JP5955235B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP5955235B2
JP5955235B2 JP2013007600A JP2013007600A JP5955235B2 JP 5955235 B2 JP5955235 B2 JP 5955235B2 JP 2013007600 A JP2013007600 A JP 2013007600A JP 2013007600 A JP2013007600 A JP 2013007600A JP 5955235 B2 JP5955235 B2 JP 5955235B2
Authority
JP
Japan
Prior art keywords
refrigerant
groove
electric motor
flow rate
cooling jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013007600A
Other languages
Japanese (ja)
Other versions
JP2014138542A (en
Inventor
康太 梶原
康太 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013007600A priority Critical patent/JP5955235B2/en
Publication of JP2014138542A publication Critical patent/JP2014138542A/en
Application granted granted Critical
Publication of JP5955235B2 publication Critical patent/JP5955235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

本発明は、ステータの外周部に冷媒を循環させて強制冷却する電動機に関する。   The present invention relates to an electric motor that forcibly cools by circulating a refrigerant around an outer periphery of a stator.

図4は、比較例として示す従来の電動機の冷却ジャケット及びフレームを示す縦断面斜視図であり、図5は、従来の電動機を示す部分縦断面図であり、図6は、従来の冷却ジャケットの冷媒流入溝を示す横断面図である。   4 is a longitudinal sectional perspective view showing a cooling jacket and a frame of a conventional motor shown as a comparative example, FIG. 5 is a partial longitudinal sectional view showing a conventional motor, and FIG. 6 is a diagram of a conventional cooling jacket. It is a cross-sectional view showing a refrigerant inflow groove.

図4〜6に示す従来の電動機200は、一般的な工作機械に用いられるものであり、円柱状のロータ10と、コイル21が装着されロータ10を内部に収容する円筒状のステータ20と、ステータ20に外嵌され外周部に冷媒溝34が設けられる円筒状の冷却ジャケット230と、冷却ジャケット230に外嵌され冷媒溝34の外側解放面を塞ぐ円筒状のフレーム40と、を備えている。   A conventional electric motor 200 shown in FIGS. 4 to 6 is used for a general machine tool, and includes a columnar rotor 10, a cylindrical stator 20 to which a coil 21 is attached and which houses the rotor 10, A cylindrical cooling jacket 230 that is externally fitted to the stator 20 and provided with a refrigerant groove 34 on the outer periphery thereof, and a cylindrical frame 40 that is externally fitted to the cooling jacket 230 and closes the outer release surface of the refrigerant groove 34 are provided. .

冷媒溝34は、冷却ジャケット230の軸方向一端側に設けられる円環状の冷媒流入溝31と、軸方向他端側に設けられる円環状の冷媒流出溝32と、冷媒流入溝31と冷媒流出溝32との間に設けられ始端33aが冷媒流入溝31の側部に連通し、終端(図示せず)が冷媒流出溝32の側部に連通する螺旋溝33と、を有している。フレーム40に設けられ冷媒流入溝31に連通する冷媒流入口41は、螺旋溝33の始端33aと円周位相が45°ずれている。   The refrigerant groove 34 includes an annular refrigerant inflow groove 31 provided on one axial end side of the cooling jacket 230, an annular refrigerant outflow groove 32 provided on the other axial end side, the refrigerant inflow groove 31 and the refrigerant outflow groove. And a spiral groove 33 having a start end 33 a communicating with the side portion of the refrigerant inflow groove 31 and a terminal end (not shown) communicating with the side portion of the refrigerant outflow groove 32. The refrigerant inlet 41 provided in the frame 40 and communicating with the refrigerant inflow groove 31 is shifted from the start end 33 a of the spiral groove 33 by 45 ° in the circumferential phase.

