JP5956187B2 - Method for molding fiber reinforced plastic molding with three-dimensional additive - Google Patents

Method for molding fiber reinforced plastic molding with three-dimensional additive Download PDF

Info

Publication number
JP5956187B2
JP5956187B2 JP2012040773A JP2012040773A JP5956187B2 JP 5956187 B2 JP5956187 B2 JP 5956187B2 JP 2012040773 A JP2012040773 A JP 2012040773A JP 2012040773 A JP2012040773 A JP 2012040773A JP 5956187 B2 JP5956187 B2 JP 5956187B2
Authority
JP
Japan
Prior art keywords
resin
fiber
molding
mold
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012040773A
Other languages
Japanese (ja)
Other versions
JP2013173334A5 (en
JP2013173334A (en
Inventor
健 八牟禮
健 八牟禮
斉藤 誠
誠 斉藤
倉田 功
功 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibaraki Industrial Corporation
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Ibaraki Industrial Corporation
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibaraki Industrial Corporation, Nippon Steel Chemical and Materials Co Ltd filed Critical Ibaraki Industrial Corporation
Priority to JP2012040773A priority Critical patent/JP5956187B2/en
Publication of JP2013173334A publication Critical patent/JP2013173334A/en
Publication of JP2013173334A5 publication Critical patent/JP2013173334A5/ja
Application granted granted Critical
Publication of JP5956187B2 publication Critical patent/JP5956187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱可塑性樹脂或いは熱硬化性樹脂をマトリクス樹脂とした繊維強化複合材料であって、箱型、平板、カギ型などのシェル構造に、例えばリブやねじ孔などの立体的な補強構造(以下、「立体添加物」という。)を有する立体添加物付き繊維強化プラスチック成形体の成形方法に関するものである。   The present invention is a fiber reinforced composite material using a thermoplastic resin or a thermosetting resin as a matrix resin, and has a three-dimensional reinforcing structure such as a rib or a screw hole in a shell structure such as a box shape, a flat plate, or a key shape. The present invention relates to a method for molding a fiber-reinforced plastic molded article with a three-dimensional additive having (hereinafter referred to as “three-dimensional additive”).

従来、箱型、平板、カギ型などのシェル構造に、例えばリブやねじ孔などの立体的な補強構造などとされる立体添加物を備えた立体添加物付き繊維強化プラスチックを一体化された成形体として成形する方法が種々提案されている。   Conventionally, molded with a three-dimensional additive-added fiber reinforced plastic with a three-dimensional additive, such as a three-dimensional reinforcing structure such as a rib or screw hole, in a shell structure such as a box shape, flat plate, or key shape. Various methods for forming a body have been proposed.

特許文献1は、繊維強化した熱硬化樹脂シートで成形された第1成形品と、射出成形にて成形された熱可塑性合成樹脂から成形された第2成形品とからなる合成樹脂製複合成形体であって、前記第1成形品と前記第2成形品とが熱融着により一体化されていることを特徴とする。同方法は強化繊維と熱硬化性樹脂にて成形されたシェル構造の繊維強化プラスチックを射出成型の型にセットしてから、熱可塑性樹脂を射出成形にて熱融着によりシェル構造に取り付けるものである。   Patent Document 1 discloses a composite molded body made of a synthetic resin comprising a first molded product molded from a fiber reinforced thermosetting resin sheet and a second molded product molded from a thermoplastic synthetic resin molded by injection molding. And the said 1st molded product and the said 2nd molded product are integrated by heat sealing | fusion, It is characterized by the above-mentioned. In this method, a fiber reinforced plastic with a shell structure molded with reinforced fibers and a thermosetting resin is set in an injection mold, and then the thermoplastic resin is attached to the shell structure by heat fusion by injection molding. is there.

特許文献1に記載の成形は、熱硬化性樹脂によるFRP成形と、その後の射出成形の2段成形となりコストがかかる。   The molding described in Patent Document 1 is costly because it is a two-stage molding of FRP molding using a thermosetting resin and subsequent injection molding.

特許文献2は、実質的に2次元ランダムに配向しかつ特定の開繊状態を満たす炭素繊維が熱可塑性樹脂中に存在する複合材料からなるランダム層と、炭素繊維が一方向に引き揃えられた一方向材と熱可塑性樹脂とからなる一方向材層とを有する成形体とすることで、剛性に優れた炭素繊維複合材料を成形するものである。繊維長5mm超100mm以下の炭素繊維と熱可塑性樹脂とから構成されるランダム層と、炭素繊維が一方向に引き揃えられた一方向材と熱可塑性樹脂とからなる一方向材層とをプレス成形して得られる炭素繊維複合成形体である。   In Patent Document 2, a random layer composed of a composite material in which carbon fibers that are oriented in a two-dimensional random manner and satisfy a specific opening state are present in a thermoplastic resin, and the carbon fibers are aligned in one direction. By forming a molded body having a unidirectional material layer made of a unidirectional material and a thermoplastic resin, a carbon fiber composite material having excellent rigidity is molded. Press-molding a random layer composed of carbon fibers with a fiber length of more than 5 mm and not more than 100 mm and a thermoplastic resin, and a unidirectional material layer composed of a unidirectional material in which carbon fibers are aligned in one direction and a thermoplastic resin. It is a carbon fiber composite molded body obtained as described above.

特許文献2に記載の技術では比較的大型な成形物としての成形には適するが、細かなリブ構造やねじ孔などを成形すると付加する立体構造部分の形状が不安定になることや、高さの高い立体構造が成形し難い。   The technique described in Patent Document 2 is suitable for molding as a relatively large molded product, but if a fine rib structure or screw hole is molded, the shape of the added three-dimensional structure becomes unstable, and the height High three-dimensional structure is difficult to mold.

特許文献3には、長繊維基材とSMCなどの短繊維基材とを組み合わせて、リブ構造を有する車両用フードの成形方法が記載されている。特許文献3の成形方法は、比較的大型の成形物に適用されるものである。   Patent Document 3 describes a method for forming a vehicle hood having a rib structure by combining a long fiber base material and a short fiber base material such as SMC. The molding method of Patent Document 3 is applied to a relatively large molded product.

特開2002−347067号公報JP 2002-347067 A 特開2011−241338号公報JP 2011-241338 A 特許第4220805号公報Japanese Patent No. 4220805

本発明者らは、上記特許文献1、2、3に記載する技術の問題点を解決するために多くの研究実験を行った結果、使用する強化繊維の繊維長さ、含有量、更には、金型の構造、などを調整することによって、一方向や織物形状の連続の強化繊維によるシェル構造に、ねじ孔や細かなリブ構造を有する繊維強化プラスチック成形体を1回のプレス成形にて短時間に成形し得ることを見出した。   As a result of conducting many research experiments in order to solve the problems of the techniques described in Patent Documents 1, 2, and 3, the present inventors have found that the fiber length and content of the reinforcing fibers used are By adjusting the structure of the mold, etc., the fiber reinforced plastic molded body with screw holes and fine rib structure can be shortened by one press molding to the shell structure with continuous reinforcing fiber in one direction or fabric shape. It has been found that it can be molded in time.

本発明は斯かる本発明者らの新規な知見に基づきなされたものである。   The present invention has been made based on such novel findings of the present inventors.

本発明の目的は、箱型、平板、カギ型などのシェル構造に、リブやねじ孔などの立体的な補強構造を有する立体添加物付き繊維強化プラスチック成形体の成形方法を提供することである。   An object of the present invention is to provide a method for molding a fiber-reinforced plastic molded article with a three-dimensional additive having a three-dimensional reinforcing structure such as a rib or a screw hole in a shell structure such as a box shape, a flat plate, or a key shape. .

本発明の他の目的は、箱型、平板、カギ型などのシェル構造に、リブやねじ孔などの立体的な補強構造を有する立体添加物付き繊維強化プラスチックを1回のプレス成形にて短時間に成形することのできる立体添加物付き繊維強化プラスチック成形体の成形方法を提供することである。   Another object of the present invention is to shorten the fiber reinforced plastic with a three-dimensional additive having a three-dimensional reinforcing structure such as a rib or a screw hole into a shell structure such as a box shape, a flat plate, or a key shape by a single press molding. It is an object of the present invention to provide a method for molding a fiber-reinforced plastic molded article with a three-dimensional additive that can be molded in time.

