JP2010076356A - Preform, and molding method for fiber-reinforced plastic - Google Patents

Preform, and molding method for fiber-reinforced plastic Download PDF

Info

Publication number
JP2010076356A
JP2010076356A JP2008249838A JP2008249838A JP2010076356A JP 2010076356 A JP2010076356 A JP 2010076356A JP 2008249838 A JP2008249838 A JP 2008249838A JP 2008249838 A JP2008249838 A JP 2008249838A JP 2010076356 A JP2010076356 A JP 2010076356A
Authority
JP
Japan
Prior art keywords
base material
resin
preform
fiber
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008249838A
Other languages
Japanese (ja)
Inventor
Shigeru Kawashima
茂 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008249838A priority Critical patent/JP2010076356A/en
Publication of JP2010076356A publication Critical patent/JP2010076356A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic capable of easily carrying out trimming work of an outer circumferential portion, that is a cost-increase factor in a conventional RTM molding, and capable of restraining the strength of a product outer peripheral part from getting low. <P>SOLUTION: A preform includes the first base material comprising at least only a reinforcement fiber, and the second base material impregnated preliminarily with a resin in the reinforcement fiber, wherein the second base material is arranged in at least one part of an outer peripheral part of the first base material, and a thickness of the second base material is thicker than that of the first base material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、繊維強化プラスチック(FRP)を成型するためのプリフォームおよび繊維強化プラスチックの成型方法に関する。特にプリフォームを予め成型型のキャビティにセットした後に液状の樹脂を注入するRTM(Resin Transfer Molding)成型に関する。   The present invention relates to a preform for molding fiber reinforced plastic (FRP) and a method for molding fiber reinforced plastic. In particular, the present invention relates to RTM (Resin Transfer Molding) molding in which a liquid resin is injected after a preform is set in a mold cavity in advance.


繊維強化プラスチック、特に炭素繊維強化プラスチック(CFRP)は軽量且つ高い機械的特性を持つ複合材料として様々な分野で利用されている。特に自動車分野は燃費向上の点からも車体の軽量化要求が高まり、CFRPが利用されつつある。FRPの成型方法の一つとして成形型のキャビティ内に予め強化繊維基材配置し、型締め後、液状のマトリックス樹脂を注入し、強化繊維基材に含浸・加熱硬化させるRTM成型法が知られている。RTM成型法はCFRPの特徴である軽量且つ高い機械的特性を効果的に発現し、且つ樹脂注入前に予めキャビティ内を減圧状態にすることで、成型表面にピンホールなどの欠陥が少ない、良好な外観を併せ持つことができる。従って、外観品位の要求レベルが高い自動車用途では、有効な成型方法の一つである。

Fiber reinforced plastics, especially carbon fiber reinforced plastics (CFRP) are used in various fields as composite materials having light weight and high mechanical properties. Particularly in the automobile field, the demand for weight reduction of the vehicle body is increasing from the viewpoint of improving fuel efficiency, and CFRP is being used. As one of FRP molding methods, there is known an RTM molding method in which a reinforcing fiber base material is placed in a mold cavity in advance, a liquid matrix resin is injected after mold clamping, and the reinforcing fiber base material is impregnated and heat-cured. ing. The RTM molding method effectively expresses the lightweight and high mechanical properties that are characteristic of CFRP, and the cavity is decompressed in advance before resin injection, so there are few defects such as pinholes on the molding surface. It can have a beautiful appearance. Therefore, it is one of the effective molding methods for automobile applications that require a high level of appearance quality.

しかしながら成形後の後加工として得られた成形体の外縁の不要部分を切り落とすトリム加工が必要となり、ウォータジェット加工やNCルーター加工などの手法を用いることから、コストの大幅な増加をもたらしていた。特にCFRPは強化繊維が固いことから、加工速度を上げることができず、また、機械加工用工具の摩耗が著しく早いなど、コストアップの大きな要因となっている。   However, trim processing that cuts off unnecessary portions of the outer edge of the molded body obtained as post-processing after molding is required, and a method such as water jet processing or NC router processing is used, resulting in a significant increase in cost. In particular, CFRP is a large factor in cost increase because the reinforcing fiber is hard and the processing speed cannot be increased and the wear of the machining tool is extremely fast.

