JP5953172B2 - Outdoor structure foundation structure - Google Patents

Outdoor structure foundation structure Download PDF

Info

Publication number
JP5953172B2
JP5953172B2 JP2012172605A JP2012172605A JP5953172B2 JP 5953172 B2 JP5953172 B2 JP 5953172B2 JP 2012172605 A JP2012172605 A JP 2012172605A JP 2012172605 A JP2012172605 A JP 2012172605A JP 5953172 B2 JP5953172 B2 JP 5953172B2
Authority
JP
Japan
Prior art keywords
wall
foundation
permeable layer
water
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012172605A
Other languages
Japanese (ja)
Other versions
JP2014031644A (en
Inventor
飯田 孝次
孝次 飯田
真 神村
真 神村
俊守 前
俊守 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Something Co Ltd
Original Assignee
Something Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Something Co Ltd filed Critical Something Co Ltd
Priority to JP2012172605A priority Critical patent/JP5953172B2/en
Publication of JP2014031644A publication Critical patent/JP2014031644A/en
Application granted granted Critical
Publication of JP5953172B2 publication Critical patent/JP5953172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Description

本発明は、地盤面下における液状化被害を未然防止する屋外構造物基礎構造体に関するものである。   The present invention relates to an outdoor structure foundation structure that prevents liquefaction damage below the ground surface.

地盤の液状化現象は、大地震や巨大地震の際、広範囲の地域で発生する。液状化現象のメカニズムの解明や対策は、地盤の状況や地震の規模に左右されるため、非常に難しいのが現状である。住宅等の建物において、地震で一番怖いのは振動より揺れの大きさであり、建物に地震被害をもたらす要因となっている。このため、建物の耐震、制震、免震等、構造性能を高めて強い建物づくりが進んでいる。しかし、住宅等の小規模な構造物が建設される浅層地盤については、地震対策がほとんど行われていない。住宅等の建設予定地では、地盤強度等の調査を行い、軟弱地盤に対しては地盤改良を施すものの、液状化対策についてはほとんど無策の状態である。   The ground liquefaction phenomenon occurs in a wide area in the event of a large earthquake or a huge earthquake. Elucidation of the mechanism of the liquefaction phenomenon and countermeasures are very difficult because it depends on the ground conditions and the scale of the earthquake. In buildings such as houses, the most scary thing about earthquakes is the magnitude of shaking rather than vibration, which causes damage to buildings. For this reason, building strong structures with improved structural performance, such as earthquake resistance, seismic control, and seismic isolation, is progressing. However, for shallow ground where small structures such as houses are constructed, earthquake countermeasures are hardly taken. In the planned construction sites such as houses, the ground strength is investigated and the ground is improved for the soft ground, but the countermeasures against liquefaction are almost impossible.

特開昭57−209334号公報には、基礎杭を所定位置に打設し、その後基礎杭上部に砂利を敷きつめ、次にこの砂利層上にフーチングを基礎杭に対して非連結状態で築造することを特徴とする構造物基礎の築造方法(請求項1)が開示されている。また、特開昭57−209334号公報の第2頁右下欄第10行〜第12行には、「実施例のように基礎杭間に充填した砂利壁と上部の砂利層とが連設しているため間隙水圧の上昇を防止することとなり」と記載されている。   In JP-A-57-209334, a foundation pile is placed at a predetermined position, and then gravel is spread on the upper portion of the foundation pile, and then a footing is constructed on the gravel layer in a state of being disconnected from the foundation pile. A structure foundation construction method (claim 1) is disclosed. Further, in the lower right column, lines 10 to 12 of JP-A-57-209334, “The gravel wall filled between the foundation piles and the upper gravel layer are connected in series as in the embodiment. Therefore, the increase in pore water pressure is prevented. "

また、小規模の個人住宅などの屋外構造物の建設予定地が軟弱地盤である場合、該軟弱地盤である基礎構築部分の近くに例えば図9に示すような田の字形状の不透水地盤改良壁100を構築し、地盤の不同沈下を抑止する浅層地盤改良工法が知られている(例えば特開2004−60290号公報、特開2009−275358号公報等)。また、地盤に構築される上端が透水層に接続する透水性縦杭は、例えば、特開平10−18314号公報、特開昭55−142815号公報等に記載されている。   In addition, when the planned construction site of an outdoor structure such as a small-scale private house is soft ground, improvement of the impervious ground in the shape of a rice field, for example, as shown in FIG. 9 near the foundation construction part that is the soft ground. There is known a shallow ground improvement method for constructing the wall 100 and suppressing uneven settlement of the ground (for example, Japanese Patent Laid-Open Nos. 2004-60290 and 2009-275358). Moreover, the permeable vertical pile which the upper end constructed | assembled in a ground connects to a permeable layer is described in Unexamined-Japanese-Patent No. 10-18314, Unexamined-Japanese-Patent No. 55-142815, etc., for example.

また、本出願人は、先に、屋外構造物の基礎部と、該基礎部の下方であり且つ浅層地盤に構築される、外周を形成する連続状の外壁と、該外壁で囲まれる内側を複数の室に分割する内壁とからなる不透水地中連続改良壁と、該基礎部と該不透水地中連続改良壁間全面に構築される透水層と、該内壁で分割された複数の室の少なくともひとつの地盤に構築される、上端が該透水層に接続する透水性縦杭と、を有することを特徴とする屋外構造物基礎構造体に係る発明を出願している(特願2012−39890号)。   In addition, the applicant of the present invention, first, the base portion of the outdoor structure, the continuous outer wall forming the outer periphery, which is constructed below the base portion and on the shallow ground, and the inner side surrounded by the outer wall A continuous improvement wall in an impermeable ground consisting of an inner wall that divides a plurality of chambers, a water permeable layer constructed over the entire surface between the foundation and the continuous improvement wall in the impermeable ground, and a plurality of walls divided by the inner wall An invention relating to an outdoor structure foundation structure having an permeable vertical pile connected to the permeable layer, which is constructed on at least one ground of a room, has been filed (Japanese Patent Application 2012). -39890).

特開昭57−209334号公報JP-A-57-209334 特開2004−60290号公報JP 2004-60290 A 特開2009−275358号公報JP 2009-275358 A 特開平10−18314号公報Japanese Patent Laid-Open No. 10-18314 特開昭55−142815号公報JP-A-55-142815

しかしながら、特開昭57−209334号公報には、不透水地中連続改良壁は開示されていない。また、特開2004−60290号公報などの従来の不透水地中連続改良壁は、ベタ基礎などの基礎部と直接、接するものであり、地中連続改良壁と基礎部間に透水層を介在させることまでは開示されていない。このため、従来、地中連続改良壁と基礎部間に透水層を介在させた基礎構造体における液状化被害を軽減する目的において、現地盤土の置換数を減らして、残土処分を軽減するような必要最小限の透水層の配置設計はされていなかった。   However, Japanese Patent Application Laid-Open No. 57-209334 does not disclose a continuous impermeable wall in an impermeable ground. Moreover, the conventional impermeable underground continuous improvement wall such as JP-A-2004-60290 is in direct contact with a foundation such as a solid foundation, and a permeable layer is interposed between the underground continuous improvement wall and the foundation. It is not disclosed until it is made to. For this reason, in order to reduce the liquefaction damage in the foundation structure where a permeable layer is interposed between the underground continuous improvement wall and the foundation part, the number of replacements of the local soil has been reduced to reduce residual soil disposal. The minimum necessary permeable layer layout design was not done.