上記目的は本発明に係る立体添加物付き繊維強化プラスチック成形体の成形方法にて達成される。要約すれば、本発明は、繊維長さが0.01mm以上、2.0mm以下の長さの短繊維が5〜50wt%の配合量でランダム配向されたシート状、フレーク状或いはペレット状の熱可塑性樹脂或いは熱硬化性樹脂とされる短繊維強化樹脂と、
熱可塑性樹脂或いは熱硬化性樹脂が含浸された一方向或いは織物の連続強化繊維プリプレグと、
を有する繊維強化プラスチック材を、外金型及び内金型を有する金型による1回のプレス成形により、前記連続強化繊維プリプレグと前記短繊維強化樹脂にて成形された連続繊維層と短繊維層の積層体から成るシェルと、前記短繊維強化樹脂にて成形された立体添加物とを有する繊維強化プラスチック成形体を成形する方法であって、
前記外金型及び前記内金型は、互いに組み合わせて成形加工状態に配置された時、互いに対向配置されて前記外金型と前記内金型との間に前記繊維強化プラスチック成形体を形成するための成形空間を形成する鍔部分を有しており、
前記鍔部分は、前記成形空間から外方へと20mm以上、100mm以下にて前記外金型及び前記内金型の外周辺に延在して形成されており、
対向配置された前記両金型の前記鍔部分のクリアランスを、成形しようとする前記繊維強化プラスチック成形体の前記シェルの板厚(tmm)に対して0.5・t(mm)以上、0.75・t(mm)以下に調整することによって、プレスの圧力を生じさせ、このプレスの圧力によって、樹脂を流動させて前記鍔部分のクリアランスに樹脂をはみ出させることを特徴とする立体添加物付き繊維強化プラスチック成形体の成形方法である。
The above object is achieved by the method for molding a fiber-reinforced plastic molded article with a three-dimensional additive according to the present invention. In summary, the present invention is a sheet-like, flake-like or pellet-like heat in which short fibers having a fiber length of 0.01 mm or more and 2.0 mm or less are randomly oriented at a blending amount of 5 to 50 wt%. A short fiber reinforced resin which is a plastic resin or a thermosetting resin;
Unidirectional or woven continuous reinforcing fiber prepreg impregnated with thermoplastic resin or thermosetting resin;
A continuous fiber layer and a short fiber layer formed of the continuous reinforcing fiber prepreg and the short fiber reinforced resin by one-time press molding using a mold having an outer mold and an inner mold. A method of molding a fiber-reinforced plastic molded body having a shell made of a laminate of the above and a three-dimensional additive molded with the short fiber-reinforced resin,
When the outer mold and the inner mold are arranged in combination with each other, they are arranged opposite to each other to form the fiber-reinforced plastic molded body between the outer mold and the inner mold. And has a flange portion that forms a molding space for
The flange portion is formed to extend outward from the molding space to the outer periphery of the outer mold and the inner mold at 20 mm or more and 100 mm or less,
The clearance of the flange portions of the two molds arranged to face each other is 0.5 · t (mm) or more with respect to the plate thickness (tmm) of the shell of the fiber-reinforced plastic molding to be molded, and by adjusting the 75 · t (mm) or less, causing the pressure of the press, the pressure of the press, solid additives, wherein isosamples in flowing resin was protrude a resin into the clearance of the flange portion This is a method for forming a fiber-reinforced plastic molded article with a ring.

本発明の一実施態様によると、前記鍔部分のうち前記成形空間から少なくとも15〜30mmの間には、前記クリアランスを樹脂流動方向へと0.1°以上、20°以下の勾配をつけ徐々に狭くすることによって、プレスの圧力を前記金型内部の前記成形空間に生じさせて前記短繊維強化樹脂を流動させる。   According to one embodiment of the present invention, the clearance is gradually provided with a gradient of 0.1 ° or more and 20 ° or less in the resin flow direction between at least 15 to 30 mm from the molding space in the flange portion. By narrowing, a pressure of a press is generated in the molding space inside the mold to flow the short fiber reinforced resin.

本発明の他の実施態様によると、前記連続強化繊維プリプレグの樹脂及び前記短繊維強化樹脂の樹脂が熱可塑性樹脂である場合、前記繊維強化プラスチック材を当該熱可塑性樹脂の融点よりも高い温度に予備加熱した後に、該融点よりも低い温度に調整した前記金型でプレス成形する。   According to another embodiment of the present invention, when the resin of the continuous reinforced fiber prepreg and the resin of the short fiber reinforced resin are thermoplastic resins, the fiber reinforced plastic material is brought to a temperature higher than the melting point of the thermoplastic resin. After preheating, press molding is performed with the mold adjusted to a temperature lower than the melting point.

本発明の他の実施態様によると、前記連続強化繊維プリプレグの樹脂及び前記短繊維強化樹脂の樹脂が熱硬化性樹脂である場合、前記繊維強化プラスチック材を該熱硬化性樹脂の硬化温度よりも高い温度に調整した前記金型でプレス成形する。   According to another embodiment of the present invention, when the resin of the continuous reinforced fiber prepreg and the resin of the short fiber reinforced resin are thermosetting resins, the fiber reinforced plastic material is more than the curing temperature of the thermosetting resin. It press-molds with the said metal mold | die adjusted to high temperature.

本発明によれば、箱型、平板、カギ型などのシェル構造に、リブやねじ孔などの立体的な補強構造を有する立体添加物付き繊維強化プラスチック成形体を高精度に成形することができる。また、本発明によれば、箱型、平板、カギ型などのシェル構造に、リブやねじ孔などの立体的な補強構造を有する立体添加物付き繊維強化プラスチックを1回のプレス成形にて短時間に成形することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fiber reinforced plastic molding with a three-dimensional additive which has three-dimensional reinforcement structures, such as a rib and a screw hole, can be shape | molded with high precision in shell structures, such as a box shape, a flat plate, and a key type. . Further, according to the present invention, a fiber reinforced plastic with a three-dimensional additive having a three-dimensional reinforcing structure such as a rib or a screw hole in a shell structure such as a box shape, a flat plate, or a key shape can be shortened by one press molding. Can be molded in time.

図1(a)は、本発明の立体添加物付き繊維強化プラスチック成形体の成形方法を説明するための断面図であり、図1(b)は、本発明にて成形された立体添加物付き繊維強化プラスチック成形体の断面斜視図である。FIG. 1 (a) is a cross-sectional view for explaining a molding method of a fiber-reinforced plastic molded article with a three-dimensional additive of the present invention, and FIG. 1 (b) is with a three-dimensional additive molded according to the present invention. It is a cross-sectional perspective view of a fiber reinforced plastic molding. 本発明の成形方法に使用する繊維強化プラスチック材の一実施例を示す平面図である。It is a top view which shows one Example of the fiber reinforced plastic material used for the shaping | molding method of this invention. 図3(a)は、本発明にて成形された立体添加物付き繊維強化プラスチック成形体の一実施例を示す斜視図であり、図3(b)は、図3(a)の線A−Aに取った断面図である。Fig.3 (a) is a perspective view which shows one Example of the fiber reinforced plastic molding with a three-dimensional additive shape | molded by this invention, FIG.3 (b) is a line A- of Fig.3 (a). It is sectional drawing taken in A. FIG. 本発明の成形方法に使用する金型を説明するもので、図4(a)は、内金型の一例を示す断面図であり、図4(b)は、外金型の一例を示す断面図であり、図4(c)は、内金型と外金型を成形加工状態に配置した時の状態を示す断面図である。FIG. 4 (a) is a cross-sectional view showing an example of an inner mold, and FIG. 4 (b) is a cross-section showing an example of an outer mold. FIG. 4C is a cross-sectional view showing a state when the inner mold and the outer mold are arranged in a molding process state.

以下、本発明に係る立体添加物付き繊維強化プラスチック成形体の成形方法を図面に則して更に詳しく説明する。   Hereinafter, the molding method of the fiber-reinforced plastic molded body with a three-dimensional additive according to the present invention will be described in more detail with reference to the drawings.

