover, although the heat insulating material of the said patent document 3 has the heat conductivity which was 0.05 W / (m * K) excellent in 800 degreeC, since heat-resistant temperature is about 1200 degreeC, it is about 1400 degreeC. It could not be used at high temperatures. The thermal conductivity of the heat insulating material of Patent Document 4 is 0.21 W / (m · K) at 800 ° C. and 0.25 W / (m · K) at 1400 ° C., and has excellent heat insulating properties even in a high temperature range. ing. However, since the heat insulating material made of the porous sintered body of Patent Document 4 has a bulk specific gravity as large as 0.8, the heat conductivity is higher at 800 ° C. than that of the conventional fiber heat insulating material. If the bulk specific gravity is decreased to reduce the strength, the strength is lowered, and there is a risk of causing problems in terms of handling properties.

本発明は上記した従来の問題点に鑑みてなされたものであり、1400℃程度の高温域においても断熱性に優れると共にかさ比重が小さく、且つハンドリング可能な程度の強度を有する断熱材を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and provides a heat insulating material that is excellent in heat insulation even in a high temperature range of about 1400 ° C., has a small bulk specific gravity, and has a strength that can be handled. For the purpose.

上記目的を達成するため、本発明に係る断熱材は、多孔質構造の断熱骨材と、強化材としての耐火繊維と、これらを結合する結合材とからなる断熱材であって、焼成後はかさ比重が0.3〜0.5であって孔径10〜30μmの気孔が全気孔の容積の40〜70容積%を占めており、且つ800℃における熱伝導率が0.18W/(m・K)以下、1400℃における熱伝導率が0.26W/(m・K)以下であることを特徴としている。   In order to achieve the above object, a heat insulating material according to the present invention is a heat insulating material composed of a heat insulating aggregate having a porous structure, a fireproof fiber as a reinforcing material, and a binder for bonding them, and after firing, The pores having a bulk specific gravity of 0.3 to 0.5 and a pore diameter of 10 to 30 μm occupy 40 to 70% by volume of the total pore volume, and the thermal conductivity at 800 ° C. is 0.18 W / (m · K) The thermal conductivity at 1400 ° C. is 0.26 W / (m · K) or less.

本発明によれば、断熱性に優れると共にかさ比重が小さく、且つハンドリング可能な程度の強度を有する断熱材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat insulating material which is excellent in heat insulation, has a small bulk specific gravity, and has the intensity | strength of the grade which can be handled can be provided.

以下、本発明の断熱材の実施形態について説明する。本発明の実施形態の断熱材は、多孔質構造の断熱骨材と、強化材としての耐火繊維と、これらを結合する結合材とからなり、焼結後はかさ比重が0.3〜0.5であって孔径10〜30μmの気孔が全気孔の容積の40〜70%を占めている。なお、かさ比重0.3〜0.5は、かさ密度で表示すると300〜500kg/mとなる。このように、低温での伝熱性が低いが高温への昇温時の熱伝導率の増加割合が大きい耐火繊維と、低温での伝熱性が高いが高温への昇温時の熱伝導率の増加割合が小さい断熱骨材とを所定のかさ比重を有し且つ所定の気孔径を有する気孔群が所定の割合を占めるように混ぜ合わせることによって、低温での伝熱性が低く且つ高温への昇温時の熱伝導率の増加割合も小さい断熱材を得ることができる。 Hereinafter, embodiments of the heat insulating material of the present invention will be described. The heat insulating material of the embodiment of the present invention is composed of a heat insulating aggregate having a porous structure, a refractory fiber as a reinforcing material, and a binder for bonding them, and has a bulk specific gravity of 0.3 to 0.3 after sintering. The pores having a pore diameter of 10 to 30 μm account for 40 to 70% of the total pore volume. The bulk specific gravity of 0.3 to 0.5 is 300 to 500 kg / m 3 in terms of bulk density. In this way, the refractory fiber has a low rate of heat transfer at low temperatures but a large increase in the thermal conductivity at the time of temperature increase to a high temperature, and the heat conductivity high at low temperature but at the time of the temperature increase to a high temperature. By mixing the heat-insulated aggregate with a small increase rate so that a group of pores having a predetermined bulk specific gravity and a predetermined pore diameter occupy a predetermined rate, the heat conductivity at low temperature is low and the temperature rises to high temperature. It is possible to obtain a heat insulating material having a small increase rate of thermal conductivity at the time of warming.