従って、本発明の目的は、液状化被害を軽減すると共に、現地盤土の置換数を減らして、残土処分を軽減する屋外構造物基礎構造体を提供することにある。   Accordingly, an object of the present invention is to provide an outdoor structure foundation structure that reduces liquefaction damage and reduces the number of local soil replacements to reduce residual soil disposal.

かかる実情において、本発明者は鋭意検討を行った結果、屋外構造物の基礎部と不透水地中連続改良壁間に透水層を構築し、該透水層を、該一部の内壁上に、当該一部の内壁の幅寸法より大の幅寸法とすることで、該内壁で区画される複数の室を連通させ、且つ一端が外壁上に延出するように構築した屋外構造物基礎構造体であれば、液状化被害を軽減すると共に、現地盤土の置換数を減らして、残土処分を軽減できること等を見出し、本発明を完成するに至った。   In such a situation, as a result of intensive studies, the present inventor constructed a permeable layer between the foundation portion of the outdoor structure and the continuously improved wall in the impermeable ground, and the permeable layer is formed on the partial inner wall. An outdoor structure foundation structure constructed so that a plurality of chambers defined by the inner wall communicate with each other and have one end extending on the outer wall by making the width dimension larger than the width dimension of the partial inner wall. Then, while reducing liquefaction damage and reducing the number of local soil replacements, it was found that the disposal of residual soil can be reduced, and the present invention has been completed.

すなわち、本発明は、屋外構造物の基礎部と、該基礎部の下方であり且つ浅層地盤に構築される、外周を形成する連続状の外壁と、該外壁で囲まれる内側を複数の室に分割する内壁とからなる不透水地中連続改良壁と、該基礎部と該不透水地中連続改良壁間に構築される透水層と、を有し、該透水層は、該一部の内壁上に、当該一部の内壁の幅寸法より大の幅寸法とすることで、該内壁で区画される2つの室を連通させ、且つ一端が外壁上に延出するように構築されることを特徴とする屋外構造物基礎構造体を提供するものである。   That is, the present invention includes a foundation part of an outdoor structure, a continuous outer wall that forms an outer periphery, which is constructed on a shallow ground below the foundation part, and a plurality of chambers surrounded by the outer wall. A continuous improvement wall in the impermeable ground consisting of an inner wall divided into an inner wall, and a water permeable layer constructed between the foundation and the continuous improvement wall in the impermeable ground. The inner wall is constructed so that the two chambers defined by the inner wall communicate with each other and have one end extending on the outer wall by making the width dimension larger than the width dimension of the partial inner wall. An outdoor structure foundation structure characterized by the above is provided.

本発明によれば、液状化被害を軽減すると共に、現地盤土の置換数を減らして、残土処分を軽減できる。   According to the present invention, it is possible to reduce liquefaction damage, reduce the number of local soil replacements, and reduce residual soil disposal.

本発明の第1の実施の形態における屋外構造物基礎構造体の平面図である。It is a top view of the outdoor structure basic structure in the 1st Embodiment of this invention. 図1のX−X線に沿って見た図である。Is a view taken along the X 1 -X 1 line in FIG. 図1のY−Y線に沿って見た図である。Is a view taken along the Y 1 -Y 1 line in FIG. 図1のZ−Z線に沿って見た図である。Is a view taken along the Z 1 -Z 1 line in FIG. 本発明の第2の実施の形態における屋外構造物基礎構造体の平面図である。It is a top view of the outdoor structure foundation structure in the 2nd Embodiment of this invention. 図5のX−X線に沿って見た図である。Is a view taken along the X 2 -X 2 line in FIG. 5. 図5のY−Y線に沿って見た図である。Is a view taken along the Y 2 -Y 2 line in FIG. 5. 図5のZ−Z線に沿って見た図である。Is a view taken along the Z 2 -Z 2 line in FIG. 5. 従来の不透水地中連続改良壁の斜視図である。It is a perspective view of the conventional impermeable ground continuous improvement wall.

本発明の第1の実施の形態における屋外構造物基礎構造体(以下、単に「基礎構造体」とも言う。)を図1〜図4を参照して説明する。基礎構造体10は、屋外構造物の基礎部1と、基礎部の下方であり且つ浅層地盤に構築される複数の室を有する不透水地中連続改良壁(以下、単に「改良壁」とも言う。)2と、基礎部1と改良壁2間に構築される透水層3と、を有し、透水層3は、一部の内壁221上に、一部の内壁211の幅寸法より大の幅寸法とすることで、内壁22で区画される複数の室を連通させ、且つ一端が外壁21上に位置するように構築されるものである。なお、図1は改良壁2と透水層3の配置関係を判り易く描写したため、基礎部1は二点鎖線で簡略して描いた。   An outdoor structure foundation structure (hereinafter also simply referred to as a “foundation structure”) according to a first embodiment of the present invention will be described with reference to FIGS. The foundation structure 10 includes a foundation portion 1 of an outdoor structure, and a continuous improvement wall (hereinafter simply referred to as an “improvement wall”) having a plurality of chambers that are below the foundation portion and are constructed on a shallow ground. 2) and a water permeable layer 3 constructed between the base portion 1 and the improved wall 2, and the water permeable layer 3 is larger than the width dimension of the part of the inner wall 211 on the part of the inner wall 221. Thus, the plurality of chambers defined by the inner wall 22 are communicated with each other, and one end is positioned on the outer wall 21. In addition, since FIG. 1 described the arrangement | positioning relationship of the improvement wall 2 and the water-permeable layer 3 intelligibly, the base part 1 was drawn simply with the dashed-two dotted line.