従来の電動機200では、冷媒は、冷媒流入口41から冷媒流入溝31内に流入し、時計回り流路31a及び反時計回り流路31bを通って螺旋溝33の始端33aから螺旋溝33内に流入し、螺旋溝33内を通って螺旋溝33の終端(図示せず)から冷媒流出溝32内に流入し、時計回り流路及び反時計回り流路(何れも図示せず)を通ってフレーム40に設けられた冷媒流出口42から流出し、電動機200を強制冷却している。   In the conventional electric motor 200, the refrigerant flows into the refrigerant inflow groove 31 from the refrigerant inlet 41, passes through the clockwise channel 31 a and the counterclockwise channel 31 b, and enters the spiral groove 33 from the start end 33 a of the spiral groove 33. Flows in, passes through the spiral groove 33, enters the refrigerant outlet groove 32 from the end (not shown) of the spiral groove 33, passes through the clockwise flow path and the counterclockwise flow path (both not shown). It flows out of the refrigerant outlet 42 provided in the frame 40 and forcibly cools the electric motor 200.

また、従来、内部に電動機を収容するケーシングの壁面が上記電動機の外周側に沿って分割され、上記分割壁面に沿って設置された仕切板を挟んで上記分割壁面が合わされ、上記外周側に沿って上記分割壁面に形成された凹部が仕切板によりそれぞれ上記外周側に沿う複数層の通路に区画され、上記仕切板に設けられた連通孔により上記複数層の通路が単一の冷媒流路に形成された電動機の冷却装置が開示されている(例えば、特許文献1参照)。   Conventionally, the wall surface of the casing that houses the electric motor is divided along the outer peripheral side of the electric motor, the divided wall surfaces are combined with the partition plate installed along the divided wall surface, and along the outer peripheral side. The recesses formed in the divided wall surfaces are partitioned by a partition plate into a plurality of layers of passages along the outer peripheral side, and the plurality of layers of passages are formed into a single refrigerant channel by the communication holes provided in the partition plate. A cooling device for a formed electric motor is disclosed (for example, see Patent Document 1).

また、ロータおよびステータを収容する筒状のケースを備えた電動機であって、前記ケースは、その内部に周方向の略全体にわたって形成され、流体を流通可能な冷却用空間を備え、前記冷却用空間は、前記流体が流入する入口を有し、周方向の略全体にわたって前記流体を流通可能な第1冷却部と、この第1冷却部よりも前記ケースの軸方向の一方側に位置し、周方向の略全体にわたって流体を流通可能な第2冷却部と、前記入口に対して前記ケースの半径方向に対向する側における周方向の所定範囲の領域に位置し、前記第1冷却部内の前記流体が合流するとともに前記第1冷却部と前記第2冷却部とを連通する第1合流部と、この第1合流部に対して前記半径方向に対向する側における周方向の所定範囲の領域に位置し、前記第2冷却部内の前記流体が合流する第2合流部とを含む電動機が開示されている(例えば、特許文献2参照)。   In addition, the electric motor includes a cylindrical case that accommodates the rotor and the stator, and the case includes a cooling space that is formed substantially in the circumferential direction in the inside thereof and that can circulate a fluid. The space has an inlet through which the fluid flows, and is positioned on one side in the axial direction of the case with respect to the first cooling portion capable of circulating the fluid over substantially the entire circumferential direction, A second cooling part capable of circulating a fluid over substantially the entire circumferential direction, and located in a region in a predetermined range in the circumferential direction on the side opposite to the radial direction of the case with respect to the inlet, and in the first cooling part In a region in a predetermined range in the circumferential direction on the side opposite to the first merging portion in the radial direction with respect to the first merging portion, the fluid merges and the first cooling portion and the second cooling portion communicate with each other. Located and said second cooling Motor wherein the fluid of the inner can and a second junction section for merging is disclosed (for example, see Patent Document 2).