実施例1
図1(a)、(b)及び図2(a)、(b)を参照して本発明の一実施例に従った立体添加物付き繊維強化プラスチック成形体の成形方法について説明する。
Example 1
A method for molding a fiber-reinforced plastic molded body with a three-dimensional additive according to one embodiment of the present invention will be described with reference to FIGS. 1 (a), 1 (b) and FIGS. 2 (a), 2 (b).

本発明によれば、図1(a)及び図2(a)、(b)に示すように、連続繊維の強化繊維にマトリクス樹脂が含浸された連続強化繊維プリプレグ11と、所定の繊維長さとされる短繊維の強化繊維が所定量配合された短繊維強化樹脂12とを有する繊維強化プラスチック材10が使用される。この繊維強化プラスチック材10は、図1(a)に示すように、金型100(例えば、内金型101及び外金型102)にて1回のプレス成形を行い、その時のプレス圧力によって短繊維強化樹脂12を流動させ、それによって、図1(b)に示すように、連続繊維強化プラスチック層(連続繊維層)11A及び短繊維強化プラスチック層(短繊維層)12Aの積層体から成るシェル1Aと、短繊維強化プラスチック層12Aからなる立体的添加物2Aとを備えた立体添加物付き繊維強化プラスチック成形体1を成形する。   According to the present invention, as shown in FIGS. 1 (a) and 2 (a), (b), a continuous reinforcing fiber prepreg 11 in which a reinforcing fiber of continuous fibers is impregnated with a matrix resin, a predetermined fiber length, A fiber reinforced plastic material 10 having a short fiber reinforced resin 12 in which a predetermined amount of reinforced fibers of short fibers are blended is used. As shown in FIG. 1A, the fiber reinforced plastic material 10 is press-molded once with a mold 100 (for example, an inner mold 101 and an outer mold 102), and is shortened by the pressing pressure at that time. As shown in FIG. 1 (b), the fiber reinforced resin 12 is caused to flow, thereby forming a shell composed of a laminate of a continuous fiber reinforced plastic layer (continuous fiber layer) 11A and a short fiber reinforced plastic layer (short fiber layer) 12A. A fiber-reinforced plastic molded body 1 with a three-dimensional additive including 1A and a three-dimensional additive 2A composed of a short fiber-reinforced plastic layer 12A is molded.

更に説明すると、連続強化繊維プリプレグ11は、一方向或いは織物とされる強化繊維に熱可塑性樹脂或いは熱硬化性樹脂が含浸された一方向或いは織物の連続強化繊維プリプレグとされる。   More specifically, the continuous reinforcing fiber prepreg 11 is a unidirectional or woven continuous reinforcing fiber prepreg in which a reinforcing fiber to be unidirectional or woven is impregnated with a thermoplastic resin or a thermosetting resin.

強化繊維としては、炭素繊維が最も好ましいが、その他、種々の繊維を使用し得る。例えば、強化繊維としては、炭素繊維の他に、ガラス繊維、バサルト繊維;ボロン繊維、チタン繊維、スチール繊維などの金属繊維;更には、アラミド、PBO(ポリパラフェニレンベンズビスオキサゾール)、ポリアミド、ポリアリレート、ポリエステルなどの有機繊維;が単独で、又は、複数種混入してハイブリッドにて使用することができる。   As the reinforcing fiber, carbon fiber is most preferable, but various other fibers can be used. For example, as the reinforcing fiber, in addition to carbon fiber, glass fiber, basalt fiber; metal fiber such as boron fiber, titanium fiber, steel fiber; and further, aramid, PBO (polyparaphenylene benzbisoxazole), polyamide, poly Organic fibers such as arylate and polyester can be used alone or in a mixture of plural kinds.

また、樹脂としては、熱硬化性樹脂又は熱可塑性樹脂を使用することができ、熱硬化性樹脂としては、常温硬化型或は熱硬化型のエポキシ樹脂、ビニールエステル樹脂、不飽和ポリエステル樹脂、又はフェノール樹脂などが好適に使用され、又、熱可塑性樹脂としては、ポリカーボネイト樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリウレタン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、ビニロンなどが好適に使用可能である。   Further, as the resin, a thermosetting resin or a thermoplastic resin can be used, and as the thermosetting resin, a room temperature curable type or a thermosetting type epoxy resin, a vinyl ester resin, an unsaturated polyester resin, or Phenol resin and the like are preferably used, and as the thermoplastic resin, polycarbonate resin, polyetherimide resin, polyether ether ketone resin, polyether ketone ketone resin, polyphenylene sulfide resin, acrylic resin, polyurethane resin, polypropylene resin, ABS resin, nylon, vinylon and the like can be suitably used.

連続強化繊維プリプレグ11は、強化繊維を一方向に引き揃えて形成された強化繊維シートに樹脂を含浸させて形成したUD形状のプリプレグか、或いは、強化繊維を織成して形成された平織り、綾織り、朱子織り、などの織物に樹脂を含浸させて形成したクロスプリプレグとされる。樹脂含浸量は、30〜70wt%、好ましくは、40〜60wt%とされる。   The continuous reinforcing fiber prepreg 11 is a UD-shaped prepreg formed by impregnating a reinforcing fiber sheet formed by aligning reinforcing fibers in one direction with a resin, or a plain weave or twill weave formed by weaving reinforcing fibers. A cross prepreg formed by impregnating a woven fabric such as a satin weave with a resin. The resin impregnation amount is 30 to 70 wt%, preferably 40 to 60 wt%.

一方、本発明によれば、短繊維強化樹脂12は、強化繊維と樹脂とを含み、強化繊維は繊維長さが0.01〜2.0mm(0.01mm以上、2.0mm以下)の長さの短繊維とされ、樹脂は熱可塑性樹脂或いは熱硬化性樹脂とされる。短繊維強化樹脂12において、強化繊維は、5〜50wt%の配合量にて含まれている。短繊維強化樹脂12は、強化繊維がランダムに配向されたシート状(図2(b))、フレーク状或いはペレット状(図2(a))とされる。   On the other hand, according to the present invention, the short fiber reinforced resin 12 includes a reinforced fiber and a resin, and the reinforced fiber has a fiber length of 0.01 to 2.0 mm (0.01 mm or more and 2.0 mm or less). The resin is a thermoplastic resin or a thermosetting resin. In the short fiber reinforced resin 12, the reinforced fiber is contained in a blending amount of 5 to 50 wt%. The short fiber reinforced resin 12 is in the form of a sheet (FIG. 2 (b)), flakes or pellets (FIG. 2 (a)) in which reinforcing fibers are randomly oriented.

本発明にて、上述のように、短繊維強化樹脂12に配合される強化繊維は繊維長さが0.01〜2.0mmの長さの短繊維とされるが、繊維が3mm以上では、細かなリブ構造や、高さの高い立体構造の立体的添加物を成形すると、樹脂の流動性が悪化して微細構造の形成が難しく、十分な高さの立体構造の成形が難しい。繊維長さが0.01未満では、短繊維強化樹脂12としての十分な強度を得ることができない。   In the present invention, as described above, the reinforcing fiber blended in the short fiber reinforced resin 12 is a short fiber having a fiber length of 0.01 to 2.0 mm, but if the fiber is 3 mm or more, If a three-dimensional additive having a fine rib structure or a high three-dimensional structure is formed, the fluidity of the resin deteriorates, making it difficult to form a fine structure, and forming a sufficiently high three-dimensional structure is difficult. If the fiber length is less than 0.01, sufficient strength as the short fiber reinforced resin 12 cannot be obtained.