すなわち、耐火繊維及びその結合剤だけで構成される断熱材は、かさ比重が0.3未満と小さいため低温での伝導性は低いが、これらを混ぜ合わせて焼結した時に形成される気孔群は孔径が40〜80μm程度になるため放射伝熱が大きくなり、低温から高温への昇温時の熱伝導率の増加割合が大きくなってしまう。一方、高耐熱性の組成からなる微細な気孔を有する断熱骨材及びその結合剤だけで構成される断熱材は、気孔群の孔径が0.01〜5μm程度であるため放射伝熱を抑制でき、よって低温から高温への昇温時の熱伝導率の増加割合を小さくできるが、低温での伝熱性が高くなってしまう。これに対して本発明の実施形態の断熱材は、上記したように断熱骨材と耐火繊維と結合材とを混ぜ合わせるので、800℃程度の低温域から1400℃程度の高温域までの広い温度範囲に亘って熱伝導率を低く抑えることができる。   In other words, the heat insulating material composed only of the refractory fiber and its binder has a low bulk specific gravity of less than 0.3, so the conductivity at low temperature is low, but the pores formed when these are mixed and sintered Since the hole diameter is about 40 to 80 μm, the radiant heat transfer is increased, and the rate of increase in thermal conductivity at the time of temperature increase from a low temperature to a high temperature is increased. On the other hand, a heat insulating aggregate composed of fine pores having a high heat resistance composition and a heat insulating material composed only of the binder can suppress radiant heat transfer because the pore diameter of the pore group is about 0.01 to 5 μm. Therefore, although the rate of increase in thermal conductivity at the time of temperature increase from low temperature to high temperature can be reduced, the heat conductivity at low temperature is increased. On the other hand, since the heat insulating material of the embodiment of the present invention mixes the heat insulating aggregate, the refractory fiber, and the binder as described above, a wide temperature from a low temperature range of about 800 ° C. to a high temperature range of about 1400 ° C. Thermal conductivity can be kept low over a range.

より具体的に説明すると、本発明の実施形態の断熱材に使用する耐火繊維には、耐熱温度が1400℃以上のものを用いる。例えば、アルミナ繊維、ムライト繊維、CaO・6Al(カルシアアルミネート)繊維、及び生体溶解性繊維からなる群より選択される1種以上を使用する。これら繊維は発がん性の可能性がなく、特定化学物質に指定されていないので好ましい。これらの中ではアルミナ繊維(例えばITM株式会社製のファイバーマックス1600)がより好ましい。 More specifically, as the fireproof fiber used for the heat insulating material of the embodiment of the present invention, one having a heat resistant temperature of 1400 ° C. or higher is used. For example, at least one selected from the group consisting of alumina fiber, mullite fiber, CaO · 6Al 2 O 3 (calcia aluminate) fiber, and biosoluble fiber is used. These fibers are preferred because they are not carcinogenic and are not designated as specific chemicals. Among these, alumina fibers (for example, Fiber Max 1600 manufactured by ITM Corporation) are more preferable.