また、ロータ、該ロータに同心状にかつ該ロータの外周側に配されるステータ、及び該ステータ同心状かつ該ステータを外包するケースよりなる高速発電機において、前記ステータの外周面に対応する前記ケースに冷却用流路をらせん状に設け、前記冷却用流路は、前記ケースの軸方向中央部に冷却水入口を有し、軸方向両端部に冷却水出口を有してなる高速発電機が開示されている(例えば、特許文献3参照)。   Further, in a high-speed generator comprising a rotor, a stator concentrically arranged on the rotor and arranged on the outer peripheral side of the rotor, and a case concentric to the stator and enclosing the stator, the stator corresponds to the outer circumferential surface of the stator. A high-speed generator having a cooling flow path spirally provided in a case, the cooling flow path having a cooling water inlet at an axially central portion of the case and cooling water outlets at both axial ends. Is disclosed (for example, see Patent Document 3).

特許第3622582号公報Japanese Patent No. 3622582 特開2010−206993号公報JP 2010-209933 A 特開平01−274636号公報Japanese Patent Laid-Open No. 01-274636

しかしながら、図4〜6に示す従来の電動機200では、フレーム40に設けられ冷媒流入溝31に連通する冷媒流入口41が、螺旋溝33の始端33aと円周位相が45°ずれていて、冷媒流入溝31内の時計回り流路31aの流路長と反時計回り流路31bの流路長が異なるため、冷媒の流れが不均一となり冷却効率が悪い、という問題がある。また、螺旋溝33の流路長が長いため、圧力損失が増大し、必要冷媒流量が確保できない、という問題がある。また、電動機200の発熱量が最大となる工作機械の稼働条件に合わせて常時一定の冷媒流量が設定されているため、冷媒循環装置の消費電力が大きい、という問題がある。   However, in the conventional electric motor 200 shown in FIGS. 4 to 6, the refrigerant inlet 41 provided in the frame 40 and communicating with the refrigerant inflow groove 31 is shifted in the circumferential phase by 45 ° from the start end 33 a of the spiral groove 33. Since the flow path length of the clockwise flow path 31a in the inflow groove 31 and the flow path length of the counterclockwise flow path 31b are different, there is a problem that the flow of the refrigerant becomes uneven and the cooling efficiency is poor. Moreover, since the flow path length of the spiral groove 33 is long, there is a problem that the pressure loss increases and the necessary refrigerant flow rate cannot be secured. In addition, there is a problem that the power consumption of the refrigerant circulation device is large because the constant refrigerant flow rate is always set in accordance with the operating condition of the machine tool that maximizes the amount of heat generated by the electric motor 200.

また、上記特許文献1又は2に記載された従来の技術によれば、仕切板に設けた連通孔又は第1合流部に冷媒が集中するため、冷媒の偏流が発生し熱分布にバラツキが生じる、という問題がある。また、連通孔又は第1合流部の流路面積が狭く、圧力損失が局部的に増大し、冷却流量が制約される、という問題がある。また、冷媒流路が連続していないので、流路の加工工数が増大しコストアップを招く、という問題がある。   In addition, according to the conventional technique described in Patent Document 1 or 2, the refrigerant concentrates in the communication hole provided in the partition plate or the first junction, and therefore, the refrigerant drifts and the heat distribution varies. There is a problem. In addition, there is a problem that the flow passage area of the communication hole or the first merging portion is narrow, the pressure loss is locally increased, and the cooling flow rate is restricted. Further, since the refrigerant flow paths are not continuous, there is a problem that the number of processing steps for the flow paths increases and the cost increases.

また、上記特許文献3に記載された従来の技術によれば、冷却用流路が軸方向中央部で両側に分岐されるので、流量が半分となり冷却効率が悪化する、という問題がある。また、モータ全長が長く、冷却用流路が長くなる場合、冷却流量を確保することが難しい、という問題がある。   Further, according to the conventional technique described in Patent Document 3, since the cooling flow path is branched to both sides at the central portion in the axial direction, there is a problem that the flow rate becomes half and the cooling efficiency is deteriorated. In addition, when the total motor length is long and the cooling flow path is long, there is a problem that it is difficult to secure a cooling flow rate.