また、強化繊維は、5〜50wt%(5wt%以上、50wt%以下)の配合量にて含まれているが、含有量が50wt%を超えると、やはり樹脂の流動性が悪化して、微細構造の形成が難しく、十分な高さの立体構造の成形が難しい。また、含有量が5wt%未満では、固化後の熱収縮によって構造体に歪みが生じることがあり、樹脂中に繊維が5wt%以上含まれることが必要である。好ましくは、繊維長さは0.3〜1.0mm、繊維の配合量は、5〜30wt%である。   Further, the reinforcing fiber is contained in a blending amount of 5 to 50 wt% (5 wt% or more and 50 wt% or less), but if the content exceeds 50 wt%, the fluidity of the resin is deteriorated and the fineness is reduced. It is difficult to form a structure, and it is difficult to form a three-dimensional structure with a sufficient height. If the content is less than 5 wt%, the structure may be distorted by heat shrinkage after solidification, and the resin needs to contain 5 wt% or more. Preferably, the fiber length is 0.3 to 1.0 mm, and the amount of fiber is 5 to 30 wt%.

短繊維強化樹脂12に使用する強化繊維及び樹脂は、上記連続強化繊維プリプレグ11と同様とし得る。つまり、強化繊維としては、炭素繊維が最も好ましいが、その他、種々の繊維を使用し得る。例えば、強化繊維としては、炭素繊維の他に、ガラス繊維、バサルト繊維;ボロン繊維、チタン繊維、スチール繊維などの金属繊維;更には、アラミド、PBO(ポリパラフェニレンベンズビスオキサゾール)、ポリアミド、ポリアリレート、ポリエステルなどの有機繊維;が単独で、又は、複数種混入してハイブリッドにて使用することができる。   The reinforcing fiber and resin used for the short fiber reinforced resin 12 may be the same as those of the continuous reinforcing fiber prepreg 11. That is, as the reinforcing fiber, carbon fiber is most preferable, but various other fibers can be used. For example, as the reinforcing fiber, in addition to carbon fiber, glass fiber, basalt fiber; metal fiber such as boron fiber, titanium fiber, steel fiber; and further, aramid, PBO (polyparaphenylene benzbisoxazole), polyamide, poly Organic fibers such as arylate and polyester can be used alone or in a mixture of plural kinds.

また、樹脂としては、上述のように、熱硬化性樹脂又は熱可塑性樹脂を使用することができ、熱硬化性樹脂としては、常温硬化型或は熱硬化型のエポキシ樹脂、ビニールエステル樹脂、不飽和ポリエステル樹脂、又はフェノール樹脂などが好適に使用され、又、熱可塑性樹脂としては、ポリカーボネイト樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリウレタン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、ビニロンなどが好適に使用可能である。   In addition, as described above, a thermosetting resin or a thermoplastic resin can be used as the resin. As the thermosetting resin, a room temperature curing type or a thermosetting type epoxy resin, a vinyl ester resin, a non-volatile resin, or the like. Saturated polyester resin, phenol resin, or the like is preferably used, and as the thermoplastic resin, polycarbonate resin, polyether imide resin, polyether ether ketone resin, polyether ketone ketone resin, polyphenylene sulfide resin, acrylic resin, polyurethane Resin, polypropylene resin, ABS resin, nylon, vinylon, etc. can be suitably used.

本発明者らは、上述のように、短繊維強化樹脂12と連続強化繊維プリプレグ11とを備えた繊維強化プラスチック材10を1回のプレス成形にて、特に、プレス成形時のプレスの圧力によって短繊維強化樹脂12を流動させ、連続繊維強化プラスチック層(連続繊維層)11A及び短繊維強化樹脂層(短繊維層)12Aの積層体とされるシェル1Aと、短繊維強化樹脂層(短繊維層)12Aによる立体的添加物2Aと、にて構成される繊維強化プラスチック成形体1を好適に成形し得ることを見出した。   As described above, the inventors of the present invention have performed the fiber reinforced plastic material 10 including the short fiber reinforced resin 12 and the continuous reinforced fiber prepreg 11 by one press molding, in particular, by the press pressure during the press molding. The short fiber reinforced resin 12 is made to flow, the shell 1A which is a laminate of the continuous fiber reinforced plastic layer (continuous fiber layer) 11A and the short fiber reinforced resin layer (short fiber layer) 12A, and the short fiber reinforced resin layer (short fiber) It has been found that the fiber-reinforced plastic molded body 1 composed of the three-dimensional additive 2A based on the layer 12A can be suitably molded.

図1(b)に示す繊維強化プラスチック成形体1の一例では、箱形の成形体1の外周の側面壁体及び底面壁体とされるシェル1Aが、連続繊維強化プラスチック層(連続繊維層)11A及び短繊維強化プラスチック層(短繊維層)12Aの積層体とされ、底面壁体に形成された部品取り付け台部及びリブなどが短繊維強化プラスチック層(短繊維層)12Aによる立体的添加物2Aである。   In an example of the fiber reinforced plastic molded body 1 shown in FIG. 1B, the shell 1A which is the side wall and the bottom wall of the outer periphery of the box-shaped molded body 1 is a continuous fiber reinforced plastic layer (continuous fiber layer). 11A and a short fiber reinforced plastic layer (short fiber layer) 12A, and a three-dimensional additive formed by a short fiber reinforced plastic layer (short fiber layer) 12A having component mounting bases and ribs formed on the bottom wall. 2A.

本発明の成形方法では、プレス成形するときの金型100の内部に圧力をかけることが重要である。   In the molding method of the present invention, it is important to apply pressure to the inside of the mold 100 during press molding.

つまり、プレス時の金型100の、即ち、内金型101と外金型102とにて形成される成形空間V(図4(c)参照)の上面のクリアランスCLを小さくすることで、金型100を押し切る直前に、金型上面の成形空間Vの周辺部分が密閉され、内部に圧力がかかる構造にすることが必要である。斯かる構造とすることで、その圧力で短繊維強化樹脂12が流動し、短繊維強化樹脂12が金型内のリブ構造やねじ孔構造、また高さの高い(幅に対して5倍以上の)立体構造部分に緻密に入り込む。   That is, by reducing the clearance CL on the upper surface of the molding space 100 (see FIG. 4C) formed by the inner mold 101 and the outer mold 102 during pressing, that is, the mold Immediately before the mold 100 is pushed out, it is necessary to have a structure in which the peripheral portion of the molding space V on the upper surface of the mold is sealed and pressure is applied to the inside. By adopting such a structure, the short fiber reinforced resin 12 flows under the pressure, and the short fiber reinforced resin 12 has a rib structure or a screw hole structure in the mold, and a high height (more than 5 times the width). ()) It goes into the three-dimensional structure part.

短繊維強化樹脂12中の繊維が長かったり、繊維量が多すぎると、金型内の細部まで樹脂が充填されず、正確な立体構造を得ることが難しい。また、固化後の冷却による収縮で部材が歪まないようにするには、ある程度の繊維量(5〜50wt%)を含む樹脂が好ましい。   If the fibers in the short fiber reinforced resin 12 are long or the amount of fibers is too large, the resin is not filled up to the details in the mold and it is difficult to obtain an accurate three-dimensional structure. In order to prevent the member from being distorted by shrinkage due to cooling after solidification, a resin containing a certain amount of fiber (5 to 50 wt%) is preferable.

次に、本発明に従って構成される金型100について更に説明する。図4(a)〜(c)には、詳しくは後述するように、本発明の作用効果を立証するための具体例1、2にて使用した金型100(内金型101、外金型102)を示す。   Next, the mold 100 configured according to the present invention will be further described. 4A to 4C, as will be described in detail later, the mold 100 (inner mold 101, outer mold) used in specific examples 1 and 2 for demonstrating the function and effect of the present invention. 102).

図4(a)の(イ)、(ロ)は、それぞれ、上金型(内金型)101の中央縦断面図及び中央横断面図である。また、図4(b)の(イ)、(ロ)は、それぞれ、下金型(外金型)102の中央縦断面図及び中央横断面図である。   (A) and (b) of FIG. 4A are a central longitudinal sectional view and a central transverse sectional view of the upper mold (inner mold) 101, respectively. 4B are (i) and (b), respectively, a central longitudinal sectional view and a central transverse sectional view of the lower mold (outer mold) 102. FIG.

