TWM517473U - Liquid cooling type casing with dual helical coolant flow passages - Google Patents

Liquid cooling type casing with dual helical coolant flow passages Download PDF

Info

Publication number
TWM517473U
TWM517473U TW104209597U TW104209597U TWM517473U TW M517473 U TWM517473 U TW M517473U TW 104209597 U TW104209597 U TW 104209597U TW 104209597 U TW104209597 U TW 104209597U TW M517473 U TWM517473 U TW M517473U
Authority
TW
Taiwan
Prior art keywords
spiral
casing
spiral tube
coolant
wall
Prior art date
Application number
TW104209597U
Other languages
Chinese (zh)
Inventor
Mi-Ching Tsai
Zwe-Lee Gaing
Wei-Mon Yan
Pin-Chuan Wang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW104209597U priority Critical patent/TWM517473U/en
Publication of TWM517473U publication Critical patent/TWM517473U/en

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

具有雙螺旋冷卻液流道的液冷式機殼Liquid-cooled housing with double-spiral coolant flow path

本創作係關於一種液冷式機殼,尤指一種具有雙螺旋冷卻液流道的液冷式機殼。The present invention relates to a liquid-cooled casing, and more particularly to a liquid-cooled casing having a double-screw coolant flow passage.

目前如馬達或發電機等產品之構造中,其主要係於一機殼內部裝設同軸配置的轉子與定子,由於轉子相對於定子旋轉時,馬達或發電機因能量損失轉換為熱能。為避免馬達或發電機運轉時之工作溫度過高,且為提高冷卻散熱的效能,現有馬達或發電機即採取液冷式機殼構造,藉以利用循環流動的冷卻液通過機殼內部進行熱交換,而達到冷卻降溫之目的。At present, in the construction of products such as motors or generators, the rotor and the stator are coaxially arranged inside a casing. When the rotor rotates relative to the stator, the motor or generator is converted into heat energy due to energy loss. In order to avoid the working temperature of the motor or generator running too high, and to improve the cooling and cooling efficiency, the existing motor or generator adopts a liquid-cooled casing structure, so that the circulating fluid is used for heat exchange through the inside of the casing. And achieve the purpose of cooling and cooling.

目前已知應用於馬達或發電機領域的液冷式機殼構造,概有我國公告第I484733號發明專利案公開之「具油路循環之馬達」、公告第I477040號發明專利案公開之「雙循環冷媒冷卻馬達」,以及公告第I477041號發明專利案公開之「雙循環冷媒冷卻馬達」等。The liquid-cooled casing structure which is known to be applied to the field of motors or generators, the "motor with oil circuit circulation" disclosed in the invention patent publication No. I484733, and the disclosure of the invention patent No. I477040 "Circulating refrigerant cooling motor", and "double-cycle refrigerant cooling motor" disclosed in the publication No. I477041.

前述公告第I484733號發明專利案公開之「具油路循環之馬達」中,其主要係於馬達本體之設有軸承的兩端部分別設有一油路空間,每一油路空間分別以一進油管以及一回油管連接一油箱,另以一泵浦將油箱內的冷卻油通過油管與回油管與油路空間之間循環,藉以冷卻馬達本兩端軸承周緣部位。In the "motor with oil circuit circulation" disclosed in the above-mentioned publication No. I484733, the main part of the motor body is provided with an oil passage space at both ends of the bearing, and each oil passage space is separately entered. The oil pipe and a return pipe are connected to a fuel tank, and a pump is used to circulate the cooling oil in the oil tank between the oil pipe and the oil return pipe and the oil passage space, thereby cooling the peripheral portion of the bearing at both ends of the motor.

惟前揭「具油路循環之馬達」僅分別對馬達本體兩端的軸承周緣部位提供冷卻功能,馬達本體中段完全不具備冷卻功能,無法對馬達整體提供較佳的冷卻效果,而且馬達本體兩端與中段間之溫度差偏大的問題。However, the front-end "motor with oil circulation" only provides cooling function to the peripheral part of the bearing at both ends of the motor body. The middle part of the motor body does not have a cooling function at all, and it cannot provide a better cooling effect to the whole motor, and both ends of the motor body The problem of a large temperature difference from the middle section.

前述公告第I477040號與公告第I477041號發明專利案公開之「雙循環冷媒冷卻馬達」中,其主要係於一組雙循環外殼中裝設一定子與一位於定子內的轉子,該雙循環外殼中設置一螺旋狀流道,並於螺旋狀流道的前後端分別連接一冷卻油導管,提供冷卻油於其中循環流動而構成一冷媒蒸發器,該定子中段為通道型矽鋼片與穿透型矽鋼片所構成,並形成多個貫穿定子內外側的定子注油口,且通道型矽鋼片還與該雙循環外殼內側之間形成一定子外油道,定子外油道連接該雙循環外殼兩端的冷卻油導管,轉子與定子之間縫隙形成一筒狀油道,轉子前後兩端各設有一油泵葉片,油泵葉片能將冷卻油自該筒狀油道抽出後,通過雙循環外殼兩端之冷卻油管導入定子外油道,再經由定子注油口導入筒狀油道而構成一冷卻油內循環迴路,使該馬達利用內外冷媒循環流動達到冷卻之目的。In the "double-cycle refrigerant cooling motor" disclosed in the above-mentioned publication No. I477040 and the publication No. I477041, the main purpose is to install a stator and a rotor in the stator in a set of double-cycle casings, the double-cycle casing A spiral flow passage is arranged, and a cooling oil conduit is respectively connected to the front and rear ends of the spiral flow passage, and a cooling oil is circulated therein to form a refrigerant evaporator. The middle section of the stator is a channel type silicon steel sheet and a penetrating type. The silicon steel sheet is formed, and a plurality of stator oil injection ports are formed through the inner and outer sides of the stator, and the channel type silicon steel sheet further forms a certain outer oil passage between the inner side of the double circulation outer casing, and the outer oil passage of the stator is connected to the two ends of the double circulation outer casing. Cooling oil conduit, a gap between the rotor and the stator forms a cylindrical oil passage, and an oil pump blade is arranged at each of the front and rear ends of the rotor. The oil pump blade can extract cooling oil from the tubular oil passage and then cool through both ends of the double-circulation shell. The oil pipe is introduced into the outer oil passage of the stator, and then introduced into the tubular oil passage through the stator oil injection port to form a cooling oil inner circulation loop, so that the motor uses the inner and outer refrigerants to circulate and flow. Cooling purposes.