本発明は、上記に鑑みてなされたものであって、冷却効率が高く、必要冷媒流量を確保することができ、冷媒循環装置の消費電力が少ない電動機を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain an electric motor that has high cooling efficiency, can secure a necessary refrigerant flow rate, and consumes less power in the refrigerant circulation device.

上述した課題を解決し、目的を達成するために、本発明は、円柱状のロータと、コイルが装着され前記ロータを内部に収容する円筒状のステータと、前記ステータに外嵌され外周部に冷媒溝が設けられる円筒状の冷却ジャケットと、前記冷却ジャケットに外嵌され前記冷媒溝の外側解放面を塞ぐ円筒状のフレームと、を備える電動機において、前記冷媒溝は、前記冷却ジャケットの軸方向所定の位置に設けられる円環状の冷媒流入溝と、前記冷媒流入溝から軸方向に所定距離離間した位置に設けられる円環状の冷媒流出溝と、前記冷媒流入溝と冷媒流出溝との間に設けられ始端が前記冷媒流入溝の側部に連通し、終端が前記冷媒流出溝の側部に連通する螺旋溝と、を有し、前記フレームに設けられ前記冷媒流入溝に連通する冷媒流入口は、前記螺旋溝の始端と円周位相が180°ずれていることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention includes a columnar rotor, a cylindrical stator to which a coil is mounted and which accommodates the rotor, and an outer periphery fitted to the stator. An electric motor comprising: a cylindrical cooling jacket provided with a refrigerant groove; and a cylindrical frame that is externally fitted to the cooling jacket and closes an outer release surface of the refrigerant groove, wherein the refrigerant groove is in the axial direction of the cooling jacket. An annular refrigerant inflow groove provided at a predetermined position, an annular refrigerant outflow groove provided at a position axially spaced from the refrigerant inflow groove, and between the refrigerant inflow groove and the refrigerant outflow groove A refrigerant inlet that is provided in the frame and that communicates with the refrigerant inflow groove, having a start end that communicates with a side portion of the refrigerant inflow groove and a terminal end that communicates with a side portion of the refrigerant outflow groove Before Starting the circumferential phase of the spiral groove, characterized in that the offset 180 °.

本発明によれば、冷却効率が高く、必要冷媒流量を確保することができる電動機が得られる。   According to the present invention, an electric motor having high cooling efficiency and ensuring a necessary refrigerant flow rate is obtained.

図1は、本発明に係る電動機の実施の形態1を示す部分縦断面図である。FIG. 1 is a partial longitudinal sectional view showing Embodiment 1 of an electric motor according to the present invention. 図2は、実施の形態1の冷却ジャケットの冷媒流入溝を示す横断面図である。FIG. 2 is a cross-sectional view showing a refrigerant inflow groove of the cooling jacket according to the first embodiment. 図3は、本発明に係る電動機の実施の形態2の冷媒流量制御システムを示すシステム構成図である。FIG. 3 is a system configuration diagram showing a refrigerant flow rate control system according to the second embodiment of the electric motor according to the present invention. 図4は、比較例として示す従来の電動機の冷却ジャケット及びフレームを示す縦断面斜視図である。FIG. 4 is a longitudinal sectional perspective view showing a cooling jacket and a frame of a conventional electric motor shown as a comparative example. 図5は、従来の電動機を示す部分縦断面図である。FIG. 5 is a partial longitudinal sectional view showing a conventional electric motor. 図6は、従来の冷却ジャケットの冷媒流入溝を示す横断面図である。FIG. 6 is a cross-sectional view showing a refrigerant inflow groove of a conventional cooling jacket.

以下に、本発明に係る電動機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an electric motor according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明に係る電動機の実施の形態1を示す部分縦断面図であり、図2は、実施の形態1の冷却ジャケットの冷媒流入溝を示す横断面図である。
Embodiment 1 FIG.
1 is a partial longitudinal sectional view showing a first embodiment of the electric motor according to the present invention, and FIG. 2 is a transverse sectional view showing a refrigerant inflow groove of the cooling jacket of the first embodiment.