このようなコストアップをもたらすトリム加工を省略するために、製品となる形状に出来るだけ近い強化繊維基材の形状(ニヤネットシェイプ)を得ようとして、強化繊維の基材の賦形に関する提案が種々なされている。しかしながら、RTM成型法においてトリム加工を省略しようとすると、所定の製品形状より小さ目に賦形されたプリフォームを用意し、金型のキャビティからプリフォームがはみ出さないよう配置することが必要になる。このような成型方法では製品の外周部分に強化繊維を含まないマトリックス樹脂のみで構成される部分が生じるために、中央部分との熱膨張差から外周部分が欠けるなどの不具合を生じる。   In order to omit the trim processing that brings about such cost increase, there is a proposal on shaping of the reinforcing fiber base material in order to obtain the shape of the reinforcing fiber base material (near net shape) as close as possible to the product shape. There are various. However, if trim processing is to be omitted in the RTM molding method, it is necessary to prepare a preform shaped smaller than a predetermined product shape and arrange it so that the preform does not protrude from the mold cavity. . In such a molding method, a portion composed only of a matrix resin that does not include reinforcing fibers is generated in the outer peripheral portion of the product, so that a defect such as a lack of the outer peripheral portion occurs due to a difference in thermal expansion from the central portion.

これに対して、強化繊維基材の外周部にトリム加工しやすい基材を配置する提案がなされている。   On the other hand, the proposal which arrange | positions the base material which is easy to trim in the outer peripheral part of a reinforced fiber base material is made | formed.

例えば本体部と本体部外周の縁から外方向に延びるバリ成形部とから成り、バリ成形部を本体より強度が低く、薄い材料でプリフォーム(前駆体)を構成することが提案されている(特許文献1)。   For example, it has been proposed to comprise a main body part and a burr molding part extending outward from the outer periphery of the main body part. The burr molding part has a strength lower than that of the main body and a preform (precursor) is composed of a thin material ( Patent Document 1).

しかしながら、上記のような従来の方法では、成形直後に製品外周部が欠けることはなくなるものの、製品の外周に強度の低い部分が生じることになる。例えば図1に示す自動車用のルーフを従来の方法で製作した場合、製品外周部の取付孔を加工した際に外周部が欠ける問題を生じることが多い。
特開2006−188050号公報
However, in the conventional method as described above, the outer peripheral portion of the product is not lost immediately after molding, but a low strength portion is generated on the outer periphery of the product. For example, when the automobile roof shown in FIG. 1 is manufactured by a conventional method, there is often a problem that the outer peripheral portion is missing when the mounting hole in the outer peripheral portion of the product is processed.
JP 2006-188050 A

そこで本発明の課題は、上述する従来のプリフォームおよび繊維強プラスチックの成型方法の問題点を克服し、軽量かつ機械的強度が高く、良好な外観を確保しながら、トリム加工を簡単に行うことができ、外周部分の強度が製品中央部分と同等となる、プリフォームおよび繊維強化プラスチックの成型方法を提供することにある。   Therefore, the object of the present invention is to overcome the problems of the conventional preform and fiber strong plastic molding method described above, and to easily perform trim processing while ensuring a lightweight, high mechanical strength and good appearance. An object of the present invention is to provide a method for molding a preform and a fiber reinforced plastic in which the strength of the outer peripheral portion is equal to that of the product central portion.

上記課題を達成するために本発明は、以下の構成を採用する。すなわち、
(1)少なくとも強化繊維のみからなる第1の基材と、強化繊維に予め樹脂を含浸させた第2の基材とから構成され、第2の基材が第1の基材の外周部の少なくとも一部に配置されてなるとともに、第2の基材の厚みが第1の基材の厚みより厚いことを特徴とするプリフォーム。
(2)前記第2の基材の厚みが、前記第1の基材の厚みの1.5倍以下であることを特徴とする(1)に記載のプリフォーム。
(3)強化繊維のみからなる第1の基材の外周部の少なくとも一部に、強化繊維に予め樹脂を含浸させた第2の基材を配置したプリフォームを構成し、該プリフォームを金型のキャビティ内に収納した後、樹脂を注入・硬化させることを特徴とする、繊維強化プラスチックの成型方法。
(4)第2の基材が配置された該プリフォームの高さが、該金型のキャビティの高さより高いことを特徴とする(3)に記載の繊維強化プラスチックの成型方法。
To achieve the above object, the present invention adopts the following configuration. That is,
(1) It is composed of at least a first base material made of only reinforcing fibers and a second base material in which the reinforcing fibers are impregnated with a resin in advance, and the second base material is an outer peripheral portion of the first base material. A preform characterized in that the preform is arranged at least in part and the thickness of the second base material is thicker than the thickness of the first base material.
(2) The preform according to (1), wherein the thickness of the second base material is 1.5 times or less the thickness of the first base material.
(3) A preform in which a second base material in which a reinforcing fiber is impregnated with a resin in advance is arranged on at least a part of the outer peripheral portion of the first base material made only of reinforcing fibers, and the preform is made of gold A method for molding a fiber reinforced plastic, wherein the resin is injected and cured after being accommodated in a cavity of a mold.
(4) The method for molding fiber-reinforced plastic according to (3), wherein the height of the preform on which the second base material is disposed is higher than the height of the cavity of the mold.