一般的に言えば、外金型102は凹部102Aを備えており、内金型101は外金型102の凹部102Aに嵌り合う凸部101Aを備えている。成形加工時には、内金型101の凸部101Aが外金型102の凹部102Aに組み合わせられ、成形加工状態に配置された時、互いに対向配置されて外金型102と内金型101との間に繊維強化プラスチック成形体1を形成するための成形空間(V)(図4(c)参照)が形成される。実際の成形加工時には、この成形空間Vに本発明に従って構成される繊維強化プラスチック材10が配置され、内金型101と外金型102とにてプレス成形されることとなる。   Generally speaking, the outer mold 102 includes a recess 102A, and the inner mold 101 includes a protrusion 101A that fits into the recess 102A of the outer mold 102. At the time of molding, the convex portion 101A of the inner mold 101 is combined with the concave portion 102A of the outer mold 102, and when arranged in the molding processing state, they are arranged to face each other and between the outer mold 102 and the inner mold 101. A molding space (V) (see FIG. 4C) for forming the fiber-reinforced plastic molded body 1 is formed on the substrate. At the time of actual molding, the fiber reinforced plastic material 10 configured according to the present invention is disposed in the molding space V and is press-molded by the inner mold 101 and the outer mold 102.

また、本発明に従った金型100は、図4(a)〜(c)に示すように、内金型101の凸部101A、及び、外金型102の凹部102Aの外周辺エッジ部分には、それぞれ、鍔部分101a、102aが形成されている。この鍔部分101a、102aは、図4(c)に示すように、内金型101及び外金型102が互いに組み合わせられて成形加工状態に配置された時、凸部101A及び凹部102Aにて形成される成形空間Vを閉空間とするべく互いに対向配置される。   4A to 4C, the mold 100 according to the present invention is formed on the outer peripheral edge portion of the convex portion 101A of the inner mold 101 and the concave portion 102A of the outer mold 102. Are formed with flange portions 101a and 102a, respectively. As shown in FIG. 4C, the flange portions 101a and 102a are formed by the convex portions 101A and the concave portions 102A when the inner die 101 and the outer die 102 are combined with each other and arranged in a molding state. The molding spaces V are arranged to face each other so as to be a closed space.

鍔部分101a、102aは、内方端部、即ち、成形空間Vの上面から外方へと、幅W101a、W102aが20〜100mm(20mm以上、100mm以下)にて延在している。   The flange portions 101a and 102a extend from the inner end, that is, from the upper surface of the molding space V to the outside with a width W101a and W102a of 20 to 100 mm (20 mm or more and 100 mm or less).

また、成形される繊維強化プラスチック成形体1の外周辺エッジ部分に形成した鍔部分101a、102aは、実際の成形加工時には密着することはなく、図4(c)に示すように、両金型の鍔部分101a、102aは、所定のクリアランス(間隙)CLを設けて設置される。本発明に従えば、両金型の鍔部分101a、102aにて形成されるクリアランスCLは、成形しようとする繊維強化プラスチック成形体1におけるシェル部分1Aに相当する成形空間Vの空隙、即ち、シェル1Aの板厚(t)(mm)(図3(b)参照)の0.5以上、0.75以下(0.5・t(mm)≦CL≦0.75・t(mm))に調整することが必要である。   Further, the flange portions 101a and 102a formed on the outer peripheral edge portion of the fiber-reinforced plastic molded body 1 to be molded do not adhere to each other during the actual molding process, and as shown in FIG. The flange portions 101a and 102a are provided with a predetermined clearance (gap) CL. According to the present invention, the clearance CL formed by the flange portions 101a and 102a of both molds is the gap of the molding space V corresponding to the shell portion 1A in the fiber-reinforced plastic molded body 1 to be molded, that is, the shell. 1A thickness (t) (mm) (see FIG. 3 (b)) 0.5 or more and 0.75 or less (0.5 · t (mm) ≦ CL ≦ 0.75 · t (mm)) It is necessary to adjust.

鍔部分のクリアランスCLを上述のように調整することによって、成形加工時に成形空間Vにプレス圧力を生じさせ、このプレス時の圧力によって、短繊維強化樹脂12を成形空間Vから外周辺エッジ部分へと流動させることができる。   By adjusting the clearance CL of the flange portion as described above, a press pressure is generated in the molding space V during the molding process, and the short fiber reinforced resin 12 is moved from the molding space V to the outer peripheral edge portion by the pressure during the pressing. And can be made to flow.

つまり、本発明によれば、上述のように、金型100(内金型101、外金型102)には幅(W101a、W102a)が20〜100mmの鍔部分101a、102aを設け、外金型(下金型)102と内金型(上金型)101のクリアランスCLは、連続強化繊維プリプレグ11と短繊維強化樹脂12にて成形される成形物のシェル構造部分1Aの厚み(t)に対して、(0.5〜0.75)・t(mm)の範囲に調整される。   That is, according to the present invention, as described above, the mold 100 (the inner mold 101, the outer mold 102) is provided with the flange portions 101a, 102a having a width (W101a, W102a) of 20 to 100 mm, and the outer mold The clearance CL between the mold (lower mold) 102 and the inner mold (upper mold) 101 is the thickness (t) of the shell structure portion 1A of the molded product formed from the continuous reinforcing fiber prepreg 11 and the short fiber reinforced resin 12. On the other hand, it is adjusted in the range of (0.5 to 0.75) · t (mm).

本発明では、金型100の鍔部分101a、102aは、幅(W101a、W102a)が20〜100mmとされ、該鍔部分内で短繊維含有樹脂を冷え固まらせることによって金型内へとプレス圧力を生じさせてリブ及びボス等の立体添加物を成型させる。鍔部分101a、102aが20mm未満の場合は、鍔部分101a、102a内で樹脂を急速に固まらせることが必要となり、金型温度を低くする必要がある。そのため、金型内の樹脂も十分な流動ができないままプレスト中で硬化してしまい、シェル部板厚(t)などが所定の寸法以上で成形されることとなる。また、良好なリブ構造等ができなくなる虞がある。また、鍔部分101a、102aが100mmを超える場合は、この100mmを超える鍔部分101a、102aに樹脂を流動させて固化させようとすると、そのためには、金型温度を高くする必要がある。これにより、樹脂は十分な流動性を持って鍔部分101a、102aを移動することとなる。そのため、金型内にプレス圧力を保持させるためには樹脂の逃げが多すぎて、プレス圧力を保持させることが困難となる。そのため、プレス中に圧力が逃げ易くなり、良好なリブ構造等が成形できなくなる。   In the present invention, the flange portions 101a and 102a of the mold 100 have a width (W101a, W102a) of 20 to 100 mm, and the short-fiber-containing resin is cooled and solidified in the flange portion to press into the mold. To form solid additives such as ribs and bosses. When the flange portions 101a and 102a are less than 20 mm, it is necessary to rapidly harden the resin in the flange portions 101a and 102a, and it is necessary to lower the mold temperature. For this reason, the resin in the mold is also cured in the pressed state without sufficient flow, and the shell part plate thickness (t) and the like are molded with a predetermined dimension or more. Moreover, there is a possibility that a good rib structure or the like cannot be obtained. In addition, when the flange portions 101a and 102a exceed 100 mm, it is necessary to increase the mold temperature in order to cause the resin to flow and solidify the flange portions 101a and 102a exceeding 100 mm. As a result, the resin moves along the flange portions 101a and 102a with sufficient fluidity. Therefore, in order to maintain the press pressure in the mold, the resin escapes too much and it becomes difficult to maintain the press pressure. For this reason, pressure easily escapes during pressing, and a good rib structure or the like cannot be formed.

また、クリアランスCLが0.5・t(mm)より小さいときは、長繊維基材である連続強化繊維プリプレグ11の厚みと、短繊維強化樹脂12からのはみ出した樹脂がクリアランスCLを埋め尽くしてしまい、所定の厚みまで押し切ることが出来ず、寸法通りに仕上げることが出来ない。また、0.75・t(mm)よりも大きなクリアランスCLを設けると、短繊維強化樹脂12からのはみ出し樹脂で十分クリアランスCLが埋まりきらず、内部の圧力が逃げてしまい平滑な表面に仕上がらない。   In addition, when the clearance CL is smaller than 0.5 · t (mm), the thickness of the continuous reinforcing fiber prepreg 11 which is the long fiber base material and the resin protruding from the short fiber reinforcing resin 12 fill the clearance CL. Therefore, it cannot be pushed down to a predetermined thickness and cannot be finished according to the dimensions. Further, when a clearance CL larger than 0.75 · t (mm) is provided, the clearance CL is not sufficiently filled with the protruding resin from the short fiber reinforced resin 12, and the internal pressure escapes and the smooth surface is not finished.