実施の形態1の電動機91は、一般的な工作機械に用いられるものであり、図1及び図2に示すように、円柱状のロータ10と、コイル21が装着されロータ10を内部に収容する円筒状のステータ20と、ステータ20に外嵌され外周部に冷媒溝34,35が設けられる円筒状の冷却ジャケット30と、冷却ジャケット30に外嵌され冷媒溝34,35の外側解放面を塞ぐ円筒状のフレーム40と、を備えている。   The electric motor 91 of the first embodiment is used for a general machine tool, and as shown in FIGS. 1 and 2, a cylindrical rotor 10 and a coil 21 are mounted and the rotor 10 is accommodated therein. Cylindrical stator 20, cylindrical cooling jacket 30 that is externally fitted to stator 20 and provided with refrigerant grooves 34 and 35 on the outer periphery, and an outer release surface of refrigerant grooves 34 and 35 that are externally fitted to cooling jacket 30. And a cylindrical frame 40.

冷媒溝34は、冷却ジャケット30の軸方向所定の位置(軸方向一端部)に設けられる円環状の冷媒流入溝31と、冷媒流入溝31から軸方向に所定距離離間した位置(軸方向中央部)に設けられる円環状の冷媒流出溝32と、冷媒流入溝31と冷媒流出溝32との間に設けられ始端33aが冷媒流入溝31の側部に連通し、終端(図示せず)が冷媒流出溝32の側部に連通する螺旋溝33と、を有している。フレーム40に設けられ冷媒流入溝31に連通する冷媒流入口41は、螺旋溝33の始端33aと円周位相が180°ずれている。また、フレーム40に設けられ冷媒流出溝32に連通する冷媒流出口42は、螺旋溝33の終端(図示せず)と円周位相が180°ずれている。   The refrigerant groove 34 is an annular refrigerant inflow groove 31 provided at a predetermined position in the axial direction (one axial end portion) of the cooling jacket 30 and a position (a central portion in the axial direction) spaced from the refrigerant inflow groove 31 by a predetermined distance in the axial direction. ) Provided in the annular refrigerant outflow groove 32, the refrigerant inflow groove 31 and the refrigerant outflow groove 32, the start end 33a communicates with the side of the refrigerant inflow groove 31, and the end (not shown) is the refrigerant. And a spiral groove 33 communicating with the side of the outflow groove 32. The refrigerant inlet 41 provided in the frame 40 and communicating with the refrigerant inflow groove 31 is 180 ° out of the circumferential phase with the start end 33 a of the spiral groove 33. Further, the coolant outlet 42 provided in the frame 40 and communicating with the coolant outlet groove 32 is 180 ° out of the circumferential phase with respect to the terminal end (not shown) of the spiral groove 33.

また、冷却ジャケット30には、他の冷媒溝35が設けられており、他の冷媒溝35は、冷却ジャケット30の冷媒流出溝32の隣(軸方向中央部)に設けられた円環状の冷媒流入溝36と、冷媒流入溝36から軸方向に所定距離離間した位置(軸方向他端部)に設けられる円環状の冷媒流出溝37と、冷媒流入溝36と冷媒流出溝37との間に設けられ始端(図示せず)が冷媒流入溝36の側部に連通し、終端(図示せず)が冷媒流出溝37の側部に連通する螺旋溝38と、を有している。フレーム40に設けられ冷媒流入溝36に連通する冷媒流入口46は、螺旋溝38の始端(図示せず)と円周位相が180°ずれている。また、フレーム40に設けられ冷媒流出溝37に連通する冷媒流出口47は、螺旋溝38の終端(図示せず)と円周位相が180°ずれている。   The cooling jacket 30 is provided with another refrigerant groove 35, and the other refrigerant groove 35 is an annular refrigerant provided next to the refrigerant outflow groove 32 of the cooling jacket 30 (axially central portion). Between the inflow groove 36, an annular refrigerant outflow groove 37 provided at a position spaced apart from the refrigerant inflow groove 36 in the axial direction (the other end in the axial direction), and between the refrigerant inflow groove 36 and the refrigerant outflow groove 37. And a spiral groove 38 having a start end (not shown) communicating with the side portion of the refrigerant inflow groove 36 and a terminal end (not shown) communicating with the side portion of the refrigerant outflow groove 37. A refrigerant inlet 46 provided in the frame 40 and communicating with the refrigerant inflow groove 36 is 180 ° out of the circumferential phase with respect to the starting end (not shown) of the spiral groove 38. The refrigerant outlet 47 provided in the frame 40 and communicating with the refrigerant outlet groove 37 is 180 ° out of the circumferential phase with respect to the terminal end (not shown) of the spiral groove 38.