惟該雙循環冷媒冷卻馬達係利用內外雙循環冷卻機制達到馬達冷卻之目的。其中,冷媒蒸發器係採取單一螺旋狀流道的迴路設計,會因冷卻油的流向而累積熱量在該雙循環外殼具有冷卻油出口處的一端,造成雙循環外殼軸兩端的溫度高低差偏大。再者,該馬達係利用其雙循環外殼兩端之冷卻油管結合定子之通道型矽鋼片與雙循環外殼內側間設置之定子外油道,轉子與定子之間縫隙形成一筒狀油道,以及轉子前後兩端各設有一油泵葉片等而構成一冷卻油內循環迴路,此冷卻油內循環迴路之構造複雜,製造及維修困難,且無法適用於各種馬達或發電機等產品,而且於雙循環外殼、定子與轉子之間設置冷卻油內循環迴路易對馬達或發電機之運轉產生不利的干擾等影響。However, the dual-cycle refrigerant cooling motor uses the internal and external double-cycle cooling mechanism to achieve motor cooling. Among them, the refrigerant evaporator adopts a loop design of a single spiral flow passage, and accumulates heat due to the flow direction of the cooling oil at one end of the double-circulation outer casing having a cooling oil outlet, so that the temperature difference between the two ends of the double-circulation casing shaft is large. . Furthermore, the motor utilizes a cooling oil pipe at both ends of the double-cycle casing to combine the channel-shaped silicon steel sheet of the stator with the stator outer oil passage provided between the inner sides of the double-cycle outer casing, and a gap between the rotor and the stator forms a cylindrical oil passage, and An oil pump blade is arranged at each of the front and rear ends of the rotor to form a cooling oil inner circulation loop. The structure of the inner loop of the cooling oil is complicated, manufacturing and maintenance are difficult, and it cannot be applied to various motors or generators, and is double cycled. The arrangement of the cooling oil inner circulation circuit between the outer casing, the stator and the rotor is likely to adversely affect the operation of the motor or the generator.

本創作之主要目的在於提供一種具有雙螺旋冷卻液流道的液冷式機殼,解決現有液冷式機殼冷卻效果不佳以及冷卻循環迴路複雜等問題。The main purpose of this creation is to provide a liquid-cooled casing with a double-spiral coolant flow path, which solves the problems of poor cooling performance of the existing liquid-cooled casing and complicated cooling cycle.

為達成前揭目的,本創作所提出的具有雙螺旋冷卻液流道的液冷式機殼,係包含: 一殼體,其包含一殼壁,該殼壁中界定有一中心軸線,該殼壁中形成一沿中心軸線貫通殼壁的軸孔,該殼壁沿中心軸線方向的相對兩端分別為一第一端與一第二端; 一第一螺旋管,係設置於該殼體的殼壁內部,該第一螺旋管包含多數個第一螺旋管單元,該多數個第一螺旋管單元相對於該中心軸線依循一螺旋半徑及一螺旋導程連續螺旋繞設,該第一螺旋管具有一伸出殼壁的第一端外的第一冷卻液入口,該第一螺旋管具有一伸出殼壁的第二端外的第一冷卻液出口;以及 一第二螺旋管,係設置於該殼體的殼壁內部,該第二螺旋管包含多數個第二螺旋管單元,該多數個第二螺旋管單元相對於該中心軸線依循該螺旋半徑及該螺旋導程連續螺旋繞設,該第二螺旋管的第二螺旋管單元與第一螺旋管的第一螺旋管單元錯位排列,該第二螺旋管具有一伸出殼壁的第一端外的第二冷卻液出口,該第二螺旋管具有一伸出殼壁的第二端外的第二冷卻液入口。In order to achieve the foregoing, the liquid-cooled casing with a double-spiral coolant flow path proposed by the present invention comprises: a casing comprising a casing wall defining a central axis, the casing wall Forming a shaft hole penetrating the shell wall along the central axis, the opposite ends of the shell wall along the central axis are respectively a first end and a second end; a first spiral tube is disposed on the shell of the shell Inside the wall, the first spiral tube includes a plurality of first spiral tube units, and the plurality of first spiral tube units are continuously spirally wound with respect to the central axis according to a spiral radius and a spiral lead, the first spiral tube having a first coolant inlet extending beyond the first end of the casing wall, the first coil having a first coolant outlet extending beyond the second end of the casing wall; and a second coil disposed on the casing Inside the shell wall of the body, the second spiral tube comprises a plurality of second spiral tube units, the plurality of second spiral tube units are continuously spirally wound according to the central axis along the spiral radius and the spiral lead, the second Second spiral tube of spiral tube And the first spiral tube unit of the first spiral tube is misaligned, the second spiral tube has a second coolant outlet extending beyond the first end of the shell wall, and the second coil has a second wall extending from the shell wall a second coolant inlet outside the end.

藉由前揭具有雙螺旋冷卻液流道的液冷式機殼創作,使其應用於馬達或發電機等產品中,該液冷式機殼主要係於其殼體之殼壁內設置等徑周向螺旋的第一、第二螺旋管,而構成雙螺旋冷卻液流道,用以導入流動的冷卻液將馬達或發電機運轉所產生的熱量帶走,且利用第一、第二螺旋管分別位於殼體殼壁兩端的第一、第二冷卻液入口雙向同時輸入冷卻液,並使熱交換後的冷卻液再分別由殼體之殼壁兩端的第一、第二冷卻液出口流出,以及該二螺旋管的螺旋管單元交錯排列等創新的雙螺旋冷卻液流道構造,使該液冷式機殼使用的過程中,藉由輸入低溫冷卻液的第一螺旋管的第一冷卻液入口與輸出吸熱後冷卻液的第二螺旋管的第二冷卻液出口位於殼壁的第一端,輸出吸熱後冷卻液的第一螺旋管的第一冷卻液出口與輸入低溫冷卻液的第二螺旋管的第二冷卻液入口位於殼壁的第二端,使該液冷式機殼的整體溫度不會因冷卻液流動方向而累積熱量在殼體一端,冷卻液在殼體的雙螺旋冷卻液流道中的輸入位置、輸出位置以及冷卻液流道中段的溫度差較小,解決現有馬達或發電機之冷卻液於其機殼內部流道中的溫度梯度大的問題,讓馬達或發電機內部構件的溫度更平衡,而能穩定運轉。It is created by a liquid-cooled casing with a double-spiral coolant flow channel, which is applied to products such as motors or generators. The liquid-cooled casing is mainly provided with an equal diameter in the shell wall of the casing. The first and second spiral tubes of the circumferential spiral form a double spiral coolant flow passage for introducing the flowing coolant to carry away the heat generated by the operation of the motor or the generator, and using the first and second spiral tubes The first and second coolant inlets respectively located at the two ends of the shell wall simultaneously input the coolant in both directions, and the coolant after the heat exchange is separately discharged from the first and second coolant outlets at both ends of the shell wall of the shell. And an innovative double-screw coolant flow path structure such as staggered arrangement of the spiral tubes of the two spiral tubes, so that the first coolant of the first spiral tube of the low-temperature coolant is input during use of the liquid-cooled casing The second coolant outlet of the second spiral tube of the inlet and the output endothermic coolant is located at the first end of the casing wall, and outputs the first coolant outlet of the first spiral tube of the coolant after the endothermic heat and the second inlet of the input low temperature coolant Second cooling of the spiral tube The inlet is located at the second end of the casing wall such that the overall temperature of the liquid-cooled casing does not accumulate heat at one end of the casing due to the flow direction of the coolant, and the input position of the coolant in the double-spiral coolant flow passage of the casing, The temperature difference between the output position and the middle section of the coolant flow path is small, solving the problem that the temperature gradient of the coolant of the existing motor or generator in the internal flow passage of the casing is large, and the temperature of the internal components of the motor or the generator is more balanced, and Can run stably.