鍔部分101a、102aには内側端部(成形空間V)から外方へと、即ち、短繊維強化樹脂12の流動方向へと、少なくとも、幅W101a(W102a)が15〜30mmの範囲に0.1〜20°(0.1°以上、20°以下)の内勾配(θ)をつけて、外側になるほど徐々にクリアランスCLが狭くなるような加工を施すことが好ましい。図4(c)には、勾配(θ)は、外金型102の鍔部分102aに設けるものとして図示されているが、勿論、内金型101の鍔部分101aの側に設けてもよく、或いは、両鍔部分101a、102aの両方に設けてもよい。   In the flange portions 101a and 102a, from the inner end (molding space V) outward, that is, in the flow direction of the short fiber reinforced resin 12, at least the width W101a (W102a) is 0.1 to 30 mm. It is preferable to apply an inner gradient (θ) of 1 to 20 ° (0.1 ° or more and 20 ° or less) so that the clearance CL gradually becomes narrower toward the outside. In FIG. 4C, the gradient (θ) is illustrated as being provided on the flange portion 102a of the outer mold 102, but of course, it may be provided on the flange portion 101a side of the inner mold 101. Or you may provide in both the collar parts 101a and 102a.

上述したように、本発明では、短繊維強化樹脂12及び連続繊維強化プリプレグ11に使用する樹脂は熱可塑性樹脂でも、熱硬化性樹脂でも良いが、短繊維強化樹脂12及び連続繊維強化プリプレグ11に熱可塑性樹脂を使用した場合は、短繊維強化樹脂12及び連続繊維強化プリプレグ11から成る繊維強化プラスチック材10を熱可塑性樹脂の融点より高い温度に予備加熱した後に、樹脂の融点よりも低い温度に調整された金型100にてプレス成形することで成形できる。   As described above, in the present invention, the resin used for the short fiber reinforced resin 12 and the continuous fiber reinforced prepreg 11 may be a thermoplastic resin or a thermosetting resin. When a thermoplastic resin is used, after preheating the fiber reinforced plastic material 10 comprising the short fiber reinforced resin 12 and the continuous fiber reinforced prepreg 11 to a temperature higher than the melting point of the thermoplastic resin, the temperature is lower than the melting point of the resin. It can shape | mold by press-molding with the adjusted metal mold | die 100. FIG.

また、短繊維強化樹脂12及び連続繊維強化プリプレグ11に熱硬化性樹脂を使用した場合には、樹脂が硬化する温度より高い温度に金型100を予備加熱熱してから、短繊維強化樹脂12及び連続繊維強化プリプレグ11から成る繊維強化プラスチック材10を該金型100でプレス成形して、硬化終了後に金型100を開放することで成形可能である。   Further, when a thermosetting resin is used for the short fiber reinforced resin 12 and the continuous fiber reinforced prepreg 11, the mold 100 is preheated to a temperature higher than the temperature at which the resin is cured, and then the short fiber reinforced resin 12 and The fiber reinforced plastic material 10 composed of the continuous fiber reinforced prepreg 11 is press-molded by the mold 100, and the mold 100 is opened after the curing is completed.

図2、図3を参照して、本発明の補強方法を更に具体的に説明する。   With reference to FIGS. 2 and 3, the reinforcing method of the present invention will be described more specifically.

(具体例1)
図3に、本具体例にて成形した立体添加物付き繊維強化プラスチック成形体(以下、単に「成形体」という。)1の全体構成を示す。
(Specific example 1)
FIG. 3 shows the overall configuration of a fiber-reinforced plastic molded body with a three-dimensional additive (hereinafter simply referred to as “molded body”) 1 molded in this specific example.

本具体例の成形体1は、外形寸法が、幅(W0)60mm、長さ(L0)100mm、高さ(H0)20mmとされる箱形シェル1Aの内部に、高さ(H)15mmの十文字のリブ構造2Aを有する構造体とされる。シェル1Aの厚さtは1mm、リブ2Aの厚さt2Aは1.5mmとした。   The molded body 1 of this specific example has a height (H) of 15 mm inside a box-shaped shell 1A having outer dimensions of a width (W0) of 60 mm, a length (L0) of 100 mm, and a height (H0) of 20 mm. The structure has a cross-shaped rib structure 2A. The thickness t of the shell 1A was 1 mm, and the thickness t2A of the rib 2A was 1.5 mm.

上述したように、本具体例では、図4(a)〜(c)に示す構造の金型100を使用した。   As described above, in this specific example, the mold 100 having the structure shown in FIGS. 4A to 4C is used.

本具体例にて使用した外金型102は、内寸法が、幅(W102)60mm、長さ(L102)100mm、深さ(H102)20mmで、幅(W102a)が25mmとされる鍔102aの付いた鋼製の金型である。出隅部(R102a)は3mmのR加工を施し、入り隅部(R102b)は角形状のままとした。   The outer mold 102 used in this example has an inner dimension of a flange 102a having a width (W102) of 60 mm, a length (L102) of 100 mm, a depth (H102) of 20 mm, and a width (W102a) of 25 mm. It is a steel mold attached. The protruding corner (R102a) was subjected to R processing of 3 mm, and the entering corner (R102b) was left square.

本例にて使用した内金型101は、外寸法が、幅(W101)が58mm、長さ(L101)が98mm、高さ(H101)が19.5mmで、幅(W101a)が25mmとされる鍔101aの付いた鋼製の金型である。また、内金型101には、リブ構造成形のための幅(W101b)が1.5mmで、深さ(H101b)が15mmの溝101bを十文字の形状にて溝加工を施した。内金型101の出隅部(R101a)は2mmのR加工を施し、入り隅部(R101b)は角形状のままとした。   The inner mold 101 used in this example has outer dimensions of 58 mm in width (W101), 98 mm in length (L101), 19.5 mm in height (H101), and 25 mm in width (W101a). This is a steel mold with a rudder 101a. Further, the inner mold 101 was grooved with a cross-shaped shape of a groove 101b having a width (W101b) for forming a rib structure of 1.5 mm and a depth (H101b) of 15 mm. The protruding corner (R101a) of the inner mold 101 was subjected to R processing of 2 mm, and the entering corner (R101b) was left square.

更に、外金型102の鍔部分102aは、図4(c)に示すように、内側(即ち、成形空間Vの側)に低くなるように、角度(θ)が少なくとも0.1°となるような傾斜(勾配)が付いており、本例では、角度(θ)が約0.3°とされ、外方端部では内面に比べて高さ(h)が約0.1mm程度高くなっている。また、両鍔部分101a、102aのクリアランスCLは0.5mmとした。   Further, as shown in FIG. 4C, the flange 102a of the outer mold 102 has an angle (θ) of at least 0.1 ° so as to be lowered inward (that is, the molding space V side). In this example, the angle (θ) is about 0.3 °, and the height (h) is about 0.1 mm higher at the outer end than the inner surface. ing. Further, the clearance CL between the flange portions 101a and 102a was set to 0.5 mm.