本発明によれば、軽量かつ機械的強度が高く、良好な外観を確保しながら、トリム加工を簡単に行うことができ、外周部分の強度が製品中央部分と同等となる、プリフォームおよび繊維強化プラスチックの成型方法を提供することができる。   According to the present invention, a preform and a fiber reinforced that are lightweight and have high mechanical strength, can be easily trimmed while ensuring a good appearance, and the strength of the outer peripheral portion is equal to that of the product central portion. A plastic molding method can be provided.

具体的には、型締め時に第2の基材を押し潰す際、第2の基材に含まれる樹脂は半硬化の状態になっているため粘度が高いことから、補強基材と樹脂が一緒に流動し、強度の高い外周部分を構成することができる。この時点では製品内側には樹脂が含浸していないため空間が残り、第2基材の内余剰部分は、上下型の合わせ面より抵抗の低い製品内部側に流動するため、補強繊維を含む強固なバリは殆ど発生しない。このように外周部の形状が形作られた後、粘度の低い液状樹脂を注入するので、製品の大部分はピンホールの少ない外観のきれいな成型品を得ることが出来る。   Specifically, when crushing the second base material during mold clamping, since the resin contained in the second base material is in a semi-cured state and has a high viscosity, the reinforcing base material and the resin are together. The outer peripheral portion having a high strength can be formed. At this time, since the resin is not impregnated on the inside of the product, a space remains, and the excess portion of the second base material flows to the inside of the product having a lower resistance than the mating surface of the upper and lower molds. There is almost no burrs. Since the liquid resin having a low viscosity is injected after the shape of the outer peripheral portion is formed in this way, most of the product can obtain a beautiful molded product with few pinholes.

以下、本発明の望ましい実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

本発明におけるプリフォームとは強化繊維基材を積層・一体化し、成形する形状に概ね賦形した形態を指す。図2、図3に本発明の代表的な実施例を示す。   The preform in the present invention refers to a form in which reinforcing fiber base materials are laminated and integrated, and generally shaped into a shape to be molded. 2 and 3 show typical embodiments of the present invention.

強化繊維としては、例えば炭素繊維、ガラス繊維などの無機繊維、あるいはアラミド繊維、ポリエチレン繊維などの有機繊維が挙げられるが、軽量で機械的強度が高いことから炭素繊維が好ましい。また、耐衝撃性向上や成型時の含浸性向上、表面意匠性の向上などを目的に、他の繊維と合わせて使用することも可能である。   Examples of the reinforcing fibers include inorganic fibers such as carbon fibers and glass fibers, or organic fibers such as aramid fibers and polyethylene fibers. Carbon fibers are preferred because they are lightweight and have high mechanical strength. It can also be used in combination with other fibers for the purpose of improving impact resistance, improving impregnation during molding, and improving surface design.

第1の基材は成形体の主構造をなすものであり、強度の面から連続繊維で形成されていることが好ましく、たとえは織物などを選択することが出来る。織物を使用する場合、織り構成は特に制限されるものではない。平織りや朱子織り、綾織りはもちろんのこと、一方向織物やノンクリンプクロスなどが適宜選択できるが、クリア塗装で織り目を製品表面に見せる場合には平織りまたは綾織りを用いると意匠性が高くなる。また、朱子織りや綾織りはドレープ性が良いため、深さの深い3次元形状を成形する場合に使用すると良い。織物以外にも一方向に引き揃えた補強繊維をバインダーやステッチで合わせた基材なども使用できる。   The first base material forms the main structure of the molded body, and is preferably formed of continuous fibers from the viewpoint of strength. For example, a woven fabric or the like can be selected. When a woven fabric is used, the woven structure is not particularly limited. Plain weave, satin weave, twill weave, as well as unidirectional weave and non-crimp cloth, etc. can be selected as appropriate. . In addition, satin weave and twill weave are good for drape, so they are preferably used when forming a three-dimensional shape with a deep depth. In addition to woven fabrics, it is also possible to use a substrate in which reinforcing fibers aligned in one direction are combined with a binder or stitch.

第1の基材は樹脂を含浸していないため、各層はバインダーやステッチなどで一体化しておくことが好ましい。バインダーとしては熱可塑樹脂系、熱硬化樹脂系やこれらを合わせた材料、あるいはスプレー状の糊など種々の材料が選択できる。ステッチ用の糸も特に限定されるものではないが、応力集中による強度低下を防ぐために出来るだけ細い糸を使用することが好ましい。例外的に平板などの単純形状を成形する場合には一体していなくても成形可能である。   Since the first base material is not impregnated with resin, it is preferable that the layers are integrated with a binder or stitches. As the binder, various materials such as a thermoplastic resin system, a thermosetting resin system, a material combining them, or a spray paste can be selected. The yarn for stitching is not particularly limited, but it is preferable to use a yarn as thin as possible in order to prevent strength reduction due to stress concentration. Exceptionally, when a simple shape such as a flat plate is formed, it can be formed even if it is not integrated.