依據前揭新型內容所提出之技術手段,本創作至少可創作出如圖1至圖7所示之數種具有雙螺旋冷卻液流道的液冷式機殼較佳實施例,由該些圖式中可以見及,所述具有雙螺旋冷卻液流道的液冷式機殼係包含:一殼體10A、10B、10C、一第一螺旋管20以及一第二螺旋管30。According to the technical means proposed in the prior art, the present invention can at least create a liquid-cooled casing having a double-spiral coolant flow path as shown in FIGS. 1 to 7. As can be seen, the liquid-cooled casing having a double-spiral coolant flow passage includes a casing 10A, 10B, 10C, a first spiral pipe 20, and a second spiral pipe 30.

如圖1、圖5以及圖6、圖7所示,所述殼體10A、10B、10C係導熱性材料所製成的構件,其包含一殼壁11A、11B、11C,殼壁11A、11B、11C中界定有一中心軸線100,且殼壁11A、11B、11C中形成一沿該中心軸線100貫通殼壁11A、11B、11C的軸孔14,該殼壁11A、11B、11C沿中心軸線100方向的相對兩端分別為一第一端12與一第二端13。As shown in FIG. 1 , FIG. 5 , FIG. 6 , and FIG. 7 , the casings 10A, 10B, and 10C are members made of a heat conductive material, and include a shell wall 11A, 11B, and 11C, and shell walls 11A and 11B. A central axis 100 is defined in 11C, and a shaft hole 14 is formed in the casing wall 11A, 11B, 11C penetrating the casing wall 11A, 11B, 11C along the central axis 100, and the casing wall 11A, 11B, 11C is along the central axis 100. The opposite ends of the direction are a first end 12 and a second end 13, respectively.

如圖1、圖5以及圖6、圖7所示,所述第一螺旋管20係導熱性材料所製成的構件,其係設置於該殼體10A、10B、10C的殼壁11A、11B、11C內部,該第一螺旋管20包含多數個第一螺旋管單元21、31,該多數個第一螺旋管單元21、31相對於該中心軸線100依循一螺旋半徑及一螺旋導程連續螺旋繞設於軸孔14外圍,如圖1及圖2所示,該第一螺旋管20具有一伸出殼壁11A的第一端12外的第一冷卻液入口22,該第一螺旋管20具有一伸出殼壁11A的第二端13外的第一冷卻液出口23,使冷卻液能自第一冷卻液入口22輸入,而由第一冷卻液出口23排出。As shown in FIG. 1 , FIG. 5 , FIG. 6 , and FIG. 7 , the first spiral tube 20 is a member made of a heat conductive material, and is disposed on the shell walls 11A and 11B of the housings 10A, 10B, and 10C. Inside the 11C, the first spiral tube 20 includes a plurality of first spiral tube units 21, 31. The plurality of first spiral tube units 21, 31 follow a spiral radius and a spiral lead continuous spiral with respect to the central axis 100. Wrapped around the periphery of the shaft hole 14, as shown in FIGS. 1 and 2, the first spiral tube 20 has a first coolant inlet 22 extending beyond the first end 12 of the casing wall 11A, the first coil 20 having A first coolant outlet 23 extending beyond the second end 13 of the casing wall 11A allows the coolant to be supplied from the first coolant inlet 22 and discharged from the first coolant outlet 23.

如圖1、圖5以及圖6、圖7所示,所述第二螺旋管30係導熱性材料所製成的構件,其係設置於該殼體10A、10B、10C的殼壁11A、11B、11C內部,該第二螺旋管30包含多數個第二螺旋管單元21、31,該多數個第二螺旋管單元21、31相對於該中心軸線100依循該螺旋半徑及該螺旋導程連續螺旋繞設於軸孔14外圍,該第二螺旋管30的第二螺旋管單元21、31與第一螺旋管20的第一螺旋管單元21、31錯位排列。如圖1及圖2所示,該第二螺旋管30具有一伸出殼壁11A的第一端12外的第二冷卻液出口33,該第二螺旋管30具有一伸出殼壁11A的第二端13外的第二冷卻液入口32。使冷卻液能自第二冷卻液入口32輸入,而由第二冷卻液出口33排出,第二螺旋管30內的冷卻液流動方向與第一螺旋管20內的冷卻液流動方向互為反向。As shown in FIG. 1 , FIG. 5 , FIG. 6 , and FIG. 7 , the second spiral tube 30 is a member made of a heat conductive material, and is disposed on the shell walls 11A and 11B of the housings 10A, 10B, and 10C. Inside the 11C, the second spiral tube 30 includes a plurality of second spiral tube units 21, 31, and the plurality of second spiral tube units 21, 31 follow the spiral radius and the spiral lead continuous spiral with respect to the central axis 100. The second spiral tube units 21, 31 of the second spiral tube 30 and the first spiral tube units 21, 31 of the first spiral tube 20 are arranged in a misaligned manner around the periphery of the shaft hole 14. As shown in FIGS. 1 and 2, the second spiral tube 30 has a second coolant outlet 33 extending beyond the first end 12 of the casing wall 11A, and the second coil 30 has a second portion extending from the casing wall 11A. A second coolant inlet 32 outside the end 13. The coolant can be input from the second coolant inlet 32 and discharged from the second coolant outlet 33. The direction of the coolant in the second coil 30 is opposite to the direction of the coolant in the first coil 20. .