以上説明したように、実施の形態1の電動機91では、フレーム40に設けられ冷媒流入溝31に連通する冷媒流入口41が、螺旋溝33の始端33aと円周位相が180°ずれていて、冷媒流入溝31内の時計回り流路31aの流路長と反時計回り流路31bの流路長が同一であるため、冷媒の流れが均一となり冷却効率が高い。また、螺旋溝33,38の流路長が短いので、圧力損失が小さく、必要冷媒流量を確保することができる。   As described above, in the electric motor 91 of the first embodiment, the refrigerant inlet 41 provided in the frame 40 and communicating with the refrigerant inflow groove 31 is shifted in the circumferential phase by 180 ° from the start end 33a of the spiral groove 33. Since the flow path length of the clockwise flow path 31a in the refrigerant inflow groove 31 and the flow path length of the counterclockwise flow path 31b are the same, the flow of the refrigerant becomes uniform and the cooling efficiency is high. Moreover, since the flow path length of the spiral grooves 33 and 38 is short, a pressure loss is small and a required refrigerant | coolant flow volume is securable.

実施の形態2.
図3は、本発明に係る電動機の実施の形態2の冷媒流量制御システムを示すシステム構成図である。実施の形態2の電動機の冷媒流量制御システム92において、実施の形態1の電動機91と同等の部分には、同一の符号を付して、その詳細な説明を省略する。
Embodiment 2. FIG.
FIG. 3 is a system configuration diagram showing a refrigerant flow rate control system according to the second embodiment of the electric motor according to the present invention. In the refrigerant flow rate control system 92 for the electric motor according to the second embodiment, the same parts as those of the electric motor 91 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施の形態2の電動機の冷媒流量制御システム92は、冷媒流入口41,46に接続され冷媒流入口41,46に流入する冷媒流量を制御する電磁流量制御弁50と、工作機械のロード値を電磁流量制御弁50の制御因子として出力するNCユニット70と、ロード値と冷媒流量との関係を相関テーブルとして有しロード値に基づいて冷媒流量を決定し電磁流量制御弁50に励磁電流指令を出力する比較演算部60と、を備えている。   The refrigerant flow rate control system 92 for the electric motor according to the second embodiment includes an electromagnetic flow rate control valve 50 that is connected to the refrigerant inlet ports 41 and 46 and controls the refrigerant flow rate flowing into the refrigerant inlet ports 41 and 46, and the load value of the machine tool. An NC unit 70 that outputs as a control factor of the electromagnetic flow control valve 50, and a relationship between the load value and the refrigerant flow rate as a correlation table, the refrigerant flow rate is determined based on the load value, and an excitation current command is sent to the electromagnetic flow control valve 50 And a comparison operation unit 60 for outputting.

実施の形態2の電動機の冷媒流量制御システム92によれば、工作機械のロード値(例えば、切削量)に応じて、電動機91の冷媒流量を調整するので、冷媒循環装置の消費電力を節約することができる。   According to the refrigerant flow rate control system 92 of the electric motor according to the second embodiment, the refrigerant flow rate of the electric motor 91 is adjusted according to the load value (for example, the cutting amount) of the machine tool, so that the power consumption of the refrigerant circulation device is saved. be able to.

