JP5951950B2 - Method for treating contaminated water containing radioactive substance and method for adjusting particle size of radioactive substance removing agent - Google Patents

Method for treating contaminated water containing radioactive substance and method for adjusting particle size of radioactive substance removing agent Download PDF

Info

Publication number
JP5951950B2
JP5951950B2 JP2011205417A JP2011205417A JP5951950B2 JP 5951950 B2 JP5951950 B2 JP 5951950B2 JP 2011205417 A JP2011205417 A JP 2011205417A JP 2011205417 A JP2011205417 A JP 2011205417A JP 5951950 B2 JP5951950 B2 JP 5951950B2
Authority
JP
Japan
Prior art keywords
radioactive substance
substance removing
radioactive
particle size
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011205417A
Other languages
Japanese (ja)
Other versions
JP2013068438A5 (en
JP2013068438A (en
Inventor
槙田 則夫
則夫 槙田
矢出 乃大
乃大 矢出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011205417A priority Critical patent/JP5951950B2/en
Publication of JP2013068438A publication Critical patent/JP2013068438A/en
Publication of JP2013068438A5 publication Critical patent/JP2013068438A5/ja
Application granted granted Critical
Publication of JP5951950B2 publication Critical patent/JP5951950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、放射性物質を吸着除去できる放射性物質除去剤及びその製造方法、並びに、この放射性物質除去剤を使用した放射性汚染水の処理方法に関する。   The present invention relates to a radioactive substance removing agent capable of adsorbing and removing radioactive substances, a method for producing the same, and a method for treating radioactive contaminated water using the radioactive substance removing agent.

2011年3月11日に我が国を襲った東日本大震災は大津波の発生を伴うものであり、東北地方沿岸部の市町村に壊滅的被害をもたらす未曾有の大災害となった。その津波による被害は東京電力(株)福島原子力発電所にも及び、原子炉冷却施設の機能停止、燃料棒のメルトダウン、水蒸気爆発などを引き起こし、大量の放射性物質放出による環境汚染ならびに施設内の高レベル放射性物質汚染排液の大量発生という憂慮すべき事態を現出させた。そのため、放射性物質汚染排液から放射性物質を除去することは、日本国が可及的速やかに解決しなければならない課題の一つである。   The Great East Japan Earthquake that struck Japan on March 11, 2011 was accompanied by the occurrence of a large tsunami, and it was an unprecedented disaster that caused devastating damage to municipalities on the coast of the Tohoku region. The damage caused by the tsunami also affected TEPCO's Fukushima Nuclear Power Station, causing the reactor cooling facility to stop functioning, fuel rods melting down, steam explosions, etc. The alarming situation of a large amount of high-level radioactive material-contaminated wastewater emerged. Therefore, removal of radioactive materials from radioactive material contaminated effluent is one of the issues that Japan must solve as quickly as possible.

原子力発電所等の放射性物質取り扱い施設から放出される主な放射性核種として、ウラン−235の核分裂反応により生成されるヨウ素−131(半減期8.02日)などの放射性ヨウ素と、セシウム−137(半減期30.07年)、セシウム−134(半減期2.06年)などの放射性セシウムが挙げられる。   As main radionuclides released from radioactive material handling facilities such as nuclear power plants, radioactive iodine such as iodine-131 (half-life 8.02 days) produced by fission reaction of uranium-235, and cesium-137 ( And radioactive cesium such as cesium-134 (half-life 2.06 years).

放射性ヨウ素の除去に関する技術として、従来から活性炭による吸着処理が知られている。厚生労働省の「第2回水道水における放射性物質対策検討会」(開催日:平成23年5月26日)の会議資料2−3「粉末活性炭と前塩素処理の併用によるヨウ素の除去に関する調査について」によれば、ヨウ化物イオン(I)およびヨウ素酸イオン(IO )は粉末活性炭では殆ど除去できないものの、ヨウ素化物イオンに対して粉末活性炭・前弱塩素(注入率0.5〜1.0mg/L)併用処理を行うと粉末活性炭注入率15mg/Lで約30%、30mg/Lで約50%の除去が可能であることが報告されている。 As a technique related to the removal of radioactive iodine, adsorption treatment with activated carbon has been conventionally known. Meeting document 2-3 “Investigation on removal of iodine by combined use of powdered activated carbon and pre-chlorination” in the “Ministry of Health, Labor and Welfare” According to the above, although iodide ion (I ) and iodate ion (IO 3 ) can hardly be removed by powdered activated carbon, powdered activated carbon / pre-weak chlorine (injection rate 0.5 to 1) with respect to iodide ion 0.0 mg / L), it is reported that about 30% can be removed at a powdered activated carbon injection rate of 15 mg / L, and about 50% can be removed at 30 mg / L.

放射性セシウムの除去に関する技術としては、その結晶格子内にセシウムイオンを選択的に取り入れることができる、フェロシアン化合物(鉄、銅、ニッケル塩など)の立体的特性を利用して、フェロシアン化合物粉末を放射性セシウム含有排水に添加接触させた後、固液分離して放射性セシウム含有量を低減する技術や、粘土結晶格子面上のSiO四面体層の配列により形成された6個の酸素原子による六角形構造にセシウムイオンを選択的に取り入れることができる、モンモリロナイト属の粘土鉱物の立体的特性(図1及び図2参照)を利用して、モンモリロナイト属の粘土鉱物粉末を放射性セシウム含有排水に添加接触させた後、固液分離して放射性セシウム含有量を低減する技術など、セシウム吸着能を有する粉末状の吸着剤に放射性セシウム含有排水を接触させてセシウムを吸着除去する技術が知られている(図1、図2参照)。   As a technology related to the removal of radioactive cesium, ferrocyanic compound powders utilizing the steric properties of ferrocyanic compounds (iron, copper, nickel salts, etc.) that can selectively incorporate cesium ions into the crystal lattice. Is added to the radioactive cesium-containing wastewater and brought into contact with it, followed by solid-liquid separation to reduce the radioactive cesium content, and six oxygen atoms formed by the arrangement of the SiO tetrahedral layer on the clay crystal lattice plane. Add montmorillonite clay mineral powder to radioactive cesium-containing wastewater by utilizing the three-dimensional properties of montmorillonite clay mineral (see Fig. 1 and Fig. 2), which can selectively incorporate cesium ions into the square structure. And then radiate the powdered adsorbent with cesium adsorption ability, such as solid-liquid separation to reduce the radioactive cesium content. Contacting the cesium containing wastewater to adsorb and remove the cesium technique is known (see FIGS. 1 and 2).

しかしながら、放射性物質吸着能を有する粉末状の吸着剤に放射性物質含有排水を接触させた後に固液分離する方法では、粉末状の吸着剤から水分を分離することが難しいため、固液分離後に放射性物質を含有する大量の汚泥が発生し、その汚泥減容化処理が必要となるという課題を抱えていた。
かかる課題を解決するための手段として、水分を分離させることが比較的容易な粒状の吸着剤を利用する方法や、多孔性素材の表面や空隙部に放射性物質吸着能を有する物質を添着或いは担持させた放射性物質除去剤を利用する方法などが考えられる。
However, in the method of solid-liquid separation after bringing radioactive substance-containing wastewater into contact with a powdery adsorbent that has the ability to adsorb radioactive substances, it is difficult to separate moisture from the powdery adsorbent. There was a problem that a large amount of sludge containing substances was generated, and that sludge volume reduction treatment was required.
As means for solving such a problem, a method using a granular adsorbent that is relatively easy to separate moisture, or a material having a radioactive substance adsorbing ability is attached to or supported on the surface or void of a porous material. For example, a method using a radioactive substance removing agent that has been removed can be considered.

前者の方法に関しては、例えば特許文献1(特開昭56−79999号公報)において、60〜80メッシュ径のX型ゼオライトを湿潤後、硫酸銅水溶液を加えて銅イオンを吸着させたのち、フェロシアン化カリウム水溶液と反応させることにより、ゼオライトの空隙内および各面にフェロシアン化銅を生成させることにより、フェロシアン化金属化合物を添着させる添着方法、および該添着ゼオライトを吸着剤として用いる処理方法が開示されている。   Regarding the former method, for example, in Patent Document 1 (Japanese Patent Laid-Open No. Sho 56-79999), an X-type zeolite having a diameter of 60 to 80 mesh is moistened, and then an aqueous copper sulfate solution is added to adsorb copper ions. Disclosed is an addition method for attaching a ferrocyanide metal compound by reacting with an aqueous potassium cyanide solution to form copper ferrocyanide in the voids and on each surface of the zeolite, and a treatment method using the adsorbed zeolite as an adsorbent. Has been.

他方、後者の方法に関しては、例えば特許文献2(特開平9−173832号公報)において、多孔性樹脂に低沸点有機溶剤に可溶かつ水に難溶の第四級アンモニウム塩を担持させ、さらにヘキサシアノ鉄(II)酸塩(発明者注:フェロシアン化塩の別名)含有水溶液で処理したのち、この処理物を銅塩含有水溶液と接触させて該樹脂の細孔内にヘキサシアノ鉄(II)酸銅を沈積させ、次いで樹脂内の第四級アンモニウム塩を低沸点有機溶剤で抽出することを特徴とするヘキサシアノ鉄(II)酸銅担持多孔性樹脂の製造方法が開示されている。   On the other hand, regarding the latter method, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 9-173832), a porous resin is supported with a quaternary ammonium salt that is soluble in a low-boiling organic solvent and hardly soluble in water. After treatment with an aqueous solution containing hexacyanoferrate (II) (inventor's note: another name for ferrocyanide salt), the treated product is brought into contact with an aqueous solution containing copper salt to form hexacyanoiron (II) in the pores of the resin. A method for producing a hexacyanoferrate (II) -supported porous resin characterized by depositing copper acid and then extracting a quaternary ammonium salt in the resin with a low-boiling organic solvent is disclosed.

また、特許文献3(特公昭62−43519号公報)には、フェロシアン化銅をゼオライトに添着させてなる放射性物質除去剤が開示され、特許文献4(特開平9−173832号公報)には、ヘキサシアノ鉄(II)酸銅を多孔性樹脂に担持させてなる放射性物質除去剤が開示されている。
さらにまた、特許文献5(特公昭62−43519号公報)には、フェロシアン化銅を粒状活性炭に添着させてなる放射性物質除去剤が開示されている。
Patent Document 3 (Japanese Patent Publication No. 62-43519) discloses a radioactive substance removing agent obtained by adding copper ferrocyanide to zeolite, and Patent Document 4 (Japanese Patent Application Laid-Open No. 9-173832). In addition, a radioactive substance removing agent formed by supporting copper hexacyanoferrate (II) on a porous resin is disclosed.
Furthermore, Patent Document 5 (Japanese Examined Patent Publication No. 62-43519) discloses a radioactive substance removing agent obtained by adding copper ferrocyanide to granular activated carbon.

「第2回水道水における放射性物質対策検討会」(厚生労働省、開催日:平成23年5月26日)の会議資料2−3「粉末活性炭と前塩素処理の併用によるヨウ素の除去に関する調査について」Meeting document 2-3 “Investigation on iodine removal by combined use of powdered activated carbon and pre-chlorination” of “2nd Committee on Countermeasures against Radioactive Substances in Tap Water” (Ministry of Health, Labor and Welfare, Date: May 26, 2011) "

特開昭56−79999号公報JP-A-56-79999 特開平9−173832号公報Japanese Patent Laid-Open No. 9-173832 特公昭62−43519号公報Japanese Examined Patent Publication No. 62-43519 特開平9−173832号公報Japanese Patent Laid-Open No. 9-173832 特公昭62−43519号公報Japanese Examined Patent Publication No. 62-43519

前述のように、多孔性素材の表面や空隙部に放射性物質吸着能を有する物質を添着或いは担持させてなる放射性物質除去剤を利用すれば、固液分離が容易であるため、粉末状の吸着剤を用いた場合に比べ、大量の汚泥が発生するのを防ぐことができる。
しかし、多孔性樹脂やゼオライトに放射性物質吸着物質を添着或いは担持させたのでは、添着あるいは担持できる部位が極めて微小部分に限られるため、ごく少量しか放射性物質吸着物質を付けることができないため、放射性物質の除去効率を高めることが難しいという課題があった。
As described above, the use of a radioactive substance removing agent in which a substance having a radioactive substance adsorbing ability is attached to or supported on the surface or voids of a porous material facilitates solid-liquid separation. Compared with the case where the agent is used, a large amount of sludge can be prevented from being generated.
However, if a radioactive material adsorbing material is attached or supported on porous resin or zeolite, the portion that can be attached or supported is limited to a very small part, so only a very small amount of radioactive material adsorbing material can be attached. There was a problem that it was difficult to increase the removal efficiency of substances.