基礎構造体10において、改良壁2は、基礎部1の下方であり且つ浅層地盤に構築されるもので、外周を形成する連続状の外壁21と、外壁21で囲まれる内側を複数の室に分割する内壁22とからなるセメント系固化材を撹拌混合した改良土質である。改良壁2は不同沈下を防止し、且つ地震などの水平力に対抗することができる。外壁21で囲まれる内側を内壁22で区画する区画形状としては、特に制限されず、格子状および中央に矩形状の室を有する不定形状のものが挙げられる。格子状の場合、縦横の壁で格子状に区画される室の個数としては、小規模住宅の場合、例えば2個以上、好ましくは4個〜12個程度である。図1〜図4は20個の例であるが、これは透水層3の設置形態を1つの図面で説明するため多くなったものである。また、改良壁2は、中央に矩形状の室(区画部)を有する不定形状のものであってもよい。改良壁2の平面視の形状は、上下対称、左右対称および非対称のものが挙げられ、この中、上下対称且つ左右対称であるものが、地盤を均等に拘束する点で好ましい。   In the foundation structure 10, the improved wall 2 is constructed on the shallow ground below the foundation portion 1, and includes a continuous outer wall 21 that forms the outer periphery and a plurality of chambers surrounded by the outer wall 21. It is an improved soil quality obtained by stirring and mixing a cement-based solidified material composed of an inner wall 22 divided into two. The improved wall 2 prevents uneven settlement and can counter horizontal forces such as earthquakes. The partition shape in which the inner side surrounded by the outer wall 21 is partitioned by the inner wall 22 is not particularly limited, and examples thereof include a lattice shape and an indefinite shape having a rectangular chamber at the center. In the case of a grid, the number of rooms partitioned in a grid by vertical and horizontal walls is, for example, 2 or more, preferably about 4 to 12, in the case of a small-scale house. 1 to 4 show 20 examples, but this is increased in order to explain the installation form of the water permeable layer 3 in one drawing. The improved wall 2 may have an indefinite shape having a rectangular chamber (partition) at the center. Examples of the shape of the improved wall 2 in plan view include vertically symmetric, left-right symmetric, and asymmetric shapes. Among these, the vertically symmetric and left-right symmetric shapes are preferable in that the ground is evenly restrained.

改良壁2は外壁21を連続壁とし、外壁21の内側を内壁22で区画することで、地盤を拘束して一体化し、基礎部1を介して屋外構造物の荷重を均一に地盤に伝えるため、建物等の構造物基礎および地盤強度が向上し、屋外構造物全体の安定力が増す。本発明において、改良壁2の高さは最大2.0m、概ね0.3〜1.8mである。   The improved wall 2 has the outer wall 21 as a continuous wall and the inner wall 22 defines the inner wall 22 to constrain and integrate the ground, and to uniformly transmit the load of the outdoor structure to the ground via the foundation 1. In addition, the foundations of structures such as buildings and ground strength are improved, and the stability of the entire outdoor structure is increased. In the present invention, the height of the improved wall 2 is a maximum of 2.0 m, generally 0.3 to 1.8 m.

基礎構造体10において、屋外構造物としては、小規模住宅、店舗、工場などの建築物、庭園、私道または駐車場が挙げられる。小規模住宅とは、「小規模建築物基礎設計指針(日本建築学会)」で規定する小規模建築物であり、地上3階以下、建物高さ13m以下、軒高9m以下及び延べ面積500m以下の条件を満たす建築物を言う。屋外構造物の基礎部としては、小規模住宅の場合、例えばベタ基礎であり、店舗、工場、庭園、私道または駐車場のような大面積の屋外構造物の場合、例えばアスファルト舗装層である。図1〜4は小規模住宅の場合であり、ベタ基礎1が、一部に透水層3を有する改良壁2の上に形成されている。 In the foundation structure 10, examples of the outdoor structure include a small house, a store, a building such as a factory, a garden, a private road, or a parking lot. A small house, a small building as defined in the "small-scale building foundation design guidelines (Architectural Institute of Japan)", three floors below, building height 13m below, eaves height 9m or less and a total area of 500m 2 A building that satisfies the following conditions. The foundation of the outdoor structure is, for example, a solid foundation in a small-scale house, and an asphalt pavement layer in the case of a large-area outdoor structure such as a store, a factory, a garden, a private road, or a parking lot. 1-4 is a case of a small-scale house, The solid foundation 1 is formed on the improvement wall 2 which has the water-permeable layer 3 in part.

基礎構造体10において、透水層3は、基礎部1と改良壁2間の一部に構築される。すなわち、透水層3は、一部の内壁221上に、一部の内壁221の幅寸法より大の幅寸法とすることで、内壁22で区画される複数の室を連通させ、且つ一端が外壁21上、すなわち、外壁21の外側端にほぼ位置するように構築される。すなわち、透水層3は、見かけ上、改良壁2の一部に組み込まれるように形成されるものである。なお、基礎構造体10において、透水層3が内壁で区画される2つの室を連通させる形態が、図1の透水層3cであり、内壁の交点部を含み、内壁で区画される少なくとも3つの室を連通させる透水層は、図1の3a、3b、3d及び3eである。   In the foundation structure 10, the water permeable layer 3 is constructed at a part between the foundation portion 1 and the improved wall 2. That is, the water permeable layer 3 has a width dimension larger than the width dimension of the part of the inner wall 221 on the part of the inner wall 221, thereby allowing a plurality of chambers defined by the inner wall 22 to communicate with each other and having one end on the outer wall. 21, that is, it is constructed so as to be substantially located at the outer end of the outer wall 21. That is, the water permeable layer 3 is formed so as to be incorporated into a part of the improved wall 2 in appearance. In addition, in the foundation structure 10, the form in which the two chambers in which the water permeable layer 3 is partitioned by the inner wall communicates with each other is the water permeable layer 3 c in FIG. 1, including the intersection of the inner walls, and at least three that are partitioned by the inner wall. The water-permeable layers that allow the chambers to communicate are 3a, 3b, 3d, and 3e in FIG.

このような透水層3の一例を図1を参照して説明する。透水層3aは、平面視が略L字形状の内壁221上に、内壁221の幅寸法wより大の幅寸法wの透水層を形成したものである。略L字形状の内壁221は、室aと室bを区画する壁、室eと室fを区画する壁および室eと室iを区画する壁、室iと室jを区画する一部の壁、室jと室fを区画する一部の壁、室fと室bを区画する一部の壁及びそれらの交点部を含んで結ぶ連続壁である。また、略L字形状の内壁221の一端31a及び他端32aは、外壁21の外側端にまでほぼ延出している。透水層3aの上面は、透水層3が形成されていない改良壁2の上面と面一である(図2参照)。また、透水層3aの高さ(深さ)は、改良壁2の高さより小である。このため、透水層3aの下方に当たる改良壁2の高さは透水層3aの高さ分低い。このような、透水層3aは、内壁221で区画される6つの室a、b、e、f、i、jを連通する。 An example of such a water-permeable layer 3 will be described with reference to FIG. The water permeable layer 3 a is formed by forming a water permeable layer having a width dimension w 2 larger than the width dimension w 1 of the inner wall 221 on the inner wall 221 having a substantially L shape in plan view. The substantially L-shaped inner wall 221 includes a wall that divides the chamber a and the chamber b, a wall that divides the chamber e and the chamber f, a wall that divides the chamber e and the chamber i, and a portion that divides the chamber i and the chamber j. A wall, a part of the wall that divides the room j and the room f, a part of the wall that divides the room f and the room b, and a continuous wall including the intersections thereof. In addition, one end 31 a and the other end 32 a of the substantially L-shaped inner wall 221 extend substantially to the outer end of the outer wall 21. The upper surface of the water permeable layer 3a is flush with the upper surface of the improved wall 2 where the water permeable layer 3 is not formed (see FIG. 2). Further, the height (depth) of the water permeable layer 3 a is smaller than the height of the improved wall 2. For this reason, the height of the improvement wall 2 which hits the lower part of the water-permeable layer 3a is low by the height of the water-permeable layer 3a. Such a water-permeable layer 3 a communicates the six chambers a, b, e, f, i, and j defined by the inner wall 221.