第1の基材の積層構成も特に制限されることはなく、成型品に加わる力の方向や大きさに合わせて適宜配向させることができる。   The laminated structure of the first base material is not particularly limited, and can be appropriately oriented according to the direction and magnitude of the force applied to the molded product.

第2の基材は成形体の外周部分を構成する材料であり、第1の基材に比べると強度が低くても良い。例えば2.5cm(1インチ)程度の長さにカットした補強繊維を用いることも可能である。当然第1の基材と同じように連続繊維を用いることも可能である。   A 2nd base material is a material which comprises the outer peripheral part of a molded object, and intensity | strength may be low compared with a 1st base material. For example, a reinforcing fiber cut to a length of about 2.5 cm (1 inch) can be used. Of course, it is also possible to use continuous fibers in the same manner as the first substrate.

また、予め樹脂含浸を済ませていた材料であり、一方向プリプレグやクロスプリプレグ、SMC(シートモールディングコンパウンド)などが選択できる。含浸しておく樹脂材料は成型品の物性面からエポキシ樹脂が好ましいが、不飽和ポリエステル樹脂やビニルエステル樹脂、フェノール樹脂などの熱硬化性樹脂も選択することができる。また、この樹脂は第1の基材に注入する樹脂と同じ種類の樹脂を選択することが好ましい。第1の基材に注入する樹脂と第2の基材に予め含浸した樹脂は全く同じ組成である必要はないが、互いの反応を阻害しないことが大切である。違った種類の樹脂材料を選択する場合には、第2の基材に含浸した樹脂材料の硬化反応が終わった後で第1の基材に樹脂を注入する必要があり、成形サイクルが長くなる。   Further, it is a material that has been previously impregnated with resin, and one-way prepreg, cross prepreg, SMC (sheet molding compound), and the like can be selected. The resin material to be impregnated is preferably an epoxy resin from the viewpoint of the physical properties of the molded product, but a thermosetting resin such as an unsaturated polyester resin, a vinyl ester resin, or a phenol resin can also be selected. Moreover, it is preferable to select the same type of resin as that injected into the first base material. The resin injected into the first base material and the resin previously impregnated into the second base material need not have the same composition, but it is important that they do not interfere with each other's reaction. When a different type of resin material is selected, it is necessary to inject the resin into the first base material after the curing reaction of the resin material impregnated in the second base material is completed, and the molding cycle becomes long. .

次に第1の基材と第2の基材の位置関係は、図2および図3に示すように第1の基材の外周部の少なくとも一部に第2の基材を配置させる。このとき、第1の基材と第2の基材は一部重なり合うように積層すると2つの基材のつなぎ目の強度が高くなり好ましい。   Next, the positional relationship between the first base material and the second base material is such that the second base material is disposed on at least a part of the outer peripheral portion of the first base material as shown in FIGS. At this time, it is preferable that the first base material and the second base material are laminated so as to partially overlap each other because the strength of the joint between the two base materials is increased.

第1の基材は、成型品の寸法に合うよう金型のキャビティの厚みとほぼ同等の厚みになるように積層することが好ましい。第1の基材の厚みが金型のキャビティの厚みより薄い場合には、厚み方向に対して含浸させる樹脂層の厚みにムラが生じ、局所的に剛性の弱い部分が生じるおそれがある。また、厚過ぎる場合には、第1の基材にシワ等が生じてしまい、外観面に凹凸を生じさせたりするおそれがある。   The first substrate is preferably laminated so as to have a thickness substantially equal to the thickness of the mold cavity so as to match the dimensions of the molded product. When the thickness of the first base material is smaller than the thickness of the cavity of the mold, unevenness occurs in the thickness of the resin layer impregnated in the thickness direction, and there is a possibility that a locally weak portion may be generated. On the other hand, if it is too thick, wrinkles or the like may occur on the first base material, and the appearance may be uneven.

また、第2の基材を積層した部分は、その厚みが金型のキャビティより厚くなっていることが好ましい。プリフォームを金型のキャビティ内に納めるには、キャビティの開口面積に対して小さめにプリフォームを作っておく必要がある。つまり、キャビティの外周部分とプリフォームの外周部分には若干の隙間を生じさせておき、金型を閉じる際に第2の基材が押し潰されることによって、キャビティの外周部とプリフォームの外周部とが、ぴったり一致するのである。このとき第2の基材の厚みはキャビティの厚みに対し110%から150%の範囲が好ましい。第2の基材の厚みが厚すぎると、内側に押し広げられた第2の基材によって第1の基材が蛇行してしまうことがある。   Moreover, it is preferable that the part which laminated | stacked the 2nd base material is thicker than the cavity of a metal mold | die. In order to fit the preform in the cavity of the mold, it is necessary to make the preform smaller than the opening area of the cavity. In other words, a slight gap is formed between the outer peripheral portion of the cavity and the outer peripheral portion of the preform, and when the mold is closed, the second base material is crushed so that the outer peripheral portion of the cavity and the outer periphery of the preform are The part matches exactly. At this time, the thickness of the second substrate is preferably in the range of 110% to 150% with respect to the thickness of the cavity. If the thickness of the second substrate is too thick, the first substrate may meander due to the second substrate pushed inward.