上記耐火繊維は、平均繊維長が0.5mm以上30mm以下であるのが好ましく、1mm以上10mm以下であるのがより好ましい。また、上記耐熱繊維は平均繊維径が1μm以上10μm以下であるのが好ましく、2μm以上8μm以下であるのがより好ましい。なお、これら平均繊維長や平均繊維径は次の方法によって測定したものである。
(1)平均繊維長
測定対象となる繊維群を電子顕微鏡で撮影した後、この撮影により得た画像上の任意の100本の繊維に対して、それらの長手方向の端から端までの直線距離を計測し、それらを算術平均して得た値を平均繊維長とした。この測定の際、200μm以上は正確に測定できないので除外した。
(2)平均繊維径
測定対象となる繊維群を電子顕微鏡で撮影した後、この撮影により得た画像上の任意の200本の繊維に対して、それらの任意の部分の幅を計測し、それらを算術平均して得た値を平均繊維径とした
The refractory fiber preferably has an average fiber length of 0.5 mm to 30 mm, and more preferably 1 mm to 10 mm. The heat-resistant fiber preferably has an average fiber diameter of 1 μm or more and 10 μm or less, and more preferably 2 μm or more and 8 μm or less. In addition, these average fiber lengths and average fiber diameters are measured by the following methods.
(1) Average fiber length After taking a group of fibers to be measured with an electron microscope, the linear distance from end to end in the longitudinal direction of any 100 fibers on the image obtained by this imaging Was measured, and the value obtained by arithmetically averaging them was defined as the average fiber length. In this measurement, 200 μm or more was excluded because it could not be measured accurately.
(2) Average fiber diameter After taking a group of fibers to be measured with an electron microscope, measure the width of any part of any 200 fibers on the image obtained by this photography. The value obtained by arithmetically averaging the average fiber diameter

上記の断熱材に使用する微細な気孔群を有する多孔質構造の断熱骨材には、耐熱温度が1400℃以上の高耐熱性の組成で構成されているものを用いる。この断熱骨材はその気孔群の細孔径が0.01〜5μmであるのが好ましく、例えばスピネル質セラミックス(クアーズ株式会社製のThermoscatt(登録商標))、及びCaO・6Al(カルシアアルミネート)セラミックス(Almatis株式会社製のSLA-92)からなる群より選択される1種以上を使用すればよい。この断熱骨材を構成するセラミックス粒子は、粒径が0.5μm以上30μm以下であるのが好ましく、1μm以上20μm以下であるのがより好ましい。なお、上記の孔径は水銀ポロシメータによって測定したものであり、粒径はレーザ回折式粒度分布測定装置によって測定したものである。 As the heat insulating aggregate having a porous structure having a fine pore group used for the heat insulating material, one having a heat resistant temperature of 1400 ° C. or higher and a composition having a high heat resistance is used. The heat insulating aggregate preferably has a pore diameter of 0.01 to 5 μm. For example, spinel ceramics (Thermoscatt (registered trademark) manufactured by Coors Co., Ltd.), and CaO.6Al 2 O 3 (calcia aluminum). Nate) One or more selected from the group consisting of ceramics (SLA-92 manufactured by Almatis Co., Ltd.) may be used. The ceramic particles constituting the heat insulating aggregate preferably have a particle size of 0.5 μm or more and 30 μm or less, and more preferably 1 μm or more and 20 μm or less. In addition, said hole diameter is measured with a mercury porosimeter, and a particle size is measured with the laser diffraction type particle size distribution measuring apparatus.

本発明の実施形態の断熱材では、上記耐火繊維の含有率が少なすぎると該断熱材のかさ比重が大きくなりすぎ、伝導伝熱を抑制できない。逆に耐火繊維の含有率が多すぎると断熱材を構成する気孔の孔径が大きくなりすぎ、放射伝熱を抑制できず、昇温時の熱伝導率の抑制効果が十分に得られない。一方、本発明の実施形態の断熱材では上記断熱骨材の含有率が少なすぎると該断熱材のかさ比重が小さくなりすぎ、放射伝熱を抑制できない。逆に断熱骨材の含有率が多すぎるとかさ比重が大きくなりすぎ、伝導伝熱が大きくなって昇温時の熱伝導率の抑制効果が十分に得られない。   In the heat insulating material according to the embodiment of the present invention, if the content of the refractory fiber is too small, the bulk specific gravity of the heat insulating material becomes too large to suppress conduction heat transfer. On the other hand, if the content of the refractory fiber is too large, the pore diameter of the pores constituting the heat insulating material becomes too large to suppress the radiant heat transfer, and the effect of suppressing the thermal conductivity at the time of temperature rise cannot be obtained sufficiently. On the other hand, in the heat insulating material of the embodiment of the present invention, if the content ratio of the heat insulating aggregate is too small, the bulk specific gravity of the heat insulating material becomes too small to suppress radiant heat transfer. On the contrary, if the content of the heat insulating aggregate is too large, the bulk specific gravity becomes too large, the conduction heat transfer becomes large, and the effect of suppressing the thermal conductivity at the time of temperature rise cannot be obtained sufficiently.