透水層3bにおいて、透水層3aと同一構成要素には同一符号を付して、その説明を省略し、異なる点についてのみ説明する。すなわち、透水層3bは、略L字形状の内壁222上に、内壁222の幅寸法wより大の幅寸法wの透水層を形成したものである。略L字形状の内壁222は、室gと室rを区画する壁、室gと室mを区画する壁、室nと室rを区画する一部の壁、室mと室nを区画する一部の壁およびそれらの交点部を含んで結ぶ連続壁である。また、略L字形状の内壁222の一端31b及び他端32bは、外壁21の外側端にまでほぼ延出している。このような、透水層3bは、内壁222で区画される4つの室m、n、q、rを連通する。 In the water permeable layer 3b, the same components as those of the water permeable layer 3a are denoted by the same reference numerals, description thereof is omitted, and only different points will be described. That is, the water permeable layer 3 b is formed by forming a water permeable layer having a width dimension w 2 larger than the width dimension w 1 of the inner wall 222 on the substantially L-shaped inner wall 222. The substantially L-shaped inner wall 222 divides the chamber g and the chamber r, the wall that divides the chamber g and the chamber m, the partial wall that divides the chamber n and the chamber r, and the chamber m and the chamber n. It is a continuous wall connecting some walls and their intersections. Further, the one end 31 b and the other end 32 b of the substantially L-shaped inner wall 222 extend substantially to the outer end of the outer wall 21. Such a water permeable layer 3 b communicates the four chambers m, n, q, and r defined by the inner wall 222.

透水層3cにおいて、透水層3aと同一構成要素には同一符号を付して、その説明を省略し、異なる点についてのみ説明する。すなわち、透水層3cは、平面視が略I字形状の内壁223上に、内壁223の幅寸法wより大の幅寸法wの透水層を形成したものである。内壁223は、室dと室cを区画する壁である。また、内壁223の一端31cは、外壁21の外側端にまでほぼ延出しており、他端32cは、内壁223上に位置している。このような、透水層3cは、内壁223で区画される2つの室c、dを連通する。 In the water permeable layer 3c, the same components as those of the water permeable layer 3a are denoted by the same reference numerals, description thereof will be omitted, and only different points will be described. That is, permeability layer 3c is to plan view on the inner wall 223 of a substantially I-shape, to form a water-permeable layer of a large width dimension w 2 than the width w 1 of the inner wall 223. The inner wall 223 is a wall that partitions the chamber d and the chamber c. One end 31 c of the inner wall 223 extends substantially to the outer end of the outer wall 21, and the other end 32 c is located on the inner wall 223. Such a water permeable layer 3 c communicates the two chambers c and d defined by the inner wall 223.

透水層3dにおいて、透水層3aと同一構成要素には同一符号を付して、その説明を省略し、異なる点についてのみ説明する。すなわち、透水層3dは、平面視が略L字形状の内壁224上に、内壁224の幅寸法wより大の幅寸法wの透水層を形成したものである。内壁224は、室hと室lを区画する壁、室kと室lを区画する壁、室gと室kを区画する一部の壁、室gと室hを区画する一部の壁およびそれらの交点部を含んで結ぶ連続壁である。また、内壁224の一端31dは、外壁21の外側端にまでほぼ延出しており、他端32dは、内壁224上に位置している。このような、透水層3dは、内壁224で区画される4つの室g、h、k、lを連通する。 In the water permeable layer 3d, the same components as those of the water permeable layer 3a are denoted by the same reference numerals, description thereof is omitted, and only different points will be described. That is, permeability layer 3d is to plan view on the inner wall 224 of a substantially L-shape, to form a water-permeable layer of a large width dimension w 2 than the width w 1 of the inner wall 224. The inner wall 224 includes a wall that divides the chamber h and the chamber l, a wall that divides the chamber k and the chamber l, a part of the wall that divides the chamber g and the chamber k, a part of the wall that divides the chamber g and the chamber h, and It is a continuous wall that includes those intersections. One end 31 d of the inner wall 224 extends substantially to the outer end of the outer wall 21, and the other end 32 d is located on the inner wall 224. Such a water permeable layer 3 d communicates the four chambers g, h, k, and l defined by the inner wall 224.

透水層3eにおいて、透水層3aと同一構成要素には同一符号を付して、その説明を省略し、異なる点についてのみ説明する。すなわち、透水層3eは、平面視が略L字形状の内壁225上に、内壁225の幅寸法wより大の幅寸法wの透水層を形成したものである。内壁225は、室sと室tを区画する壁、室tと室pを区画する壁、室sと室oを区画する一部の壁、室oと室pを区画する一部の壁およびそれらの交点部を含んで結ぶ連続壁である。また、内壁225の一端及び他端31e、32eは、外壁21の外側端にまでほぼ延出している。このような、透水層3eは、内壁225で区画される4つの室o、p、s、tを連通する。 In the water permeable layer 3e, the same components as those of the water permeable layer 3a are denoted by the same reference numerals, description thereof will be omitted, and only different points will be described. That is, permeability layer 3e is to plan view on the inner wall 225 of a substantially L-shape, to form a water-permeable layer of a large width dimension w 2 than the width w 1 of the inner wall 225. The inner wall 225 includes a wall that divides the chamber s and t, a wall that divides the chamber t and the chamber p, some walls that divide the chamber s and the chamber o, some walls that divide the chamber o and the chamber p, and It is a continuous wall that includes those intersections. In addition, one end and the other ends 31 e and 32 e of the inner wall 225 extend substantially to the outer end of the outer wall 21. Such a water-permeable layer 3e communicates the four chambers o, p, s, and t defined by the inner wall 225.

基礎構造体10において、透水層3は、液状化に伴う過剰間隙水圧により上がってくる上昇水を通し、建物の外側に排水する機能を有する。透水層3としては、砕石層、栗石層、砂利層が挙げられる。すなわち、透水層3は、液状化発生の際、砂質土を含んだ上昇水である噴砂流の中、上昇水は通すが、土砂は通さないものである。透水層3の高さは、上記機能を奏する高さで適宜決定されるが、概ね10〜50cm程度である。   In the foundation structure 10, the water permeable layer 3 has a function of draining the outside of the building through the rising water that rises due to excessive pore water pressure accompanying liquefaction. Examples of the water permeable layer 3 include a crushed stone layer, a chestnut stone layer, and a gravel layer. That is, the water-permeable layer 3 allows the rising water to pass through the sand flow, which is the rising water containing sandy soil, but does not allow the earth and sand to pass. The height of the water permeable layer 3 is appropriately determined depending on the height of the above function, but is approximately 10 to 50 cm.