また、金型の端部から樹脂を注入する場合には、図4の様に第2の基材を配置しない部分を設けても良い。第2の基材を配置しない部分は従来のように端部強度が低くなっているので、強度を必要としない部分を選択する必要がある。   In addition, when the resin is injected from the end of the mold, a portion where the second base material is not disposed as shown in FIG. 4 may be provided. Since the end portion strength of the portion where the second base material is not disposed is low as in the prior art, it is necessary to select a portion that does not require strength.

以下、実施例に基づいてさらに詳細に説明する。   Hereinafter, it demonstrates still in detail based on an Example.

各実施例、比較例においては、キャビティ寸法が縦1000mm、横1000mm厚み1.4mmの金型と同じキャビティを持つプリフォーム用樹脂型を使用し平板を成形した。   In each example and comparative example, a flat plate was molded using a preform resin mold having the same cavity as a mold having a cavity dimension of 1000 mm in length and 1000 mm in width and 1.4 mm in thickness.

材料として、第1の基材には引張強さ4.9GPaのPAN系炭素繊維を目付200g/mに平織りした織物、第2の基材には第1の基材と同じ炭素繊維を目付200g/mで一方向に広げた状態で汎用プリプレグ用エポキシ樹脂を含浸した重量樹脂含有率33%のプリプレグ、第1の基材に注入するマトリックス樹脂としてはRTM成形用に調合された低粘度エポキシ樹脂を用いた。また、第1の基材に用いる炭素繊維織物には予め熱可塑性樹脂を主成分とする融点71℃のバインダーを付与しておいた。 As the material, the first base material is a woven fabric in which a PAN-based carbon fiber having a tensile strength of 4.9 GPa is plain-woven at a basis weight of 200 g / m 2 , and the second base material is the same carbon fiber as the first base material. A prepreg having a weight resin content of 33% impregnated with a general-purpose prepreg epoxy resin in a state of being spread in one direction at 200 g / m 2. Epoxy resin was used. In addition, a binder having a melting point of 71 ° C. containing a thermoplastic resin as a main component was previously applied to the carbon fiber fabric used for the first base material.

これらの材料を用いて以下の方法で成型した。   Using these materials, molding was performed by the following method.

(実施例1)
まず、第2の基材に使用するプリプレグを繊維方向に沿って幅13mmに裁断し、プリフォーム型の外周部沿って積層した。次に同じプリプレグを幅8mmに裁断して、1層目と同様にプリフォーム型の外周に沿って積層した。次に第1の基材に使用する炭素繊維織物を982mm角の寸法に裁断し、第2の基材の2層目の内側に積層した。次に第2の基材の1層目と同様に3層目を裁断・積層し、第1の基材の炭素繊維織物を969mm角に裁断して第2の基材の3層目の内側に積層した。このとき、下の炭素繊維織物とバインダーが溶着するように軽くアイロンで圧着した。
Example 1
First, the prepreg used for the second substrate was cut into a width of 13 mm along the fiber direction and laminated along the outer periphery of the preform mold. Next, the same prepreg was cut into a width of 8 mm and laminated along the outer periphery of the preform mold as in the first layer. Next, the carbon fiber fabric used for the first substrate was cut into a 982 mm square size and laminated inside the second layer of the second substrate. Next, the third layer is cut and laminated in the same manner as the first layer of the second base material, and the carbon fiber fabric of the first base material is cut into a 969 mm square, and the inner side of the third layer of the second base material Laminated. At this time, it was crimped lightly with an iron so that the lower carbon fiber fabric and the binder were welded.