如圖1及圖2所示的各種較佳實施例,係分別揭示本創作之第一螺旋管20的第一冷卻液入口22與第一冷卻液出口23、以及第二螺旋管30的第二冷卻液入口32與第二冷卻液出口33的各種較佳實施型態,其中,如圖1所示的較佳實施例,所述第一螺旋管20的第一冷卻液入口22與第二螺旋管30的第二冷卻液出口33可自殼壁11A的第一端12內同朝一側徑向伸出,該第一螺旋管20的第一冷卻液出口23與第二螺旋管30的第二冷卻液入口32係自殼壁11A的第二端13內部同朝一側徑向伸出。或者,如圖2所示的較佳實施例,該第一螺旋管20的第一冷卻液入口22與第二螺旋管30的第二冷卻液出口33可自殼壁11A的第一端12內分別朝徑向相異兩側伸出,該第一螺旋管20的第一冷卻液出口23與第二螺旋管30的第二冷卻液入口32係分別自殼壁11A的第二端13內部分別朝徑向相異兩側伸出。As shown in FIG. 1 and FIG. 2, the first coolant inlet 22 and the first coolant outlet 23 of the first spiral tube 20 of the present invention and the second coil of the second spiral tube 30 are separately disclosed. Various preferred embodiments of the coolant inlet 32 and the second coolant outlet 33, wherein, in the preferred embodiment shown in FIG. 1, the first coolant inlet 22 and the second coil of the first spiral tube 20 The second coolant outlet 33 of the tube 30 can project radially from the first end 12 of the shell wall 11A toward the side, the first coolant outlet 23 of the first coil 20 and the second coil 30 The coolant inlet 32 extends radially from the interior of the second end 13 of the casing wall 11A toward the side. Alternatively, as shown in the preferred embodiment of FIG. 2, the first coolant inlet 22 of the first spiral tube 20 and the second coolant outlet 33 of the second coil 30 may be from the first end 12 of the casing wall 11A. The first coolant outlet 23 of the first spiral tube 20 and the second coolant inlet 32 of the second spiral tube 30 are respectively separated from the inside of the second end 13 of the shell wall 11A, respectively. Extending outward on both sides of the radial direction.

除上述以外,該第一螺旋管的第一冷卻液入口與第二螺旋管的第二冷卻液出口還可以分別自殼壁的第一端內部沿中心軸線方向伸出,該第一螺旋管的第一冷卻液出口與第二螺旋管的第二冷卻液入口係分別自殼壁的第二端內部沿中心軸線方向伸出。In addition to the above, the first coolant inlet of the first spiral tube and the second coolant outlet of the second spiral tube may respectively protrude from the inside of the first end of the shell wall in the direction of the central axis, the first spiral tube The first coolant outlet and the second coolant inlet of the second coil extend from the interior of the second end of the casing wall in the direction of the central axis, respectively.

如圖3至圖7所示的各種較佳實施例,係分別揭示本創作液冷式機殼中之殼體各種實施例。其中,如圖3及圖4所示的較佳實施例,該殼壁11A包含一內殼部15A與一外殼部16A,該外殼部16A朝向內殼部15A的內壁面形成二道螺旋槽17A,該第一螺旋管20與第二螺旋管30設置於該二道螺旋槽17A中,該外殼部16A套設於內殼部15A外周面,該第一螺旋管20與第二螺旋管30接觸內殼部15A與外殼部16A。Various embodiments of the housing in the present liquid-cooled enclosure are separately disclosed in the various preferred embodiments shown in Figures 3-7. In the preferred embodiment shown in FIGS. 3 and 4, the casing wall 11A includes an inner casing portion 15A and an outer casing portion 16A. The outer casing portion 16A forms a spiral groove 17A toward the inner wall surface of the inner casing portion 15A. The first spiral tube 20 and the second spiral tube 30 are disposed in the two spiral grooves 17A. The outer casing portion 16A is sleeved on the outer circumferential surface of the inner casing portion 15A, and the first spiral tube 20 is in contact with the second spiral tube 30. The inner casing portion 15A and the outer casing portion 16A.

如圖5所示的較佳實施例,該殼壁11B包含一內殼部15B與一外殼部16B,該內殼部15B朝向外殼部16B的外壁面形成二道螺旋槽17B,該第一螺旋管20與第二螺旋管30分別設置於該二道螺旋槽17B中,該外殼部16B套設於內殼部15B外周面,且該第一螺旋管20與第二螺旋管30接觸內殼部15B與外殼部16B。As shown in the preferred embodiment of FIG. 5, the casing wall 11B includes an inner casing portion 15B and a casing portion 16B. The inner casing portion 15B forms a spiral groove 17B toward the outer wall surface of the outer casing portion 16B. The tube 20 and the second spiral tube 30 are respectively disposed in the two spiral grooves 17B. The outer shell portion 16B is sleeved on the outer peripheral surface of the inner shell portion 15B, and the first spiral tube 20 and the second spiral tube 30 are in contact with the inner shell portion. 15B and outer casing portion 16B.

如圖6及圖7所示的較佳實施例,該殼壁11C包含一內殼部15C與一外殼部16C,該內殼部15C朝向外殼部16C的外壁面形成二組內半螺旋槽171C,該外殼部16C是由二半殼部161C相對併合所組成,其中該二半殼部161C相對併合時可藉由焊接或螺絲鎖固等固接方式固接一體。該外殼部16C能套設於內殼部15C外周面,該外殼部16C朝向內殼部15C的內壁面形成二組外半螺旋槽172C,該二組外半螺旋槽172C與該二組內半螺旋槽171C對應併合成二道螺旋槽17C,該第一螺旋管20與第二螺旋管30分別設置於該二道螺旋槽17C中,該第一螺旋管20與第二螺旋管30接觸內殼部15C與外殼部16C。As shown in the preferred embodiment of FIG. 6 and FIG. 7, the casing wall 11C includes an inner casing portion 15C and an outer casing portion 16C. The inner casing portion 15C forms two sets of inner semi-spiral grooves 171C toward the outer wall surface of the outer casing portion 16C. The outer casing portion 16C is composed of two half-shell portions 161C which are opposite to each other. The two half-shell portions 161C can be integrally fixed by means of welding or screwing. The outer casing portion 16C can be sleeved on the outer circumferential surface of the inner casing portion 15C. The outer casing portion 16C forms two sets of outer semi-spiral grooves 172C toward the inner wall surface of the inner casing portion 15C, and the two outer semi-spiral grooves 172C and the inner half of the two groups The spiral groove 171C corresponds to and synthesizes two spiral grooves 17C. The first spiral tube 20 and the second spiral tube 30 are respectively disposed in the two spiral grooves 17C, and the first spiral tube 20 and the second spiral tube 30 are in contact with the inner shell. The portion 15C and the outer casing portion 16C.