このように、基礎構造体10は、大地震、液状化発生の際、砂質土を含んだ上昇水である噴砂流の上昇(方向性)を制御できる。液状化による噴砂流は、通常、改良壁の全区域に発生するものではなく、その一部に発生する。例えば、室a、b、e、f、i、jのいずれか又はそれらの複数箇所に発生した噴砂流は、図2の矢印で示すように、地表面近くまで来ると、逃げ場を失い、水が透水層3aを通り、6つの室内において拡散すると共に、水平方向に誘導されて改良壁の外側へ排出される。この場合、土砂の流出は透水層3aにより阻止されるため、室内の地盤は保護され、液状化被害を抑制できる。改良壁の外側に誘導された上昇水は、下水道へ流れるようにすることがより好ましい。   Thus, the foundation structure 10 can control the rise (directionality) of the sand flow that is the rising water containing sandy soil when a large earthquake or liquefaction occurs. The sand flow caused by liquefaction usually does not occur in the entire area of the improved wall, but occurs in a part of it. For example, as shown by the arrows in FIG. 2, the sand flow generated in any one of the chambers a, b, e, f, i, j, or near them, loses its escape when it reaches near the ground surface. Passes through the water-permeable layer 3a, diffuses in the six chambers, is guided in the horizontal direction, and is discharged to the outside of the improved wall. In this case, since the outflow of earth and sand is blocked by the water-permeable layer 3a, the indoor ground is protected and liquefaction damage can be suppressed. More preferably, the ascending water guided to the outside of the improved wall flows to the sewer.

また、例えば、室m、n、g、rのいずれか又はその複数箇所に発生した噴砂流は、地表面近くまで来ると、逃げ場を失い、水が透水層3bを通り、4つの室内において拡散すると共に、水平方向に誘導されて改良壁の外側へ排出される。この場合、土砂の流出は透水層3bにより阻止されるため、室内の地盤は保護され、液状化被害を抑制できる。   In addition, for example, when the sand flow generated in one or more of the chambers m, n, g, and r reaches near the ground surface, it loses its escape, and water passes through the permeable layer 3b and diffuses in the four chambers. At the same time, it is guided in the horizontal direction and discharged to the outside of the improved wall. In this case, since the outflow of earth and sand is blocked by the water-permeable layer 3b, the indoor ground is protected and liquefaction damage can be suppressed.

また、例えば、室c、dのいずれか又は両方の室に発生した噴砂流は、地表面近くまで来ると、逃げ場を失い、水が透水層3c通り、2つの室内において拡散すると共に、水平方向に誘導されて改良壁の外側へ排出される。また、例えば、室g、h、k、lのいずれか又はそれらの複数箇所に発生した噴砂流は、地表面近くまで来ると、逃げ場を失い、水が透水層3dを通り、4つの室内において拡散すると共に、水平方向に誘導されて改良壁の外側へ排出される。また、例えば、室o、p、s、tのいずれか又はそれらの複数箇所に発生した噴砂流は、地表面近くまで来ると、逃げ場を失い、水が透水層3eを通り、4つの室内において拡散すると共に、水平方向に誘導されて改良壁の外側へ排出される。   Further, for example, when the sand flow generated in one or both of the chambers c and d reaches near the ground surface, it loses its escape, and the water diffuses through the two permeable layers 3c and in the horizontal direction. Is discharged to the outside of the improved wall. In addition, for example, when the sand flow generated in any one of the chambers g, h, k, l or a plurality of the locations reaches near the ground surface, it loses its escape, and the water passes through the permeable layer 3d and passes through the four chambers. As it diffuses, it is guided horizontally and discharged outside the modified wall. Further, for example, when the sand flow generated in any one of the chambers o, p, s, and t, or near the ground surface, near the ground surface, it loses a refuge, and the water passes through the permeable layer 3e in the four chambers. As it diffuses, it is guided horizontally and discharged outside the modified wall.

基礎構造体10によれば、液状化被害を軽減すると共に、基礎部1と改良壁2の全面に透水層を形成する場合に比べて、現地盤土の置換数を減らして、残土処分を軽減できる。   According to the foundation structure 10, liquefaction damage is reduced, and compared to the case where a permeable layer is formed on the entire surface of the foundation portion 1 and the improved wall 2, the number of local soil replacements is reduced and the disposal of residual soil is reduced. it can.

次に、本発明の第2の実施の形態における基礎構造体を図5〜図8を参照して説明する。図5〜図8の基礎構造体10aにおいて、図1〜図4の基礎構造体10と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。すなわち、基礎構造体10aにおいて基礎構造体10と異なる点は、上端が透水層に接続し、下方に延びる透水性縦杭4を形成したこと、透水性縦杭4が形成される透水層3部分を拡幅としたことにある。なお、本発明において、透水性縦杭が形成される透水層部分の拡幅は、必須ではなく、任意の構成要素である。   Next, the basic structure in the 2nd Embodiment of this invention is demonstrated with reference to FIGS. In the basic structure 10a of FIGS. 5-8, the same code | symbol is attached | subjected to the same component as the basic structure 10 of FIGS. 1-4, the description is abbreviate | omitted and a different point is mainly demonstrated. That is, the difference between the foundation structure 10a and the foundation structure 10 is that the upper end is connected to the permeable layer and the permeable vertical pile 4 extending downward is formed, and the permeable layer 3 portion where the permeable vertical pile 4 is formed. Is to widen. In addition, in this invention, the widening of the water-permeable layer part in which a water-permeable vertical pile is formed is not essential, but is an arbitrary component.

基礎構造体10aにおいて、透水層3fは、透水層3aにおいて、室a、b、e、fを区画する内壁の交点部を拡幅にすると共に、当該交点部に透水性縦杭4を形成したものである。透水層3gは、透水層3bにおいて、室m、n、q、rを区画する内壁の交点部を拡幅にすると共に、当該交点部に透水性縦杭4を形成したものである。透水層3hは、透水層3cにおいて、室c、dを区画する内壁のほぼ中央部を拡幅にすると共に、当該拡幅部に透水性縦杭4を形成したものである。透水層3iは、透水層3dにおいて、室k、lを区画する内壁の中央部を拡幅にすると共に、当該拡幅部に透水性縦杭4を形成したものである。透水層3jは、透水層3eにおいて、室s、tを区画する内壁の中央部を拡幅にすると共に、当該拡幅部に透水性縦杭4を形成したものである。   In the foundation structure 10a, the water permeable layer 3f is a water permeable layer 3a in which the intersections of the inner walls that define the chambers a, b, e, and f are widened and the permeable vertical piles 4 are formed at the intersections. It is. In the permeable layer 3b, the permeable layer 3g is formed by widening the intersection part of the inner wall that partitions the chambers m, n, q, and r, and the permeable vertical pile 4 is formed at the intersection part. In the water permeable layer 3c, the water permeable layer 3h is formed by widening the substantially central portion of the inner wall that divides the chambers c and d, and the permeable vertical pile 4 is formed in the widened portion. The water permeable layer 3i is a water permeable layer 3d in which the central portion of the inner wall that divides the chambers k and l is widened and the permeable vertical pile 4 is formed in the widened portion. The water permeable layer 3j is a water permeable layer 3e in which the central portion of the inner wall that divides the chambers s and t is widened, and the water permeable vertical piles 4 are formed in the widened portion.