以下、8mm幅の第2の基材と979mm角の第1の基材、13mm幅の第2の基材と969mm角の第1の基材、8mm幅の第2の基材と979mm角の第1の基材の順で積層を繰り返し、さらに、13mm幅の第2の基材を積層した後、最後に995mm×1005mmの寸法に裁断した炭素繊維織物を積層した。このように積層したプリフォームは図2,図3に示す形態であり、これをプリフォーム型から取り外し、厚みをマイクロメータで測定したところ、第2の基材を配置した外周部分は1.55mmであった。また、U字型マイクロメータで第1の基材が積層された部分の厚みを測定すると1.38mmであった。   Hereinafter, the 8 mm wide second base material and the 979 mm square first base material, the 13 mm wide second base material and the 969 mm square first base material, the 8 mm wide second base material and the 979 mm square base material Lamination was repeated in the order of the first substrate, and further, a second substrate having a width of 13 mm was laminated, and finally a carbon fiber woven fabric cut to a size of 995 mm × 1005 mm was laminated. The preforms laminated in this way are in the form shown in FIGS. 2 and 3. When the preform is removed from the preform mold and the thickness is measured with a micrometer, the outer peripheral portion on which the second substrate is disposed is 1.55 mm. Met. Moreover, it was 1.38 mm when the thickness of the part in which the 1st base material was laminated | stacked was measured with the U-shaped micrometer.

このプリフォームを100℃に加熱した金型にセットした。セットした状態を図5に示す。このとき一番上の炭素繊維織物が金型のフィルムゲート部分(0.5mm厚)にはみ出した状態であり、このまま上型を閉じた。次に金型の樹脂注入口と樹脂吸引口にホースを接続し、まず樹脂吸引側からキャビティ内の空気を吸引した。この状態で3分間放置した後、樹脂注入側からRTM用低粘度エポキシ樹脂を市販の樹脂注入装置で注入した。   This preform was set in a mold heated to 100 ° C. The set state is shown in FIG. At this time, the uppermost carbon fiber fabric was in a state of protruding into the film gate portion (0.5 mm thickness) of the mold, and the upper mold was closed as it was. Next, a hose was connected to the resin injection port and the resin suction port of the mold, and the air in the cavity was first sucked from the resin suction side. After leaving in this state for 3 minutes, a low viscosity epoxy resin for RTM was injected from a resin injection side with a commercially available resin injection device.

樹脂注入開始後、1分で樹脂吸引口から樹脂が排出され始めたので、バイスクリップで排出側ホースを閉じ、20秒間保圧した後、再度樹脂を排出する操作を5回繰り返し、最後に排出側、注入側双方をバイスクリップで閉じた。この状態40分間放置し、樹脂を硬化させた後、上型を開いて成形体を取り出した。   Resin began to be discharged from the resin suction port in 1 minute after the start of resin injection. Close the discharge hose with a vise clip, hold the pressure for 20 seconds, repeat the operation to discharge the resin again 5 times, and finally discharge Both the injection side and the injection side were closed with vise clips. After leaving for 40 minutes in this state to cure the resin, the upper mold was opened and the molded body was taken out.

成型品を観察するとフィルムゲートには炭素繊維織物1枚が入っているが、ゲートの無い辺は薄い樹脂バリが付いているだけであった。また、外観上繊維の著しい乱れはなく、製品端部も炭素繊維の入っていることを示す黒い色を呈しており、きれいに仕上がっていた。   When the molded product was observed, the film gate contained one piece of carbon fiber fabric, but the side without the gate had only a thin resin burr. In addition, the appearance of the fiber was not significantly disturbed, and the end of the product had a black color indicating that the carbon fiber was contained, and it was finished finely.

フィルムゲートは棒状の金属ヤスリを用いて30秒で取り去ることが出来、薄い樹脂バリは10秒で取り去ることが出来た。さらに成形体の端から5mmの位置に直径7mmの孔をハンドドリルで開けたが、きれいに加工することが出来た。   The film gate could be removed in 30 seconds using a rod-shaped metal file, and the thin resin burr could be removed in 10 seconds. Furthermore, although a hole with a diameter of 7 mm was opened with a hand drill at a position 5 mm from the end of the molded body, it could be processed neatly.

(実施例2)
実施例1と同様に成形を行った。ただし、最初に13mm幅の第2の基材を積層する際、一度に4枚積層し、積層後の外周部分の厚みは2.15mmであった。
この成形体を観察すると、第1の基材と第2の基材の境界付近の繊維が蛇行しており、表面にもうねりが生じていた。
(Example 2)
Molding was performed in the same manner as in Example 1. However, when the second substrate having a width of 13 mm was first laminated, four pieces were laminated at a time, and the thickness of the outer peripheral portion after the lamination was 2.15 mm.
When this molded body was observed, the fibers in the vicinity of the boundary between the first base material and the second base material meandered, and the surface was undulated.

(比較例1)
実施例1と同様に成形を行った。ただし、最初の13mm幅の第2の基材を省略して積層し、積層後の外周部分の厚みは1.35mmであった。
(Comparative Example 1)
Molding was performed in the same manner as in Example 1. However, the first 13 mm-width second base material was omitted and laminated, and the thickness of the outer peripheral portion after lamination was 1.35 mm.

この成形体を観察すると、成型品の端部に気泡が生じていた。   When this molded product was observed, bubbles were generated at the end of the molded product.