また、多孔性樹脂やゼオライトに放射性物質吸着物質を添着或いは担持させた放射性物質除去剤は、吸着剤の表面で放射性物質を吸着する結果、吸着剤の表面で検出される放射線量が短期間で高くなって交換時期と判断されるため、吸着剤の使用寿命が短いという課題を抱えていた。   In addition, a radioactive substance removing agent in which a radioactive substance adsorbing substance is attached or supported on a porous resin or zeolite adsorbs the radioactive substance on the surface of the adsorbent, so that the radiation dose detected on the surface of the adsorbent can be reduced in a short period of time. Since it became high and it was judged that it was time to replace, the problem was that the service life of the adsorbent was short.

そこで本発明は、処理廃棄物としての汚泥スラリーを発生せず、しかも、放射性物質を効率良く除去することができ、さらには使用寿命を長くすることができる、新たな放射性物質除去剤及びその製造方法を提供せんとするものである。   Accordingly, the present invention provides a new radioactive substance removing agent that does not generate sludge slurry as a processing waste, can efficiently remove radioactive substances, and can further extend the service life, and its production. It is intended to provide a method.

本発明の一形態としては、粘土鉱物、難溶性フェロシアン化合物、活性炭及びゼオライトからなる群のうちから選ばれる1つ以上の放射性物質除去材を、アルギン酸金属塩の水溶液中に加えて分散させてアルギン酸金属塩ゾルを作製し、該ゾルを、カルシウム塩であるゲル化剤を含んだ水溶液中に添加してアルギン酸カルシウムゲルを作製し、このゲルを乾燥させることにより得られる多孔質体造粒物からなる放射性物質除去剤を形成し、前記放射性物質除去剤は、前記アルギン酸金属塩ゾルに分散せしめる前記放射性物質除去材の添加量を増減させて、湿潤状態の前記アルギン酸カルシウムゲルの粒径を一定とし、その後の前記乾燥により収縮させて粒度の調整がなされ、所定の充填容器に前記放射性物質除去剤含有の充填層を形成し、前記充填層に、放射性物質を含む汚染水を通水する通水処理し、前記放射性物質を除去することを特徴とする放射性物質除去剤を用いた放射性汚染水の処理方法を提案する。 As one aspect of the present invention, one or more radioactive substance removing materials selected from the group consisting of clay minerals, hardly soluble ferrocyan compounds, activated carbon and zeolite are added and dispersed in an aqueous solution of metal alginate. A porous agglomerated product obtained by preparing a metal alginate sol, adding the sol to an aqueous solution containing a gelling agent that is a calcium salt to prepare a calcium alginate gel, and drying the gel The radioactive substance removing agent is formed, and the radioactive substance removing agent increases or decreases the addition amount of the radioactive substance removing material dispersed in the metal alginate salt sol so that the particle diameter of the calcium alginate gel in a wet state is constant. Then, the particle size is adjusted by shrinking by the subsequent drying, and a packed layer containing the radioactive substance removing agent is formed in a predetermined filled container. The filling layer, and passing water treated to passed through contaminated water containing radioactive materials, proposes a method for treating a radioactive contaminated water with radioactive material removing agent and removing said radioactive material.

本発明はまた、粘土鉱物、難溶性フェロシアン化合物、活性炭及びゼオライトからなる群のうちから選ばれる1つ以上の放射性物質除去材を、アルギン酸金属塩の水溶液中に加えて分散させ、アルギン酸金属塩ゾルを作製するゾル作製工程と、前記作製されたゾルを、カルシウム塩であるゲル化剤を含んだ水溶液中に添加して、前記放射性物質除去材を均一に包含したアルギン酸カルシウムゲルを作製するゲル作製工程と、前記作製されたゲルを乾燥させることにより多孔質体造粒物からなる放射性物質除去剤粒子を得る乾燥工程と、を備え、前記放射性物質除去材の添加量を増減させて前記アルギン酸金属塩を複数種類調製し、これらを同一条件で乾燥させて前記放射性物質除去剤粒子を得て、それぞれの平均粒径を測定し、前記放射性物質除去材の添加量と前記放射性物質除去剤粒子の平均粒径との累乗回帰比例関係を求めておき、前記ゾル作製工程において、前記水溶液中に添加する前記放射性物質除去材の添加量を該累乗比例関係に基づいて増減させ、乾燥後の前記放射性物質除去剤粒子の粒度を調整することを特徴とする放射性物質除去剤の粒度調整方法を提案する。 The present invention also adds one or more radioactive substance removing materials selected from the group consisting of clay minerals, sparingly soluble ferrocyan compounds, activated carbon, and zeolites in an aqueous solution of metal alginate and disperses the metal alginate. A sol production step for producing a sol, and a gel for producing a calcium alginate gel that uniformly includes the radioactive substance removing material by adding the produced sol to an aqueous solution containing a gelling agent that is a calcium salt. And a step of drying the prepared gel to obtain radioactive substance-removing agent particles made of a porous granule, and the amount of the radioactive substance-removing material added is increased or decreased to increase the alginic acid. Prepare multiple types of metal salts, dry them under the same conditions to obtain the radioactive substance remover particles, measure the average particle size of each, A power regression proportional relationship between the addition amount of the removal material and the average particle diameter of the radioactive substance removal agent particles is obtained, and the addition amount of the radioactive material removal material added to the aqueous solution in the sol preparation step is the power. The present invention proposes a method for adjusting the particle size of a radioactive substance removing agent, wherein the particle size of the radioactive substance removing agent particle after drying is adjusted based on a proportional relationship .

本発明が提案する放射性物質除去剤は、例えば放射性物質除去剤をろ過カラムのような容器内に充填して充填層を形成し、この充填層に、放射性物質を含む汚染水を通水することにより、放射性物質を除去することができる。   The radioactive substance removing agent proposed by the present invention is formed by, for example, filling a radioactive substance removing agent in a container such as a filtration column to form a packed bed, and passing contaminated water containing the radioactive substance through the packed bed. Thus, radioactive materials can be removed.

本発明が提案する放射性物質除去剤は、粒状体であり、粉末状のものに比べて固液分離し易いため、粉末状の除去剤のように処理廃棄物としての汚泥スラリーを発生することがない。
また、本発明が提案する放射性物質除去剤は、アルギン酸金属塩を含有する多孔質体粒状体からなる基体粒子表面及び内部に放射性物質除去剤が散在してなる構成を備えているため、多孔質体粒状体の空隙を通じて放射線汚染水(被処理水)が粒子内部へ容易に浸入し、粒子内部に散在する放射性物質除去剤とも接触するため、放射性物質を効率良く除去することができる。また、このように粒子内部及び表面で放射性物質を吸着することができ、粒子表面に偏って放射性物質が吸着されないため、粒子表面の放射線量の高まりを抑えて使用寿命を長くすることもできる。
さらには、粘土鉱物および難溶性フェロシアン化合物は、放射性セシウムを選択的に除去することができ、活性炭は、放射性ヨウ素を除去することができ、ゼオライトは、高い陽イオン交換能を有していることから放射性陽イオン核種を除去することができるなど、目的に合わせて放射性物質除去剤を選択し、必要に応じて組み合わせて用いることが可能であるから、複数の核種を同時除去することも可能であり、汎用性を高めることができる。
Since the radioactive substance removing agent proposed by the present invention is a granular material and is easier to separate into solid and liquid than a powdery one, it may generate sludge slurry as processing waste like a powdery removing agent. Absent.
In addition, the radioactive substance removing agent proposed by the present invention has a structure in which the radioactive substance removing agent is scattered on the surface and inside of the base particle composed of a porous granule containing a metal alginate, so that the porous substance removing agent is porous. Radiation-contaminated water (treated water) easily penetrates into the inside of the particles through the voids of the granular particles, and also comes into contact with the radioactive substance removing agent scattered inside the particles, so that the radioactive substances can be efficiently removed. In addition, the radioactive substance can be adsorbed inside and on the surface in this way, and the radioactive substance is not adsorbed on the particle surface, so that the increase in radiation dose on the particle surface can be suppressed and the service life can be extended.
Furthermore, clay minerals and poorly soluble ferrocyan compounds can selectively remove radioactive cesium, activated carbon can remove radioactive iodine, and zeolite has a high cation exchange capacity. Because it is possible to remove radioactive cation nuclides, it is possible to select a radioactive substance removal agent according to the purpose and use it in combination as necessary, so it is also possible to remove multiple nuclides simultaneously And versatility can be improved.

本発明が提案する放射性物質除去剤の製造方法によれば、多孔質状の粒状粒子からなり、該粒状粒子の表面及び内部に放射性物質除去材を分散して含有してなる放射性物質除去剤を容易に製造することができる。しかも、アルギン酸金属塩水溶液中に加える放射性物質除去材の添加量を増減することにより、乾燥後の多孔質造粒物の粒径を制御することができるため、使用目的に応じて、放射性物質除去剤の粒径を自在に制御することもできる。   According to the method for producing a radioactive substance removing agent proposed by the present invention, a radioactive substance removing agent comprising porous granular particles and containing a radioactive substance removing material dispersed and contained on the surface and inside of the granular particles is provided. It can be manufactured easily. Moreover, the particle size of the porous granulated product after drying can be controlled by increasing or decreasing the amount of radioactive material removing material added to the aqueous metal alginate solution. The particle size of the agent can also be freely controlled.

モンモリロナイト系粘土鉱物の酸化ケイ素層の酸素原子配列を模式的に示した図である。It is the figure which showed typically the oxygen atom arrangement | sequence of the silicon oxide layer of a montmorillonite clay mineral. モンモリロナイト系粘土鉱物の酸素の六角形格子内に、セシウムイオンを取り込む状態の一例を模式的に示した図である。It is the figure which showed typically an example of the state which takes in a cesium ion in the hexagonal lattice of oxygen of a montmorillonite clay mineral. ベントナイト粉体添加量と乾燥球状体平均粒径との関係を示したグラフである。It is the graph which showed the relationship between bentonite powder addition amount and a dry spherical body average particle diameter. ベントナイト・活性炭(混合比1:1)粉体添加量と乾燥球状体平均粒径との関係を示したグラフである。It is the graph which showed the relationship between a bentonite * activated carbon (mixing ratio 1: 1) powder addition amount and a dry spherical body average particle diameter.

次に、本発明を実施するための形態例(「本実施形態」と称する)について説明するが、本発明が次に説明する実施形態に限定されるものではない。   Next, an exemplary embodiment for carrying out the present invention (referred to as “this embodiment”) will be described, but the present invention is not limited to the embodiment described below.

<本放射性物質除去剤>
本実施形態に係る放射性物質除去剤(以下「本放射性物質除去剤」と称する)は、アルギン酸金属塩を含有する多孔質体粒状体を基体粒子とし、粘土鉱物、難溶性フェロシアン化合物、活性炭及びゼオライトからなる群のうちから選ばれる1つ以上の放射性物質除去材を前記基体粒子の表面及び内部に散在してなる粒子(以下「本放射性物質除去剤粒子」と称する)を含有する放射性物質除去剤である。
<This radioactive substance remover>
The radioactive substance removing agent according to the present embodiment (hereinafter referred to as “the present radioactive substance removing agent”) is a porous granule containing an alginic acid metal salt as a base particle, clay mineral, sparingly soluble ferrocyan compound, activated carbon and Removal of radioactive substances containing particles (hereinafter referred to as “the present radioactive substance removing agent particles”) dispersed on the surface and inside of the base particles with one or more radioactive substance removing materials selected from the group consisting of zeolite It is an agent.