10 ロータ、20 ステータ、21 コイル、30 冷却ジャケット、34,35 冷媒溝、31,36 冷媒流入溝、32,37 冷媒流出溝、33,38 螺旋溝、31a 時計回り流路、31b 反時計回り流路、33a 始端、40 フレーム、41,46 冷媒流入口、42,47 冷媒流出口、50 電磁流量制御弁、60 比較演算部、70 NCユニット、91 電動機、92 電動機の冷媒流量制御システム。   10 Rotor, 20 Stator, 21 Coil, 30 Cooling jacket, 34, 35 Refrigerant groove, 31, 36 Refrigerant inflow groove, 32, 37 Refrigerant outflow groove, 33, 38 Spiral groove, 31a Clockwise flow path, 31b Counterclockwise flow Road, 33a Start end, 40 frame, 41, 46 Refrigerant inlet, 42, 47 Refrigerant outlet, 50 Electromagnetic flow control valve, 60 Comparison operation unit, 70 NC unit, 91 Electric motor, 92 Refrigerant flow control system for electric motor.

Claims (4)

円柱状のロータと、コイルが装着され前記ロータを内部に収容する円筒状のステータと、前記ステータに外嵌され外周部に冷媒溝が設けられる円筒状の冷却ジャケットと、前記冷却ジャケットに外嵌され前記冷媒溝の外側解放面を塞ぐ円筒状のフレームと、を備える電動機において、
前記冷媒溝は、前記冷却ジャケットの軸方向所定の位置に設けられる円環状の冷媒流入溝と、前記冷媒流入溝から軸方向に所定距離離間した位置に設けられる円環状の冷媒流出溝と、前記冷媒流入溝と冷媒流出溝との間に設けられ始端が前記冷媒流入溝の側部に連通し、終端が前記冷媒流出溝の側部に連通する螺旋溝と、を有し、前記フレームに設けられ前記冷媒流入溝に連通する冷媒流入口は、前記螺旋溝の始端と円周位相が180°ずれていることを特徴とする電動機。
A cylindrical rotor, a cylindrical stator that is fitted with a coil and accommodates the rotor therein, a cylindrical cooling jacket that is externally fitted to the stator and has a coolant groove on the outer periphery, and an external fit to the cooling jacket And a cylindrical frame that closes the outer release surface of the refrigerant groove,
The refrigerant groove includes an annular refrigerant inflow groove provided at a predetermined position in the axial direction of the cooling jacket, an annular refrigerant outflow groove provided at a position spaced a predetermined distance in the axial direction from the refrigerant inflow groove, A spiral groove provided between the refrigerant inflow groove and the refrigerant outflow groove and having a start end communicating with the side portion of the refrigerant inflow groove and a terminal end communicating with the side portion of the refrigerant outflow groove. And the refrigerant inlet that communicates with the refrigerant inflow groove is 180 ° out of phase with the starting end of the spiral groove.
前記フレームに設けられ前記冷媒流出溝に連通する冷媒流出口が、前記螺旋溝の終端と円周位相が180°ずれていることを特徴とする請求項1に記載の電動機。   2. The electric motor according to claim 1, wherein a coolant outlet provided in the frame and communicated with the coolant outlet groove has a circumferential phase shifted from the end of the spiral groove by 180 °. 前記冷媒流入口、冷媒流入溝、螺旋溝、冷媒流出溝及び冷媒流出口を含んでなる冷媒流路を、複数有することを特徴とする請求項1又は2に記載の電動機。   The electric motor according to claim 1, comprising a plurality of refrigerant flow paths including the refrigerant inlet, the refrigerant inlet groove, the spiral groove, the refrigerant outlet groove, and the refrigerant outlet. 前記冷媒流入口に接続され該冷媒流入口に流入する冷媒流量を制御する電磁流量制御弁と、工作機械のロード値を前記電磁流量制御弁の制御因子として出力するNCユニットと、前記ロード値と冷媒流量との関係を相関テーブルとして有し前記ロード値に基づいて冷媒流量を決定し前記電磁流量制御弁に励磁電流指令を出力する比較演算部と、を備えることを特徴とする請求項1〜3のいずれか1つに記載の電動機。   An electromagnetic flow control valve connected to the refrigerant inlet for controlling a flow rate of refrigerant flowing into the refrigerant inlet, an NC unit for outputting a load value of a machine tool as a control factor of the electromagnetic flow control valve, and the load value; A comparison operation unit that has a relationship with a refrigerant flow rate as a correlation table, determines a refrigerant flow rate based on the load value, and outputs an excitation current command to the electromagnetic flow control valve. 4. The electric motor according to any one of 3.
JP2013007600A 2013-01-18 2013-01-18 Electric motor Active JP5955235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007600A JP5955235B2 (en) 2013-01-18 2013-01-18 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013007600A JP5955235B2 (en) 2013-01-18 2013-01-18 Electric motor