本創作具有雙螺旋冷卻液流道的液冷式機殼可應用於馬達或發電機等產品中,以圖1及圖3所示的較佳實施例為例,該馬達或發電機之定子與轉子組設於該液冷式機殼之殼體10A的軸孔14中,所述液冷式機殼以其第一螺旋管20的第一冷卻液入口22、第二螺旋管30的第二冷卻液入口32連接冷卻液循環系統的冷卻液輸出端,另以第一螺旋管20的第一冷卻液出口23、第二螺旋管30的第二冷卻液出口33連接冷卻液循環系統的冷卻液回收端。當馬達或發電機運轉時,轉子於定子中高速旋轉,其能量損失所產生的熱會傳導至該液冷式機殼的殼體10A的殼壁11A中,另一方面冷卻液循環系統自冷卻液輸出端輸出較低溫的冷卻液,而分別由該殼體10A之殼壁11A第一端12的第一冷卻液入口22與殼壁11A第二端13的第二冷卻液入口32對第一螺旋管20、第二螺旋管30輸入冷卻液,使冷卻液於第一螺旋管20、第二螺旋管30中流動,並通過第一螺旋管20之每一螺旋管單元21、31、第二螺旋管30之每一螺旋管單元21、31與熱傳導至殼壁11A的熱進行熱交換,使殼體10A溫度下降,第一螺旋管20、第二螺旋管30中吸熱後的冷卻液分別由殼體10A之殼壁11A第二端13的第一冷卻液出口23、殼壁11A第一端12的第二冷卻液出口33回流至冷卻液循環系統散熱,冷卻降溫後的低溫冷卻液再分別由該液冷式機殼之殼體10A軸向相對的殼壁11A第一端12的第一冷卻液入口22、殼壁11A第二端13的第二冷卻液入口32對第一螺旋管20、第二螺旋管30輸入,藉此,此冷卻液循環冷卻機制對馬達或發電機提供主動且高效能的冷卻散熱功能。The liquid-cooled casing having the double-spiral coolant flow passage can be applied to products such as motors or generators. Taking the preferred embodiment shown in FIGS. 1 and 3 as an example, the stator of the motor or generator is The rotor assembly is disposed in the shaft hole 14 of the casing 10A of the liquid-cooled casing, and the liquid-cooled casing is the first coolant inlet 22 of the first spiral pipe 20 and the second coolant inlet 22 of the second spiral pipe 20 The coolant inlet 32 is connected to the coolant output end of the coolant circulation system, and the coolant of the coolant circulation system is connected to the first coolant outlet 23 of the first spiral tube 20 and the second coolant outlet 33 of the second spiral tube 30. Recycling end. When the motor or the generator is running, the rotor rotates at a high speed in the stator, and the heat generated by the energy loss is transmitted to the casing wall 11A of the casing 10A of the liquid-cooled casing, and the coolant circulation system is self-cooled. The liquid output end outputs a lower temperature coolant, and the first coolant inlet 22 of the first end 12 of the casing wall 11A of the casing 10A and the second coolant inlet 32 of the second end 13 of the casing wall 11A are respectively first. The spiral tube 20 and the second spiral tube 30 input cooling liquid, and the cooling liquid flows in the first spiral tube 20 and the second spiral tube 30, and passes through each of the spiral tube units 21, 31 and the second of the first spiral tube 20. Each of the spiral tube units 21, 31 of the spiral tube 30 exchanges heat with heat transferred to the shell wall 11A, so that the temperature of the housing 10A is lowered, and the coolant after the heat absorption in the first spiral tube 20 and the second spiral tube 30 are respectively The first coolant outlet 23 of the second end 13 of the casing wall 11A of the casing 10A and the second coolant outlet 33 of the first end 12 of the casing wall 11A are returned to the coolant circulation system for heat dissipation, and the low-temperature coolant after cooling and cooling is respectively separated. The first end 12 of the shell wall 11A opposite to the axial direction of the housing 10A of the liquid-cooled casing The coolant inlet 22, the second coolant inlet 32 of the second end 13 of the casing wall 11A are input to the first spiral pipe 20 and the second spiral pipe 30, whereby the coolant circulation cooling mechanism provides initiative to the motor or the generator High performance cooling and cooling.

前述中,本創作液冷式機殼除利用其殼體10A之殼壁11A內設置周向螺旋的第一螺旋管20與第二螺旋管30而構成雙螺旋冷卻液流道,用以導入流動的冷卻液將馬達或發電機運轉所產生的熱量帶走,該液冷式機殼還進一步利用殼體10A的殼壁11A第一端12的第一螺旋管20的第一冷卻液入口22、殼壁11A第二端13的第二螺旋管30的第二冷卻液入口32輸入冷卻液,熱交換後的冷卻液再分別由殼壁11A第二端13的第一冷卻液出口23、殼壁11A第一端12的第二冷卻液出口33流出,亦即輸入較低溫冷卻液的第一冷卻液入口22與熱交換後較高溫的冷卻液輸出的第二冷卻液出口33同位於殼壁11A的第一端12,輸入較低溫冷卻液的第二冷卻液入口32與熱交換後較高溫冷卻液的第一冷卻液出口23同位於殼壁11A的第二端13,再搭配第一螺旋管20的螺旋管單元21、31與第二螺旋管30的螺旋管單元21、31交錯排列,使該液冷式機殼整體溫度不會因冷卻液流動方向而累積熱量在殼體10A任一端,冷卻液在殼體10A的第一螺旋管20與第二螺旋管30所提供的雙螺旋冷卻液流道中的輸入位置、輸出位置以及冷卻液流道中段等的溫度差較小,讓馬達或發電機內部構件的溫度更平衡,而能穩定運轉。In the foregoing, the liquid-cooled casing of the present invention comprises a first spiral tube 20 and a second spiral tube 30 which are circumferentially spiraled in the casing wall 11A of the casing 10A to form a double-spiral coolant flow passage for introducing the flow. The coolant is carried away by the heat generated by the operation of the motor or the generator, and the liquid-cooled casing further utilizes the first coolant inlet 22 of the first spiral tube 20 of the first end 12 of the casing wall 11A of the casing 10A, The second coolant inlet 32 of the second spiral tube 30 of the second end 13 of the shell wall 11A receives the coolant, and the heat exchanged coolant is again respectively from the first coolant outlet 23 of the second end 13 of the shell wall 11A, the shell wall The second coolant outlet 33 of the first end 12 of the 11A flows out, that is, the first coolant inlet 22 that inputs the lower temperature coolant and the second coolant outlet 33 that outputs the higher temperature coolant after the heat exchange are located at the shell wall 11A. The first end 12, the second coolant inlet 32 inputting the lower temperature coolant and the first coolant outlet 23 of the higher temperature coolant after the heat exchange are located at the second end 13 of the shell wall 11A, and then coupled with the first spiral tube The spiral tube units 21, 31 of 20 are staggered with the spiral tube units 21, 31 of the second spiral tube 30 So that the overall temperature of the liquid-cooled casing does not accumulate heat at either end of the casing 10A due to the flow direction of the coolant, and the double helix provided by the coolant in the first spiral pipe 20 and the second spiral pipe 30 of the casing 10A. The temperature difference between the input position, the output position, and the middle section of the coolant flow path in the coolant flow path is small, so that the temperature of the internal components of the motor or the generator is more balanced, and stable operation is possible.