上記の耐火繊維や断熱骨材の含有率の好適な範囲は繊維の平均径やショット(非繊維粒子)の含有量等の繊維の特性によって主に変わりうる。よって、本発明の実施形態の断熱材では、焼結後において所定のかさ比重及び熱伝導率を満たすように、これら耐火繊維及び断熱骨材の混合割合を調整している。具体的には、焼結後のかさ比重が0.3〜0.5であり、800℃における熱伝導率が0.18W/(m・K)以下であり、1400℃における熱伝導率が0.26W/(m・K)以下となるように混合比率を調整している。   A suitable range of the content ratio of the above-mentioned refractory fibers and heat insulating aggregates can be changed mainly depending on the properties of the fibers such as the average diameter of the fibers and the content of shots (non-fiber particles). Therefore, in the heat insulating material of the embodiment of the present invention, the mixing ratio of these refractory fibers and the heat insulating aggregate is adjusted so as to satisfy a predetermined bulk specific gravity and thermal conductivity after sintering. Specifically, the bulk specific gravity after sintering is 0.3 to 0.5, the thermal conductivity at 800 ° C. is 0.18 W / (m · K) or less, and the thermal conductivity at 1400 ° C. is 0. The mixing ratio is adjusted to be .26 W / (m · K) or less.

上記混合比率の具体的な調整法としては、例えば断熱材の焼結後のかさ比重が所望の値より小さい場合は断熱骨材の含有率を多めに混合したり、圧縮成形時に加える圧力を高めに設定したりすればよく、かさ比重が所望の値より大きい場合はその逆のことを行えばよい。また、800℃の熱伝導率が高すぎる場合は断熱骨材の含有率を少なめに混合し、1400℃の熱伝導率が高すぎる場合は断熱骨材の含有率を多めに混合したり圧縮成形時に加える圧力を高めに設定したりすればよい。なお、かさ比重及び熱伝導率を上記の範囲内にすることで焼成後の断熱材の曲げ強度を0.5MPa以上にすることができる。ここで曲げ強度とは、測定対象の断熱材を長さ150mm、幅50mm、厚さ25mmの試験片に加工し、これを支点間距離100mmで支持してオートグラフを用いて3点曲げ試験を行い、破壊に至るまでの最大荷重から算出したものである。なお、焼成の条件は特に限定するものではないが、一般的には1350〜1420℃で3時間程度保持するのが好ましい。   As a specific method for adjusting the mixing ratio, for example, when the bulk specific gravity after the heat insulating material is sintered is smaller than a desired value, the content ratio of the heat insulating aggregate is mixed more or the pressure applied at the time of compression molding is increased. Or if the bulk specific gravity is greater than the desired value, the opposite may be done. If the heat conductivity at 800 ° C. is too high, the content of the heat insulating aggregate is mixed slightly. If the heat conductivity at 1400 ° C. is too high, the content of the heat insulating aggregate is mixed or compression molded. The pressure that is sometimes applied may be set higher. In addition, the bending strength of the heat insulating material after baking can be made 0.5 MPa or more by setting the bulk specific gravity and the thermal conductivity within the above ranges. Here, the bending strength means that the heat insulating material to be measured is processed into a test piece having a length of 150 mm, a width of 50 mm, and a thickness of 25 mm, and this is supported at a distance between supporting points of 100 mm, and a three-point bending test is performed using an autograph. This is calculated from the maximum load until the failure. In addition, although the conditions for baking are not specifically limited, In general, it is preferable to hold at 1350 to 1420 ° C. for about 3 hours.