(比較例2)
第1の基材に使用する炭素繊維織物を995mm角の寸法に5枚裁断し、プリフォーム型に積層した。このとき、下の炭素繊維織物とバインダーが溶着するように1層毎に軽くアイロンで圧着した。次に995mm×1005mmの寸法に裁断した炭素繊維織物を積層し、同様にアイロンで圧着した。このように積層したプリフォームをプリフォーム型から取り外し、厚みをU字型マイクロメータで測定したところ、1.36mmであった。
(Comparative Example 2)
Five carbon fiber fabrics used for the first substrate were cut to a size of 995 mm square and laminated in a preform mold. At this time, the lower carbon fiber fabric and the binder were lightly ironed for each layer so that the binder was welded. Next, carbon fiber woven fabrics cut to a size of 995 mm × 1005 mm were laminated and similarly crimped with an iron. The preform thus laminated was removed from the preform mold, and the thickness measured with a U-shaped micrometer was 1.36 mm.

このプリフォームを実施例1と同様に成形した後、成型品を観察したところ、製品端部の樹脂のみの色を呈している部分が見られた。また、実施例1と同様に棒状の金属ヤスリで樹脂バリを取り除く作業を行ったところ、樹脂のみの色を呈している部分が欠けてしまった。   When this preform was molded in the same manner as in Example 1, the molded product was observed. As a result, a portion exhibiting only the color of the resin at the end of the product was observed. Moreover, when the operation | work which removes the resin burr | flash with the rod-shaped metal file similarly to Example 1 was performed, the part which has shown the color only of resin was missing.

(比較例3)
比較例2と同様に炭素繊維織物5枚を積層した後、プリフォーム型の隙間から外側にはみ出すように目付30g/mのガラスサーフェスマットを積層した。この後、比較例2と同様に成形を行い、できあがった成型品を観察したところ、製品端部に樹脂みにと同じ色を呈している部分が見られた。実施例1と同様にハンドドリルで孔空け作業を行ったところ、孔と外周部の間が欠けてしまった。
(Comparative Example 3)
After laminating five carbon fiber fabrics in the same manner as in Comparative Example 2, a glass surface mat with a basis weight of 30 g / m 2 was laminated so as to protrude outward from the gaps of the preform mold. Thereafter, molding was performed in the same manner as in Comparative Example 2, and the finished molded product was observed. As a result, a portion exhibiting the same color as the resin layer was seen at the end of the product. When a hole drilling operation was performed with a hand drill in the same manner as in Example 1, the gap between the hole and the outer peripheral portion was missing.

本発明に隅々まで強化繊維の配置が望まれるFRP構造体の製造方法、およびその成形に用いるプリフォームに適用できる。特に自動車部品や航空機部品、その他一般作業用途で端部の強度が要求されるFRP製薄板構造体に適用できるが、適用範囲はこれらに限られるものではない。   The present invention can be applied to a method for producing an FRP structure in which the arrangement of reinforcing fibers is desired to every corner and a preform used for molding the FRP structure. In particular, the present invention can be applied to an FRP thin plate structure that requires strength of an end portion for automobile parts, aircraft parts, and other general work applications, but the application range is not limited thereto.

本発明の適用に適する一例の斜視図。The perspective view of an example suitable for application of the present invention. 本発明のプリフォームの一例の縦断面図。The longitudinal cross-sectional view of an example of the preform of this invention. 本発明のプリフォームの一例の上面図。The top view of an example of the preform of the present invention. 本発明のプリフォームの一例の上面図。The top view of an example of the preform of the present invention. 本発明のプリフォームを金型にセットした状態を示す縦断面図。The longitudinal cross-sectional view which shows the state which set the preform of this invention to the metal mold | die.

符号の説明Explanation of symbols

1: 第1の基材
2: 第2の基材
3: 下型
3a: キャビティ
3b: フィルムゲート
3c: 樹脂注入口
3d: 樹脂吸引口
4: 上型
10: 自動車用ルーフ
11: 取付孔
1: First base material 2: Second base material 3: Lower mold 3a: Cavity 3b: Film gate 3c: Resin injection port 3d: Resin suction port 4: Upper mold 10: Roof for automobile 11: Mounting hole

Claims (4)