本創作者還進一步以單螺旋冷卻液流道的液冷式機殼與本創作具有雙螺旋冷卻液流道的液冷式機殼分別應用於馬達中進行實作測試驗證,其中,以常溫水(27℃)作為冷卻液,螺旋管的管直徑為16mm,並設定馬達運轉條件為額定30KW、能量損失2863W進行穩態分析。其測試結果如下表所示: <TABLE border="1" borderColor="#000000" width="_0001"><TBODY><tr><td> 流道類型 </td><td> 冷卻液入口流速 </td><td> 冷卻液出口端的溫度 </td><td> 馬達定子之線圈繞組最高溫度(℃) </td></tr><tr><td> 單螺旋冷卻液流道 </td><td> 0.4m/sec </td><td> 54℃ </td><td> 78.1℃ </td></tr><tr><td> 單螺旋冷卻液流道 </td><td> 0.6m/sec </td><td> 48℃ </td><td> 74.3℃ </td></tr><tr><td> 雙螺旋冷卻液流道 </td><td> 0.4m/sec </td><td> 41℃ </td><td> 70.6℃ </td></tr><tr><td> 雙螺旋冷卻液流道 </td><td> 0.6m/sec </td><td> 37.7℃ </td><td> 68℃ </td></tr></TBODY></TABLE>The creator further uses a liquid-cooled casing with a single-screw coolant flow path and a liquid-cooled casing with a double-spiral coolant flow path to be used in a motor for verification test, in which room temperature water is used. (27 ° C) As a cooling liquid, the diameter of the tube of the spiral tube was 16 mm, and the motor operation condition was set to 30 kW and the energy loss was 2863 W for steady-state analysis. The test results are shown in the following table:         <TABLE border="1" borderColor="#000000" width="_0001"><TBODY><tr><td> Runner Type</td><td> Coolant Inlet Flow Rate</td><td> Cooling Temperature at the outlet end of the liquid </td><td> Maximum coil winding temperature of the motor stator (°C) </td></tr><tr><td> Single spiral coolant flow passage </td><td> 0.4m /sec </td><td> 54°C </td><td> 78.1°C </td></tr><tr><td> Single spiral coolant flow channel</td><td> 0.6m/ Sec </td><td> 48°C </td><td> 74.3°C </td></tr><tr><td> Double helix coolant flow channel</td><td> 0.4m/sec </td><td> 41°C </td><td> 70.6°C </td></tr><tr><td> Double helix coolant flow channel</td><td> 0.6m/sec < /td><td> 37.7°C </td><td> 68°C </td></tr></TBODY></TABLE>

由前述測試結果表列中可以得知,在冷卻液入口流速為0.4m/sec條件下,本創作具有雙螺旋冷卻液流道的液冷式機殼可使冷卻液出口端的溫度降低13℃,馬達定子之線圈繞組最高溫度降低7.5℃。在冷卻液入口流速為0.6m/sec條件下,本創作具有雙螺旋冷卻液流道的液冷式機殼可使冷卻液出口端的溫度降低10.3℃,馬達定子之線圈繞組最高溫度降低6.3℃。由此足證,本創作具有雙螺旋冷卻液流道的液冷式機殼之創作,確能有效提供優異的冷卻效能。It can be seen from the above test result list that the liquid-cooled casing with the double-spiral coolant flow channel can reduce the temperature of the coolant outlet end by 13 ° C under the condition that the coolant inlet flow rate is 0.4 m/sec. The maximum temperature of the coil winding of the motor stator is reduced by 7.5 °C. At a coolant inlet flow rate of 0.6 m/sec, the liquid-cooled casing with a double-spiral coolant flow path reduces the temperature at the outlet end of the coolant by 10.3 °C, and the maximum coil winding temperature of the motor stator is reduced by 6.3 °C. It is thus proved that the creation of a liquid-cooled casing with a double-spiral coolant flow channel can effectively provide excellent cooling performance.

10A、10B、10C‧‧‧殼體
100‧‧‧中心軸線
11A、11B、11C‧‧‧殼壁
12‧‧‧第一端
13‧‧‧第二端
14‧‧‧軸孔
15A、15B、15C‧‧‧內殼部
16A、16B、16C‧‧‧外殼部
161C‧‧‧半殼部
17A、17B、17C‧‧‧螺旋槽
171C‧‧‧內半螺旋槽
172C‧‧‧外半螺旋槽
20‧‧‧第一螺旋管
21‧‧‧螺旋管單元
22‧‧‧第一冷卻液入口
23‧‧‧第一冷卻液出口
30‧‧‧第二螺旋管
31‧‧‧螺旋管單元
32‧‧‧第二冷卻液入口
33‧‧‧第二冷卻液出口
10A, 10B, 10C‧‧‧ housing
100‧‧‧ center axis
11A, 11B, 11C‧‧‧ shell wall
12‧‧‧ first end
13‧‧‧ second end
14‧‧‧Axis hole
15A, 15B, 15C‧‧‧ inner shell
16A, 16B, 16C‧‧‧ Shell
161C‧‧‧Half shell
17A, 17B, 17C‧‧‧ spiral groove
171C‧‧‧ inner semi-spiral groove
172C‧‧‧ outer semi-spiral groove
20‧‧‧First spiral tube
21‧‧‧Spiral tube unit
22‧‧‧First coolant inlet
23‧‧‧First coolant outlet
30‧‧‧second spiral tube
31‧‧‧Spiral tube unit
32‧‧‧Second coolant inlet
33‧‧‧Second coolant outlet

圖1係本創作具有雙螺旋冷卻液流道的液冷式機殼之第一較佳實施例的立體示意圖。 圖2係本創作具有雙螺旋冷卻液流道的液冷式機殼之第二較佳實施例的立體示意圖。 圖3係圖1所示具有雙螺旋冷卻液流道的液冷式機殼第一較佳實施例的側視剖面示意圖。 圖4係圖2所示具有雙螺旋冷卻液流道的液冷式機殼第二較佳實施例的側視剖面示意圖。 圖5係本創作具有雙螺旋冷卻液流道的液冷式機殼之第三較佳實施例的側視剖面示意圖。 圖6係本創作具有雙螺旋冷卻液流道的液冷式機殼之第四較佳實施例的端視平面示意圖。 圖7係圖6所示具有雙螺旋冷卻液流道的液冷式機殼之第四較佳實施例的側視剖面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view showing a first preferred embodiment of a liquid-cooled casing having a double-spiral coolant flow path. 2 is a perspective view of a second preferred embodiment of the liquid-cooled casing having a double-spiral coolant flow path. Figure 3 is a side cross-sectional view showing the first preferred embodiment of the liquid-cooled casing having the double-spiral coolant flow path shown in Figure 1. Figure 4 is a side cross-sectional view showing a second preferred embodiment of the liquid-cooled casing having the double-spiral coolant flow path shown in Figure 2. Figure 5 is a side cross-sectional view showing a third preferred embodiment of the liquid-cooled casing having a double-spiral coolant flow path. Fig. 6 is a schematic end plan view showing a fourth preferred embodiment of the liquid-cooled casing having a double-spiral coolant flow path. Figure 7 is a side cross-sectional view showing a fourth preferred embodiment of the liquid-cooled casing having the double-spiral coolant flow path shown in Figure 6.