本発明の実施形態の断熱材に使用する結合材は、耐熱温度が1400℃以上であればその種類は特に制約はなく、例えばコロイダルシリカを用いることができる。この結合材を、上記した断熱材の熱伝導率、かさ比重、及び曲げ強さに悪影響を及ぼさない範囲内において適切な含有率となるように添加する。なお、この含有量は一般的には3〜10質量%であるのが好ましい。更に断熱材の熱伝導率、かさ比重、及び曲げ強さに悪影響を及ぼさない限り、耐火繊維に複数の種類を用いたり、ナノ粒子を更に添加しても良い。   The type of the binder used for the heat insulating material according to the embodiment of the present invention is not particularly limited as long as the heat resistant temperature is 1400 ° C. or higher. For example, colloidal silica can be used. This binder is added so as to have an appropriate content within a range that does not adversely affect the thermal conductivity, bulk specific gravity, and bending strength of the heat insulating material. In general, the content is preferably 3 to 10% by mass. Furthermore, as long as the thermal conductivity, bulk specific gravity, and bending strength of the heat insulating material are not adversely affected, a plurality of types of refractory fibers may be used, or nanoparticles may be further added.

本発明の実施形態の断熱材の形態は、成形品でもよいし不定形品でもよい。あるいは、繊維質ボードやブランケットを本発明の実施形態の不定形品で被覆して一体化した複合品として用いても良い。また、断熱材は全体に亘って均質でなくてもよく、例えば粉立ちや稜線欠けの防止のため、表層部は耐火繊維の含有率が高くても良い。   The form of the heat insulating material according to the embodiment of the present invention may be a molded product or an amorphous product. Or you may use as a composite article which coat | covered and integrated the fiber board and the blanket with the amorphous product of embodiment of this invention. Further, the heat insulating material may not be homogeneous throughout, and the surface layer portion may have a high content of refractory fibers, for example, in order to prevent dusting and ridge line chipping.

これらの形態の断熱材の製造方法には、特に限定はなく、公知の製造方法を用いることができる。例えば成形品の場合は、乾式プレス成形、湿式成形プレス成形、真空成形、鋳込み成形等の成形法で作成することができ、不定形品の場合は湿式撹拌混合で作成することができる。また、不定形品で繊維質ボードやブランケットを被覆する場合は、不定形品に適量の水を加えてスラリーにした後、このスラリーをスプレー塗布等で塗布又は含浸すればよい。以上、本発明の断熱材について実施形態に基づいて説明したが、本発明はかかる実施形態によって限定されるものではない。   There is no limitation in the manufacturing method of the heat insulating material of these forms, A well-known manufacturing method can be used. For example, in the case of a molded product, it can be prepared by a molding method such as dry press molding, wet molding press molding, vacuum molding, cast molding or the like, and in the case of an indeterminate product, it can be prepared by wet stirring mixing. Further, when the fibrous board or blanket is coated with an irregular shaped product, an appropriate amount of water is added to the irregular shaped product to form a slurry, which is then applied or impregnated by spray coating or the like. As mentioned above, although the heat insulating material of this invention was demonstrated based on embodiment, this invention is not limited by this embodiment.

断熱骨材と耐火繊維と結合材とを様々な配合割合で混合して複数の断熱材の試料を作製し、それらを曲げ強度と熱伝導率の点から評価した。具体的には、断熱骨材には、クアーズ株式会社製のスピネル質セラミックス(Thermoscatt、平均粒径10μm)を用いた。この断熱骨材は気孔率が85〜91vol%であり、全気孔容積のうち孔径0.8〜10μmの気孔が10〜40vol%を占めており、孔径0.01〜0.8μmの気孔が5〜10vol%を占めている。耐熱繊維には、ITM株式会社製のムライト繊維(ファイバーマックス1600、平均繊維径4μm、ショット含有率15%)を用いた。結合材には、日産化学株式会社製のコロイダルシリカ(スノーテックス、EN40)と高分子凝集剤を用いた。   Insulating aggregates, refractory fibers, and binders were mixed at various blending ratios to prepare a plurality of insulating material samples, which were evaluated in terms of bending strength and thermal conductivity. Specifically, spinel ceramics (Thermoscatt, average particle diameter of 10 μm) manufactured by Coors Co., Ltd. was used as the heat insulating aggregate. This heat-insulated aggregate has a porosity of 85 to 91 vol%, and pores having a pore diameter of 0.8 to 10 μm occupy 10 to 40 vol% of the total pore volume, and pores having a pore diameter of 0.01 to 0.8 μm are 5 Occupies -10 vol%. As the heat-resistant fiber, mullite fiber (fiber max 1600, average fiber diameter 4 μm, shot content 15%) manufactured by ITM Co., Ltd. was used. Colloidal silica (Snowtex, EN40) manufactured by Nissan Chemical Co., Ltd. and a polymer flocculant were used as the binder.