Publications (2)

Publication Number Publication Date
JP2014138542A JP2014138542A (en) 2014-07-28
JP5955235B2 true JP5955235B2 (en) 2016-07-20

Family

ID=51415752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007600A Active JP5955235B2 (en) 2013-01-18 2013-01-18 Electric motor

Country Status (1)

Country Link
JP (1) JP5955235B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849466A (en) * 2016-12-13 2017-06-13 高邮市高农机械配件有限公司 The built-in cooling water channel structure of onboard power electric machine casing and encapsulating method
CN107733163B (en) * 2017-11-06 2020-06-16 珠海格力电器股份有限公司 Motor, centrifugal compressor and air conditioning unit
JP7163677B2 (en) * 2018-09-03 2022-11-01 株式会社Ihi rotary machine
WO2021199172A1 (en) * 2020-03-30 2021-10-07 三菱電機株式会社 Motor and motor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066708A (en) * 1973-10-17 1975-06-05
GB8807663D0 (en) * 1988-03-31 1988-05-05 Aisin Seiki Dynamoelectric machines
JPH04368452A (en) * 1991-06-17 1992-12-21 Fanuc Ltd Liquid cooling mechanism of motor
JP5146363B2 (en) * 2009-03-04 2013-02-20 ダイキン工業株式会社 Electric motor
JP4648470B2 (en) * 2009-07-03 2011-03-09 ファナック株式会社 Electric motor cooling device
JP2011251359A (en) * 2010-06-01 2011-12-15 Toshiba Mach Co Ltd Control method of vertical shaft of working machine

Also Published As

Publication number Publication date
JP2014138542A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
US9647510B2 (en) Cooling jacket and deflection unit for cooling jackets
JP7449592B2 (en) Axial flux machine stator cooling mechanism
JP5955235B2 (en) Electric motor
KR20180027556A (en) Rotating electric device cooling structure
JP5146363B2 (en) Electric motor
JP2013141334A (en) Rotary electric machine
JP5594350B2 (en) Electric motor
US10523084B2 (en) Cooling system for an electric machine
JP7192770B2 (en) motor
JP2011015578A (en) Motor cooling device
JP6791463B1 (en) Motors and motor devices
WO2017082023A1 (en) Dynamo-electric machine
TWM517473U (en) Liquid cooling type casing with dual helical coolant flow passages
JP5962570B2 (en) Rotating electric machine
JP5426232B2 (en) Electric motor cooling jacket
JP6247555B2 (en) Rotating electric machine
KR20140059881A (en) Motor
JP5408011B2 (en) Cooling device for rotating electrical machine
JP5892091B2 (en) Multi-gap rotating electric machine
JP2010206994A (en) Motor
WO2020022104A1 (en) Vehicle cooling system
JP2020162186A (en) motor
WO2019022125A1 (en) Motor
JP6116365B2 (en) Liquid cooling motor
JP6551060B2 (en) Rotating electric machine cooling structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160614

R150 Certificate of patent or registration of utility model

Ref document number: 5955235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250