基礎構造体10aにおいて、透水性縦杭4は、上端が透水層3に接続し、深さ方向において、いずれも、改良壁2を超えて下方に延びている。透水性縦杭4は、液状化に伴う過剰間隙水圧を吸収して上昇水を透水層3に導く機能を有する。すなわち、透水性縦杭4は、液状化発生の際、砂質土を含んだ上昇水である噴砂流の中、上昇水は通すが、土砂は通さないものである。透水性縦杭4としては、砕石杭、砂利杭、穴開きパイプ杭が挙げられる。穴開きパイプ杭は、上下が貫通するパイプの周面に、多数の貫通穴を形成したものである。貫通穴はパイプ内への土砂の浸入を防止する一方、上昇水は通すものである。また、穴開きパイプ杭の深部側の先端部は、土砂が詰まり先端開口を塞いでいる。これはパイプを地中に打ち込んだ際、土砂が浸入してくるからである。そして、パイプの先端部を除くパイプ内は中空であっても、砕石などが詰まっていてもよい。パイプとしては、鋼管、塩化ビニル管等が使用できる。   In the foundation structure 10a, the permeable vertical pile 4 has an upper end connected to the permeable layer 3 and extends downward beyond the improved wall 2 in the depth direction. The permeable vertical pile 4 has a function of absorbing excess pore water pressure accompanying liquefaction and guiding ascending water to the permeable layer 3. That is, the water-permeable vertical pile 4 allows the rising water to pass through the sand flow that is the rising water containing sandy soil, but does not allow the earth and sand to pass. Examples of the permeable vertical pile 4 include a crushed stone pile, a gravel pile, and a perforated pipe pile. The perforated pipe pile is formed by forming a large number of through holes on the peripheral surface of a pipe that penetrates vertically. The through hole prevents the intrusion of earth and sand into the pipe, while allowing the rising water to pass through. Moreover, the deep end side of the perforated pipe pile is clogged with earth and sand and closes the front end opening. This is because when the pipe is driven into the ground, earth and sand enter. And the inside of the pipe excluding the tip of the pipe may be hollow or crushed stone may be clogged. As the pipe, a steel pipe, a vinyl chloride pipe, or the like can be used.

透水性縦杭4の深さ(高さ)は、地盤の地質により一概に決定できないものの、従来の地盤補強を目的とした砕石杭ほど深くする必要はなく、具体的には、最大高さが改良壁の壁深さ(高さ)の3倍、好適には2倍であり、具体的には、最大で4m、好ましくは最大で3m、特に好ましくは最大で2.5mである。また、地表面から深さ方向に、液状化しない良好地盤層、砂混じりの液状地盤層が存在する地盤の場合、透水性縦杭4の下端が液状地盤層に達するものであればよい。このような透水性縦杭4であれば、液状地盤層において、液状化に伴う過剰間隙水圧を吸収して上昇水を透水層3に導くことができる。すなわち、基礎構造体10a、基礎部下の一部に透水層を設け、該透水層と透水性縦杭4を接続したため、液状化に伴う上昇水は、良好地盤中、良好地盤に影響を与えることなく、垂直ルートを確保しつつ上昇し、次いで水平方向に流れ、建物の周囲4方向に排水するため、早期に減圧が図れ、液状化被害を防止することができる。また、透水性縦杭4自体が、軟弱地盤の改良杭になるため、地震後の地盤沈下に対しても有効な杭効果を発現する。   Although the depth (height) of the permeable vertical pile 4 cannot be determined unconditionally depending on the geology of the ground, it is not necessary to make it as deep as conventional crushed stone piles for the purpose of ground reinforcement. The wall depth (height) of the improved wall is 3 times, preferably 2 times, specifically 4 m at maximum, preferably 3 m at maximum, particularly preferably 2.5 m at maximum. Further, in the case of a ground having a good ground layer that is not liquefied or a liquid ground layer mixed with sand in the depth direction from the ground surface, it is only necessary that the lower end of the permeable vertical pile 4 reaches the liquid ground layer. If it is such a water-permeable vertical pile 4, an excess pore water pressure accompanying liquefaction can be absorbed in a liquid ground layer, and ascending water can be guide | induced to the water-permeable layer 3. FIG. That is, since a water permeable layer is provided in a part of the foundation structure 10a and the foundation, and the water permeable layer and the water permeable vertical pile 4 are connected, rising water accompanying liquefaction affects the good ground in the good ground. However, since it rises while securing a vertical route, and then flows in the horizontal direction and drains in the four directions around the building, the pressure can be reduced quickly and liquefaction damage can be prevented. Moreover, since the permeable vertical pile 4 itself becomes an improved pile of soft ground, an effective pile effect is expressed even for ground subsidence after an earthquake.

透水性縦杭4の形成位置は、上記位置に限定されず、透水層3と接続する位置であれば、何処であってもよく、ブロック化された1つの透水層に対して、1つ又は複数形成してもよい。また、透水性縦杭4の断面形状としては、円形断面の他、矩形断面、矩形断面であって深さ方向に向けてやや先細りとなる逆台形断面、楕円形断面、2つの円の一部が重なり合った断面、3つの円の一部が重なり合った断面、不定形断面などが挙げられる。   The formation position of the water permeable vertical pile 4 is not limited to the above position, and may be anywhere as long as it is a position connected to the water permeable layer 3. A plurality may be formed. Moreover, as a cross-sectional shape of the permeable vertical pile 4, in addition to a circular cross section, a rectangular cross section, a rectangular cross section, an inverted trapezoidal cross section that is slightly tapered in the depth direction, an elliptical cross section, and a part of two circles A cross section in which the circles overlap, a cross section in which a part of three circles overlap, an indefinite cross section, and the like.