これらを様々な含有率となるように秤量し、水を加えて湿式で混合し、脱水プレスで圧縮成形して試料1〜6の断熱材を作製した。なお、試料1〜3の断熱材については、圧縮成形時の脱水プレスの圧力を変えることによってかさ比重と後述する焼成後の全気孔中の孔径10〜30μmの気孔の割合が異なるように調整した。また、高分子凝集剤の添加量は3〜10質量%とした。   These were weighed so as to have various contents, mixed with water by adding water, and compression-molded with a dehydrating press to produce heat insulating materials of Samples 1 to 6. In addition, about the heat insulating material of the samples 1-3, it adjusted so that the ratio of a bulk specific gravity and the hole diameter of 10-30 micrometers in the pores of all the pores after baking by changing the pressure of the spin-drying | dehydration press at the time of compression molding may differ. . The addition amount of the polymer flocculant was 3 to 10% by mass.

上記した試料1〜6の断熱材を1350℃にて3時間保持して焼成し、それらの細孔径の容積と分布を水銀ポロシメータで測定した。この測定結果に基づいて全気孔容積に対する孔径10〜30μmの気孔の容積の割合を算出した。また、断熱材のかさ比重は、断熱材の重量をノギスによって測定し算出した体積で除して求めた。曲げ強度は、各試料の断熱材を長さ150mm、幅50mm、厚さ25mmの長方体形状に加工した後、オートグラフを用いてスパン100mmで曲げ強さを測定した。熱伝導率は、JIS R2616に準拠した熱線法によって800℃から1400℃までの温度範囲で測定を行った。上記の各種評価結果を断熱骨材、断熱繊維、及び結合剤の含有率と共に下記表1に示す。   The heat insulating materials of Samples 1 to 6 described above were calcined while being held at 1350 ° C. for 3 hours, and the volume and distribution of their pore diameters were measured with a mercury porosimeter. Based on this measurement result, the ratio of the volume of pores having a pore diameter of 10 to 30 μm to the total pore volume was calculated. The bulk specific gravity of the heat insulating material was obtained by dividing the weight of the heat insulating material by a volume calculated by measuring with a caliper. The bending strength was measured by bending the heat insulating material of each sample into a rectangular shape having a length of 150 mm, a width of 50 mm, and a thickness of 25 mm, and using an autograph at a span of 100 mm. The thermal conductivity was measured in a temperature range from 800 ° C. to 1400 ° C. by a hot wire method in accordance with JIS R2616. The above various evaluation results are shown in Table 1 below together with the contents of the heat insulating aggregate, the heat insulating fiber, and the binder.

Figure 2018080094
Figure 2018080094

上記表1の結果から分かるように、本発明の要件を満たす試料1〜3の断熱材は、いずれもかさ比重が0.5以下と軽いにもかかわらず曲げ強度がハンドリング可能な0.5MPa以上の強度を有しており、また、熱伝導率は800℃で0.18W/(m・K)以下、1400℃で0.25W/(m・K)以下となり、800〜1400℃の温度範囲において優れた断熱性を有していた。   As can be seen from the results of Table 1 above, the thermal insulation materials of Samples 1 to 3 that satisfy the requirements of the present invention are 0.5 MPa or more that can handle the bending strength regardless of whether the bulk specific gravity is as light as 0.5 or less. The thermal conductivity is 0.18 W / (m · K) or less at 800 ° C. and 0.25 W / (m · K) or less at 1400 ° C., and the temperature range is 800 to 1400 ° C. It had excellent heat insulating properties.