但し、本放射性物質除去剤を構成する粒子のほとんどが本放射性物質除去剤粒子であれば、これ以外の粒子が多少混じっていても、本放射性物質除去剤粒子のみからなる場合と同様の効果を得ることができるから、本放射性物質除去剤は、本放射性物質除去剤粒子が全体の80質量%以上、好ましくは90質量%以上を占めれば、本放射性物質除去剤粒子以外の粒子を含んでいてもよい。   However, if most of the particles constituting the present radioactive substance removing agent are the present radioactive substance removing agent particles, the same effect as when only the present radioactive substance removing agent particles are contained, even if other particles are mixed somewhat. Therefore, the present radioactive substance removing agent contains particles other than the present radioactive substance removing agent particles if the present radioactive substance removing agent particles occupy 80% by mass or more, preferably 90% by mass or more. May be.

(本放射性物質除去剤粒子)
本放射性物質除去剤粒子が微粒であると、前述のように放射性物質含有排水を接触させた後に固液分離しても、放射性物質除去剤から水分を分離させることが難しいため、固液分離した後に放射性物質を含有する大量の汚泥が発生することになってしまう。そのため、本放射性物質除去剤粒子は、固液分離し易い大きさであるのが好ましい。かかる観点から、本放射性物質除去剤粒子の平均粒径は1mm以上であることが重要である。その一方、本放射性物質除去剤粒子が大き過ぎると、表面積が小さくなり、放射性物質の除去効率が低下するため、5mm以下であるのが好ましい。
かかる観点から、本放射性物質除去剤粒子の平均粒径は1mm以上であることが重要であり、接触効率や圧力損失を考慮すると、中でも1.2mm以上或いは3mm以下、その中でも特に1.5mm以上或いは2.5mm以下であるのが好ましい。
(This radioactive substance remover particle)
If the radioactive substance removing agent particles are fine particles, it is difficult to separate moisture from the radioactive substance removing agent even after solid-liquid separation after contacting the radioactive substance-containing wastewater as described above. Later, a large amount of sludge containing radioactive substances will be generated. Therefore, it is preferable that the present radioactive substance removing agent particles have a size that facilitates solid-liquid separation. From this viewpoint, it is important that the average particle diameter of the present radioactive substance removing agent particles is 1 mm or more. On the other hand, when the present radioactive substance removing agent particles are too large, the surface area becomes small, and the removal efficiency of the radioactive substance is lowered, so that it is preferably 5 mm or less.
From this point of view, it is important that the average particle diameter of the present radioactive substance removing agent particles is 1 mm or more, and considering contact efficiency and pressure loss, 1.2 mm or more or 3 mm or less, especially 1.5 mm or more. Or it is preferable that it is 2.5 mm or less.

本放射性物質除去剤粒子の形状、言い換えれば多孔質体粒状体(基体)の形状は、球状、楕円球状、扁平板状など任意である。中でも、分散性などの点で球状であるのが好ましい。   The shape of the present radioactive substance removing agent particles, in other words, the shape of the porous granular material (substrate) is arbitrary such as a spherical shape, an elliptical spherical shape, and a flat plate shape. Among them, the spherical shape is preferable in terms of dispersibility.

本放射性物質除去剤粒子は、被処理水が粒子内部まで浸透することができるという点で、粒子表面から内部に通じる空隙を多数含む多孔質体であるのが好ましい。
そしてその気孔率は、放射性物質の吸着効率の点などから、10v/v%〜70v/v%であるのが好ましく、中でも30v/v%以上或いは60v/v%以下であるのが好ましい。
また、同じく放射性物質の吸着効率の点などから、気孔径は、0.1μm〜50μmであるのが好ましく、中でも0.5μm以上或いは20μm以下であるのが好ましい。
The present radioactive substance removing agent particles are preferably a porous body containing a large number of voids communicating from the particle surface to the inside in that the water to be treated can penetrate into the inside of the particle.
The porosity is preferably 10 v / v% to 70 v / v% from the viewpoint of the adsorption efficiency of the radioactive substance, and more preferably 30 v / v% or more or 60 v / v% or less.
Similarly, from the viewpoint of the adsorption efficiency of the radioactive substance, the pore diameter is preferably 0.1 μm to 50 μm, and more preferably 0.5 μm or more or 20 μm or less.

本放射性物質除去剤粒子の充填密度は、カラム通水時および逆洗時の流動性などの点で0.3〜1.5g/mLであるのが好ましく、中でも0.4g/mL以上或いは1.2g/mL以下であるのが好ましい。   The packing density of the present radioactive substance removing agent particles is preferably 0.3 to 1.5 g / mL in terms of fluidity when passing through the column and backwashing, among which 0.4 g / mL or more or 1 It is preferably 2 g / mL or less.

(アルギン酸金属塩)
本放射性物質除去剤粒子は、アルギン酸金属塩を含有する。
アルギン酸金属塩は、2価以上の金属イオン、例えばバリウムイオンやカルシウムイオンを含有する水中に滴下することにより、瞬時にゲル化反応を起こし、球状造粒物を作ることが知られている。例えば塩化カルシウム水溶液にアルギン酸ナトリウム水溶液を一滴ずつ入れると、アルギン酸ナトリウムと塩化カルシウムが反応し、アルギン酸ナトリウム水溶液の表面にアルギン酸カルシウム膜が形成され、アルギン酸ナトリウム水溶液が球状になり、所謂人工種子(イクラ)が形成されることが知られている。
(Metal alginate)
The radioactive substance removing agent particles contain a metal alginate.
It is known that a metal salt of alginic acid instantly causes a gelling reaction to form a spherical granulated product when dropped into water containing divalent or higher metal ions such as barium ions and calcium ions. For example, when a sodium alginate aqueous solution is dropped into a calcium chloride aqueous solution, sodium alginate and calcium chloride react to form a calcium alginate film on the surface of the sodium alginate aqueous solution, and the sodium alginate aqueous solution becomes spherical, so-called artificial seeds (Ikura) Is known to form.

本放射性物質除去剤粒子を構成するアルギン酸金属塩としては、例えばアルギン酸ナトリウム、アルギン酸リチウム、アルギン酸カリウムなどを挙げることができ、中でも、アルギン酸ナトリウム、アルギン酸リチウム、アルギン酸カリウムが好ましく、価格などを考慮すると、アルギン酸ナトリウムが特に好適である。   Examples of the metal alginate constituting the present radioactive substance removing agent particles include sodium alginate, lithium alginate, potassium alginate, etc., among which sodium alginate, lithium alginate, and potassium alginate are preferable. Sodium alginate is particularly preferred.

なお、ポリビニルアルコール、酢酸メチルセルロース、カラギーナン及び寒天などの天然又は合成有機物質も、本放射性物質除去剤ゲル粒子を構成する上で、アルギン酸金属塩と同様にゲルを形成する性質を有していると考えられ、これらをアルギン酸金属塩の代わりに使用することができると考えられる。これらのアルギン酸塩以外の物質のゲル化手法としては、例えば、「バイオリアクター技術」(シーエムシー編集部編、シーエムシー出版、2001年12月10日出版)、「微生物固定化法による排水処理」(須藤隆一著、産業用水調査会、1988年6月10日発行)、「微生物固定化法による水処理」((株)エヌ・ティー・エス、2000年7月30日発行)、「固定化酵素」(千畑一郎編集、(株)講談社、1982年10月1日発行)などの書籍に開示されているような包括方法、マイクロカプセル化方法を利用することができる。   It should be noted that natural or synthetic organic substances such as polyvinyl alcohol, methyl cellulose acetate, carrageenan and agar also have the property of forming a gel in the same manner as the metal alginate in constituting the radioactive substance removing agent gel particles. It is believed that these can be used in place of the metal alginate. Examples of gelation techniques for substances other than these alginate include, for example, “Bioreactor technology” (CMC editorial department, CMC Publishing, published December 10, 2001), “Wastewater treatment by microbial immobilization method” (Ryuichi Sudo, Industrial Water Research Committee, issued on June 10, 1988), "Water Treatment by Microbial Immobilization Method" (NTS, Inc., issued July 30, 2000), "Immobilization Encapsulation methods and microencapsulation methods such as those disclosed in books such as “Enzyme” (edited by Ichiro Chibata, Kodansha Co., Ltd., published on October 1, 1982) can be used.

(放射性物質除去材)
本放射性物質除去剤粒子が含有する放射性物質除去材は、放射性物質を何らかの手段で捕らえることができる機能を有する物質であれば任意に採用可能である。中でも、粘土鉱物、難溶性フェロシアン化合物、活性炭及びゼオライトからなる群のうち1種の放射性物質除去材或いは2種類以上の組み合わせからなる放射性物質除去材を選択して用いるのが好ましい。
(Radioactive material removal material)
The radioactive substance removing material contained in the present radioactive substance removing agent particles can be arbitrarily adopted as long as it has a function capable of capturing the radioactive substance by some means. Among these, it is preferable to select and use one type of radioactive substance removing material or a combination of two or more types of radioactive substance removing material from the group consisting of clay minerals, poorly soluble ferrocyan compounds, activated carbon and zeolite.

粘土鉱物としては、セシウムイオンを選択吸着できる酸素配列の立体構造を持ったものであれば何れでもよく、特に限定するものではない。モンモリロナイト属あるいはカオリナイト属のように、粘土結晶格子面上のSiO四面体層の配列により形成された6個の酸素原子による六角形構造(図1)を有しているものが好適であり、ALO八面体層の両面をSiO四面体層が挟んだ形状の三層構造をしているモンモリロナイト属の粘土鉱物が特に好適である。
このモンモリロナイト属の粘土鉱物としては、Na形モンモリロナイトであるベントナイト、H形モンモリロナイトである酸性白土、これらを酸処理して可溶性陽イオンを溶出させて表面活性を高めた活性白土が挙げられる。
このように、粘土鉱物は、放射性セシウムを選択的に除去することができ、結晶構造に基づく選択吸着が有効であることから、モンモリロナイト系粘土鉱物、紺青、天然ゼオライトが有効である。中でも、モンモリロナイト系粘土鉱物であるベントナイトが特に好ましい。
The clay mineral is not particularly limited as long as it has a three-dimensional structure of an oxygen sequence capable of selectively adsorbing cesium ions. Those having a hexagonal structure (FIG. 1) of six oxygen atoms formed by the arrangement of SiO tetrahedral layers on the clay crystal lattice plane, such as genus montmorillonite or kaolinite, are preferable. A montmorillonite genus clay mineral having a three-layer structure in which both sides of an ALO octahedral layer are sandwiched by SiO tetrahedral layers is particularly suitable.
Examples of the clay mineral belonging to the genus montmorillonite include bentonite, which is Na-type montmorillonite, acidic clay, which is H-type montmorillonite, and activated clay in which these are acid-treated to elute soluble cations to increase surface activity.
As described above, since the clay mineral can selectively remove radioactive cesium and the selective adsorption based on the crystal structure is effective, montmorillonite clay mineral, bitumen, and natural zeolite are effective. Among them, bentonite which is a montmorillonite clay mineral is particularly preferable.

難溶性フェロシアン化合物としては、例えばFe塩、Ni塩、Cu塩など難溶性フェロシアン化合物を挙げることができ、中でも価格などを考慮すると、Fe塩(紺青)が好適である。
この種の難溶性フェロシアン化合物は、放射性セシウムを選択的に除去することができる。
Examples of the hardly soluble ferrocyan compound include poorly soluble ferrocyan compounds such as Fe salt, Ni salt and Cu salt. Among them, Fe salt (bitumen) is preferable in consideration of price.
This kind of poorly soluble ferrocyanide compound can selectively remove radioactive cesium.

活性炭としては、例えば石炭系、ヤシ殻系、木質系など、あらゆる種類の活性炭粉末を利用することができ、この種の活性炭は、放射性ヨウ素を除去することができる。   As the activated carbon, any kind of activated carbon powder such as coal-based, coconut shell-based, and wood-based can be used, and this type of activated carbon can remove radioactive iodine.