次に、基礎構造体10aの造成方法の一例について説明する。先ず、所定の位置に透水性縦杭4を構築する。透水性縦杭4は、ユンボのような小型掘削機械や深堀掘削機械で所定の深さまで掘削後、砕石等を充填することで造成することができる。なお、透水性縦杭4を造成する前段階として、予め地質調査により液状地盤の深さを把握しておくことが好ましい。これにより、透水性縦杭4の深さ(高さ)を決定することができる。次いで、透水層構築予定箇所に、透水層の平面積を有し透水層3の高さ分の土壌を除去する(鋤き取り工程)。鋤き取りの際、透水性縦杭4の頭は、鋤き取ってもよく、あるいは一部又は全部を残しておいてもよい。透水性縦杭4の頭が一部又は全部残っていれば、透水層3との接続が容易となる。次いで、改良壁2が造成される予定地(軟弱地盤)に例えば、図9の形状の溝を地中に形成する。この際、改良壁2の外壁21及び内壁22と鋤き取り部との位置関係に注意を払いながら、溝を形成する。次いで、溝内にセメント系固化材を撹拌混合した改良土質を埋め戻す。その後、改良土質部分をランマー等で転圧して土質強度と靭性をもたせた改良土質による改良壁を構築する。次いで、改良壁1の上面の凹部に、砕石、栗石あるいは砂利地業を行い透水層3を構築する。これにより、透水層3は、透水性縦杭4と接続すると共に、所定の厚みを有して、透水層3の上面及び改良壁2の上面は略面一となり、地表に表われることになる。次いで、透水層3の上に、例えば基礎部として、ベタ基礎であるコンクリートを打設して基礎構造体10の造成を完了する。   Next, an example of a method for creating the foundation structure 10a will be described. First, the permeable vertical pile 4 is constructed at a predetermined position. The water-permeable vertical pile 4 can be formed by filling a crushed stone or the like after excavation to a predetermined depth with a small excavation machine such as a Yumbo or a deep excavation machine. In addition, it is preferable to grasp | ascertain the depth of a liquid ground beforehand by a geological survey as a pre-stage which constructs the water-permeable vertical pile 4. FIG. Thereby, the depth (height) of the water-permeable vertical pile 4 can be determined. Next, the soil having a flat area of the water permeable layer and having a height of the water permeable layer 3 is removed at a place where the water permeable layer is to be constructed (sowing step). At the time of scraping, the head of the permeable vertical pile 4 may be scraped off, or a part or all of it may be left. If a part or all of the head of the water-permeable vertical pile 4 remains, connection with the water-permeable layer 3 will become easy. Next, for example, a groove having a shape shown in FIG. 9 is formed in the ground (soft ground) where the improved wall 2 is to be created. At this time, the grooves are formed while paying attention to the positional relationship between the outer wall 21 and the inner wall 22 of the improved wall 2 and the scraping portion. Next, the improved soil obtained by stirring and mixing the cement-based solidified material in the groove is backfilled. After that, the improved soil part is rolled with a rammer or the like to construct an improved wall made of improved soil having soil strength and toughness. Next, the permeable layer 3 is constructed by performing crushed stone, chestnut stone, or gravel land in the recess on the upper surface of the improved wall 1. Accordingly, the water permeable layer 3 is connected to the water permeable vertical pile 4 and has a predetermined thickness, and the upper surface of the water permeable layer 3 and the upper surface of the improved wall 2 are substantially flush and appear on the ground surface. . Next, on the permeable layer 3, for example, as a foundation, concrete that is a solid foundation is placed to complete the creation of the foundation structure 10.

基礎構造体10の造成方法は、基礎構造体10aの造成方法において、透水性縦杭4を造成する工程を省略したこと以外は、同様の方向で行なえばよい。   The creation method of the foundation structure 10 may be performed in the same direction except that the step of creating the permeable vertical pile 4 is omitted in the creation method of the foundation structure 10a.

基礎構造体10aにおいて、液状地盤層で液状化が発生すると、透水性縦杭4が、液状化に伴う過剰間隙水圧を吸収して上昇水を透水層3に導くことができる。上昇水は、良好地盤中、透水性縦杭4である垂直ルートを保持しつつ上昇し、次いで透水層3内において水平方向に流れ、建物の外側に排水する。このため、早期に減圧が図れ、液状化被害を防止することができる。また、透水性縦杭4自体が、軟弱地盤の改良杭になるため、地震後の地盤沈下に対しても有効な杭効果を発現する。また、基礎構造体10aにおいて、基礎構造体10と同様に、基礎部1と改良壁2の全面に透水層を形成する場合に比べて、現地盤土の置換数を減らして、残土処分を軽減できる。   In the foundation structure 10a, when liquefaction occurs in the liquid ground layer, the permeable vertical pile 4 can absorb the excess pore water pressure accompanying liquefaction and guide the rising water to the permeable layer 3. The rising water rises while maintaining the vertical route which is the permeable vertical pile 4 in the good ground, and then flows horizontally in the permeable layer 3 and drains outside the building. For this reason, pressure reduction can be achieved early and liquefaction damage can be prevented. Moreover, since the permeable vertical pile 4 itself becomes an improved pile of soft ground, an effective pile effect is expressed even for ground subsidence after an earthquake. In addition, in the foundation structure 10a, as with the foundation structure 10, compared to the case where a water permeable layer is formed on the entire surface of the foundation portion 1 and the improved wall 2, the number of replacements of the local soil is reduced and the residual soil disposal is reduced. it can.

なお、屋外構造物が、店舗、工場、私道、庭園や駐車場のように大面積の場合、改良壁内を内壁で区画する方法としては、格子状に数十〜数百の多数の室を形成する方法、改良壁1を1ユニットとして、当該同ユニットを横並びに複数配置する複数配置方法、あるいは同ユニット及び異なるユニットを複数組み合わせて配置する複数混合配置方法などが挙げられる。屋外構造物が大面積の場合、改良壁内を内壁2で区画する室の数は、小規模住宅に比べて当然多くなる。   In addition, when the outdoor structure has a large area such as a store, factory, private road, garden or parking lot, as a method of partitioning the improved wall with the inner wall, a large number of tens to hundreds of rooms are arranged in a lattice shape. Examples thereof include a forming method, a plurality of arranging methods in which the improved wall 1 is one unit, a plurality of arranging units arranged side by side, or a plurality of mixed arranging methods in which a plurality of the units and different units are arranged in combination. When the outdoor structure has a large area, the number of rooms that divide the improved wall by the inner wall 2 is naturally larger than that of a small-scale house.

本発明によれば、液状化被害を軽減すると共に、現地盤土の置換数を減らして、残土処分を軽減できる。また、本発明によれば、液状化に伴う過剰間隙水圧を透水性縦杭で吸収して部分的に構築された透水層を介して減圧排水することができる。このため、液状化被害を防止することができる。   According to the present invention, it is possible to reduce liquefaction damage, reduce the number of local soil replacements, and reduce residual soil disposal. Moreover, according to this invention, the excess pore water pressure accompanying liquefaction can be drained under reduced pressure through the water-permeable layer partially constructed by absorbing the water-permeable vertical piles. For this reason, liquefaction damage can be prevented.