本具体例にて使用した材料は以下の通りである。
・連続強化繊維プリプレグ(11)
炭素繊維平織りクロスプリプレグ:Porcher composites製(PIPREG C/PC(商品名)(ポリカーボネイト樹脂の織物プリプレグ/炭素繊維目付け:196g/m2、樹脂含有率:45wt%)
・短繊維強化樹脂(12)
三菱レイヨン製(PC−C−30:商品名)(炭素繊維の短繊維補強ポリカーボネイト樹脂ペレット/炭素繊維長さ:平均0.3mm、炭素繊維含有率:30wt%)
図2に示すように、上記炭素繊維平織りクロスプリプレグ(連続強化繊維プリプレグ)11を幅(W11)170mm、長さ(L11)210mmに切断し、上記樹脂ペレット(短繊維強化樹脂)12を25g、炭素繊維平織りクロスプリプレグ11の中心部になるべく均等になるように乗せ、2辺をバネ付きのクリップで固定して、加熱オーブン中に放置して300℃に加熱した。その後、このようにして得られた繊維強化プラスチック材10を、金型100にセットしてプレスした。金型温度は50〜70℃であった。
The materials used in this specific example are as follows.
・ Continuous reinforcing fiber prepreg (11)
Carbon fiber plain weave cloth prepreg: Porcher composites (PIPREG C / PC (trade name) (polycarbonate resin fabric prepreg / carbon fiber basis weight: 196 g / m 2 , resin content: 45 wt%)
・ Short fiber reinforced resin (12)
Made by Mitsubishi Rayon (PC-C-30: trade name) (carbon fiber short fiber reinforced polycarbonate resin pellet / carbon fiber length: average 0.3 mm, carbon fiber content: 30 wt%)
2, the carbon fiber plain weave cross prepreg (continuous reinforcing fiber prepreg) 11 is cut into a width (W11) of 170 mm and a length (L11) of 210 mm, and the resin pellet (short fiber reinforced resin) 12 is 25 g. The carbon fiber plain weave cloth prepreg 11 was placed so as to be as uniform as possible in the center of the carbon fiber plain weave cloth prepreg 11, and the two sides were fixed with a clip with a spring, and left in a heating oven and heated to 300 ° C. Thereafter, the fiber reinforced plastic material 10 obtained in this way was set in a mold 100 and pressed. The mold temperature was 50-70 ° C.

本具体例では、成形体箱形シェル部分1Aの厚み(t)は1mmに対して、鍔部分101a、102aの金型のクリアランスCLは0.5mmとなり、プレスする瞬間に溶融したペレット樹脂が上昇して、鍔部分101a、102aのクリアランスCLを埋め尽くすため、金型内部全体に圧力がかかる形式とした。   In this specific example, the thickness (t) of the molded box shell portion 1A is 1 mm, and the mold clearance CL of the flange portions 101a and 102a is 0.5 mm, and the molten pellet resin rises at the moment of pressing. Then, in order to fill the clearance CL of the flange portions 101a and 102a, the entire mold interior is pressurized.

この結果、図3(a)、(b)に示すような成形体1を得ることができた。つまり、箱形シェル部分1Aは、外層11Aと内層12Aとを有し、外層11Aは、長繊維の炭素繊維の平織りクロスの炭素繊維強化プラスチック層とされ、内層12Aは強化繊維として短繊維の炭素繊維を含む短繊維強化プラスチック層とされた。また、内部のリブ部2Aは、箱形シェル部分1Aの内層12Aと同じ樹脂材料のみにて成形された。   As a result, a molded body 1 as shown in FIGS. 3A and 3B could be obtained. That is, the box-shaped shell portion 1A has an outer layer 11A and an inner layer 12A, the outer layer 11A is a carbon fiber reinforced plastic layer of a plain weave cloth of carbon fibers of long fibers, and the inner layer 12A is carbon of short fibers as reinforcing fibers. A short fiber reinforced plastic layer containing fibers. Also, the inner rib portion 2A was molded only from the same resin material as the inner layer 12A of the box-shaped shell portion 1A.

シェル1Aの厚み(t)1.0±0.05mmで、中央の十文字リブの高さ(H)15mm、厚み(t2A)1.5mmで、表面性が良好でリブ部の角欠けなどの無い良好な成形品ができた。   The thickness (t) of the shell 1A is 1.0 ± 0.05 mm, the height (H) of the central cross-shaped rib is 15 mm, and the thickness (t2A) is 1.5 mm. A good molded product was obtained.

具体例2
本具体例では、連続強化繊維プリプレグ11として、一方向熱可塑性樹脂プリプレグを使用した。このプリプレグ11は、Schappe Techniques製TPFL−UD(商品名)(ナイロン12樹脂の一方向プリプレグ/炭素繊維目付288g/m2、樹脂含有量:68wt%)であった。この一方向熱可塑性プリプレグを縦横2枚積層したものを、具体例1と同じ形状にカットし、具体例1と同じ熱可塑性樹脂ペレット12を同量だけ乗せて、具体例1と同様にプレスした。
Example 2
In this specific example, a unidirectional thermoplastic resin prepreg was used as the continuous reinforcing fiber prepreg 11. This prepreg 11 was TPFL-UD (trade name) manufactured by Snappe Technologies (unidirectional prepreg of nylon 12 resin / carbon fiber basis weight 288 g / m 2 , resin content: 68 wt%). A laminate of two unidirectional thermoplastic prepregs, vertically and horizontally, was cut into the same shape as in Example 1, and the same amount of the same thermoplastic resin pellet 12 as in Example 1 was placed thereon, and pressed in the same manner as in Example 1. .

その結果、表面性が良好でリブ部の角欠けなどの無い良好な成形品ができた。   As a result, a good molded product having good surface properties and no corner chipping of the rib portion was obtained.

1 添加物付き繊維強化プラスチック成形体
1A シェル
2A 立体添加物
10 繊維強化プラスチック材
11 連続強化繊維プリプレグ
11A 連続繊維強化プラスチック層(連続繊維層)
12 短繊維強化樹脂
12A 短繊維強化プラスチック層(短繊維層)
100 金型
101 上金型(内金型)
101a 鍔部分
102 下金型(外金型)
102a 鍔部分
DESCRIPTION OF SYMBOLS 1 Fiber reinforced plastic molding with an additive 1A Shell 2A Three-dimensional additive 10 Fiber reinforced plastic material 11 Continuous reinforcing fiber prepreg 11A Continuous fiber reinforced plastic layer (continuous fiber layer)
12 Short fiber reinforced resin 12A Short fiber reinforced plastic layer (short fiber layer)
100 mold 101 upper mold (inner mold)
101a collar 102 lower mold (outer mold)
102a heel part

Claims (4)