これに対して試料4は断熱骨材の含有量を試料1〜3よりも少なくしたので、かさ比重が0.3よりも低くなると共に孔径10〜30μm気孔の割合が70容量%を超えたため、曲げ強度が試料1〜3よりも低くなり、1400℃の熱伝導率が試料1〜3よりも高くなった。逆に試料5及び6は断熱骨材の含有量を試料1〜3よりも多くしたので、試料5の断熱材では孔径10〜30μmの気孔の割合は30〜70容量%の範囲内に収まったが、かさ比重が0.5を超過し、試料6の断熱材は、かさ比重は0.3〜0.5の範囲内に収まったが、孔径10〜30μmの気孔の割合が30質量%よりも低かったため、いずれも800℃及び1400℃における熱伝導率が試料1〜3と比較して大きくなった。このように、かさ比重及び全気孔容積に占める孔径10〜30μmの気孔の割合の少なくとも一方の要件が本発明の要件から外れる場合は、曲げ強度や熱伝導率が不十分になることが分かる。   On the other hand, since the content of the heat insulating aggregate in Sample 4 was smaller than that in Samples 1 to 3, the bulk specific gravity was lower than 0.3 and the ratio of pore diameters of 10 to 30 μm exceeded 70% by volume. The bending strength was lower than those of Samples 1 to 3, and the thermal conductivity at 1400 ° C. was higher than that of Samples 1 to 3. On the other hand, since the contents of the heat insulating aggregates in Samples 5 and 6 were higher than those in Samples 1 to 3, the ratio of pores having a pore diameter of 10 to 30 μm was within the range of 30 to 70% by volume in the heat insulating material of Sample 5. However, the bulk specific gravity exceeded 0.5, and the heat insulating material of Sample 6 was within the range of the bulk specific gravity of 0.3 to 0.5, but the proportion of pores having a pore diameter of 10 to 30 μm was more than 30% by mass. Therefore, the thermal conductivities at 800 ° C. and 1400 ° C. were higher than those of Samples 1 to 3, respectively. Thus, it can be seen that when at least one of the bulk specific gravity and the ratio of pores having a pore diameter of 10 to 30 μm in the total pore volume deviates from the requirements of the present invention, the bending strength and the thermal conductivity become insufficient.

Claims (5)

多孔質構造の断熱骨材と、強化材としての耐火繊維と、これらを結合する結合材とからなる断熱材であって、焼成後はかさ比重が0.3〜0.5であって孔径10〜30μmの気孔が全気孔の容積の40〜70容積%を占めており、且つ800℃における熱伝導率が0.18W/(m・K)以下、1400℃における熱伝導率が0.26W/(m・K)以下であることを特徴とする断熱材。   A heat insulating material composed of a heat-insulating aggregate having a porous structure, a refractory fiber as a reinforcing material, and a binder for bonding them, and has a bulk specific gravity of 0.3 to 0.5 and a pore diameter of 10 after firing. The pores of ˜30 μm occupy 40 to 70% by volume of the total pores, and the thermal conductivity at 800 ° C. is 0.18 W / (m · K) or less, and the thermal conductivity at 1400 ° C. is 0.26 W / (M · K) or less, a heat insulating material. 前記焼成後は曲げ強度が0.5MPa以上あることを特徴とする、請求項1に記載の断熱材。   The heat insulating material according to claim 1, wherein after the firing, the bending strength is 0.5 MPa or more. 前記断熱骨材は、気孔径0.01〜5μmの気孔を有していることを特徴とする、請求項1又は2に記載の断熱材。   The heat insulating material according to claim 1, wherein the heat insulating aggregate has pores having a pore diameter of 0.01 to 5 μm. 成形体又は不定形の形態を有していることを特徴とする、請求項1〜3のいずれか1項に記載の断熱材。   The heat insulating material according to any one of claims 1 to 3, wherein the heat insulating material has a shaped body or an irregular shape. 請求項1〜3のいずれか1項に記載の断熱材が不定形の形態で成形体に被覆して一体化していることを特徴とする複合品。   A composite article, wherein the heat insulating material according to any one of claims 1 to 3 is integrally formed by covering a molded body in an irregular shape.
JP2016225149A 2016-11-18 2016-11-18 Insulation Active JP6607839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225149A JP6607839B2 (en) 2016-11-18 2016-11-18 Insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225149A JP6607839B2 (en) 2016-11-18 2016-11-18 Insulation