少なくとも強化繊維のみからなる第1の基材と、強化繊維に予め樹脂を含浸させた第2の基材とから構成され、第2の基材が第1の基材の外周部の少なくとも一部に配置されてなるとともに、第2の基材の厚みが第1の基材の厚みより厚いことを特徴とするプリフォーム。 It is composed of at least a first base material made of only reinforcing fibers and a second base material in which the reinforcing fibers are impregnated with a resin in advance, and the second base material is at least a part of the outer peripheral portion of the first base material. The preform is characterized in that the second base material is thicker than the first base material. 前記第2の基材の厚みが、前記第1の基材の厚みの1.5倍以下であることを特徴とする請求項1に記載のプリフォーム。 The preform according to claim 1, wherein the thickness of the second base material is 1.5 times or less the thickness of the first base material. 強化繊維のみからなる第1の基材の外周部の少なくとも一部に、強化繊維に予め樹脂を含浸させた第2の基材を配置したプリフォームを構成し、該プリフォームを金型のキャビティ内に収納した後、樹脂を注入・硬化させることを特徴とする、繊維強化プラスチックの成型方法。 A preform in which a second base material in which a reinforcing fiber is impregnated with a resin in advance is arranged on at least a part of the outer peripheral portion of the first base material made of only reinforcing fibers, and the preform is formed into a cavity of a mold. A method for molding a fiber reinforced plastic, wherein the resin is injected and cured after being stored in the container. 第2の基材が配置された該プリフォームの高さが、該金型のキャビティの高さより高いことを特徴とする請求項3に記載の繊維強化プラスチックの成型方法。 The method for molding a fiber-reinforced plastic according to claim 3, wherein the height of the preform on which the second base material is disposed is higher than the height of the cavity of the mold.
JP2008249838A 2008-09-29 2008-09-29 Preform, and molding method for fiber-reinforced plastic Pending JP2010076356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249838A JP2010076356A (en) 2008-09-29 2008-09-29 Preform, and molding method for fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249838A JP2010076356A (en) 2008-09-29 2008-09-29 Preform, and molding method for fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2010076356A true JP2010076356A (en) 2010-04-08

Family

ID=42207355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249838A Pending JP2010076356A (en) 2008-09-29 2008-09-29 Preform, and molding method for fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2010076356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036295A (en) * 2010-08-06 2012-02-23 Fuji Heavy Ind Ltd Fiber-reinforced resin composite material and method of manufacturing the same
JP2012220532A (en) * 2011-04-04 2012-11-12 Shin Etsu Chem Co Ltd Pellicle frame, manufacturing method thereof, and pellicle
JP2016144922A (en) * 2015-02-09 2016-08-12 日産自動車株式会社 Molding method and molding apparatus for composite material, and composite material
US10752773B2 (en) 2011-09-30 2020-08-25 Subaru Corporation Fiber-reinforced resin composite material and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036295A (en) * 2010-08-06 2012-02-23 Fuji Heavy Ind Ltd Fiber-reinforced resin composite material and method of manufacturing the same
JP2012220532A (en) * 2011-04-04 2012-11-12 Shin Etsu Chem Co Ltd Pellicle frame, manufacturing method thereof, and pellicle
US10752773B2 (en) 2011-09-30 2020-08-25 Subaru Corporation Fiber-reinforced resin composite material and method for producing same
JP2016144922A (en) * 2015-02-09 2016-08-12 日産自動車株式会社 Molding method and molding apparatus for composite material, and composite material

Similar Documents

Publication Publication Date Title
US9643363B2 (en) Manufacture of a structural composites component
EP2554348B1 (en) Method for laminating fiber-reinforced thermoplastic resin prepreg
WO2018227957A1 (en) Method for manufacturing vehicle part, vehicle part and vehicle
US20070292669A1 (en) Molding Precursor, Process for Producing Molded Fiber-Reinforced Resin, and Molded Fiber-Reinforced Resin
US10821683B2 (en) Method for molding flame-retardant bending beam integrated with three-dimensional nylon air duct and production mould thereof
US11312090B2 (en) Fiber-reinforced resin molded article and method for manufacturing fiber-reinforced resin molded article
CN107521124A (en) Carbon fiber dual platen reinforced structure part and its manufacture method
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JP2006213059A (en) Method for manufacturing frp composite
JP2008290421A (en) Manufacturing method of molding comprising prepreg laminate
JP6372195B2 (en) Preform manufacturing method and fiber reinforced plastic manufacturing method
WO2015033980A1 (en) Production method for fiber reinforcing member
JP2015178241A (en) Method of producing fiber-reinforced resin material
JP2010076356A (en) Preform, and molding method for fiber-reinforced plastic
JP4805375B2 (en) Method for manufacturing FRP structure
KR101961103B1 (en) Carbon riber and mesh structure tight processing carbon fiber prepreg and manufacturing method of the same
JP4838719B2 (en) Manufacturing method for fiber composite parts and intermediate product for the manufacturing method
JP2007152672A (en) Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric
KR102349669B1 (en) Forming method of fiber reinforced plastic material
US20160075105A1 (en) Automotive vehicle exterior laminate component and method of forming same
JP4338550B2 (en) Method for manufacturing FRP structure
JP2010221489A (en) Rtm molding method
CA2801886C (en) Method of making automotive body parts
JP2004291265A (en) Fiber recinforced plastic molded product and its manufacturing method
JP2009126056A (en) Fiber-reinforced composite material