繊維長さが0.01mm以上、2.0mm以下の長さの短繊維が5〜50wt%の配合量でランダム配向されたシート状、フレーク状或いはペレット状の熱可塑性樹脂或いは熱硬化性樹脂とされる短繊維強化樹脂と、
熱可塑性樹脂或いは熱硬化性樹脂が含浸された一方向或いは織物の連続強化繊維プリプレグと、
を有する繊維強化プラスチック材を、外金型及び内金型を有する金型による1回のプレス成形により、前記連続強化繊維プリプレグと前記短繊維強化樹脂にて成形された連続繊維層と短繊維層の積層体から成るシェルと、前記短繊維強化樹脂にて成形された立体添加物とを有する繊維強化プラスチック成形体を成形する方法であって、
前記外金型及び前記内金型は、互いに組み合わせて成形加工状態に配置された時、互いに対向配置されて前記外金型と前記内金型との間に前記繊維強化プラスチック成形体を形成するための成形空間を形成する鍔部分を有しており、
前記鍔部分は、前記成形空間から外方へと20mm以上、100mm以下にて前記外金型及び前記内金型の外周辺に延在して形成されており、
対向配置された前記両金型の前記鍔部分のクリアランスを、成形しようとする前記繊維強化プラスチック成形体の前記シェルの板厚(tmm)に対して0.5・t(mm)以上、0.75・t(mm)以下に調整することによって、プレスの圧力を生じさせ、このプレスの圧力によって、樹脂を流動させて前記鍔部分のクリアランスに樹脂をはみ出させることを特徴とする立体添加物付き繊維強化プラスチック成形体の成形方法。
A sheet-like, flake-like or pellet-like thermoplastic resin or thermosetting resin in which short fibers having a fiber length of 0.01 mm or more and 2.0 mm or less are randomly oriented at a blending amount of 5 to 50 wt%; Short fiber reinforced resin,
Unidirectional or woven continuous reinforcing fiber prepreg impregnated with thermoplastic resin or thermosetting resin;
A continuous fiber layer and a short fiber layer formed of the continuous reinforcing fiber prepreg and the short fiber reinforced resin by one-time press molding using a mold having an outer mold and an inner mold. A method of molding a fiber-reinforced plastic molded body having a shell made of a laminate of the above and a three-dimensional additive molded with the short fiber-reinforced resin,
When the outer mold and the inner mold are arranged in combination with each other, they are arranged opposite to each other to form the fiber-reinforced plastic molded body between the outer mold and the inner mold. And has a flange portion that forms a molding space for
The flange portion is formed to extend outward from the molding space to the outer periphery of the outer mold and the inner mold at 20 mm or more and 100 mm or less,
The clearance of the flange portions of the two molds arranged to face each other is 0.5 · t (mm) or more with respect to the plate thickness (tmm) of the shell of the fiber-reinforced plastic molding to be molded, and With a three-dimensional additive characterized in that the pressure of the press is generated by adjusting to 75 · t (mm) or less, and the resin flows by the pressure of the press so that the resin protrudes into the clearance of the flange portion. A method for forming a fiber-reinforced plastic molded body.
前記鍔部分のうち前記成形空間から少なくとも15〜30mmの間には、前記クリアランスを樹脂流動方向へと0.1°以上、20°以下の勾配をつけ徐々に狭くすることによって、プレスの圧力を前記金型内部の前記成形空間に生じさせて前記短繊維強化樹脂を流動させることを特徴とする請求項に記載の立体添加物付き繊維強化プラスチック成形体の成形方法。 In the flange portion, at least 15 to 30 mm from the molding space, the clearance is gradually narrowed with a gradient of 0.1 ° or more and 20 ° or less in the resin flow direction, thereby reducing the pressure of the press. 2. The method for molding a fiber-reinforced plastic molded body with a three-dimensional additive according to claim 1 , wherein the short-fiber-reinforced resin is caused to flow in the molding space inside the mold. 前記連続強化繊維プリプレグの樹脂及び前記短繊維強化樹脂の樹脂が熱可塑性樹脂である場合、前記繊維強化プラスチック材を当該熱可塑性樹脂の融点よりも高い温度に予備加熱した後に、該融点よりも低い温度に調整した前記金型でプレス成形することを特徴とする請求項1又は2に記載の立体添加物付き繊維強化プラスチック成形体の成形方法。   When the resin of the continuous reinforced fiber prepreg and the resin of the short fiber reinforced resin are thermoplastic resins, the fiber reinforced plastic material is preheated to a temperature higher than the melting point of the thermoplastic resin, and is lower than the melting point. The method for molding a fiber-reinforced plastic molded body with a three-dimensional additive according to claim 1 or 2, wherein press molding is performed with the mold adjusted to a temperature. 前記連続強化繊維プリプレグの樹脂及び前記短繊維強化樹脂の樹脂が熱硬化性樹脂である場合、前記繊維強化プラスチック材を該熱硬化性樹脂の硬化温度よりも高い温度に調整した前記金型でプレス成形することを特徴とする請求項1又は2に記載の立体添加物付き繊維強化プラスチック成形体の成形方法。   When the resin of the continuous reinforced fiber prepreg and the resin of the short fiber reinforced resin are thermosetting resins, the fiber reinforced plastic material is pressed with the mold adjusted to a temperature higher than the curing temperature of the thermosetting resin. The method for molding a fiber-reinforced plastic molded body with a three-dimensional additive according to claim 1 or 2, wherein the molding is performed.
JP2012040773A 2012-02-27 2012-02-27 Method for molding fiber reinforced plastic molding with three-dimensional additive Active JP5956187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040773A JP5956187B2 (en) 2012-02-27 2012-02-27 Method for molding fiber reinforced plastic molding with three-dimensional additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040773A JP5956187B2 (en) 2012-02-27 2012-02-27 Method for molding fiber reinforced plastic molding with three-dimensional additive

Publications (3)

Publication Number Publication Date
JP2013173334A JP2013173334A (en) 2013-09-05
JP2013173334A5 JP2013173334A5 (en) 2015-03-26
JP5956187B2 true JP5956187B2 (en) 2016-07-27

Family

ID=49266727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040773A Active JP5956187B2 (en) 2012-02-27 2012-02-27 Method for molding fiber reinforced plastic molding with three-dimensional additive

Country Status (1)

Country Link
JP (1) JP5956187B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345613B2 (en) * 2015-02-06 2018-06-20 住友建機株式会社 Excavator cover
JP6602552B2 (en) * 2015-04-14 2019-11-06 国立大学法人岐阜大学 Manufacturing method of molded body
WO2016167232A1 (en) * 2015-04-16 2016-10-20 三菱瓦斯化学株式会社 Method for producing molded article by press molding thermoplastic resin sheet or film
JP6190848B2 (en) * 2015-07-03 2017-08-30 本田技研工業株式会社 Manufacturing method of resin products
US10889076B2 (en) 2016-01-08 2021-01-12 Teijin Limited Method for producing fiber-reinforced resin shaped product
JP2019093685A (en) * 2017-11-28 2019-06-20 東洋製罐グループホールディングス株式会社 Fiber-reinforced laminate and method for producing the same
US10933598B2 (en) * 2018-01-23 2021-03-02 The Boeing Company Fabrication of composite parts having both continuous and chopped fiber components
KR20200135782A (en) * 2018-03-30 2020-12-03 도레이 카부시키가이샤 Manufacturing method of molded article

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115216A (en) * 1980-01-24 1981-09-10 Hitachi Chem Co Ltd Prepreg material and manufacture thereof
JPH01232019A (en) * 1988-03-14 1989-09-18 Chisso Corp Conductive thermoplastic resin molded material
JPH01176520A (en) * 1988-01-05 1989-07-12 Chisso Corp Conductive thermoplastic resin molded product
JPH05154900A (en) * 1991-12-09 1993-06-22 Teijin Ltd Curved-face molded piece and production thereof
JP2000043067A (en) * 1998-07-30 2000-02-15 Ikeda Bussan Co Ltd Molding of interior material for vehicle
JP4220805B2 (en) * 2003-03-03 2009-02-04 本田技研工業株式会社 Manufacturing method for vehicle hood made of fiber reinforced composite material
JP4294038B2 (en) * 2006-06-13 2009-07-08 株式会社ギンポーパック Press forming equipment
JP5332227B2 (en) * 2008-02-20 2013-11-06 東レ株式会社 Press molding method and molded body

Also Published As

Publication number Publication date
JP2013173334A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5956187B2 (en) Method for molding fiber reinforced plastic molding with three-dimensional additive
JP6020826B2 (en) Fiber-reinforced composite material molding method and fiber-reinforced composite material molding apparatus
US11911933B2 (en) Molded body and manufacturing method therefor
US20130078439A1 (en) Structure of fiber-reinforced composite material-made component part, and production method for the component part
US10821683B2 (en) Method for molding flame-retardant bending beam integrated with three-dimensional nylon air duct and production mould thereof
CN102869487A (en) Method for producing component from fibre-reinforced material
EP3042753B1 (en) Production method for fiber-reinforced components
CN109715361A (en) The forming method and composite material of composite material
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JP2013173334A5 (en)
JP6567255B2 (en) Fiber reinforced thermoplastic resin molding
CN108136685B (en) Method for producing fiber-reinforced resin structure, system for producing fiber-reinforced resin structure, and fiber-reinforced resin structure
JP7151272B2 (en) Method for manufacturing fiber-reinforced plastic molded product
KR20200080390A (en) 3-dimensional printing method and 3-dimensional printing product by the same
KR20140050779A (en) Method for forming fiber reinforced plastic composite
KR102349669B1 (en) Forming method of fiber reinforced plastic material
JP2010221489A (en) Rtm molding method
JP6776944B2 (en) Manufacturing method of resin molded product
JP2010076356A (en) Preform, and molding method for fiber-reinforced plastic
JP2021041634A (en) Method for molding laminated composite sheet comprising fiber reinforced resin sheet and resin foamed sheet
JP6786989B2 (en) Composite material molding method
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP6712430B1 (en) Method for producing thermoplastic fiber-reinforced resin molded product
KR102291931B1 (en) Manufacturing method for molded article using fiber reinforcerd plastic waste comprising thermosetting plastics and molded article using the same
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160616

R150 Certificate of patent or registration of utility model

Ref document number: 5956187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250