Publications (2)

Publication Number Publication Date
JP2018080094A true JP2018080094A (en) 2018-05-24
JP6607839B2 JP6607839B2 (en) 2019-11-20

Family

ID=62197044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225149A Active JP6607839B2 (en) 2016-11-18 2016-11-18 Insulation

Country Status (1)

Country Link
JP (1) JP6607839B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001942A (en) * 2018-06-26 2020-01-09 イソライト工業株式会社 Heat insulation material, and method of producing the same
JP2021088475A (en) * 2019-12-03 2021-06-10 デンカ株式会社 Inorganic fiber molded product, heating furnace, structural body, and method for manufacturing inorganic fiber molded product
CN114656242A (en) * 2022-03-15 2022-06-24 汉江城建集团有限公司 Preparation method of construction waste recycled insulating brick
WO2024010264A1 (en) * 2022-07-07 2024-01-11 한국에너지기술연구원 High-density heat storage molded body having porous structure stable in heat storage and release cycle, and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001942A (en) * 2018-06-26 2020-01-09 イソライト工業株式会社 Heat insulation material, and method of producing the same
JP2021088475A (en) * 2019-12-03 2021-06-10 デンカ株式会社 Inorganic fiber molded product, heating furnace, structural body, and method for manufacturing inorganic fiber molded product
WO2021112169A1 (en) 2019-12-03 2021-06-10 デンカ株式会社 Inorganic fiber molded body, heating furnace, structure, and method for manufacturing inorganic fiber molded body
CN114746379A (en) * 2019-12-03 2022-07-12 电化株式会社 Inorganic fiber molded body, heating furnace, structure, and method for producing inorganic fiber molded body
KR20220106150A (en) 2019-12-03 2022-07-28 덴카 주식회사 Inorganic fiber molded body, heating furnace, structure, and method for manufacturing inorganic fiber molded body
CN114746379B (en) * 2019-12-03 2023-08-08 电化株式会社 Inorganic fiber molded body, heating furnace, structure, and method for producing inorganic fiber molded body
CN114656242A (en) * 2022-03-15 2022-06-24 汉江城建集团有限公司 Preparation method of construction waste recycled insulating brick
WO2024010264A1 (en) * 2022-07-07 2024-01-11 한국에너지기술연구원 High-density heat storage molded body having porous structure stable in heat storage and release cycle, and method for manufacturing same

Also Published As

Publication number Publication date
JP6607839B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6607839B2 (en) Insulation
JP6602827B2 (en) Insulating material and manufacturing method thereof
CN106220224A (en) A kind of heat-resistant light adiabator with double-hole structure and preparation method thereof
JPH0465030B2 (en)
HUE030569T2 (en) Lightweight ceramic material
Yan et al. Lightweight cordierite–mullite refractories with low coefficients of thermal conductivity and high mechanical properties
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP2014228035A (en) Fireproof heat insulation material and manufacturing method
US20170336014A1 (en) Heat insulator
JP2015218078A (en) Light weight thermal insulation alumina and magnesia refractory
JP6456857B2 (en) Particles for irregular refractories
JP5465396B2 (en) Low thermal conductivity powder composition for heat insulation castable
JP5963704B2 (en) Refractory insulation and method for producing the same
JP2015038365A (en) Heat insulation material and manufacturing method thereof
JP6214514B2 (en) Insulation
JP2016030710A (en) Insulating fire brick
KR101850585B1 (en) Heat insulator
JP6320872B2 (en) Hollow particles and thermal insulation containing hollow particles
JP4323732B2 (en) Insulating castable refractory
JP5885799B2 (en) Insulating material and manufacturing method thereof
JP6211479B2 (en) Composite insulation
JP6127353B2 (en) Insulating material and manufacturing method thereof
JPH0442867A (en) Low cement castable refractories
KR960004393B1 (en) Castable composition
JP6214518B2 (en) Insulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6607839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250