10A‧‧‧殼體 10A‧‧‧shell

100‧‧‧中心軸線 100‧‧‧ center axis

11A‧‧‧殼壁 11A‧‧‧ Shell wall

12‧‧‧第一端 12‧‧‧ first end

13‧‧‧第二端 13‧‧‧ second end

14‧‧‧軸孔 14‧‧‧Axis hole

17A‧‧‧螺旋槽 17A‧‧‧Spiral groove

20‧‧‧第一螺旋管 20‧‧‧First spiral tube

21‧‧‧螺旋管單元 21‧‧‧Spiral tube unit

22‧‧‧第一冷卻液入口 22‧‧‧First coolant inlet

23‧‧‧第一冷卻液出口 23‧‧‧First coolant outlet

30‧‧‧第二螺旋管 30‧‧‧second spiral tube

31‧‧‧螺旋管單元 31‧‧‧Spiral tube unit

32‧‧‧第二冷卻液入口 32‧‧‧Second coolant inlet

33‧‧‧第二冷卻液出口 33‧‧‧Second coolant outlet

Claims (7)

一種具有雙螺旋冷卻液流道的液冷式機殼,係包含: 一殼體,其包含一殼壁,該殼壁中界定有一中心軸線,該殼壁中形成一沿中心軸線貫通殼壁的軸孔,該殼壁沿中心軸線方向的相對兩端分別為一第一端與一第二端; 一第一螺旋管,係設置於該殼體的殼壁內部,該第一螺旋管包含多數個第一螺旋管單元,該多數個第一螺旋管單元相對於該中心軸線依循一螺旋半徑及一螺旋導程連續螺旋繞設,該第一螺旋管具有一伸出殼壁的第一端外的第一冷卻液入口,該第一螺旋管具有一伸出殼壁的第二端外的第一冷卻液出口;以及 一第二螺旋管,係設置於該殼體的殼壁內部,該第二螺旋管包含多數個第二螺旋管單元,該多數個第二螺旋管單元相對於該中心軸線依循該螺旋半徑及該螺旋導程連續螺旋繞設,該第二螺旋管的第二螺旋管單元與第一螺旋管的第一螺旋管單元錯位排列,該第二螺旋管具有一伸出殼壁的第一端外的第二冷卻液出口,該第二螺旋管具有一伸出殼壁的第二端外的第二冷卻液入口。A liquid-cooled casing having a double-screw coolant flow path, comprising: a casing comprising a casing wall defining a central axis, wherein the casing wall defines a central wall extending through the casing wall a shaft hole, the opposite ends of the shell wall along the central axis are respectively a first end and a second end; a first spiral tube is disposed inside the shell wall of the shell, the first spiral tube comprises a majority a first spiral tube unit, wherein the plurality of first spiral tube units are continuously spirally wound with respect to the central axis according to a spiral radius and a spiral lead, the first spiral tube having a first end extending beyond the first end of the shell wall a first coolant inlet, the first spiral tube has a first coolant outlet extending beyond the second end of the casing wall; and a second coil disposed inside the casing wall of the casing, the second spiral The tube includes a plurality of second spiral tube units, the plurality of second spiral tube units are continuously spirally wound with respect to the central axis according to the spiral radius and the spiral lead, and the second spiral tube unit of the second spiral tube and the second spiral tube unit First spiral of a spiral tube Derangement unit, the second coil having a second coolant outlet of the first end of the outer wall of the hatched stretched, the second coil having a second coolant inlet of the second end of the outer wall of the stretched hatched. 如請求項1所述之具有雙螺旋冷卻液流道的液冷式機殼,其中,該第一螺旋管的第一冷卻液入口與第二螺旋管的第二冷卻液出口係自殼壁的第一端內同朝一側徑向伸出,該第一螺旋管的第一冷卻液出口與第二螺旋管的第二冷卻液入口係自殼壁的第二端內部同朝一側徑向伸出。The liquid-cooled casing having a double-spiral coolant flow path according to claim 1, wherein the first coolant inlet of the first coil and the second coolant outlet of the second coil are from the shell wall The first end is radially protruded from the same side, and the first coolant outlet of the first spiral tube and the second coolant inlet of the second spiral tube extend radially from the inside of the second end of the shell wall toward the side. . 如請求項1所述之具有雙螺旋冷卻液流道的液冷式機殼,其中,該第一螺旋管的第一冷卻液入口與第二螺旋管的第二冷卻液出口係自殼壁的第一端內分別朝徑向相異兩側伸出,該第一螺旋管的第一冷卻液出口與第二螺旋管的第二冷卻液入口係自殼壁的第二端內部分別朝徑向相異兩側伸出。The liquid-cooled casing having a double-spiral coolant flow path according to claim 1, wherein the first coolant inlet of the first coil and the second coolant outlet of the second coil are from the shell wall The first end protrudes outward in different radial directions, and the first coolant outlet of the first spiral tube and the second coolant inlet of the second spiral tube are respectively radially from the inside of the second end of the shell wall The opposite sides protrude. 如請求項1所述之具有雙螺旋冷卻液流道的液冷式機殼,其中,該第一螺旋管的第一冷卻液入口與第二螺旋管的第二冷卻液出口係自殼壁的第一端內部沿中心軸線方向伸出,該第一螺旋管的第一冷卻液出口與第二螺旋管的第二冷卻液入口係自殼壁的第二端內部沿中心軸線方向伸出。The liquid-cooled casing having a double-spiral coolant flow path according to claim 1, wherein the first coolant inlet of the first coil and the second coolant outlet of the second coil are from the shell wall The first end internally protrudes in the direction of the central axis, and the first coolant outlet of the first spiral tube and the second coolant inlet of the second coil extend from the inside of the second end of the casing wall in the direction of the central axis. 如請求項1至4中任一項所述之具有雙螺旋冷卻液流道的液冷式機殼,其中,所述殼壁包含一內殼部與一套設於內殼部外周面的外殼部,所述外殼部朝向內殼部的內壁面形成二道螺旋槽,該第一螺旋管與第二螺旋管設置於該二道螺旋槽中,該第一螺旋管與第二螺旋管接觸內殼部與外殼部。The liquid-cooled casing having a double-spiral coolant flow path according to any one of claims 1 to 4, wherein the casing wall comprises an inner casing portion and a casing provided on an outer peripheral surface of the inner casing portion. a second spiral groove is formed in the outer wall surface of the inner casing portion, the first spiral tube and the second spiral tube are disposed in the two spiral grooves, and the first spiral tube is in contact with the second spiral tube Shell and outer casing. 如請求項1至4中任一項所述之具有雙螺旋冷卻液流道的液冷式機殼,其中,所述殼壁包含一內殼部與一套設於內殼部外周面的外殼部,所述內殼部朝向外殼部的外壁面形成二道螺旋槽,該第一螺旋管與第二螺旋管分別設置於該二道螺旋槽中,該第一螺旋管與第二螺旋管接觸內殼部與外殼部。The liquid-cooled casing having a double-spiral coolant flow path according to any one of claims 1 to 4, wherein the casing wall comprises an inner casing portion and a casing provided on an outer peripheral surface of the inner casing portion. a portion of the inner casing portion forming a spiral groove toward the outer wall surface of the outer casing portion, wherein the first spiral tube and the second spiral tube are respectively disposed in the two spiral grooves, and the first spiral tube is in contact with the second spiral tube Inner shell portion and outer shell portion. 如請求項1至4中任一項所述之具有雙螺旋冷卻液流道的液冷式機殼,其中,所述殼壁包含一內殼部與一套設於內殼部外周面的外殼部,所述內殼部朝向外殼部的外壁面形成二組內半螺旋槽,該外殼部是由二半殼部相對併合所組成,外殼部朝向內殼部的內壁面形成二組外半螺旋槽,該二組外半螺旋槽與該二組內半螺旋槽對應併合成二道螺旋槽,該第一螺旋管與第二螺旋管分別設置於該二道螺旋槽中,該第一螺旋管與第二螺旋管接觸內殼部與外殼部。The liquid-cooled casing having a double-spiral coolant flow path according to any one of claims 1 to 4, wherein the casing wall comprises an inner casing portion and a casing provided on an outer peripheral surface of the inner casing portion. The inner casing portion forms two sets of inner semi-spiral grooves toward the outer wall surface of the outer casing portion, the outer casing portion is composed of two half-shell portions which are oppositely combined, and the outer casing portion forms two sets of outer half-helix toward the inner wall surface of the inner casing portion. a groove, the two sets of outer semi-spiral grooves corresponding to the two sets of inner semi-spiral grooves and synthesizing two spiral grooves, wherein the first spiral tube and the second spiral tube are respectively disposed in the two spiral grooves, the first spiral tube The inner spiral portion and the outer casing portion are in contact with the second spiral tube.
TW104209597U 2015-06-16 2015-06-16 Liquid cooling type casing with dual helical coolant flow passages TWM517473U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104209597U TWM517473U (en) 2015-06-16 2015-06-16 Liquid cooling type casing with dual helical coolant flow passages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104209597U TWM517473U (en) 2015-06-16 2015-06-16 Liquid cooling type casing with dual helical coolant flow passages