1 基礎部
2 不透水地中連続改良壁
3、3a〜3j 透水層
4 透水性縦杭
10、10a 屋外構造物基礎構造体
DESCRIPTION OF SYMBOLS 1 Foundation part 2 Impermeable continuous underground improvement wall 3, 3a-3j Permeable layer 4 Permeable vertical pile 10, 10a Outdoor structure foundation structure

Claims (9)

屋外構造物の基礎部と、
該基礎部の下方であり且つ浅層地盤に構築される、外周を形成する連続状の外壁と、該外壁で囲まれる内側を複数の室に分割する内壁とからなる不透水地中連続改良壁と、
該基礎部と該不透水地中連続改良壁間に構築される透水層と、を有し、
該透水層は、該一部の内壁上に、当該一部の内壁の幅寸法より大の幅寸法とすることで、該内壁で区画される2つの室を連通させ、且つ一端が外壁上に延出するように構築されることを特徴とする屋外構造物基礎構造体。
The foundation of the outdoor structure,
Impervious underground continuous improvement wall comprising a continuous outer wall forming an outer periphery and an inner wall that divides the inner side surrounded by the outer wall into a plurality of chambers, which is constructed on the shallow ground below the foundation. When,
A permeable layer constructed between the foundation and the continuous improvement wall in the impermeable ground,
The water permeable layer has a width dimension larger than the width dimension of the partial inner wall on the partial inner wall so that the two chambers defined by the inner wall communicate with each other, and one end of the permeable layer is disposed on the outer wall. An outdoor structure foundation structure constructed so as to extend.
該一部の内壁が、該内壁の交点部を含み、該透水層は、該内壁で区画される少なくとも3つの室を連通させることを特徴とする請求項1記載の屋外構造物基礎構造体。   The outdoor structure foundation structure according to claim 1, wherein the partial inner wall includes an intersection of the inner walls, and the water permeable layer communicates at least three chambers defined by the inner wall. 上端が該透水層に接続する透水性縦杭を、更に有することを特徴とする請求項1又は2記載の屋外構造物基礎構造体。   The outdoor structure foundation structure according to claim 1 or 2, further comprising a water permeable vertical pile having an upper end connected to the water permeable layer. 該内壁は、該外壁で囲まれる内側を格子状に分割することを特徴とする請求項1記載の屋外構造物基礎構造体。   The outdoor structure foundation structure according to claim 1, wherein the inner wall is divided into a lattice shape on the inner side surrounded by the outer wall. 該透水性縦杭は、砕石杭、砂利杭又は穴開きパイプ杭であることを特徴とする請求項3記載の屋外構造物基礎構造体。 Translucent aqueous Tatekui is crushed stone pile, outdoor structure foundation structure according to claim 3 Symbol mounting, characterized in that a gravel pile or perforated pipe piles. 該透水層は、砕石層、栗石層又は砂利層であることを特徴とする請求項1〜5のいずれか1項に記載の屋外構造物基礎構造体。   The outdoor structure foundation structure according to any one of claims 1 to 5, wherein the water permeable layer is a crushed stone layer, a chestnut stone layer, or a gravel layer. 該透水性縦杭は、深さ方向において、該不透水地中連続改良壁を越えて下方に延びていることを特徴とする請求項3又は5に記載の屋外構造物基礎構造体。 The outdoor structure foundation structure according to claim 3 or 5, wherein the permeable vertical pile extends downward in the depth direction beyond the continuously improved wall in the impermeable ground. 該屋外構造物は、建築物、庭園または駐車場であることを特徴とする請求項1〜7のいずれか1項に記載の屋外構造物基礎構造体。 該屋outer structures, buildings, outdoor structure foundation structure according to any one of claims 1 to 7, garden EMMA other is characterized by a parking lot. 該基礎部は、該屋外構造物が建築物の場合、ベタ基礎であることを特徴とする請求項8記載の屋外構造物基礎構造体。   9. The outdoor structure foundation structure according to claim 8, wherein the foundation portion is a solid foundation when the outdoor structure is a building.
JP2012172605A 2012-08-03 2012-08-03 Outdoor structure foundation structure Active JP5953172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012172605A JP5953172B2 (en) 2012-08-03 2012-08-03 Outdoor structure foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172605A JP5953172B2 (en) 2012-08-03 2012-08-03 Outdoor structure foundation structure

Publications (2)

Publication Number Publication Date
JP2014031644A JP2014031644A (en) 2014-02-20
JP5953172B2 true JP5953172B2 (en) 2016-07-20

Family

ID=50281683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172605A Active JP5953172B2 (en) 2012-08-03 2012-08-03 Outdoor structure foundation structure

Country Status (1)

Country Link
JP (1) JP5953172B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161610A (en) * 1990-10-26 1992-06-05 Fujita Corp Liquefaction ground improving method
JP3853099B2 (en) * 1999-01-22 2006-12-06 株式会社テノックス Lattice ground improvement body and construction method thereof
JP5480682B2 (en) * 2010-03-16 2014-04-23 大成建設株式会社 Liquefaction countermeasure structure

Also Published As

Publication number Publication date
JP2014031644A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
CN105089061B (en) Ultra-deep foundation pit supporting method
KR102068129B1 (en) Demolition method of basement of building using underground structure as support
JP5088982B1 (en) Outdoor structure foundation structure
CN104818711A (en) Anti-liquefaction three-dimensional drainage rigid pile and construction method thereof
CN105421464B (en) Small-scale pit earthwork digging method
CN106120805B (en) The construction method of ultra-deep foundation pit supporting under dilapidated house environment
CN110424372A (en) Along road interval method in a row remove obstacles after construct diaphram wall construction method
CN207176700U (en) A kind of solid matter perfusion inner support of pile foundation ditch permanent support structure under complex environment
JP2014012981A (en) Liquefaction countermeasure structure
JP5953137B2 (en) Foundation structure
CN111778992A (en) Construction method for crossing U-shaped channel section of old city building group area
JP6240625B2 (en) Retaining wall, creation site and creation method of creation site
JP5953172B2 (en) Outdoor structure foundation structure
JP5975726B2 (en) Ground structure and ground improvement method
JP6681115B2 (en) Method for designing the structure for countermeasures against liquefaction of ground
JP5039854B1 (en) Underground continuous wall structure
JP5801599B2 (en) Building
Dellaria et al. Combining multiple techniques to complete an urban deep excavation
CN107059889B (en) A kind of structure interfered for stand column pile and Construction of Engineering Pile to be isolated
JP5850529B2 (en) Underground continuous wall structure
JP4183137B2 (en) Seismic structure
JP5907721B2 (en) Underground continuous wall structure
JP2016030901A (en) Wall-shape foundation and construction method therefor
JP2012041803A (en) Retaining wall panel and lamination method of retaining wall using the retaining wall panel
JP2019108677A (en) Drain pile and liquefaction countermeasures method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5953172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250