ゼオライトは、天然ゼオライト、合成ゼオライトのいずれでもよい。
この種のゼオライトは、高い陽イオン交換能を有していることから放射性陽イオン核種を除去することができる。よって、放射性セシウムのほかにも、放射性ストロンチウムを除去することもできる。
The zeolite may be either natural zeolite or synthetic zeolite.
Since this type of zeolite has a high cation exchange capacity, radioactive cation nuclides can be removed. Therefore, radioactive strontium can be removed in addition to radioactive cesium.

このように、本放射性物質除去剤粒子は、目的に合わせて含有する放射性物質除去材を選択し、必要に応じて組み合わせて用いることが可能であるから、複数の核種を同時除去することも可能であり、汎用性が極めて高いといえる。   As described above, since the radioactive substance removing agent particles can be selected according to the purpose and used in combination as necessary, it is possible to simultaneously remove multiple nuclides. Therefore, it can be said that the versatility is extremely high.

(放射性物質除去材の含有量)
本放射性物質除去剤粒子は、放射性物質除去効率の観点から、粒子の表面及び内部に合計で、60質量%以上の放射性物質除去材を含有するのが好ましく、中でも70質量%以上含有するのが好ましい。
なお、本放射性物質除去剤粒子において、放射性物質除去効率の観点から、放射性物質除去材は粒子の表面及び内部に均一濃度で分散しているか、或いは、表面の濃度が内部の濃度よりも高い状態で分散しているのが好ましい。
(Content of radioactive material removal material)
From the viewpoint of radioactive substance removal efficiency, the present radioactive substance removing agent particles preferably contain a total of 60% by mass or more of the radioactive substance removing material on the surface and inside of the particles, and more preferably 70% by mass or more. preferable.
In this radioactive substance removing agent particle, from the viewpoint of radioactive substance removal efficiency, the radioactive substance removing material is dispersed at a uniform concentration on the surface and inside of the particle, or the surface concentration is higher than the internal concentration. Are preferably dispersed.

<本放射性物質除去剤の製造方法>
本放射性物質除去剤は、アルギン酸金属塩の水溶液に上記放射性物質除去材を加えて分散させてアルギン酸金属塩ゾルを作製する工程と、該アルギン酸金属塩ゾルを、ゲル化剤を含んだ水溶液中に滴下してアルギン酸カルシウムゲルを作製する工程と、このアルギン酸カルシウムゲルを乾燥させて水分を離脱させることにより多孔質体造粒物とする工程とを経て製造することができる(以下「本製造方法」と称する)。
ただし、本放射性物質除去剤の製造方法がこの製法に限定されるものではない。
<Method for producing the present radioactive substance removing agent>
The present radioactive substance removing agent comprises a step of adding the above-mentioned radioactive substance removing material to an aqueous solution of metal alginate and dispersing it to prepare an alginate metal salt sol; and the alginate metal salt sol in an aqueous solution containing a gelling agent. The calcium alginate gel can be produced by dripping and the step of forming a porous granulated product by drying the calcium alginate gel to release moisture (hereinafter referred to as “the present production method”). Called).
However, the manufacturing method of this radioactive substance removal agent is not limited to this manufacturing method.

このような本製造方法によれば、任意の難水溶性の粉末状素材をアルギン酸カルシウムゲルで包み込むことにより、容易に、しかも任意の割合で粒状に成形することが可能である。
また、粉体の成形方法としては、転動造粒成形、圧密成形、押し出し成形などがあるが、これらの方法はいずれも成形体を圧密状態にするものであるため、被処理水が粒子内部へ浸入することが困難であり、有効に利用されるのは粒子表面に限定されるのに対し、本製造方法によれば、アルギン酸カルシウムゲルを乾燥させて水分を離脱させることにより粒子内に空隙を作るため、粒子表面から内部に通じる空隙を多数含む多孔質体を作製することができるから、被処理水が粒子内部へ容易に浸入することができるため、内部の放射性物質除去剤も有効に利用される。
しかも、後述するように、添加する放射性物質除去材の濃度を調整することで本放射性物質除去剤の粒度制御が可能である。
According to such a production method, it is possible to easily form a granular material at an arbitrary ratio by enveloping an arbitrary poorly water-soluble powder material with a calcium alginate gel.
In addition, powder molding methods include rolling granulation molding, compaction molding, extrusion molding, etc., but all of these methods bring the compact into a compacted state. However, according to the present production method, the calcium alginate gel is dried to release moisture to remove voids in the particles. Therefore, it is possible to create a porous body containing many voids that lead from the particle surface to the inside, so that the water to be treated can easily enter the inside of the particle, so the radioactive substance removing agent inside is also effective. Used.
In addition, as will be described later, the particle size of the radioactive substance removing agent can be controlled by adjusting the concentration of the radioactive substance removing material to be added.

(アルギン酸金属塩ゾル作製工程)
本工程では、例えば、アルギン酸金属塩を水に溶解して粘稠性の水溶液を作製し、この水溶液に放射性物質除去材を加えて均一に分散・混合させることでアルギン酸金属塩ゾルを作製する。
(Alginic acid metal salt sol production process)
In this step, for example, a metal alginate salt sol is prepared by dissolving a metal alginate in water to prepare a viscous aqueous solution, and adding a radioactive substance removing material to the aqueous solution and uniformly dispersing and mixing the solution.

アルギン酸金属塩は、水に可溶であり、粘稠性の水溶液となる。アルギン酸金属塩の水溶液の濃度としては0.5〜5w/v%が好ましく、中でも1w/v%以上或いは2w/v%以下であるのが特に好ましい。   The metal alginate is soluble in water and becomes a viscous aqueous solution. The concentration of the aqueous solution of metal alginate is preferably 0.5 to 5 w / v%, and particularly preferably 1 w / v% or more or 2 w / v% or less.

アルギン酸金属塩の水溶液中に加える放射性物質除去材の量は、放射性物質除去効率の観点から、アルギン酸金属塩に対して60質量%以上、中でも70質量%以上とするのが好ましい。
なお、前述しように、アルギン酸金属塩の代わりに、ポリビニルアルコール、酢酸メチルセルロース、カラギーナン及び寒天など天然又は合成有機物質を用いても同様の効果を得ることができるものと考えることができる。
The amount of the radioactive substance removing material added to the aqueous solution of metal alginate is preferably 60% by mass or more, more preferably 70% by mass or more, based on the metal alginate, from the viewpoint of the efficiency of removing the radioactive substance.
As described above, it can be considered that the same effect can be obtained by using natural or synthetic organic substances such as polyvinyl alcohol, methyl cellulose acetate, carrageenan and agar instead of the metal alginate.

(アルギン酸カルシウムゲル作製工程)
本工程では、例えば、カルシウム塩などのゲル化剤を含んだ水溶液を調製しておき、緩やかに撹拌した当該水溶液中に前記ゾル状液体を内径2mm〜3mmのノズルから液滴を滴下させることにより、前記放射性物質除去材を均一に包含したアルギン酸カルシウムゲルを作製する。
(Calcium alginate gel production process)
In this step, for example, an aqueous solution containing a gelling agent such as a calcium salt is prepared, and the sol-like liquid is dropped from a nozzle having an inner diameter of 2 mm to 3 mm into the gently stirred aqueous solution. Then, a calcium alginate gel uniformly containing the radioactive substance removing material is prepared.

ゲル化剤としては、2価以上の金属塩を使用することができ、例えばバリウム、カルシウム、銅等の塩が挙げられる。具体的には例えば塩化バリウム、塩化カルシウム、硫酸銅、塩化第二鉄等を挙げることができ、中でもカルシウム塩が価格や取扱上の安全性などの理由で特に好ましい。
カルシウム塩としては、塩化物塩、臭化物塩、硝酸塩など、水溶性のカルシウム塩であれば特に限定するものではない。価格などを考慮すると、塩化カルシウムが好適である。
カルシウム塩水溶液の濃度としては特に限定するものではないが、2〜6%程度が好適である。
As the gelling agent, a metal salt having a valence of 2 or more can be used, and examples thereof include salts of barium, calcium, copper and the like. Specifically, for example, barium chloride, calcium chloride, copper sulfate, ferric chloride and the like can be mentioned, among which calcium salts are particularly preferred for reasons of price and safety in handling.
The calcium salt is not particularly limited as long as it is a water-soluble calcium salt such as a chloride salt, a bromide salt, or a nitrate. In view of price and the like, calcium chloride is preferable.
Although it does not specifically limit as a density | concentration of calcium salt aqueous solution, About 2 to 6% is suitable.

(多孔質化工程)
上記のようにして得られたアルギン酸カルシウムゲルを、乾燥させることで造粒物内から水分を脱離させる過程で、造粒物を多孔質化させることができる。
(Porosification process)
The granulated product can be made porous in the process of desorbing moisture from the granulated product by drying the calcium alginate gel obtained as described above.

アルギン酸カルシウムゲルを乾燥させる前に、必要に応じて、アルギン酸カルシウムゲルを水或いは食塩水などで洗浄してもよい。また、0℃〜−20℃で一度凍結させた後にこれは融解させる凍結融解を行う工程を付加してもよい。このような洗浄により、余分なカルシウムイオンを除去することができるから、例えばカルシウムと類似する放射性ストロンチウムの除去率を高めることが期待することができる。   Before the calcium alginate gel is dried, the calcium alginate gel may be washed with water or saline as necessary. Moreover, after freezing once at 0 degreeC--20 degreeC, you may add the process of performing the freezing and thawing | melting which makes this thaw. Excessive calcium ions can be removed by such washing, so that it can be expected to increase the removal rate of radioactive strontium similar to calcium, for example.

乾燥手段としては、例えば自然乾燥、減圧乾燥、加温乾燥など公知の乾燥手段を適宜採用することができる。中でも、乾燥時間の点で加温乾燥が特に好ましい。
乾燥温度は、粒子内部の空隙の大きさと割合を調整する観点から、60〜120℃とするのが好ましく、中でも105℃以上或いは115℃以下とするのがより好ましい。
As the drying means, for example, known drying means such as natural drying, reduced pressure drying, and warm drying can be appropriately employed. Among these, heating drying is particularly preferable in terms of drying time.
The drying temperature is preferably 60 to 120 ° C., more preferably 105 ° C. or higher or 115 ° C. or lower, from the viewpoint of adjusting the size and ratio of voids inside the particles.

乾燥工程の後に、400〜900℃で焼成する工程を付加してもよい。このような焼成により、余分なゲル化物を焼却除去することができるため、多孔質化をより一層促進させることができる。   You may add the process baked at 400-900 degreeC after a drying process. Since the excess gelled product can be removed by incineration by such firing, the porous formation can be further promoted.

(本放射性物質除去剤粒子の粒度調整方法)
本放射性物質除去剤粒子の粒度は、放射性物質の除去効率、通水抵抗などに影響するため、用途に応じて本放射性物質除去剤粒子の粒度を調整できれば有効である。
ところで、本製造方法のように、放射性物質除去材を、アルギン酸金属塩の水溶液中に加えて分散させてアルギン酸金属塩ゾルを作製し、該アルギン酸金属塩ゾルを、ゲル化剤を含んだ水溶液中に滴下してアルギン酸カルシウムゲルを作製し、このアルギン酸カルシウムゲルを乾燥させて水分を離脱させることにより多孔質体造粒物とする製造方法において、アルギン酸金属塩水溶液の濃度、放射性物質除去材の添加量、アルギン酸金属塩ゾルを滴下する際のノズル径や滴下高さなどを変化させて、湿潤状態のアルギン酸カルシウムゲルの粒径を制御することにより、本放射性物質除去剤粒子(乾燥状態)の粒度を制御する。
本製造方法においては、球状の液滴を滴下させるのに適正な条件でこれらのパラメータを設定すると、これらのパラメータを変化させても、湿潤状態のアルギン酸カルシウムゲルの粒径はほぼ一定の4mm〜5mmとなり、湿潤状態のアルギン酸カルシウムゲルの粒径を任意に制御することが難しいことが判明した。
(Method for adjusting the particle size of the radioactive substance remover particles)
The particle size of the radioactive substance removing agent particles affects the removal efficiency of the radioactive substance, the water passage resistance, etc., so it is effective if the particle size of the radioactive substance removing agent particles can be adjusted according to the application.
By the way, as in the present production method, a radioactive substance removing material is added to and dispersed in an aqueous solution of a metal alginate to prepare a metal alginate sol, and the metal alginate sol is added to an aqueous solution containing a gelling agent. In the manufacturing method to make calcium alginate gel by dripping to the porous body by drying this calcium alginate gel and releasing the moisture, the concentration of the alginate metal salt aqueous solution, the addition of radioactive substance removing material The particle size of this radioactive substance remover particle (dry state) is controlled by changing the nozzle diameter and drop height when dropping the amount of alginic acid metal salt sol and controlling the particle size of the wet calcium alginate gel. that control.
In this production method, when these parameters are set under conditions suitable for dropping spherical droplets, the particle size of the wet calcium alginate gel is substantially constant from 4 mm to 4 mm even when these parameters are changed. It turned out to be 5 mm, and it was found difficult to arbitrarily control the particle size of the wet calcium alginate gel.

そこで、本放射性物質除去剤粒子の粒度を調整する方法について検討を重ねたところ、本放射性物質除去剤粒子(乾燥品)当たりのアルギン酸金属塩の含有量は少量に過ぎないため、本放射性物質除去剤粒子の粒度には殆ど影響しないことから、アルギン酸金属塩ゾルに分散せしめる放射性物質除去材の添加量を調整することによって、本放射性物質除去剤粒子の粒度を制御できることが分かった。すなわち、アルギン酸金属塩ゾルに分散せしめる放射性物質除去材の添加量を増減すると、湿潤状態のアルギン酸カルシウムゲルの粒径はほぼ一定であるが、その後の乾燥によって収縮する割合が増減するため、本放射性物質除去剤粒子の粒度を制御できることが分かった。   Therefore, when the method for adjusting the particle size of the radioactive substance remover particles was studied repeatedly, the content of the metal alginate per radioactive substance remover particle (dried product) was only a small amount. Since it hardly affects the particle size of the agent particles, it was found that the particle size of the radioactive material remover particles can be controlled by adjusting the amount of the radioactive material removing material dispersed in the metal alginate sol. That is, when the amount of radioactive material removing material dispersed in the metal alginate sol is increased or decreased, the particle size of the wet calcium alginate gel is almost constant, but the rate of shrinkage due to subsequent drying increases or decreases. It has been found that the particle size of the substance remover particles can be controlled.

より具体的に言うならば、放射性物質除去材添加量以外の条件を同一とし、放射性物質除去材添加量だけを変化させたアルギン酸金属塩ゾルを数種類調製しておき、これらを同一条件で乾燥させて本放射性物質除去剤粒子(乾燥状態)を作製し、それぞれの平均粒径を測定し、放射性物質除去材添加量と本放射性物質除去剤粒子の平均粒径との累乗回帰関係を求めたところ(図3及び図4参照)、放射性物質除去材添加量に比例して本放射性物質除去剤粒子の平均粒径が増減することが判明した。
この際、本放射性物質除去剤粒子の平均粒径は、JIS K 1474活性炭試験方法6.4項の粒度分布の測定方法に準拠して篩試験を行い、通過重量の累積比率(%)が50%となった粒径を平均粒径として求めた。
また、図3は、放射性物質除去材としてベントナイトを単独で添加した場合であり、図4は、混合質量比率1:1でベントナイトと粉末活性炭とを混合した混合物を添加した場合を示したグラフである。
このように、放射性物質除去材添加量と本放射性物質除去剤粒子の平均粒径とは累乗回帰で比例関係にあるため、放射性物質除去材添加量を調整することで所望の平均粒径に制御することができる。
More specifically, several types of metal alginate sols with the same conditions other than the addition amount of the radioactive material removal material, but only the addition amount of the radioactive material removal material were prepared, and dried under the same conditions. This radioactive substance remover particle (dry state) was prepared, the average particle size of each was measured, and the power regression relationship between the added amount of the radioactive substance remover and the average particle size of the radioactive substance remover particle was determined. (See FIGS. 3 and 4), it has been found that the average particle diameter of the radioactive substance removing agent particles increases and decreases in proportion to the amount of radioactive substance removing material added.
At this time, the average particle size of the present radioactive substance removing agent particles was subjected to a sieving test in accordance with the measurement method of particle size distribution in 6.4 of JIS K 1474 activated carbon test method, and the cumulative ratio (%) of passing weight was 50. % Was determined as the average particle size.
Moreover, FIG. 3 is a case where bentonite is added alone as a radioactive substance removing material, and FIG. 4 is a graph showing a case where a mixture of bentonite and powdered activated carbon is added at a mixing mass ratio of 1: 1. is there.
In this way, the amount of radioactive material removal material added and the average particle size of the present radioactive material removal agent particles are proportional to each other by power regression, so the desired average particle size can be controlled by adjusting the amount of radioactive material removal material addition. can do.

<本放射性物質除去剤を用いた排液の処理方法)
本放射性物質除去剤は、例えばろ過カラムのような容器内に充填して充填層を形成し、この充填層に、放射性物質を含む汚染水を通水することにより、放射性物質を除去するように利用することができる。
<Effluent treatment using this radioactive substance remover>
The radioactive substance removing agent is packed in a container such as a filtration column to form a packed bed, and contaminated water containing the radioactive substance is passed through the packed bed to remove the radioactive substance. Can be used.

このように放射性物質汚染水(被処理水)を処理すれば、被処理水から効果的に放射性物質を除去できるばかりか、処理廃棄物としての汚泥スラリーが発生しないというメリットを享受できる。従来使用されてきた放射性物質を除去できる素材の多くは粉末状であるため、放射性物質を含んだ汚染水と接触させた後に固液分離しなくてはならないという問題点があり、除外装置が大きくなるばかりか、固液分離の結果、大量の汚泥が発生するという問題があった。これに対し、本放射性物質除去剤を上記のように利用すれば、放射性物質汚染水(被処理水)を通水処理することが可能であり、放射性物質は本放射性物質除去剤に直接吸着され、処理水を通水して得ることができるため、凝集沈殿処理装置のような大きな設備が不要となり、かつ、汚泥も発生しないため放射性物質の濃縮減容化という点でも優れている。しかも、各種の放射性物質除去材を組み合わせることによって、複数の核種を一つの充填槽で同時除去することも可能であり、極めて汎用性の高い処理方法といえる。   By treating the radioactive material contaminated water (treated water) in this way, it is possible not only to effectively remove the radioactive material from the treated water, but also to enjoy the advantage that no sludge slurry as treated waste is generated. Since many of the materials that can remove radioactive substances that have been used in the past are powdery, there is a problem that they must be separated into solid and liquid after contact with contaminated water containing radioactive substances. In addition, there was a problem that a large amount of sludge was generated as a result of solid-liquid separation. On the other hand, if this radioactive substance removing agent is used as described above, it is possible to pass the radioactive substance contaminated water (treated water) through, and the radioactive substance is directly adsorbed on the radioactive substance removing agent. Since it can be obtained by passing the treated water, large equipment such as a coagulation sedimentation treatment apparatus is not required, and since sludge is not generated, it is excellent in terms of concentration and volume reduction of radioactive substances. In addition, by combining various radioactive substance removing materials, it is possible to simultaneously remove a plurality of nuclides in one filling tank, which can be said to be a highly versatile treatment method.

<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.

以下、本発明を実施例に基づいてさらに詳述する。   Hereinafter, the present invention will be described in more detail based on examples.

<放射性物質除去率の測定>
処理試験条件は、セシウムイオン及びヨウ素イオンの濃度が各5mg/Lとなるように塩化セシウム及びヨウ化カリウムを水道水に添加し、このようにして調製した原水に、実施例で得られた乾燥ゲルを振動ミルで粉砕した粉砕物(平均粒径45μm以下)を5000mg/L添加し、100rpmで6時間連続撹拌による接触処理を行った後、0.45μmのGFフィルターでろ過し、ろ液中のセシウムイオン及びヨウ素イオンの濃度を原子吸光光度法で測定して、それぞれの除去率を測定した。
なお、原水にヨウ素イオンを添加したのは、活性炭を含む本発明剤の場合のみであり、この場合には遊離残留塩素が0.5mg/Lとなるように次亜塩素酸ナトリウムの添加を行った。
また、本試験では、放射線を放出していないセシウムイオン及びヨウ素イオンの除去率を測定したが、除去のメカニズムを考慮すれば、放射線を放出しているものの除去率も同様であると考えることができる。
<Measurement of removal rate of radioactive material>
The treatment test conditions were that cesium chloride and potassium iodide were added to tap water so that the concentrations of cesium ions and iodine ions were 5 mg / L each, and the raw water thus prepared was dried in the examples. After adding 5000 mg / L of the pulverized product (average particle size of 45 μm or less) obtained by pulverizing the gel with a vibration mill, contact treatment was performed by continuous stirring at 100 rpm for 6 hours, and then filtered through a 0.45 μm GF filter. The concentration of cesium ions and iodine ions was measured by atomic absorption photometry, and the respective removal rates were measured.
Note that iodine ions were added to the raw water only in the case of the agent of the present invention containing activated carbon. In this case, sodium hypochlorite was added so that the free residual chlorine was 0.5 mg / L. It was.
In this test, the removal rate of cesium ions and iodine ions that did not emit radiation was measured, but considering the mechanism of removal, it can be considered that the removal rate of those emitting radiation is the same. it can.

<湿潤ゲルの粒径の測定>
湿式の篩い分け法によって湿潤ゲルの粒径を測定した。
<Measurement of particle size of wet gel>
The particle size of the wet gel was measured by a wet sieving method.

<乾燥ゲルの平均粒径の測定>
JIS K 1474活性炭試験方法6.4項の粒度分布の測定方法に準拠して篩試験を行い、通過重量の累積比率(%)が50%となった粒径を平均粒径として求めた。
<Measurement of average particle size of dry gel>
A sieving test was performed in accordance with the particle size distribution measuring method in 6.4 of JIS K 1474 activated carbon test method, and the particle size at which the cumulative ratio (%) of passing weight was 50% was determined as the average particle size.

<実施例>
実施例1〜34の製造条件を表1に、処理試験結果を表2に示した。
<Example>
The production conditions of Examples 1 to 34 are shown in Table 1, and the treatment test results are shown in Table 2.

(実施例1)
1w/v%のアルギン酸ナトリウム水溶液にベントナイトを混合し、重量組成比でベントナイト2.0w/w%、アルギン酸ナトリウム1.0w/w%の原料ゾル溶液(アルギン酸ナトリウムゾル)を調製した。これとは別に、ゲル化溶液として4w/v%の塩化カルシウム水溶液を調製した。このゲル化溶液をマグネチックスターラーで緩やかに撹拌しながら、前記原料ゾル溶液を、高さ5cm、内径3mmのノズルから25mL/分の速度で液滴を滴下させ、30分間ゲル化溶液中に保持し、4mm〜5mm径の球状の湿潤ゲル(アルギン酸ナトリウムゲル)を得た。得られた湿潤ゲルを、乾燥機で115℃、8時間の乾燥をし、平均粒径1.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、上記のように放射性物質除去率を測定し、結果を表2に示した。
Example 1
Bentonite was mixed with 1 w / v% sodium alginate aqueous solution to prepare a raw material sol solution (sodium alginate sol) having a weight composition ratio of 2.0 w / w% bentonite and 1.0 w / w sodium alginate. Separately, a 4 w / v% calcium chloride aqueous solution was prepared as a gelling solution. While gently stirring this gelled solution with a magnetic stirrer, the raw material sol solution is dropped at a rate of 25 mL / min from a nozzle having a height of 5 cm and an inner diameter of 3 mm, and held in the gelled solution for 30 minutes. A spherical wet gel (sodium alginate gel) having a diameter of 4 to 5 mm was obtained. The obtained wet gel was dried at 115 ° C. for 8 hours with a dryer to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 1.5 mm.
Then, the radioactive substance removal rate was measured as described above, and the results are shown in Table 2.

なお、原料ゾル溶液を内径2mmのノズルから液滴を滴下させ、粒径の小さい球状湿潤ゲルを得ることを試みたが、ノズル内径を小さくしても得られる球状湿潤ゲルの粒径は同様に4mm〜5mm径であり、ノズル径を変えても球状湿潤ゲル径は同様であった。   The raw sol solution was dropped from a nozzle with an inner diameter of 2 mm, and an attempt was made to obtain a spherical wet gel with a small particle diameter. The diameter was 4 mm to 5 mm, and the spherical wet gel diameter was the same even when the nozzle diameter was changed.

(実施例2)
重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4〜5mm径の球状の湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させ、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 2)
Gelation was carried out in the same manner as in Example 1 except that a raw material sol solution of bentonite 7.4 w / w% and sodium alginate 0.9 w / w% was prepared in a weight composition ratio, and spherical wetness having a diameter of 4 to 5 mm. A gel was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“Dried Gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例3)
重量組成比でベントナイト21w/w%、アルギン酸ナトリウム0.8w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させ、平均粒径2.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
Example 3
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of bentonite 21 w / w% and sodium alginate 0.8 w / w% was prepared in a weight composition ratio to obtain a spherical wet gel having a diameter of 4 to 5 mm. It was. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle diameter of 2.5 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

実施例1〜3の結果から分かるように、原料ゾル溶液のベントナイト添加量を変化させることで、球状の多孔質体造粒物(「乾燥ゲル」)の粒径を、それぞれ平均粒径1.5mm、2.0mm、2.5mmと精度良く制御することができた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Examples 1 to 3, by changing the amount of bentonite added to the raw sol solution, the average particle size of the spherical porous granulated product (“dry gel”) is changed to 1. It was possible to control accurately with 5 mm, 2.0 mm and 2.5 mm.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例4)
アルギン酸ナトリウム水溶液濃度を0.5w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.5w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
Example 4
The same method as in Example 1 except that the concentration of the sodium alginate aqueous solution was 0.5 w / v%, and the raw material sol solution was bentonite 7.4 w / w% and sodium alginate 0.5 w / w% in weight composition ratio. Gelation was performed to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例5)
アルギン酸ナトリウム水溶液濃度を2w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 5)
Gelation was carried out in the same manner as in Example 1 except that the concentration of sodium alginate aqueous solution was 2 w / v%, and the raw material sol solution was 7.4 w / w% bentonite and 0.9 w / w% sodium alginate by weight composition ratio. To obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例6)
アルギン酸ナトリウム水溶液濃度を3w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム1.8w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 6)
Gelation was carried out in the same manner as in Example 1, except that the concentration of sodium alginate aqueous solution was 3 w / v%, and the raw material sol solution was 7.4 w / w% bentonite and 1.8 w / w sodium alginate in weight composition ratio. To obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

実施例4〜6の結果から分かるように、原料ゾル溶液のベントナイト添加量が同一であれば、アルギン酸ナトリウム水溶液の濃度を0.5〜3w/v%の範囲で変化させても、球状の多孔質体造粒物(乾燥ゲル)の粒径は、いずれも平均粒径2.0mmに精度良く制御できた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Examples 4 to 6, if the amount of bentonite added to the raw sol solution is the same, even if the concentration of the sodium alginate aqueous solution is changed in the range of 0.5 to 3 w / v%, the spherical porosity is increased. The particle size of the granular material (dry gel) could be accurately controlled to an average particle size of 2.0 mm.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例7)
ゲル化溶液の塩化カルシウム濃度を0.5w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 7)
The same as in Example 1 except that the calcium chloride concentration of the gelled solution was 0.5 w / v%, and the raw material sol solution of bentonite 7.4 w / w% and sodium alginate 0.9 w / w% in weight composition ratio was prepared. Gelation was performed by the method described above to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例8)
ゲル化溶液の塩化カルシウム濃度を1w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 8)
The same method as in Example 1 except that the calcium chloride concentration of the gelled solution was 1 w / v%, and the raw material sol solution of bentonite 7.4 w / w% and sodium alginate 0.9 w / w% in weight composition ratio was prepared. Was gelled to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例9)
ゲル化溶液の塩化カルシウム濃度を2w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
Example 9
The same method as in Example 1 except that the calcium chloride concentration of the gelled solution was 2 w / v%, and the raw material sol solution was 7.4 w / w% bentonite and 0.9 w / w sodium alginate by weight composition ratio. Was gelled to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例10)
ゲル化溶液の塩化カルシウム濃度を3w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 10)
The same method as in Example 1 except that the calcium chloride concentration of the gelled solution was 3 w / v%, and the raw material sol solution was 7.4 w / w% bentonite and 0.9 w / w sodium alginate by weight composition ratio. Was gelled to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例11)
ゲル化溶液の塩化カルシウム濃度を5w/v%とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法で滴下液のゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 11)
The same method as in Example 1 except that the calcium chloride concentration of the gelled solution was 5 w / v%, and the raw material sol solution of bentonite 7.4 w / w% and sodium alginate 0.9 w / w% in weight composition ratio was prepared. Then, the dripping solution was gelled to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

実施例2及び実施例7〜11の結果から分かるように、原料ゾル溶液のベントナイト添加量が同一であれば、ゲル化溶液の塩化カルシウム溶液の濃度を0.5〜5w/v%の範囲で変化させても、球状の多孔質体造粒物(乾燥ゲル)の粒径は、いずれも平均粒径2.0mmに精度良く制御できた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Example 2 and Examples 7 to 11, if the bentonite addition amount of the raw material sol solution is the same, the concentration of the calcium chloride solution of the gelling solution is within the range of 0.5 to 5 w / v%. Even if it was changed, the particle size of the spherical porous granulated product (dry gel) could be accurately controlled to an average particle size of 2.0 mm.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例12)
アルギン酸ナトリウム水溶液に替えてアルギン酸カリウムの1w/v%水溶液を用い、重量組成比でベントナイト7.4w/w%、アルギン酸カリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 12)
Example 1 except that a 1 w / v% aqueous solution of potassium alginate was used in place of the aqueous sodium alginate solution and a raw material sol solution containing 7.4 w / w% bentonite and 0.9 w / w potassium alginate was prepared. Gelation was performed in the same manner to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例13)
アルギン酸ナトリウム水溶液に替えてアルギン酸リチウムの1w/v%水溶液を用い、重量組成比でベントナイト7.4w/w%、アルギン酸カリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法で滴下液のゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 13)
Example 1 except that a 1 w / v% aqueous solution of lithium alginate was used instead of the aqueous sodium alginate solution and a raw material sol solution containing 7.4 w / w% bentonite and 0.9 w / w potassium alginate was prepared by weight composition ratio. The dripping solution was gelled by the same method to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

実施例2及び実施例12、13の結果から分かるように、原料ゾル溶液のベントナイト添加量が同一であれば、アルギン酸塩をナトリウム塩、カリウム塩、リチウム塩の何れかの水溶性アルギン酸塩に替えても、球状の多孔質体造粒物(乾燥ゲル)の粒径は、いずれも平均粒径2.0mmに精度良く制御できた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Example 2 and Examples 12 and 13, if the amount of bentonite added to the raw sol solution is the same, the alginate is replaced with a water-soluble alginate of any one of sodium salt, potassium salt and lithium salt. However, the particle diameter of the spherical porous body granulated product (dry gel) could be accurately controlled to an average particle diameter of 2.0 mm.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例14)
ゲル化溶液の塩化カルシウム溶液に替えて、硝酸カルシウムの4w/v%水溶液とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 14)
Instead of the calcium chloride solution of the gelled solution, a 4 w / v% aqueous solution of calcium nitrate was prepared, and a raw material sol solution containing 7.4 w / w% bentonite and 0.9 w / w sodium alginate was prepared. Gelation was performed in the same manner as in Example 1 to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例15)
ゲル化溶液の塩化カルシウム溶液に替えて、臭化カルシウムの4w/v%水溶液とし、重量組成比でベントナイト7.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 15)
In place of the calcium chloride solution of gelling solution, a 4 w / v% aqueous solution of calcium bromide was used, and a raw material sol solution containing 7.4 w / w% bentonite and 0.9 w / w sodium alginate was prepared. Was gelled in the same manner as in Example 1 to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

実施例2及び実施例14、15の結果から分かるように、原料ゾル溶液のベントナイト添加量が同一であれば、ゲル化溶液のカルシウム塩を塩化物、硝酸化物、臭化物の何れかの水溶性カルシウム塩に替えても、球状の多孔質体造粒物(乾燥ゲル)の粒径は、いずれも平均粒径2.0mmに精度良く制御できた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Example 2 and Examples 14 and 15, as long as the amount of bentonite added to the raw material sol solution is the same, the calcium salt of the gelled solution is changed to water-soluble calcium of chloride, nitrate or bromide. Even if it changed to salt, the particle size of the spherical porous body granulated material (dry gel) was able to be precisely controlled to the average particle size of 2.0 mm.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例16)
重量組成比でベントナイト0.7w/w%、活性炭0.7w/w%、アルギン酸ナトリウム1.0w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径1.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 16)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution containing 0.7 w / w% bentonite, 0.7 w / w% activated carbon and 1.0 w / w% sodium alginate was prepared by weight composition ratio. A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 1.5 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

(実施例17)
重量組成比でベントナイト2.4w/w%、活性炭2.4w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 17)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of bentonite 2.4 w / w%, activated carbon 2.4 w / w%, and sodium alginate 0.9 w / w% was prepared by weight composition ratio, A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

(実施例18)
重量組成比でベントナイト6.1w/w%、活性炭6.1w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 18)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of bentonite 6.1 w / w%, activated carbon 6.1 w / w%, and sodium alginate 0.9 w / w% was prepared by weight composition ratio. A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle diameter of 2.5 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

実施例16〜18の結果から分かるように、ベントナイトと活性炭の混合物の場合でも、原料ゾル溶液のベントナイト添加量および活性炭添加量を変化させることで、球状の多孔質体造粒物(乾燥ゲル)の粒径を、それぞれ平均粒径1.5mm、2.0mm、2.5mmと制御することができた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Examples 16 to 18, even in the case of a mixture of bentonite and activated carbon, a spherical porous granulated product (dry gel) can be obtained by changing the amount of bentonite and the amount of activated carbon added to the raw material sol solution. The particle size of each of the particles could be controlled to an average particle size of 1.5 mm, 2.0 mm, and 2.5 mm, respectively.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例19)
重量組成比でゼオライト2.5w/w%、アルギン酸ナトリウム1.0w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径1.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 19)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of zeolite 2.5 w / w% and sodium alginate 1.0 w / w% in weight composition ratio was prepared, and a spherical wet gel having a diameter of 4 mm to 5 mm. Got. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 1.5 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例20)
重量組成比でゼオライト7.8w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 20)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of zeolite 7.8 w / w% and sodium alginate 0.9 w / w% in weight composition ratio was prepared, and a spherical wet gel having a diameter of 4 mm to 5 mm. Got. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例21)
重量組成比でゼオライト14w/w%、アルギン酸ナトリウム0.8w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 21)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of zeolite 14 w / w% by weight composition ratio and sodium alginate 0.8 w / w% was prepared to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. It was. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle diameter of 2.5 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

実施例19〜21の結果から分かるように、ゼオライトの場合でも原料ゾル溶液のベントナイト添加量および活性炭添加量を変化させることで、球状の多孔質体造粒物(乾燥ゲル)の粒径を、それぞれ平均粒径1.5mm、2.0mm、2.5mmと制御することができた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Examples 19 to 21, by changing the bentonite addition amount and the activated carbon addition amount of the raw material sol solution even in the case of zeolite, the particle size of the spherical porous granulated product (dry gel) is changed. The average particle diameters could be controlled to 1.5 mm, 2.0 mm, and 2.5 mm, respectively.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例22)
重量組成比でゼオライト1.3w/w%、活性炭1.3w/w%、アルギン酸ナトリウム1.0w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径1.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 22)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of zeolite 1.3 w / w%, activated carbon 1.3 w / w%, and sodium alginate 1.0 w / w% was prepared in a weight composition ratio. A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 1.5 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

(実施例23)
重量組成比でゼオライト5.0w/w%、活性炭5.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 23)
Gelation was performed in the same manner as in Example 1, except that a raw material sol solution of zeolite 5.0 w / w%, activated carbon 5.0 w / w%, and sodium alginate 0.9 w / w% was prepared in a weight composition ratio. A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

(実施例24)
重量組成比でゼオライト8.0w/w%、活性炭8.0w/w%、アルギン酸ナトリウム0.8w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 24)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution containing zeolite 8.0 w / w% by weight, activated carbon 8.0 w / w%, and sodium alginate 0.8 w / w% was prepared. A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle diameter of 2.5 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

実施例22〜24の結果から分かるように、ベントナイトと活性炭の混合物の場合でも、原料ゾル溶液のベントナイト添加量および活性炭添加量を変化させることで、球状の多孔質体造粒物(乾燥ゲル)の粒径を、それぞれ平均粒径1.5mm、2.0mm、2.5mmと制御することができた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Examples 22 to 24, even in the case of a mixture of bentonite and activated carbon, a spherical porous body granulated product (dry gel) can be obtained by changing the amount of bentonite and activated carbon added to the raw sol solution. The particle size of each of the particles could be controlled to an average particle size of 1.5 mm, 2.0 mm, and 2.5 mm, respectively.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例25)
重量組成比でベントナイト0.7w/w%、ゼオライト0.7w/w%、活性炭0.7w/w%、アルギン酸ナトリウム1.0w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径1.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 25)
The same as in Example 1 except that a raw material sol solution containing 0.7 w / w% bentonite, 0.7 w / w% zeolite, 0.7 w / w% activated carbon, and 1.0 w / w% sodium alginate was prepared. Gelation was performed by the method described above to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 1.5 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

(実施例26)
重量組成比でベントナイト2.6w/w%、ゼオライト2.6w/w%、活性炭2.6w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 26)
Same as Example 1 except that a raw material sol solution of bentonite 2.6 w / w%, zeolite 2.6 w / w%, activated carbon 2.6 w / w%, sodium alginate 0.9 w / w% by weight composition ratio was prepared. Gelation was performed by the method described above to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

(実施例27)
重量組成比でベントナイト5.0w/w%、ゼオライト5.0w/w%、活性炭5.0w/w%、アルギン酸ナトリウム0.8w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.5mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 27)
Same as Example 1 except that a raw material sol solution of bentonite 5.0 w / w%, zeolite 5.0 w / w%, activated carbon 5.0 w / w%, sodium alginate 0.8 w / w% in weight composition ratio was prepared. Gelation was performed by the method described above to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle diameter of 2.5 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

実施例25〜27の結果から分かるように、ベントナイトとゼオライトと活性炭の3種の混合物の場合でも、原料ゾル溶液のベントナイト添加量、ゼオライト添加量および活性炭添加量を変化させることで、球状の多孔質体造粒物(乾燥ゲル)の粒径を、それぞれ平均粒径1.5mm、2.0mm、2.5mmと制御することができた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As can be seen from the results of Examples 25 to 27, even in the case of three kinds of mixtures of bentonite, zeolite, and activated carbon, by changing the bentonite addition amount, zeolite addition amount, and activated carbon addition amount of the raw material sol solution, spherical porosity The particle size of the granulated product (dry gel) could be controlled to be an average particle size of 1.5 mm, 2.0 mm, and 2.5 mm, respectively.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(実施例28)
重量組成比で紺青8.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 28)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution having a weight composition ratio of 8.0 w / w% bitumen and 0.9 w / w sodium alginate was prepared, and a spherical wet gel having a diameter of 4 to 5 mm. Got. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured similarly to Example 1, and the result was shown in Table 2.

(実施例29)
重量組成比で紺青4.0w/w%、活性炭4.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 29)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of bitumen 4.0 w / w%, activated carbon 4.0 w / w%, and sodium alginate 0.9 w / w% was prepared by weight composition ratio, A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be 0.5 mg / L, and the result was shown in Table 2.

(実施例30)
重量組成比で紺青4.0w/w%、ベントナイト4.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法でゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを実施例1同様に乾燥させて、平均粒径2.0mmの球状の多孔質体造粒物(表の「乾燥ゲル」)を得た。
そして、実施例1と同様の処理試験を行い、上述のように放射性物質除去率を測定し、結果を表2に示した。
(Example 30)
Gelation was performed in the same manner as in Example 1 except that a raw material sol solution of bitumen 4.0 w / w%, bentonite 4.0 w / w%, and sodium alginate 0.9 w / w% was prepared by weight composition ratio, A spherical wet gel having a diameter of 4 mm to 5 mm was obtained. The obtained wet gel was dried in the same manner as in Example 1 to obtain a spherical porous granulated product (“dry gel” in the table) having an average particle size of 2.0 mm.
And the processing test similar to Example 1 was done, the radioactive substance removal rate was measured as mentioned above, and the result was shown in Table 2.

(実施例31)
重量組成比で紺青3.0w/w%、ベントナイト3.0w/w%、活性炭3.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法で滴下液のゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを乾燥し、平均粒径2.0mmの乾燥球状物を得た。また、遊離残留塩素が0.5mg/Lとなるよう次亜塩素酸ナトリウムを添加した以外は実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Example 31)
Except for preparing a raw material sol solution of bitumen 3.0 w / w%, bentonite 3.0 w / w%, activated carbon 3.0 w / w%, sodium alginate 0.9 w / w% by weight composition ratio, the same as in Example 1 The dropping solution was gelled by the above method to obtain a spherical wet gel having a diameter of 4 mm to 5 mm. The obtained wet gel was dried to obtain a dried sphere having an average particle size of 2.0 mm. Moreover, the radioactive substance removal rate was measured like Example 1 except having added sodium hypochlorite so that free residual chlorine might be set to 0.5 mg / L, and the result was shown in Table 2.

実施例28〜31の結果、紺青、紺青と活性炭の混合物、紺青とベントナイトの混合物、紺青とベントナイトと活性炭の混合物の場合でも、原料ゾル溶液のベントナイト添加量、紺青添加量および活性炭添加量を変化させることで、球状の多孔質体造粒物(乾燥ゲル)の粒径を平均粒径2.0mmに制御することができた。
また、それぞれの実施例について複数回行ったところ、いずれも平均粒径の変動係数が5%未満範囲内となるように精度良く制御することができた。
As a result of Examples 28-31, even in the case of bitumen, a mixture of bitumen and activated carbon, a mixture of bitumen and bentonite, and a mixture of bitumen, bentonite and activated carbon, the bentonite addition amount, the bitumen addition amount and the activated carbon addition amount of the raw material sol solution were changed. As a result, the particle diameter of the spherical porous body granulated product (dry gel) could be controlled to an average particle diameter of 2.0 mm.
In addition, when each of the examples was performed a plurality of times, it was possible to control with high accuracy so that the variation coefficient of the average particle diameter was within the range of less than 5%.

(参考例32)
重量組成比でカオリン8.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法で滴下液のゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを乾燥し、平均粒径2.0mmの乾燥球状物を得た。実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Reference Example 32)
The dripping solution was gelled in the same manner as in Example 1 except that a raw material sol solution of kaolin 8.0 w / w% and sodium alginate 0.9 w / w% by weight composition ratio was prepared. A spherical wet gel was obtained. The obtained wet gel was dried to obtain a dried sphere having an average particle size of 2.0 mm. The radioactive substance removal rate was measured in the same manner as in Example 1, and the results are shown in Table 2.

(参考例33)
重量組成比で酸性白土8.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法で滴下液のゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを乾燥し、平均粒径2.0mmの乾燥球状物を得た。実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Reference Example 33)
The dripping solution was gelled in the same manner as in Example 1 except that a raw material sol solution having an acid clay of 8.0 w / w% and sodium alginate of 0.9 w / w% was prepared in a weight composition ratio. A spherical wet gel was obtained. The obtained wet gel was dried to obtain a dried sphere having an average particle size of 2.0 mm. The radioactive substance removal rate was measured in the same manner as in Example 1, and the results are shown in Table 2.

(参考例34)
重量組成比で酸性白土8.0w/w%、アルギン酸ナトリウム0.9w/w%の原料ゾル溶液を調製した以外は実施例1と同様の方法で滴下液のゲル化を行い、4mm〜5mm径の球状湿潤ゲルを得た。得られた湿潤ゲルを乾燥し、平均粒径2.0mmの乾燥球状物を得た。実施例1と同様に放射性物質除去率を測定し、結果を表2に示した。
(Reference Example 34)
The dripping solution was gelled in the same manner as in Example 1 except that a raw material sol solution having an acid clay of 8.0 w / w% and sodium alginate of 0.9 w / w% was prepared in a weight composition ratio. A spherical wet gel was obtained. The obtained wet gel was dried to obtain a dried sphere having an average particle size of 2.0 mm. The radioactive substance removal rate was measured in the same manner as in Example 1, and the results are shown in Table 2.

参考例32〜34の結果から分かるように、カオリン、酸性白土、活性白土の場合でも原料ゾル溶液のベントナイト添加量、紺青添加量および活性炭添加量を変化させることで、乾燥球状物の粒径を平均粒径2.0mmに制御することができた。   As can be seen from the results of Reference Examples 32-34, the particle size of the dried spheres can be changed by changing the amount of bentonite added, the amount of bitumen added, and the amount of activated carbon added to the raw sol solution even in the case of kaolin, acid clay, activated clay. The average particle size could be controlled to 2.0 mm.

(実施例35)
実施例2で作成したベントナイトの平均粒径2.0mmの球状放射性物質除去剤を内径150mmのカラムに層厚300mm充填し、水道水にセシウムイオン5.0mg/Lおよびストロンチウムイオン5.0mg/Lとなるように調製した原水を空塔速度SV=2[m−原水/m−充填剤/時]で通水処理を行ったところ、通水開始24時間後の状態で、セシウムイオン、ストロンチウムイオン共に、0.01mg/L未満となった。
(Example 35)
The spherical radioactive substance removing agent having an average particle diameter of 2.0 mm prepared in Example 2 was packed in a column having a diameter of 150 mm into a layer thickness of 300 mm, and cesium ions 5.0 mg / L and strontium ions 5.0 mg / L in tap water. When the raw water prepared so as to become a water flow treatment at a superficial velocity SV = 2 [m 3 -raw water / m 3 -filler / hour], cesium ions in a state 24 hours after the start of water flow, Both strontium ions were less than 0.01 mg / L.

(実施例36)
実施例17で作成したベントナイトおよび活性炭の平均粒径2.0mmの球状放射性物質除去剤を内径150mmのカラムに層厚300mm充填し、水道水にセシウムイオン5.0mg/L、ヨウ素イオン5.0mg/Lおよびストロンチウムイオン5.0mg/Lとなるように調製した原水に遊離残留塩素が0.5mg/Lとなるように次亜塩素酸ナトリウムを添加し、空塔速度SV=2[m−原水/m−充填剤/時]で通水処理を行ったところ、通水開始24時間後の状態で、セシウムイオン、ヨウ素イオン、ストロンチウムイオン共に、0.01mg/L未満となった。
(Example 36)
A spherical radioactive substance removing agent having an average particle diameter of 2.0 mm of bentonite and activated carbon prepared in Example 17 was packed in a column having a diameter of 150 mm and a layer thickness of 300 mm, and tap water was charged with cesium ions 5.0 mg / L and iodine ions 5.0 mg. / L and strontium ion 5.0 mg / L of raw water, sodium hypochlorite was added so that the free residual chlorine was 0.5 mg / L, and the superficial velocity SV = 2 [m 3 − When water flow treatment was performed using raw water / m 3 -filler / hour], cesium ions, iodine ions, and strontium ions were all less than 0.01 mg / L in a state 24 hours after the start of water flow.

(実施例37)
実施例26で作成したベントナイト、ゼオライトおよび活性炭の平均粒径2.0mmの球状放射性物質除去剤を内径150mmのカラムに層厚300mm充填し、水道水にセシウムイオン5.0mg/L、ヨウ素イオン5.0mg/Lおよびストロンチウムイオン5.0mg/Lとなるように調製した原水に遊離残留塩素が0.5mg/Lとなるように次亜塩素酸ナトリウムを添加し、空塔速度SV=2[m−原水/m−充填剤/時]で通水処理を行ったところ、通水開始24時間後の状態で、セシウムイオン、ヨウ素イオン、ストロンチウムイオン共に、0.01mg/L未満となった。
(Example 37)
A spherical radioactive substance removing agent having an average particle diameter of 2.0 mm made of bentonite, zeolite and activated carbon prepared in Example 26 was packed in a column having an inner diameter of 150 mm and a layer thickness of 300 mm, and tap water was charged with cesium ions 5.0 mg / L, iodine ions 5 Sodium hypochlorite was added to the raw water prepared to 0.0 mg / L and strontium ion 5.0 mg / L so that the free residual chlorine was 0.5 mg / L, and the superficial velocity SV = 2 [m 3 -Raw water / m 3 -Filler / hour], the cesium ion, iodine ion, and strontium ion were all less than 0.01 mg / L in the state 24 hours after the start of water flow. .

Figure 0005951950
Figure 0005951950

Figure 0005951950
Figure 0005951950

Claims (2)

粘土鉱物、難溶性フェロシアン化合物、活性炭及びゼオライトからなる群のうちから選ばれる1つ以上の放射性物質除去材を、アルギン酸金属塩の水溶液中に加えて分散させてアルギン酸金属塩ゾルを作製し、該ゾルを、カルシウム塩であるゲル化剤を含んだ水溶液中に添加してアルギン酸カルシウムゲルを作製し、このゲルを乾燥させることにより得られる多孔質体造粒物からなる放射性物質除去剤を形成し
前記放射性物質除去剤は、前記アルギン酸金属塩ゾルに分散せしめる前記放射性物質除去材の添加量を増減させて、湿潤状態の前記アルギン酸カルシウムゲルの粒径を一定とし、その後の前記乾燥により収縮させて粒度の調整がなされ、
所定の充填容器に前記放射性物質除去剤含有の充填層を形成し、
前記充填層に、放射性物質を含む汚染水を通水する通水処理し、
前記放射性物質を除去することを特徴とする放射性物質除去剤を用いた放射性汚染水の処理方法。
One or more radioactive substance removing materials selected from the group consisting of clay minerals, poorly soluble ferrocyan compounds, activated carbon and zeolite are added and dispersed in an aqueous solution of metal alginate to prepare a metal alginate sol, the sol was prepared calcium alginate gel was added to the aqueous solution containing the gelling agent is a calcium salt, the radioactive material removing agent ing a porous body obtained granules by drying the gel Forming ,
The radioactive substance removing agent increases or decreases the amount of the radioactive substance removing material dispersed in the metal alginate sol to make the particle size of the wet calcium alginate gel constant, and then shrinks by drying. The grain size is adjusted,
Forming a filling layer containing the radioactive substance removing agent in a predetermined filling container;
Water treatment for passing contaminated water containing radioactive substances to the packed bed,
A method for treating radioactive contaminated water using a radioactive substance removing agent, wherein the radioactive substance is removed.
粘土鉱物、難溶性フェロシアン化合物、活性炭及びゼオライトからなる群のうちから選ばれる1つ以上の放射性物質除去材を、アルギン酸金属塩の水溶液中に加えて分散させ、アルギン酸金属塩ゾルを作製するゾル作製工程と、
前記作製されたゾルを、カルシウム塩であるゲル化剤を含んだ水溶液中に添加して、前記放射性物質除去材を均一に包含したアルギン酸カルシウムゲルを作製するゲル作製工程と、
前記作製されたゲルを乾燥させることにより多孔質体造粒物からなる放射性物質除去剤粒子を得る乾燥工程と、を備え、
前記放射性物質除去材の添加量を増減させて前記アルギン酸金属塩を複数種類調製し、これらを同一条件で乾燥させて前記放射性物質除去剤粒子を得て、それぞれの平均粒径を測定し、前記放射性物質除去材の添加量と前記放射性物質除去剤粒子の平均粒径との累乗回帰比例関係を求めておき、
前記ゾル作製工程において、前記水溶液中に添加する前記放射性物質除去材の添加量を該累乗比例関係に基づいて増減させ、乾燥後の前記放射性物質除去剤粒子の粒度を調整することを特徴とする放射性物質除去剤の粒度調整方法。
A sol for producing an alginate metal salt sol by adding and dispersing one or more radioactive substance removing materials selected from the group consisting of clay minerals, poorly soluble ferrocyan compounds, activated carbon and zeolite in an aqueous solution of metal alginate. Production process;
A gel preparation step of adding the prepared sol to an aqueous solution containing a gelling agent that is a calcium salt to prepare a calcium alginate gel uniformly including the radioactive substance removing material;
And a drying step to obtain a radioactive substance removal agent particles composed of Ri by the drying the produced gel multi porous material granules,
A plurality of kinds of the metal alginate are prepared by increasing / decreasing the amount of the radioactive substance removing material, obtaining the radioactive substance removing agent particles by drying them under the same conditions, measuring the average particle diameter of each, Obtain a power regression proportional relationship between the added amount of the radioactive substance removing material and the average particle diameter of the radioactive substance removing agent particles,
In the sol preparation step, the amount of the radioactive substance removing material added to the aqueous solution is increased / decreased based on the power proportional relationship to adjust the particle size of the radioactive substance removing agent particles after drying. Method for adjusting particle size of radioactive substance remover.
JP2011205417A 2011-09-21 2011-09-21 Method for treating contaminated water containing radioactive substance and method for adjusting particle size of radioactive substance removing agent Active JP5951950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205417A JP5951950B2 (en) 2011-09-21 2011-09-21 Method for treating contaminated water containing radioactive substance and method for adjusting particle size of radioactive substance removing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205417A JP5951950B2 (en) 2011-09-21 2011-09-21 Method for treating contaminated water containing radioactive substance and method for adjusting particle size of radioactive substance removing agent

Publications (3)

Publication Number Publication Date
JP2013068438A JP2013068438A (en) 2013-04-18
JP2013068438A5 JP2013068438A5 (en) 2013-08-15
JP5951950B2 true JP5951950B2 (en) 2016-07-13

Family

ID=48474308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205417A Active JP5951950B2 (en) 2011-09-21 2011-09-21 Method for treating contaminated water containing radioactive substance and method for adjusting particle size of radioactive substance removing agent

Country Status (1)

Country Link
JP (1) JP5951950B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957290B2 (en) * 2012-05-14 2016-07-27 大日精化工業株式会社 Aqueous dispersion containing ferrocyanide compound, processed body, and cesium removing material
JP5373163B2 (en) * 2012-08-20 2013-12-18 株式会社化研 Method for treating seawater contaminated with radioactive Sr using strontium selective adsorbent and aqueous solution containing seawater salt components
JP2014077720A (en) * 2012-10-11 2014-05-01 National Institute Of Advanced Industrial & Technology Cation adsorbent particle and manufacturing method thereof
JP6199643B2 (en) * 2013-07-24 2017-09-20 水ing株式会社 Radioactive contaminated water treatment apparatus and radioactive contaminated water treatment method
KR101489162B1 (en) 2013-08-26 2015-02-06 인하대학교 산학협력단 Lysinibacillus fusiformis with activity for treating radioactive substance and composition for treating radioactive substance containing the same
JP6082338B2 (en) * 2013-10-31 2017-02-15 株式会社荏原製作所 Decontamination device and decontamination method for contaminated water area
KR101561642B1 (en) 2013-11-14 2015-10-20 가톨릭관동대학교산학협력단 Absobent Beads for Radioactive Sr(II) Using the Sericite and Method of Producing the Same
JP2015114267A (en) * 2013-12-13 2015-06-22 学校法人近畿大学 Radioactive substance adsorbing material
KR101579795B1 (en) * 2014-01-20 2015-12-24 가톨릭관동대학교산학협력단 Method of Removing Cesium from Wastewater by the Solidified Sericite
JP6320781B2 (en) * 2014-02-06 2018-05-09 国立研究開発法人日本原子力研究開発機構 Ferrocyanide particle-polysaccharide complex
WO2017200358A1 (en) * 2016-05-19 2017-11-23 인하대학교 산학협력단 Composition for adsorbing radioactive cesium and preparation method therefor
KR101886646B1 (en) * 2016-05-19 2018-08-09 인하대학교 산학협력단 Composition for adsorption of radioactive cesium and method for preparing the same
CN113823796B (en) * 2021-09-09 2022-12-27 电子科技大学 Water-based binder based on alginic acid-Prussian blue and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0244922A1 (en) * 1986-05-08 1987-11-11 Westinghouse Electric Corporation Apparatus and method for removing strontium ions from aqueous solutions
JPH0767948A (en) * 1993-08-31 1995-03-14 Matsushita Electric Ind Co Ltd Activated carbon granule, deodorant and manufacture of deodorant
JP2004045371A (en) * 2002-05-20 2004-02-12 Ebara Corp Processing method and device for liquid including radionuclide
JP2006175373A (en) * 2004-12-22 2006-07-06 Chube Univ Adsorbent for liquid phase, and treatment method of basic dye aqueous solution
JP4585393B2 (en) * 2005-07-05 2010-11-24 株式会社東芝 Waste liquid treatment method and apparatus
JP2007237097A (en) * 2006-03-09 2007-09-20 Osaka Prefecture Magnetic adsorbent and waste water treating technique using it
JP2008232773A (en) * 2007-03-20 2008-10-02 Japan Organo Co Ltd Treater for water containing radioactive material in nuclear power plant

Also Published As

Publication number Publication date
JP2013068438A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5951950B2 (en) Method for treating contaminated water containing radioactive substance and method for adjusting particle size of radioactive substance removing agent
Reda et al. Bismuth-based materials for iodine capture and storage: A review
Baybaş et al. Polyacrylamide–clinoptilolite/Y-zeolite composites: Characterization and adsorptive features for terbium
JPH03146412A (en) Preparation of active carbon
De Haro-Del Rio et al. The removal of caesium ions using supported clinoptilolite
Krys et al. Encapsulation of ammonium molybdophosphate and zirconium phosphate in alginate matrix for the sorption of rubidium (I)
JP2014224696A (en) Radioactive contamination water decontamination method
Rahman et al. Development of Zr (IV)—Doped polypyrrole/zirconium (IV) iodate composite for efficient removal of fluoride from water environment
Lalhmunsiama et al. Recent advances in adsorption removal of cesium from aquatic environment
JP7123262B2 (en) Radioactive cesium decontamination agent and radioactive cesium decontamination method that can be adjusted according to water depth using the same
JP6022845B2 (en) Radioactive substance removing agent, method for producing radioactive substance removing agent, and method for treating contaminated water containing radioactive substance
CN106659138A (en) Low density compositions with synergistic absorbance properties
Yousefi et al. Potential application of a nanocomposite: HCNFe@ polymer for effective removal of Cs (I) from nuclear waste
JP2014077720A (en) Cation adsorbent particle and manufacturing method thereof
Rashad et al. Removal of radiocobalt from aqueous solutions by adsorption onto low-cost adsorbents
Hassan et al. Removal of barium and strontium from wastewater and radioactive wastes using a green bioadsorbent, Salvadora persica (Miswak)
JP6240382B2 (en) Radioactive cesium adsorbent and method for recovering radioactive cesium using the same
Sang et al. Selective separation and immobilization process of 137Cs from high-level liquid waste based on silicon-based heteropoly salt and natural minerals
Todd et al. A comparison of crystalline silicotitanate and ammonium molybdophosphate-polyacrylonitrile composite sorbent for the separation of cesium from acidic waste
Ibrahim et al. Facile preparation of dual functions zeolite‐carbon composite for zinc ion removal from aqueous solutions
Khakbaz et al. Adsorption of diazinon using Cd-MOF nanoparticles before determination by UV-Vis spectrometer: isotherm, kinetic and thermodynamic study
Ulatowska et al. Use of fly ash and fly ash agglomerates for As (III) adsorption from aqueous solution
Bok-Badura et al. Cesium ion sorption on hybrid pectin-Prussian blue beads: batch and column studies to remove radioactive cesium from contaminated wastewater
JP6199643B2 (en) Radioactive contaminated water treatment apparatus and radioactive contaminated water treatment method
JP2015085240A (en) Molded cesium adsorbent and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160609

R150 Certificate of patent or registration of utility model

Ref document number: 5951950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250