Publications (1)

Publication Number Publication Date
TWM517473U true TWM517473U (en) 2016-02-11

Family

ID=55811594

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104209597U TWM517473U (en) 2015-06-16 2015-06-16 Liquid cooling type casing with dual helical coolant flow passages

Country Status (1)

Country Link
TW (1) TWM517473U (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643432B (en) * 2018-01-03 2018-12-01 東元電機股份有限公司 A motor frame with a converging trough
TWI692177B (en) * 2019-07-31 2020-04-21 華擎機械工業股份有限公司 Electric machine apparatus with internal cooling mechanism
CN112994357A (en) * 2021-04-09 2021-06-18 浙江合众新能源汽车有限公司 Method for improving cooling of motor stator
CN113114004A (en) * 2021-03-12 2021-07-13 安徽机电职业技术学院 Hub motor heat abstractor
TWI748509B (en) * 2020-06-10 2021-12-01 威剛科技股份有限公司 Motor and motor housing assembly
CN113783349A (en) * 2020-06-10 2021-12-10 威刚科技股份有限公司 Motor and motor housing assembly
CN113890251A (en) * 2021-11-25 2022-01-04 博远机电(南通)有限公司 High-power variable speed motor for vertical mill
CN113996217A (en) * 2021-12-31 2022-02-01 浙江汉信科技有限公司 High-speed dispersion machine
CN116191772A (en) * 2023-04-24 2023-05-30 苏州普源金属制品有限公司 Motor cooling protection device, design method and storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643432B (en) * 2018-01-03 2018-12-01 東元電機股份有限公司 A motor frame with a converging trough
TWI692177B (en) * 2019-07-31 2020-04-21 華擎機械工業股份有限公司 Electric machine apparatus with internal cooling mechanism
TWI748509B (en) * 2020-06-10 2021-12-01 威剛科技股份有限公司 Motor and motor housing assembly
CN113783349A (en) * 2020-06-10 2021-12-10 威刚科技股份有限公司 Motor and motor housing assembly
CN113114004A (en) * 2021-03-12 2021-07-13 安徽机电职业技术学院 Hub motor heat abstractor
CN112994357A (en) * 2021-04-09 2021-06-18 浙江合众新能源汽车有限公司 Method for improving cooling of motor stator
CN112994357B (en) * 2021-04-09 2022-07-12 浙江合众新能源汽车有限公司 Method for improving cooling of motor stator
CN113890251A (en) * 2021-11-25 2022-01-04 博远机电(南通)有限公司 High-power variable speed motor for vertical mill
CN113996217A (en) * 2021-12-31 2022-02-01 浙江汉信科技有限公司 High-speed dispersion machine
CN116191772A (en) * 2023-04-24 2023-05-30 苏州普源金属制品有限公司 Motor cooling protection device, design method and storage medium

Similar Documents

Publication Publication Date Title
TWM517473U (en) Liquid cooling type casing with dual helical coolant flow passages
CA2679637C (en) Cooling an electrical machine
US10218247B2 (en) Integrated motor and fluid pump
KR101700768B1 (en) Case for electric motor and manufacturing method thereof, electric motor with case for electric motor
US20150288255A1 (en) Rotary device, a motor and a method of cooling a motor
KR20130141511A (en) Coolant channels for electric machine stator
RU2638562C2 (en) Electric machine with combined air-water cooling
BR102016007559B1 (en) ELECTRICAL MACHINE AND COOLING METHOD OF AN ELECTRICAL MACHINE
JP2015535677A (en) Water-cooled electric motor
TW201322606A (en) Cooling jacket
CN105990946B (en) Has the motor housing component of dual-cooled runner
WO2017082023A1 (en) Dynamo-electric machine
KR102018231B1 (en) Electric motor
TW201322607A (en) Cooling jacket
JP2015047062A (en) Generator with open loop active cooling
CN107750414B (en) Electric machine
JP5388961B2 (en) Rotating electric machine
CN114785027A (en) Heat radiation assembly and motor
US20200313499A1 (en) End turn cooling
CN110620478A (en) Cooling device for rotating electric machine and rotating electric machine for driving vehicle
TW201824708A (en) Electric motor
KR102018230B1 (en) Electric motor
US20120169157A1 (en) Cooling module and water-cooled motor system using the same
JP5955235B2 (en) Electric motor
JP2013220023A (en) Rotary electric machine

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees