JP5949836B2 - Liquid cooling jacket - Google Patents

Liquid cooling jacket Download PDF

Info

Publication number
JP5949836B2
JP5949836B2 JP2014115837A JP2014115837A JP5949836B2 JP 5949836 B2 JP5949836 B2 JP 5949836B2 JP 2014115837 A JP2014115837 A JP 2014115837A JP 2014115837 A JP2014115837 A JP 2014115837A JP 5949836 B2 JP5949836 B2 JP 5949836B2
Authority
JP
Japan
Prior art keywords
jacket
aluminum alloy
thermoplastic resin
recess
sealing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014115837A
Other languages
Japanese (ja)
Other versions
JP2014158055A (en
Inventor
伸城 瀬尾
伸城 瀬尾
堀 久司
久司 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2014115837A priority Critical patent/JP5949836B2/en
Publication of JP2014158055A publication Critical patent/JP2014158055A/en
Application granted granted Critical
Publication of JP5949836B2 publication Critical patent/JP5949836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、液冷ジャケットに関する。   The present invention relates to a liquid cooling jacket.

樹脂部材と金属部材とを接着又は機械的に固着させる技術は、自動車業界、産業機器業界等の広い分野から求められている。樹脂部材と金属部材とを比較的簡易に接合させる方法として接着材を用いることが挙げられるが、接着材では十分な強度が得られないという問題があった。そこで、特許文献1には、アルミニウム合金製の金属部材を予め金型に挿入した後、当該金型に樹脂塑性物を射出して両部材を接合する技術が開示されている。   A technique for bonding or mechanically fixing a resin member and a metal member is required from a wide range of fields such as the automobile industry and the industrial equipment industry. Although an adhesive can be used as a method for joining the resin member and the metal member relatively easily, there is a problem that sufficient strength cannot be obtained with the adhesive. Therefore, Patent Document 1 discloses a technique in which a metal member made of an aluminum alloy is inserted into a mold in advance, and then a plastic plastic material is injected into the mold to join both members.

特開2007−50630号公報JP 2007-50630 A

従来、例えば、CPU(Central Processing Unit)等の熱発生体を冷却するために用いられる液冷ジャケットが知られている。当該液冷ジャケットは、さらなる軽量化が求められている。   Conventionally, for example, a liquid cooling jacket used for cooling a heat generating body such as a CPU (Central Processing Unit) is known. The liquid cooling jacket is required to be further reduced in weight.

このような観点から本発明は、軽量化を図ることができる液冷ジャケットを提供することを課題とする。   From such a viewpoint, an object of the present invention is to provide a liquid cooling jacket capable of reducing the weight.

このような課題を解決するために本発明は、熱発生体が発生する熱を外部に輸送する熱輸送流体が流れるとともに一部が開口した凹部を有する熱可塑性樹脂製のジャケット本体に、前記凹部の開口部を封止するアルミニウム製又はアルミニウム合金製の封止体が接合されている液冷ジャケットであって、熱可塑性樹脂製の前記ジャケット本体は、底壁と、周壁とを備え、前記封止体は、蓋板部と、前記蓋板部に形成されるとともに前記凹部に向けて延設された複数のフィンと、を備え、熱可塑性樹脂製の前記ジャケット本体の前記凹部の開口周縁部には、前記周壁から一段下がった位置に段差面が形成されており、前記段差面と前記封止体の前記蓋板部の周縁とが接合されており、熱可塑性樹脂製の前記ジャケット本体の前記凹部の底面と複数の前記フィンとで前記凹部内に筒状の空間が区画され、その空間が、冷却水が流れる流路として機能しており、前記封止体は、熱可塑性樹脂製の前記ジャケット本体との接触面に形成された凸凹の凹部分に前記熱可塑性樹脂が入り込んでいることを特徴とする。 In order to solve such a problem, the present invention provides a jacket body made of a thermoplastic resin having a recess that is partially opened while a heat transport fluid that transports heat generated by a heat generator flows to the outside. A liquid cooling jacket to which an aluminum or aluminum alloy sealing body that seals the opening of the thermoplastic resin is bonded, wherein the jacket body made of thermoplastic resin comprises a bottom wall and a peripheral wall, and the sealing The stationary body includes a lid plate portion and a plurality of fins formed on the lid plate portion and extending toward the concave portion, and an opening peripheral portion of the concave portion of the jacket body made of thermoplastic resin. Is formed with a step surface at a position one step down from the peripheral wall, and the step surface and the periphery of the lid plate portion of the sealing body are joined together, and the jacket body made of thermoplastic resin The bottom surface of the recess Are of the fin and in compartment cylindrical space in the recess, the space, is functioning as a flow path for cooling water flows, said sealing body, the contact between the jacket body made of thermoplastic resin The thermoplastic resin is contained in the concave and convex portions formed on the surface.

また、本発明は、熱発生体が発生する熱を外部に輸送する熱輸送流体が流れるとともに一部が開口した凹部を有する熱可塑性樹脂製のジャケット本体に、前記凹部の開口部を封止するアルミニウム製又はアルミニウム合金製の封止体が接合されている液冷ジャケットであって、熱可塑性樹脂製の前記ジャケット本体は、底壁と、周壁とを備え、前記封止体は、蓋板部と、前記蓋板部に形成されるとともに前記凹部に向けて延設された複数のフィンと、を備え、熱可塑性樹脂製の前記ジャケット本体の前記凹部の開口周縁部には、前記周壁から一段下がった位置に段差面が形成されており、前記段差面と前記封止体の前記蓋板部の周縁とが接合されており、熱可塑性樹脂製の前記ジャケット本体の前記凹部の底面と複数の前記フィンとで前記凹部内に筒状の空間が区画され、その空間が、冷却水が流れる流路として機能しており、前記封止体は、熱可塑性樹脂製の前記ジャケット本体との接触面に陽極酸化皮膜が形成されており、前記陽極酸化皮膜に形成された凸凹の凹部分に前記熱可塑性樹脂が入り込んでいることを特徴とする。 Also, the present invention seals the opening of the recess to a jacket body made of a thermoplastic resin having a recess that is partially opened while a heat transport fluid that transports heat generated by the heat generator flows to the outside. A liquid cooling jacket to which a sealing body made of aluminum or an aluminum alloy is joined, wherein the jacket body made of thermoplastic resin includes a bottom wall and a peripheral wall, and the sealing body includes a lid plate portion And a plurality of fins formed on the cover plate portion and extending toward the recess, and the opening peripheral portion of the recess of the jacket body made of thermoplastic resin is one step from the peripheral wall. A stepped surface is formed at a lowered position, the stepped surface is joined to a peripheral edge of the lid plate portion of the sealing body, and a bottom surface of the concave portion of the jacket body made of thermoplastic resin and a plurality of bottom surfaces The fin and the concave Cylindrical space are partitioned within, its space, which functions as a flow path through which cooling water flows, the encapsulant, the anodized film on the contact surface between the jacket body made of thermoplastic resin is formed The thermoplastic resin is contained in the concave and convex portions formed on the anodic oxide film.

かかる構成によれば、ジャケット本体が樹脂製であるため、軽量化を図ることができる。また、ジャケット本体の凹部分に溶融した熱可塑性樹脂が入り込み、ジャケット本体と封止体との接触面積が増加するため、より強固に接合することができる。また、かかる構成によれば、前記凹部の底面と複数の前記フィンとで区画された空間を、熱輸送流体が流れる流路とすることができる。According to such a configuration, since the jacket body is made of resin, the weight can be reduced. Moreover, since the melted thermoplastic resin enters the concave portion of the jacket body and the contact area between the jacket body and the sealing body increases, the jacket body can be more firmly joined. Moreover, according to this structure, the space divided by the bottom face of the said recessed part and the said several fin can be made into the flow path through which a heat transport fluid flows.

本発明に係る液冷ジャケットによれば、軽量化を図ることができる。   The liquid cooling jacket according to the present invention can reduce the weight.

第一実施形態に係る樹脂部材と金属部材の接合方法を示した斜視図である。It is the perspective view which showed the joining method of the resin member and metal member which concern on 1st embodiment. 摩擦攪拌用回転ツールを示した図であって、(a)は、断面図、(b)は、底面図である。It is the figure which showed the rotary tool for friction stirring, Comprising: (a) is sectional drawing, (b) is a bottom view. 第二実施形態に係る液冷ジャケットを示した分解斜視図である。It is the disassembled perspective view which showed the liquid cooling jacket which concerns on 2nd embodiment. 第二実施形態に係る液冷ジャケットの封止体を下方から臨む斜視図である。It is a perspective view which faces the sealing body of the liquid cooling jacket which concerns on 2nd embodiment from the downward direction. 第二実施形態に係る摩擦攪拌工程を段階的に示した平面図である。It is the top view which showed the friction stirring process which concerns on 2nd embodiment in steps. 図5の(a)のI−I線断面図である。It is the II sectional view taken on the line of (a) of FIG. 第二実施形態に係る摩擦攪拌工程の変形例を示した断面図である。It is sectional drawing which showed the modification of the friction stirring process which concerns on 2nd embodiment. 第三実施形態に係る樹脂部材と金属部材の接合方法を示した斜視図である。It is the perspective view which showed the joining method of the resin member and metal member which concern on 3rd embodiment. 実施例を説明するための斜視図である。It is a perspective view for demonstrating an Example.

[第一実施形態]
本発明の第一実施形態について、図面を参照して詳細に説明する。図1に示すように、本実施形態においては、板状の樹脂部材2と、板状の金属部材3とを接合して複合部材1を形成する場合を例にして説明する。
[First embodiment]
A first embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, in this embodiment, the case where the composite member 1 is formed by joining a plate-like resin member 2 and a plate-like metal member 3 will be described as an example.

本実施形態に係る樹脂部材と金属部材の接合方法(以下、単に「接合方法」という)は、樹脂部材2と金属部材3とを重ね合わせる重ね合わせ工程と、金属部材3に対して摩擦攪拌を行う摩擦攪拌工程とを含む。   The resin member and metal member joining method according to the present embodiment (hereinafter simply referred to as “joining method”) includes a superposing step of superposing the resin member 2 and the metal member 3, and friction stirring on the metal member 3. And a friction stirring step to be performed.

まず、重ね合わせ工程では、図1に示すように、樹脂部材2の上に金属部材3を載せ置き、樹脂部材2の上面の一部と金属部材3の下面の一部とを接触させる。樹脂部材2は、本実施形態では、PET(Polyethylene terephthalate)製の板状部材である。樹脂部材2の材質は、PETに限定されるものではなく、熱可塑性樹脂の中から用途に応じて適宜選択すればよい。   First, in the overlapping process, as shown in FIG. 1, the metal member 3 is placed on the resin member 2, and a part of the upper surface of the resin member 2 and a part of the lower surface of the metal member 3 are brought into contact with each other. In this embodiment, the resin member 2 is a plate-like member made of PET (Polyethylene terephthalate). The material of the resin member 2 is not limited to PET, and may be appropriately selected from thermoplastic resins according to applications.

金属部材3は、本実施形態では、アルミニウム合金製(A5052−O)の板状部材である。金属部材3は、アルミニウム、アルミニウム合金、銅、銅合金、チタン、チタン合金、マグネシウム、マグネシウム合金など摩擦攪拌可能な金属材料から用途に応じて適宜選択すればよい。以下、金属部材3を「アルミニウム合金部材3」ともいう。   In the present embodiment, the metal member 3 is a plate-like member made of aluminum alloy (A5052-O). The metal member 3 may be appropriately selected from metal materials capable of friction stir, such as aluminum, aluminum alloy, copper, copper alloy, titanium, titanium alloy, magnesium, and magnesium alloy, depending on the application. Hereinafter, the metal member 3 is also referred to as “aluminum alloy member 3”.

次に、摩擦攪拌工程では、図2の(a)及び(b)に示すように、回転ツールG(以下、摩擦攪拌用回転ツールGともいう)を用いて、アルミニウム合金部材3の上面側からアルミニウム合金部材3に対して摩擦攪拌を行う。摩擦攪拌用回転ツールGは、略円柱状を呈するショルダー部G1と、ショルダー部G1の下面(端面)から突出したピン部G2とを有する。摩擦攪拌用回転ツールGは、工具鋼などアルミニウム合金部材3よりも硬質の金属材料からなる。ピン部G2は、図2の(b)に示すように、平面視渦巻き状を呈する渦巻き部G11と、ショルダー部G1の中央に形成され平面視円形状を呈する円形部G12とを有する。ショルダー部G1及びピン部G2の形状、大きさ等は、接合する対象物に応じて適宜設定すればよい。また、ピン部G2を設けずに、ショルダー部G1の下面(端面)が平坦な摩擦攪拌用回転ツールを用いてもよい。   Next, in the friction agitation step, as shown in FIGS. 2A and 2B, a rotary tool G (hereinafter also referred to as a friction agitation rotary tool G) is used from the upper surface side of the aluminum alloy member 3. Friction stirring is performed on the aluminum alloy member 3. The friction stirring tool G includes a shoulder portion G1 having a substantially columnar shape and a pin portion G2 protruding from the lower surface (end surface) of the shoulder portion G1. The rotary tool G for friction stirring is made of a metal material harder than the aluminum alloy member 3 such as tool steel. As shown in FIG. 2B, the pin portion G2 has a spiral portion G11 that exhibits a spiral shape in plan view, and a circular portion G12 that is formed in the center of the shoulder portion G1 and has a circular shape in plan view. What is necessary is just to set suitably the shape of a shoulder part G1, the pin part G2, a magnitude | size, etc. according to the target object to join. Moreover, you may use the rotation tool for friction stirring that the lower surface (end surface) of the shoulder part G1 is flat, without providing the pin part G2.

摩擦攪拌工程では、樹脂部材2及びアルミニウム合金部材3を移動不能に拘束した後、摩擦攪拌用回転ツールGの下面(端面)をアルミニウム合金部材3に対向させ、アルミニウム合金部材3の上面の任意の位置に所定の深さで押し込み(押圧し)、アルミニウム合金部材3の長手方向に沿って摩擦攪拌用回転ツールGを相対的に移動させる。摩擦攪拌用回転ツールGの回転速度及び進行速度は、特に制限されるものではないが、例えば、回転速度1000rpm、進行速度300mm/minで移動させる。   In the friction stirring step, the resin member 2 and the aluminum alloy member 3 are restrained so as not to move, and then the lower surface (end surface) of the friction stirring rotary tool G is opposed to the aluminum alloy member 3, so that an arbitrary upper surface of the aluminum alloy member 3 is formed. The position is pushed (pressed) at a predetermined depth, and the friction stirring rotary tool G is relatively moved along the longitudinal direction of the aluminum alloy member 3. The rotational speed and the traveling speed of the friction stir rotating tool G are not particularly limited, but are moved at, for example, a rotational speed of 1000 rpm and a traveling speed of 300 mm / min.

アルミニウム合金部材3の上面には、摩擦攪拌用回転ツールGの移動軌跡に沿って塑性化領域Wが形成される。ここで、「塑性化領域」とは、摩擦攪拌用回転ツールGの摩擦熱によって加熱されて現に塑性化している状態と、摩擦攪拌用回転ツールGが通り過ぎて常温に戻った状態の両方を含むこととする。本実施形態では、塑性化領域Wが樹脂部材2に接触しない程度の押込み量で摩擦攪拌を行っている。なお、摩擦攪拌によってアルミニウム合金部材3の上面に発生したバリは切削加工により切除することが好ましい。   A plasticized region W is formed on the upper surface of the aluminum alloy member 3 along the movement locus of the friction stirring rotary tool G. Here, the “plasticization region” includes both the state heated by the frictional heat of the friction stirring rotary tool G and actually plasticized, and the state where the friction stirring rotary tool G passes and returns to normal temperature. I will do it. In the present embodiment, the friction stir is performed with a pressing amount such that the plasticized region W does not contact the resin member 2. In addition, it is preferable that the burr | flash which generate | occur | produced on the upper surface of the aluminum alloy member 3 by friction stirring is excised by cutting.

かかる接合方法によれば、樹脂部材2とアルミニウム合金部材3との重ね代に対して、アルミニウム合金部材3の上方から回転した摩擦攪拌用回転ツールGを押圧して移動させることにより、その摩擦熱で樹脂部材2の表面(表層部分)に係る樹脂が溶融し、温度低下に伴って再び硬化する。これにより、樹脂部材2がアルミニウム合金部材3の下面に溶着して接合される。つまり、摩擦攪拌用回転ツールGを押圧するだけで、両部材を比較的用容易に接合することができる。また、前記した従来方法では、樹脂の射出成形と、樹脂部材とアルミニウム合金部材との接合を同時に行っていたため既存の部材に対して接合することは不可能であったが、本実施形態に係る接合方法によれば既存の樹脂部材2及びアルミニウム合金部材3に対して接合することができる。   According to this joining method, the frictional heat is generated by pressing and moving the rotating tool G for friction stirring rotated from above the aluminum alloy member 3 with respect to the overlap of the resin member 2 and the aluminum alloy member 3. Thus, the resin on the surface (surface layer portion) of the resin member 2 is melted and cured again as the temperature decreases. Thereby, the resin member 2 is welded and joined to the lower surface of the aluminum alloy member 3. That is, both members can be joined relatively easily by simply pressing the friction stirring rotary tool G. Further, in the above-described conventional method, since the injection molding of the resin and the joining of the resin member and the aluminum alloy member were performed at the same time, it was impossible to join the existing member. According to the joining method, the existing resin member 2 and the aluminum alloy member 3 can be joined.

また、所望の接合箇所に対して摩擦攪拌用回転ツールGを押圧するだけなので、設計の自由度を高めることができる。また、摩擦攪拌用回転ツールGの端面をアルミニウム合金部材3に押圧することで、金属部材をバランスよく押圧することができるため、接合精度を高めることができる。また、摩擦攪拌によって形成される塑性化c領域Wが、樹脂部材2に接触するように接合してもよいが、本実施形態のように塑性化領域Wが樹脂部材2に接触しない程度に浅めに摩擦攪拌を行っても接合することができる。   Moreover, since the friction stir rotating tool G is simply pressed against a desired joint location, the degree of freedom in design can be increased. Moreover, since the metal member can be pressed in a balanced manner by pressing the end surface of the rotating tool G for friction stirring against the aluminum alloy member 3, the joining accuracy can be increased. Further, the plasticized c region W formed by friction stirring may be joined so as to be in contact with the resin member 2, but it is shallow so that the plasticized region W does not contact the resin member 2 as in this embodiment. Bonding can also be performed by friction stirring.

なお、摩擦攪拌用回転ツールGのショルダー部G1の外径を、アルミニウム合金部材3の厚みの2〜5倍に設定することが好ましい。また、摩擦攪拌用回転ツールGの押込み量(アルミニウム合金部材3の上面からショルダー部G1の下面までの押込み長さ)を、アルミニウム合金部材3の厚みの5%〜20%に設定することが好ましい。ショルダー部G1の外径又は摩擦攪拌用回転ツールGの押込み量をこのように設定することで、接合強度を高めることができる。根拠については後記する。   In addition, it is preferable to set the outer diameter of the shoulder part G1 of the rotary tool G for friction stirring to 2 to 5 times the thickness of the aluminum alloy member 3. Moreover, it is preferable to set the pressing amount of the rotary tool G for friction stirring (the pressing length from the upper surface of the aluminum alloy member 3 to the lower surface of the shoulder portion G1) to 5% to 20% of the thickness of the aluminum alloy member 3. . By setting the outer diameter of the shoulder part G1 or the pressing amount of the friction stirring rotary tool G in this way, the bonding strength can be increased. The reason will be described later.

また、アルミニウム合金部材3のうち少なくとも樹脂部材2と接触する面に、エッチング処理又はアルマイト(陽極酸化)処理を施して、当該接触面を凸凹に形成した後に、前記した摩擦攪拌工程を行うことが好ましい。かかる接合方法によれば、アルミニウム合金部材3の凹部分に溶融した樹脂が入り込み、樹脂部材2とアルミニウム合金部材3との接触面積が増加するため、より強固に接合することができる。   Moreover, after performing the etching process or the alumite (anodization) process to the surface which contacts the resin member 2 among the aluminum alloy members 3, the said friction stirring process may be performed after forming the said contact surface in unevenness. preferable. According to such a joining method, since the molten resin enters the concave portion of the aluminum alloy member 3 and the contact area between the resin member 2 and the aluminum alloy member 3 is increased, the joining can be performed more firmly.

エッチング処理は、例えば、塩酸溶液中に塩化アルミニウム六水和物を添加して調製したエッチング液にアルミニウム合金部材3を浸漬させて行う。一方、アルマイト処理は、希硫酸やシュウ酸などを用いてアルミニウム合金を陽極として電気分解することにより、アルミニウム合金部材3の表面を電気化学的に酸化させて行う。   The etching process is performed, for example, by immersing the aluminum alloy member 3 in an etching solution prepared by adding aluminum chloride hexahydrate to a hydrochloric acid solution. On the other hand, the alumite treatment is performed by electrochemically oxidizing the surface of the aluminum alloy member 3 by electrolyzing the aluminum alloy as an anode using dilute sulfuric acid or oxalic acid.

なお、アルミニウム合金部材3の表面を凸凹にする表面処理としては、エッチング処理やアルマイト処理に限定されるものではなく、例えばワイヤーブラシ等で表面を粗く削って凸凹を形成してもよい。   In addition, as surface treatment which makes the surface of the aluminum alloy member 3 uneven, it is not limited to an etching process or an alumite process, For example, the surface may be rough-cut with a wire brush etc. and unevenness may be formed.

[第二実施形態]
次に、本発明の第二実施形態について説明する。本実施形態では、図3に示すように、樹脂製のジャケット本体10と金属製(本実施形態ではアルミニウム合金製)の封止体30とを有する液冷ジャケットPを製造する場合を例にして説明する。液冷ジャケットPは、例えば、CPU(Central Processing Unit)等の熱発生体を冷却するために用いられる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the present embodiment, as shown in FIG. 3, as an example, a liquid cooling jacket P having a resin jacket body 10 and a metal (aluminum alloy in this embodiment) sealing body 30 is manufactured. explain. The liquid cooling jacket P is used for cooling a heat generating body such as a CPU (Central Processing Unit), for example.

図3に示すように、液冷ジャケットPは、熱発生体であるCPU(図示せず)が発生する熱を外部に輸送する熱輸送流体である冷却水(図示せず)が流れるとともに一部が開口した凹部11を有するジャケット本体10に、凹部11の開口部12を封止する封止体30を固定して構成されている。   As shown in FIG. 3, the liquid cooling jacket P partially includes cooling water (not shown) that is a heat transport fluid that transports heat generated by a CPU (not shown) that is a heat generator to the outside. A sealing body 30 that seals the opening 12 of the recess 11 is fixed to the jacket body 10 having the recess 11 that is open.

液冷ジャケットPは、その下方側の中央に、熱拡散シート(図示せず)を介してCPU(図示せず)が取り付けられるようになっており、CPUが取り付けられた状態で、液冷ジャケットP内を冷却水が流通することにより、CPUが発生する熱を受熱すると共に、内部を流通する冷却水と熱交換する。これによって、液冷ジャケットPは、CPUから受け入れた熱を冷却水に伝達し、その結果として、CPUを効率的に冷却する。なお、熱拡散シートは、CPUの熱を、ジャケット本体10に効率的に伝達させるためのシートであり、例えば銅などの高熱伝導性を有する金属から形成されている。   The liquid cooling jacket P is configured such that a CPU (not shown) is attached to the lower center of the liquid cooling jacket P via a heat diffusion sheet (not shown). As the cooling water flows through P, the heat generated by the CPU is received and exchanged with the cooling water flowing through the inside. Thereby, the liquid cooling jacket P transfers the heat received from the CPU to the cooling water, and as a result, the CPU is efficiently cooled. The thermal diffusion sheet is a sheet for efficiently transmitting the heat of the CPU to the jacket body 10 and is formed of a metal having high thermal conductivity such as copper, for example.

ジャケット本体10は、一方側(本実施形態では上側)が開口した浅底の箱体であって、その内側に凹部11が形成されており、底壁13と、周壁14とを有している。本実施形態では、ジャケット本体10は、熱可塑性樹脂により成形されている。これにより、液冷ジャケットPは軽量化が達成されており、取り扱い容易となっている。   The jacket main body 10 is a shallow box that is open on one side (the upper side in the present embodiment), and has a recess 11 formed therein, and has a bottom wall 13 and a peripheral wall 14. . In the present embodiment, the jacket body 10 is formed of a thermoplastic resin. Thereby, the liquid cooling jacket P has been reduced in weight and is easy to handle.

ジャケット本体10の凹部11の開口周縁部12aには、周壁14の上面から一段下がった位置に段差面15が形成されている。周壁14の上面から段差面15までの距離(深さ)は、後記する封止体30の蓋板部31の厚さ寸法と同等である。段差面15の上には、封止体30の蓋板部31の周縁が載せられる。段差面15の幅W1は、冷却水が流れる凹部11の容積を確保するため、なるべく小さく設定することが好ましいが、本実施形態では、摩擦攪拌用回転ツールGのショルダー部G1の外径よりも大きく形成されている。   A step surface 15 is formed on the opening peripheral edge portion 12 a of the recess 11 of the jacket body 10 at a position one step down from the upper surface of the peripheral wall 14. The distance (depth) from the upper surface of the peripheral wall 14 to the step surface 15 is equal to the thickness dimension of the cover plate portion 31 of the sealing body 30 described later. On the step surface 15, the periphery of the cover plate portion 31 of the sealing body 30 is placed. The width W1 of the step surface 15 is preferably set to be as small as possible in order to secure the volume of the recess 11 through which the cooling water flows. However, in the present embodiment, the width W1 is larger than the outer diameter of the shoulder portion G1 of the friction stirring tool G. Largely formed.

周壁14の互いに対向する一対の壁部14a,14aには、凹部11に冷却水を流通させるための貫通孔16,16がそれぞれ形成されている。貫通孔16,16は、本実施形態では、壁部14a,14aの対向方向(図3中、X軸方向)に延出しており、円形断面を有し、凹部11の深さ方向中間部に形成されている。なお、貫通孔16の形状および位置は、これに限られるものではなく、冷却水の種類や流量に応じて適宜変更可能である。   Through-holes 16 and 16 for circulating cooling water through the recess 11 are formed in a pair of wall portions 14a and 14a facing each other of the peripheral wall 14, respectively. In the present embodiment, the through-holes 16 and 16 extend in the opposing direction of the walls 14a and 14a (in the X-axis direction in FIG. 3), have a circular cross section, and are formed in the intermediate portion in the depth direction of the recess 11. Is formed. In addition, the shape and position of the through-hole 16 are not restricted to this, It can change suitably according to the kind and flow volume of cooling water.

図3および図4に示すように、封止体30は、ジャケット本体10の凹部11の開口部12(図3参照)と同じ形状(本実施形態では正方形)の平面形状を有する板状の蓋板部31と、蓋板部31の下面に設けられた複数のフィン32,32…とを備えて構成されている。   As shown in FIGS. 3 and 4, the sealing body 30 is a plate-like lid having a planar shape that is the same shape (square in this embodiment) as the opening 12 (see FIG. 3) of the recess 11 of the jacket body 10. It comprises a plate portion 31 and a plurality of fins 32, 32... Provided on the lower surface of the lid plate portion 31.

複数のフィン32,32…は、互いに平行で且つ蓋板部31に対して直交して配置されており、蓋板部31と一体に構成されている。これにより、蓋板部31とフィン32,32…との間において、熱が良好に伝達するようになっている。図3に示すように、フィン32,32…は、貫通孔16,16が形成された周壁14の壁部14a,14aと直交する方向(図3中、X軸方向)に延出して配置されている。フィン32は、凹部11の深さ寸法と同等の高さ(深さ)寸法(図3中、Z軸方向長さ)を有しており、その先端部が凹部11の底面に当接するようになっている。これによって、封止体30がジャケット本体10に取り付けられた状態で、封止体30の蓋板部31と、隣り合うフィン32,32と、凹部11の底面とで筒状の空間が区画され、その空間が、冷却水が流れる流路33(図5の(a)参照)として機能することとなる。また、フィン32,32…は、凹部11の一辺の長さ寸法よりも短い長さ寸法(図3中、X軸方向長さ)を有しており、その両端は、凹部11の周壁14の各壁部14a,14aの内壁面とそれぞれ所定の間隔を隔てるように構成されている。これによって、封止体30がジャケット本体10に取り付けられた状態で、フィン32,32…の両端外側の、凹部11の周壁14の壁部14aとの間の空間が、貫通孔16から、フィン32の延出方向と直交する方向(図3中、Y軸方向)へ広がる流路ヘッダ部34(図5の(a)参照)を構成することとなる。   The plurality of fins 32, 32... Are arranged parallel to each other and orthogonal to the lid plate portion 31, and are configured integrally with the lid plate portion 31. Thereby, heat is transmitted favorably between the cover plate portion 31 and the fins 32, 32. As shown in FIG. 3, the fins 32, 32... Are arranged so as to extend in a direction (X-axis direction in FIG. 3) perpendicular to the wall portions 14a, 14a of the peripheral wall 14 in which the through holes 16, 16 are formed. ing. The fin 32 has a height (depth) dimension (length in the Z-axis direction in FIG. 3) equivalent to the depth dimension of the recess 11, and its tip end abuts against the bottom surface of the recess 11. It has become. Thus, in a state where the sealing body 30 is attached to the jacket body 10, a cylindrical space is partitioned by the cover plate portion 31 of the sealing body 30, the adjacent fins 32 and 32, and the bottom surface of the recess 11. The space functions as a flow path 33 (see FIG. 5A) through which cooling water flows. Further, the fins 32, 32... Have a length dimension (length in the X-axis direction in FIG. 3) that is shorter than the length dimension of one side of the recess 11, and both ends of the fins 32, 32. Each of the wall portions 14a, 14a is configured to be spaced from the inner wall surface by a predetermined distance. Thus, in a state where the sealing body 30 is attached to the jacket main body 10, a space between the outer ends of the fins 32, 32... The flow path header portion 34 (see FIG. 5A) extending in the direction orthogonal to the extending direction of 32 (the Y-axis direction in FIG. 3) is configured.

封止体30は、アルミニウム合金から形成されている。封止体30は、アルミニウム合金から形成されブロックを切削加工することで形成されている。なお、封止体30は、アルミニウム、アルミニウム合金、銅、銅合金、チタン、チタン合金、マグネシウム、マグネシウム合金など摩擦攪拌可能な金属材料から用途に応じて適宜選択すればよい。   The sealing body 30 is formed from an aluminum alloy. The sealing body 30 is formed by cutting a block made of an aluminum alloy. The sealing body 30 may be appropriately selected from metal materials capable of friction stir, such as aluminum, aluminum alloy, copper, copper alloy, titanium, titanium alloy, magnesium, and magnesium alloy, depending on the application.

次に、液冷ジャケットPの製造方法について図5を用いて具体的に説明する。本実施形態に係る液冷ジャケットの製造方法は、ジャケット本体10に封止体30を載置する載置工程と、突合部40の内側に沿って摩擦攪拌を行う摩擦攪拌工程とを含む。   Next, a method for manufacturing the liquid cooling jacket P will be specifically described with reference to FIG. The manufacturing method of the liquid cooling jacket according to the present embodiment includes a placing step of placing the sealing body 30 on the jacket body 10 and a friction stirring step of performing friction stirring along the inside of the abutting portion 40.

載置工程では、図3及び図5の(a)に示すように、封止体30を、フィン32が下側になるようにして、ジャケット本体10の凹部11に挿入し、封止体30の蓋板部31を、段差面15上に載置する。ここで、ジャケット本体10の凹部11の開口周縁部12aと、封止体30の周縁部30aとが突き合わされ、突合部40が構成される。   In the placing step, as shown in FIGS. 3 and 5A, the sealing body 30 is inserted into the recess 11 of the jacket body 10 with the fins 32 on the lower side, and the sealing body 30 is inserted. The lid plate portion 31 is placed on the step surface 15. Here, the opening peripheral part 12a of the recessed part 11 of the jacket main body 10 and the peripheral part 30a of the sealing body 30 are faced | matched, and the abutting part 40 is comprised.

摩擦攪拌工程では、この突合部40の内側に沿って摩擦攪拌用回転ツールGを相対移動させる。即ち、摩擦攪拌用回転ツールGの下面(端面)を封止体30に対向させ、所定の押込み量で押圧した後、ジャケット本体10の段差面15(図3参照)と、封止体30の蓋板部31とが重なり合う重ね代に沿って移動させる。このとき、ジャケット本体10が移動しないように、ジャケット本体10の周壁14の周面に、ジャケット本体10を四方向から囲む治具(図示せず)を予め当てておくのが好ましい。   In the friction stirring step, the friction stirring rotary tool G is relatively moved along the inside of the abutting portion 40. That is, the lower surface (end surface) of the friction stir rotating tool G is opposed to the sealing body 30 and pressed by a predetermined pressing amount, and then the step surface 15 (see FIG. 3) of the jacket body 10 and the sealing body 30 are pressed. It moves along the overlap allowance with which the cover plate part 31 overlaps. At this time, it is preferable that a jig (not shown) surrounding the jacket body 10 from four directions is applied in advance to the peripheral surface of the peripheral wall 14 of the jacket body 10 so that the jacket body 10 does not move.

摩擦攪拌工程では、図5の(a)及び図6に示すように、摩擦攪拌用回転ツールGの挿入位置(始端54a)を、突合部40の内側に設定する。そして、摩擦攪拌用回転ツールGの回転中心Qを、段差面15の幅方向の中心に重ねた状態で、摩擦攪拌用回転ツールGを移動させつつ蓋板部31を摩擦攪拌する。   In the friction stirring step, as shown in FIGS. 5A and 6, the insertion position (starting end 54 a) of the friction stirring rotary tool G is set inside the abutting portion 40. Then, with the rotation center Q of the friction stirring rotary tool G overlapped with the center of the step surface 15 in the width direction, the lid plate portion 31 is friction stirred while moving the friction stirring rotary tool G.

その後、摩擦攪拌用回転ツールGの回転および移動を継続し、図5の(b)に示すように、摩擦攪拌用回転ツールGを開口部12の周りを一周させて塑性化領域Wを形成する。このとき、摩擦攪拌用回転ツールGにおける始端54a(図5の(a)参照)と終端54b(図5の(b)参照)とがオーバーラップしており、塑性化領域Wの一部が重複するように構成されている。   Thereafter, the rotation and movement of the friction stirring rotary tool G is continued, and as shown in FIG. 5B, the friction stirring rotary tool G is rotated around the opening 12 to form the plasticized region W. . At this time, the start end 54a (see FIG. 5A) and the end 54b (see FIG. 5B) of the friction stir rotating tool G overlap, and a part of the plasticizing region W overlaps. Is configured to do.

以上のように、摩擦攪拌用回転ツールGを突合部40(図5の(a)参照)の内側に沿って一周させて摩擦攪拌を行い、ジャケット本体10に封止体30を固定することで、液冷ジャケットPが形成される。   As described above, the rotating tool G for friction stirring is rotated around the inside of the abutting portion 40 (see FIG. 5A) to perform friction stirring, and the sealing body 30 is fixed to the jacket body 10. A liquid cooling jacket P is formed.

本実施形態に係る液冷ジャケットPの製造方法によれば、アルミニウム合金製の封止体30に対して摩擦攪拌することにより、その摩擦熱でジャケット本体10に係る樹脂が溶融し、再度硬化する際に封止体30と溶着し強固に接合される。つまり、摩擦攪拌用回転ツールGを押圧して相対的に移動させるだけで、ジャケット本体10と封止体30とを接合できるため、容易に液冷ジャケットPを製造することができる。また、摩擦攪拌用回転ツールGを封止体30の周囲に沿って一周させることで接合強度を高めるとともに、接合の作業性を高めることができる。また、塑性化領域Wが段差面15に接触しない程度の押込み量であっても接合することができる。   According to the manufacturing method of the liquid cooling jacket P according to the present embodiment, the resin related to the jacket main body 10 is melted by the frictional heat by the frictional stirring with respect to the aluminum alloy sealing body 30, and is cured again. At this time, the sealing body 30 is welded and firmly joined. That is, the jacket body 10 and the sealing body 30 can be joined simply by pressing and rotating the friction stir rotating tool G, so that the liquid cooling jacket P can be easily manufactured. Moreover, by rotating the friction stirring rotary tool G along the circumference of the sealing body 30, it is possible to increase the bonding strength and to improve the bonding workability. Further, even if the pressing amount is such that the plasticized region W does not contact the stepped surface 15, the bonding can be performed.

なお、摩擦攪拌用回転ツールGのショルダー部G1の外径を、封止体30の蓋板部31の厚みの2〜5倍に設定することが好ましい。また、摩擦攪拌用回転ツールGの押込み量(蓋板部31の上面からショルダー部G1の下面までの押込み長さ)を、封止体30の蓋板部31の厚みの5%〜20%に設定することが好ましい。ショルダー部G1の外径又は摩擦攪拌用回転ツールGの押込み量をこのように設定することで、接合強度を高めることができる。根拠については後記する。   In addition, it is preferable to set the outer diameter of the shoulder part G1 of the rotary tool G for friction stirring to 2 to 5 times the thickness of the cover plate part 31 of the sealing body 30. Further, the pressing amount (the pressing length from the upper surface of the lid plate portion 31 to the lower surface of the shoulder portion G1) of the rotary tool G for friction stirring is set to 5% to 20% of the thickness of the lid plate portion 31 of the sealing body 30. It is preferable to set. By setting the outer diameter of the shoulder part G1 or the pressing amount of the friction stirring rotary tool G in this way, the bonding strength can be increased. The reason will be described later.

また、摩擦攪拌工程を行う前に、封止体30の蓋板部31のうち、少なくともジャケット本体10の段差面15と接触する面に前記したエッチング処理又はアルマイト処理を施してもよい。アルミニウム合金製である封止体30の表面を凸凹に形成することで、当該凹部分に溶融した樹脂が入り込むため、接触面積が増大し、より強固に接合することができる。   Moreover, before performing a friction stirring process, you may perform an above-mentioned etching process or alumite process to the surface which contacts the level | step difference surface 15 of the jacket main body 10 among the cover board parts 31 of the sealing body 30. FIG. By forming the surface of the sealing body 30 made of an aluminum alloy so as to be uneven, the melted resin enters the concave portion, so that the contact area is increased and a stronger bond can be achieved.

なお、本実施形態では、ジャケット本体10に段差面15を備え、段差面15に封止体30を載置する構成としたが、これに限定されるものではない。例えば、図7に示すように、ジャケット本体10の周壁14の上面に封止体30の蓋板部31を載置し、周壁14と蓋板部31の重ね代に沿って、封止体30の上方から摩擦攪拌用回転ツールGを相対移動させて摩擦攪拌工程を行ってもよい。   In the present embodiment, the jacket body 10 is provided with the step surface 15 and the sealing body 30 is placed on the step surface 15. However, the present invention is not limited to this. For example, as shown in FIG. 7, the cover plate portion 31 of the sealing body 30 is placed on the upper surface of the peripheral wall 14 of the jacket body 10, and the sealing body 30 is disposed along the overlapping margin of the peripheral wall 14 and the cover plate portion 31. The friction stirring step may be performed by relatively moving the friction stirring rotary tool G from above.

[第三実施形態]
次に、本発明の第三実施形態について説明する。第一実施形態及び第二実施形態では、摩擦攪拌用回転ツールGを用いて、摩擦攪拌工程を行って樹脂部材2と金属部材3とを接合したが、第三実施形態では、回転ツールFを用いて、摩擦工程を行う点で第一実施形態及び第二実施形態と相違する。
[Third embodiment]
Next, a third embodiment of the present invention will be described. In 1st embodiment and 2nd embodiment, although the friction stirring process was performed and the resin member 2 and the metal member 3 were joined using the rotation tool G for friction stirring, in 3rd embodiment, the rotation tool F is used. It differs from 1st embodiment and 2nd embodiment by the point which uses and performs a friction process.

本実施形態にかかる接合方法では、樹脂部材2と金属部材3とを重ね合わせる重ね合わせ工程と、重ね合わせた部材に対して摩擦接合を行う摩擦工程とを含む。重ね合わせ行程については、第一実施形態と同等であるため説明は省略する。   The joining method according to the present embodiment includes a superposing step of superposing the resin member 2 and the metal member 3 and a friction step of performing frictional joining on the superposed members. Since the overlapping process is the same as that of the first embodiment, the description thereof is omitted.

摩擦工程では、図8に示すように、回転ツールF(以下、摩擦接合用回転ツールFともいう)を用いて樹脂部材2及び金属部材3(アルミニウム合金部材3)に対して摩擦接合を行う。   In the friction process, as shown in FIG. 8, friction bonding is performed on the resin member 2 and the metal member 3 (aluminum alloy member 3) using a rotary tool F (hereinafter also referred to as a friction welding rotary tool F).

摩擦接合用回転ツールFは、回転軸F1と、回転軸F1の先端に設けられたツール本体F2とを有する。回転軸F1とツール本体F2は、同軸で形成されている。回転軸F1の基端側は、図示しない駆動装置に連結されている。ツール本体F2は、駆動装置の駆動が回転軸F1を介して伝達されて軸周りに高速回転する。ツール本体F2は、円板状を呈し、工具鋼等アルミニウム合金よりも硬質の金属材料からなる。   The friction welding rotary tool F includes a rotary shaft F1 and a tool main body F2 provided at the tip of the rotary shaft F1. The rotation shaft F1 and the tool body F2 are formed coaxially. The proximal end side of the rotation shaft F1 is connected to a drive device (not shown). The tool main body F2 rotates at high speed around the axis when the drive of the driving device is transmitted via the rotation axis F1. The tool body F2 has a disk shape and is made of a metal material harder than an aluminum alloy such as tool steel.

摩擦接合用回転ツールFの形状、大きさ等は、接合する部材に応じて適宜設定すればよいが、本実施形態では、例えば、ツール本体F2の直径が100mm、周面F3の幅が4mmのものを採用した。また、摩擦接合用回転ツールFの押込み量、回転数、接合速度(送り速度)は、接合する部材に応じて適宜設定すればよいが、本実施形態では、例えば、押込み量を0.2mm、回転数を3000rpm、接合速度を500〜1500mm/minに設定した。   The shape, size, etc. of the friction welding rotary tool F may be appropriately set according to the members to be joined. In this embodiment, for example, the tool body F2 has a diameter of 100 mm and the peripheral surface F3 has a width of 4 mm. The thing was adopted. Further, the pushing amount, rotation speed, and joining speed (feeding speed) of the friction welding rotary tool F may be appropriately set according to the members to be joined. In this embodiment, for example, the pushing amount is 0.2 mm, The number of revolutions was set to 3000 rpm, and the joining speed was set to 500 to 1500 mm / min.

摩擦工程では、樹脂部材2及びアルミニウム合金部材3を移動不能に拘束した後、摩擦接合用回転ツールFを回転させつつ、ツール本体F2の周面F3をアルミニウム合金部材3の上面に所定の深さで押し込み(押圧し)、樹脂部材2とアルミニウム合金部材3の重ね代に沿って移動させる。摩擦接合によれば、摩擦接合用回転ツールFとアルミニウム合金部材3との摩擦熱によって、樹脂部材2の表面が溶融し、再度硬化する際にアルミニウム合金部材3と溶着し強固に接合される。   In the friction process, after the resin member 2 and the aluminum alloy member 3 are restrained so as not to move, the peripheral surface F3 of the tool body F2 is rotated to a predetermined depth on the upper surface of the aluminum alloy member 3 while rotating the friction welding rotary tool F. Is pushed (pressed) and moved along the overlap margin of the resin member 2 and the aluminum alloy member 3. According to the friction welding, the surface of the resin member 2 is melted by the frictional heat between the friction welding rotary tool F and the aluminum alloy member 3, and when the resin member 2 is hardened again, it is welded and firmly joined to the aluminum alloy member 3.

第三実施形態にかかる接合方法によっても、第一実施形態と略同等の効果を得ることができる。また、摩擦工程では、第一実施形態に比べて小さい押圧力で接合することができるため、接合する部材が薄い場合に適している。   Also by the joining method according to the third embodiment, substantially the same effect as that of the first embodiment can be obtained. Moreover, since it can join by a small pressing force compared with 1st embodiment in a friction process, it is suitable when the member to join is thin.

なお、第三実施形態では、アルミニウム合金部材3のうち少なくとも樹脂部材2と接触する面に、エッチング処理又はアルマイト(陽極酸化)処理を施して、当該接触面を凸凹に形成した後に、前記した摩擦工程を行ってもよい。また、第三実施形態では、板状の樹脂部材2とアルミニウム合金部材3とを接合する場合を例にして説明したが、これに限定されるものではない。例えば、第二実施形態に記載したように、液冷ジャケットを製造する際に、摩擦攪拌工程に替えて、摩擦工程を行ってもよい。   In the third embodiment, the surface of the aluminum alloy member 3 that is in contact with at least the resin member 2 is subjected to etching treatment or anodizing (anodization) treatment, and the contact surface is formed to be uneven. You may perform a process. In the third embodiment, the case where the plate-like resin member 2 and the aluminum alloy member 3 are joined is described as an example. However, the present invention is not limited to this. For example, as described in the second embodiment, when manufacturing a liquid cooling jacket, a friction process may be performed instead of the friction stirring process.

摩擦攪拌用回転ツールGを用いた実施例1〜実施例3と、摩擦接合用回転ツールFを用いた実施例4を行った。   Examples 1 to 3 using the rotating tool G for friction stirring and Example 4 using the rotating tool F for friction welding were performed.

図9は、実施例1〜実施例3を説明するための斜視図である。実施例1〜実施例3では、図9に示すように、板状の樹脂部材2と、板状のアルミニウム合金部材3とを重ね合わせた後、当該重ね代に対してアルミニウム合金部材3の上方から摩擦攪拌用回転ツールGをスポット的に押圧し、摩擦熱により接合された複合部材1の破壊強度を測定した。破壊強度は、図9で示す複合部材1を公知の引張試験機に設置し、樹脂部材2の外側端部及びアルミニウム合金部材3の外側端部をそれぞれが離間する方向に引張り、破壊して測定した。   FIG. 9 is a perspective view for explaining the first to third embodiments. In Example 1 to Example 3, as shown in FIG. 9, after the plate-like resin member 2 and the plate-like aluminum alloy member 3 are overlapped, the aluminum alloy member 3 is positioned above the overlap allowance. The rotary tool G for friction stirring was pressed in a spot manner, and the fracture strength of the composite member 1 joined by frictional heat was measured. The breaking strength is measured by installing the composite member 1 shown in FIG. 9 in a known tensile testing machine, pulling the outer end of the resin member 2 and the outer end of the aluminum alloy member 3 in directions away from each other, and breaking. did.

実施例1〜実施例3における樹脂部材2は、PET製であって、長さ100mm、幅30mm、厚さ3mmで形成されている。一方、アルミニウム合金部材3は、長さ100mm、幅30mm、厚さ3mm又は5mmで形成されている。樹脂部材2とアルミニウム合金部材3の重ね代は、30mmである。   The resin member 2 in Examples 1 to 3 is made of PET, and is formed with a length of 100 mm, a width of 30 mm, and a thickness of 3 mm. On the other hand, the aluminum alloy member 3 is formed with a length of 100 mm, a width of 30 mm, and a thickness of 3 mm or 5 mm. The overlap margin of the resin member 2 and the aluminum alloy member 3 is 30 mm.

実施例1では、摩擦攪拌用回転ツールGの最適な押込み量を導くために、試験1−a〜試験1−fの六種類の条件下で、所定の押込み量で接合した場合における破壊強度(引張強度)を測定した。各試験の条件を、表1に示す。   In Example 1, in order to derive the optimum indentation amount of the friction stir rotating tool G, the fracture strength when joining with a predetermined indentation amount under the six kinds of conditions of Test 1-a to Test 1-f ( Tensile strength) was measured. Table 1 shows the conditions of each test.

Figure 0005949836
Figure 0005949836

試験1−a〜試験1−fにおいて、所定の押込み量における破壊強度の結果を表2に示す。なお、表2、表4及び表6における判定欄は、「×」が接合せず、「△」が接合しているが引張強度が弱い、「○」が十分な引張強度であることを示す。   In Test 1-a to Test 1-f, the results of the fracture strength at a predetermined indentation amount are shown in Table 2. In addition, the judgment column in Table 2, Table 4 and Table 6 indicates that “x” is not joined, “△” is joined but the tensile strength is weak, and “◯” is sufficient tensile strength. .

Figure 0005949836
Figure 0005949836

表2に示すように、試験1−a及び試験1−bの結果をみると、押込み量が0.2mm以上であると破壊強度が3000N以上あるが、押込み量が0.05mm以下であると、押込み量が浅すぎて樹脂部材2の表層部が溶融しないため接合しない。また、押込み量が0.1mmであるとアルミニウム合金部材3の板厚が5mmの場合は接合せず、板厚が3mmであると接合はするが破壊強度が小さいことがわかった。押込み量が0.2mmである場合、アルミニウム合金部材3の板厚に対する割合は、板厚が3mmの場合は6.7%あり、板厚が5mmの場合は4%となる。
また、試験1−c及び試験1−d、試験1−e及び試験1−fをみると、試験1−a及び試験1−bと略同様の結果になったことから、アルミニウム合金部材3の種類によっては、破壊強度には影響がないことがわかった。
As shown in Table 2, when the results of Test 1-a and Test 1-b are seen, if the indentation amount is 0.2 mm or more, the fracture strength is 3000 N or more, but the indentation amount is 0.05 mm or less. Since the pressing amount is too shallow and the surface layer portion of the resin member 2 does not melt, it is not joined. Further, it was found that when the push-in amount is 0.1 mm, the aluminum alloy member 3 is not joined when the plate thickness is 5 mm, and when the plate thickness is 3 mm, it is joined but the breaking strength is small. When the pressing amount is 0.2 mm, the ratio of the aluminum alloy member 3 to the plate thickness is 6.7% when the plate thickness is 3 mm, and 4% when the plate thickness is 5 mm.
Further, when the test 1-c, the test 1-d, the test 1-e, and the test 1-f are seen, the results are almost the same as those of the test 1-a and the test 1-b. It was found that there was no effect on the fracture strength depending on the type.

以上より、摩擦攪拌用回転ツールGの押込み量を、アルミニウム合金部材3の板厚の5%よりも小さく設定したとしても、樹脂部材2とアルミニウム合金部材3とを接合することは可能であるが、十分な引張強度を得るためには、摩擦攪拌用回転ツールGの押込み量を、アルミニウム合金部材3の板厚の5%以上に設定することが望ましい。
一方、摩擦攪拌用回転ツールGの押込み量を大きく設定すると、摩擦攪拌により形成される塑性化領域が樹脂部材2と接触し、メタルと樹脂が混合される可能性がある。また、摩擦攪拌用回転ツールGの押込み量を大きく設定すると、摩擦攪拌装置に過負荷が作用する。したがって、これらを考慮すると、摩擦攪拌用回転ツールGの押込み量をアルミニウム合金部材3の板厚の20%以下に設定することが望ましい。
As described above, even if the pressing amount of the friction stirring rotary tool G is set to be smaller than 5% of the thickness of the aluminum alloy member 3, the resin member 2 and the aluminum alloy member 3 can be joined. In order to obtain a sufficient tensile strength, it is desirable to set the pressing amount of the friction stirring tool G to 5% or more of the thickness of the aluminum alloy member 3.
On the other hand, if the pushing amount of the friction stir rotating tool G is set large, the plasticized region formed by the friction stir may come into contact with the resin member 2 and the metal and the resin may be mixed. Further, when the pressing amount of the friction stirring tool G is set large, an overload acts on the friction stirring device. Therefore, in consideration of these, it is desirable to set the pressing amount of the friction stirring rotary tool G to 20% or less of the plate thickness of the aluminum alloy member 3.

実施例2では、摩擦攪拌用回転ツールGの最適なショルダー部G1(図2参照)の外径を導くために、試験2−a〜試験2−bの二種類の条件下で、所定のショルダー部G1の外径を備えた摩擦攪拌用回転ツールGで接合した場合における破壊強度(引張強度)を測定した。各試験の条件を表3に示す。   In Example 2, in order to derive the optimum outer diameter of the shoulder portion G1 (see FIG. 2) of the rotary tool G for friction stir, a predetermined shoulder is used under two conditions of Test 2-a to Test 2-b. The fracture strength (tensile strength) was measured when joining was performed with the rotating tool G for friction stirrer having the outer diameter of the part G1. Table 3 shows the conditions of each test.

Figure 0005949836
Figure 0005949836

試験2−a、試験2−bにおいて、所定のショルダー部の外径における破壊強度の結果を表4に示す。   Table 4 shows the results of the breaking strength at the outer diameter of the predetermined shoulder portion in Test 2-a and Test 2-b.

Figure 0005949836
Figure 0005949836

表4に示すように、試験2−aにおいては、ショルダー部の外径がφ10.0mmよりも大きいと破壊強度が3000N以上あるが、φ7.5mm以下であると破壊強度が著しく低下した。
一方試験2−bにおいては、ショルダー部の外径がφ7.5mm以上であると破壊強度が3000N以上あるが、φ5.0mm以下であると破壊強度が著しく低下した。
以上より、摩擦攪拌用回転ツールGのショルダー部G1の外径をアルミニウム合金部材3の板厚の2倍よりも小さく設定したとしても、樹脂部材2とアルミニウム合金部材3とを接合するこうとは可能であるが、十分な引張強度を得るためには、摩擦攪拌用回転ツールGのショルダー部G1の外径をアルミニウム合金部材3の板厚の2倍以上にすることが望ましい。なお、ショルダー部G1の外径をアルミニウム合金部材3の板厚の5倍より大きくしても強度には変化がないため、摩擦攪拌装置への負荷を考慮すると、ショルダー部G1の外径は、アルミニウム合金部材3の板厚の5倍以下に設定することが望ましい。
As shown in Table 4, in Test 2-a, when the outer diameter of the shoulder portion is larger than φ10.0 mm, the breaking strength is 3000 N or more, but when it is φ7.5 mm or less, the breaking strength is remarkably lowered.
On the other hand, in Test 2-b, when the outer diameter of the shoulder portion is φ7.5 mm or more, the breaking strength is 3000 N or more, but when it is φ5.0 mm or less, the breaking strength is remarkably lowered.
From the above, even if the outer diameter of the shoulder portion G1 of the rotating tool G for friction stirring is set to be smaller than twice the plate thickness of the aluminum alloy member 3, the resin member 2 and the aluminum alloy member 3 are joined. Although it is possible, in order to obtain sufficient tensile strength, it is desirable that the outer diameter of the shoulder portion G1 of the rotating tool G for friction stirrer is at least twice the plate thickness of the aluminum alloy member 3. Even if the outer diameter of the shoulder portion G1 is larger than 5 times the plate thickness of the aluminum alloy member 3, the strength does not change. Therefore, considering the load on the friction stirrer, the outer diameter of the shoulder portion G1 is It is desirable to set it to 5 times or less the plate thickness of the aluminum alloy member 3.

実施例3では、アルミニウム合金部材3の表面を凸凹に形成した場合における破壊強度との関係について試験を行った。試験3−a〜試験3−cの三種類の条件下で、アルミニウム合金部材3の表面に対して所定の処理を行った後に接合を行った場合における破壊強度(引張強度)を測定した。各試験の条件を表5に示す。   In Example 3, a test was conducted on the relationship with the fracture strength when the surface of the aluminum alloy member 3 was formed to be uneven. The fracture strength (tensile strength) in the case of joining after performing a predetermined treatment on the surface of the aluminum alloy member 3 under the three types of conditions of Test 3-a to Test 3-c was measured. Table 5 shows the conditions of each test.

Figure 0005949836
Figure 0005949836

試験3−a〜試験3−cにおいて、アルミニウム合金部材3の各表面処理における破壊強度の結果を表6に示す。
表6中の、アルミニウム合金部材3に施す表面処理のうち「処理なし」は、アルミニウム合金部材3に表面処理を施していない。
Table 6 shows the results of the fracture strength in each surface treatment of the aluminum alloy member 3 in Test 3-a to Test 3-c.
Of the surface treatments applied to the aluminum alloy member 3 in Table 6, “no treatment” indicates that the aluminum alloy member 3 is not subjected to surface treatment.

また、「エッチングA」では、以下に示すエッチング前処理及びエッチング本処理を行う。エッチング前処理では、まず、アルミニウム合金部材3を30wt%硝酸溶液に常温で5分間浸漬した後に、イオン交換水で十分に水洗し、次に、5wt%水酸化ナトリウム溶液に50℃で1分間浸漬した後に水洗し、さらに、30wt%硝酸溶液に常温で3分間浸漬した後に水洗する。   In “etching A”, the following pre-etching treatment and main etching treatment are performed. In the pre-etching treatment, first, the aluminum alloy member 3 is immersed in a 30 wt% nitric acid solution at room temperature for 5 minutes, then thoroughly washed with ion-exchanged water, and then immersed in a 5 wt% sodium hydroxide solution at 50 ° C. for 1 minute. Then, it is washed with water, and further immersed in a 30 wt% nitric acid solution at room temperature for 3 minutes, and then washed with water.

エッチング本処理では、エッチング前処理を行ったアルミニウム合金部材3を25wt%塩酸溶液中に54g/Lの塩化アルミニウム六水和物を添加して調製したエッチング液(塩素イオン濃度:48g/L)中に66℃で4分間浸漬した後に水洗するエッチング処理を施し、さらに、30wt%硝酸溶液に常温で3分間浸漬した後に水洗し、120℃の熱風で5分間乾燥させた。   In this etching process, the aluminum alloy member 3 subjected to the pre-etching process is prepared in an etching solution (chlorine ion concentration: 48 g / L) prepared by adding 54 g / L of aluminum chloride hexahydrate to a 25 wt% hydrochloric acid solution. The sample was immersed in 66 ° C. for 4 minutes and then washed with water, further immersed in a 30 wt% nitric acid solution at room temperature for 3 minutes, washed with water, and dried with hot air at 120 ° C. for 5 minutes.

また、「エッチングB」では、前記したエッチング前処理を行った後に、以下に示すエッチング本処理を行う。即ち、このエッチング本処理では、エッチング前処理を行った後のアルミニウム合金部材3を50wt%リン酸溶液に66℃で4分間浸漬して水洗し、その後に120℃の熱風で5分間乾燥させた。   In “etching B”, the main etching process shown below is performed after the above-described pre-etching process. That is, in this etching main treatment, the aluminum alloy member 3 after the pre-etching treatment was immersed in a 50 wt% phosphoric acid solution at 66 ° C. for 4 minutes, washed with water, and then dried with hot air at 120 ° C. for 5 minutes. .

また、「アルマイト封孔無し」では、以下に示すアルマイト前処理、アルマイト本処理を行う。アルマイト前処理では、まず、アルミニウム合金部材3を30wt%硝酸溶液に常温で5分間浸漬した後に、イオン交換水で十分に水洗し、次に、5wt%水酸化ナトリウム溶液に50℃で1分間浸漬した後に水洗し、さらに、30wt%硝酸溶液に常温で3分間浸漬した後に水洗する。   In “no alumite sealing”, the following alumite pretreatment and alumite main treatment are performed. In the alumite pretreatment, the aluminum alloy member 3 is first immersed in a 30 wt% nitric acid solution at room temperature for 5 minutes, then thoroughly washed with ion-exchanged water, and then immersed in a 5 wt% sodium hydroxide solution at 50 ° C. for 1 minute. Then, it is washed with water, and further immersed in a 30 wt% nitric acid solution at room temperature for 3 minutes, and then washed with water.

アルマイト本処理では、アルマイト前処理を行った後のアルミニウム合金部材3を硫酸濃度160g/Lの溶液中で液温18℃、皮膜厚さが10μmになるよう陽極酸化した後、水洗し、120℃の熱風で5分間乾燥させた。   In the main anodizing treatment, the aluminum alloy member 3 after the anodizing pretreatment is anodized in a solution having a sulfuric acid concentration of 160 g / L to a liquid temperature of 18 ° C. and a film thickness of 10 μm, and then washed with water to 120 ° C. For 5 minutes.

また、「アルマイト封孔有り」では、前記したアルマイト前処理を行なった後に、前記したアルマイト本処理を行う。さらに、その後沸騰水中で10分間煮沸させる。これにより、「アルマイト封孔有り」では、封孔処理が行われて細孔が狭められている。   In the case of “with alumite sealing”, the alumite main treatment is performed after the alumite pretreatment. Further, it is boiled for 10 minutes in boiling water. As a result, in “with anodized pores”, the pores are narrowed by the sealing treatment.

また、「ワイヤーブラシ」では、公知のワイヤーブラシを用いてアルミニウム合金部材3の表面を粗く切削して凸凹に処理した。   Moreover, in the “wire brush”, the surface of the aluminum alloy member 3 was roughly cut by using a known wire brush and processed to be uneven.

Figure 0005949836
Figure 0005949836

表6に示すように、試験3−a及び試験3−bの結果を見ると、アルミニウム合金部材3の表面が凸凹になるように表面処理を施した方が、引張強度が高いことが分かった。また、アルミニウム合金部材3に表面処理を施さない場合であっても、十分な引張強度が得られることがわかった。
また、アルミニウム合金部材3の板厚を薄くしつつ、摩擦攪拌用回転ツールGのショルダー部の外径も小さくした試験3−cの結果を見ると、「エッチングA」、「エッチングB」及び「アルマイト封孔無し」の表面処理を施した場合に高い引張強度が得られることが分かった。
As shown in Table 6, when the results of Test 3-a and Test 3-b were viewed, it was found that the surface treatment was performed such that the surface of the aluminum alloy member 3 was uneven, and the tensile strength was higher. . It was also found that sufficient tensile strength was obtained even when the aluminum alloy member 3 was not subjected to surface treatment.
Further, when the results of Test 3-c in which the outer diameter of the shoulder portion of the friction stir rotating tool G is reduced while the plate thickness of the aluminum alloy member 3 is reduced, “etching A”, “etching B” and “ It was found that a high tensile strength was obtained when the surface treatment of “no alumite sealing” was performed.

実施例4では、第三実施形態(図8参照)で説明した接合方法において、接合された部材の破壊強度を測定した。破壊強度は、接合された部材を引張試験機に設置し、樹脂部材2の外側端部及びアルミニウム合金部材3の外側端部をそれぞれ離間する方向に引張り、破壊して測定した。   In Example 4, the fracture strength of the joined members in the joining method described in the third embodiment (see FIG. 8) was measured. The breaking strength was measured by placing the joined members on a tensile testing machine, pulling the outer end of the resin member 2 and the outer end of the aluminum alloy member 3 in directions away from each other, and breaking.

実施例4における樹脂部材2は、PET製であって、厚さは5mmになっている。アルミニウム合金部材3は、1100合金であって、厚さ1mm又は2mmになっている。樹脂部材2とアルミニウム合金部材3との重ね代は30mmである。   The resin member 2 in Example 4 is made of PET and has a thickness of 5 mm. The aluminum alloy member 3 is an 1100 alloy and has a thickness of 1 mm or 2 mm. The overlap margin of the resin member 2 and the aluminum alloy member 3 is 30 mm.

摩擦接合用回転ツールFは、ツール本体F2の直径が100mm、幅4mmのツールAと、ツール本体F2の直径が105mm、幅10mmのツールBの二種類を採用した。ツールAについては、回転数を3000rpmに設定し、ツールBについては、回転数を2857rpmに設定した。ツールA及びツールBともに、周速度を942000(mm/min)に設定した。   As the rotary tool F for friction welding, two types of tools, a tool A having a tool body F2 with a diameter of 100 mm and a width of 4 mm, and a tool B with a tool body F2 having a diameter of 105 mm and a width of 10 mm, were employed. For tool A, the rotation speed was set to 3000 rpm, and for tool B, the rotation speed was set to 2857 rpm. For both Tool A and Tool B, the peripheral speed was set to 942000 (mm / min).

実施例4では、各部材の厚さ及び回転ツールの組み合わせを変えて3種類(試験4〜試験6)の前提条件を設定し、押込み量及び接合速度(送り速度)をパラメータとして破壊試験を行った。   In Example 4, three types of preconditions (Test 4 to Test 6) were set by changing the thickness of each member and the combination of rotating tools, and a destructive test was performed using the indentation amount and the joining speed (feed speed) as parameters. It was.

試験4の結果を表7に示す。   The results of Test 4 are shown in Table 7.

Figure 0005949836
Figure 0005949836

試験5の結果を表8に示す。   The results of Test 5 are shown in Table 8.

Figure 0005949836
Figure 0005949836

表7及び表8より、ツールA及びツールBとも押込み量が0.2mmでは接合強度が低く、押込み量が0.4mmでは接合強度が高かった。接合速度が500mm/minでは、樹脂部材2から破壊した。接合速度が1500mm/minまでは十分な接合強度を有するが、2000mm/minでは接合強度が低かった。   From Tables 7 and 8, both the tool A and the tool B had low bonding strength when the indentation amount was 0.2 mm, and high bonding strength when the indentation amount was 0.4 mm. When the joining speed was 500 mm / min, the resin member 2 was broken. The bonding speed was sufficient up to 1500 mm / min, but the bonding strength was low at 2000 mm / min.

一方、アルミニウム合金部材3の板厚の影響を見るために、アルミニウム合金部材3の厚さを1mmとした試験6の結果を表9に示す。   On the other hand, in order to see the influence of the plate thickness of the aluminum alloy member 3, Table 9 shows the results of Test 6 in which the thickness of the aluminum alloy member 3 is 1 mm.

Figure 0005949836
Figure 0005949836

表9に示すように、アルミニウム合金部材3の板厚を1mmとしても、板厚を2mmとした場合(表5参照)と略同等の結果が得られた。   As shown in Table 9, even when the plate thickness of the aluminum alloy member 3 was 1 mm, a result substantially equivalent to that obtained when the plate thickness was 2 mm (see Table 5) was obtained.

1 複合部材
2 樹脂部材
3 金属部材(アルミニウム合金部材)
10 ジャケット本体(樹脂部材)
11 凹部
12 開口部
12a 開口周縁部
14 周壁
15 段差面
30 封止体(アルミニウム合金部材)
30a 周縁部
31 蓋板部
32 フィン
F 回転ツール(摩擦接合用回転ツール)
G 回転ツール(摩擦攪拌用回転ツール)
P 液冷ジャケット
DESCRIPTION OF SYMBOLS 1 Composite member 2 Resin member 3 Metal member (aluminum alloy member)
10 Jacket body (resin member)
DESCRIPTION OF SYMBOLS 11 Concave part 12 Opening part 12a Opening peripheral part 14 Perimeter wall 15 Level | step difference surface 30 Sealing body (aluminum alloy member)
30a Peripheral part 31 Cover plate part 32 Fin F Rotary tool (Friction welding rotary tool)
G Rotating tool (Rotating tool for friction stirring)
P Liquid cooling jacket

Claims (2)

熱発生体が発生する熱を外部に輸送する熱輸送流体が流れるとともに一部が開口した凹部を有する熱可塑性樹脂製のジャケット本体に、前記凹部の開口部を封止するアルミニウム製又はアルミニウム合金製の封止体が接合されている液冷ジャケットであって、
熱可塑性樹脂製の前記ジャケット本体は、底壁と、周壁とを備え、
前記封止体は、蓋板部と、前記蓋板部に形成されるとともに前記凹部に向けて延設された複数のフィンと、を備え、
熱可塑性樹脂製の前記ジャケット本体の前記凹部の開口周縁部には、前記周壁から一段下がった位置に段差面が形成されており、前記段差面と前記封止体の前記蓋板部の周縁とが接合されており、
熱可塑性樹脂製の前記ジャケット本体の前記凹部の底面と複数の前記フィンとで前記凹部内に筒状の空間が区画され、その空間が、冷却水が流れる流路として機能しており、
前記封止体は、熱可塑性樹脂製の前記ジャケット本体との接触面に形成された凸凹の凹部分に前記熱可塑性樹脂が入り込んでいることを特徴とする液冷ジャケット。
Made of aluminum or aluminum alloy that seals the opening of the recess to the jacket body made of thermoplastic resin having a recess that is partially opened while a heat transport fluid that transports heat generated by the heat generator flows to the outside A liquid cooling jacket to which the sealing body of
The jacket body made of thermoplastic resin includes a bottom wall and a peripheral wall,
The sealing body includes a lid plate portion, and a plurality of fins formed on the lid plate portion and extending toward the concave portion,
A stepped surface is formed at the opening peripheral edge of the recess of the jacket body made of thermoplastic resin at a position one step down from the peripheral wall, and the stepped surface and the peripheral edge of the lid plate portion of the sealing body Are joined,
A cylindrical space is defined in the recess by the bottom surface of the recess and the plurality of fins of the jacket body made of thermoplastic resin , and the space functions as a flow path through which cooling water flows .
The liquid cooling jacket, wherein the sealing body has the thermoplastic resin in a concave and convex portion formed on a contact surface with the jacket body made of thermoplastic resin.
熱発生体が発生する熱を外部に輸送する熱輸送流体が流れるとともに一部が開口した凹部を有する熱可塑性樹脂製のジャケット本体に、前記凹部の開口部を封止するアルミニウム製又はアルミニウム合金製の封止体が接合されている液冷ジャケットであって、
熱可塑性樹脂製の前記ジャケット本体は、底壁と、周壁とを備え、
前記封止体は、蓋板部と、前記蓋板部に形成されるとともに前記凹部に向けて延設された複数のフィンと、を備え、
熱可塑性樹脂製の前記ジャケット本体の前記凹部の開口周縁部には、前記周壁から一段下がった位置に段差面が形成されており、前記段差面と前記封止体の前記蓋板部の周縁とが接合されており、
熱可塑性樹脂製の前記ジャケット本体の前記凹部の底面と複数の前記フィンとで前記凹部内に筒状の空間が区画され、その空間が、冷却水が流れる流路として機能しており、
前記封止体は、熱可塑性樹脂製の前記ジャケット本体との接触面に陽極酸化皮膜が形成されており、前記陽極酸化皮膜に形成された凸凹の凹部分に前記熱可塑性樹脂が入り込んでいることを特徴とする液冷ジャケット。
Made of aluminum or aluminum alloy that seals the opening of the recess to the jacket body made of thermoplastic resin having a recess that is partially opened while a heat transport fluid that transports heat generated by the heat generator flows to the outside A liquid cooling jacket to which the sealing body of
The jacket body made of thermoplastic resin includes a bottom wall and a peripheral wall,
The sealing body includes a lid plate portion, and a plurality of fins formed on the lid plate portion and extending toward the concave portion,
A stepped surface is formed at the opening peripheral edge of the recess of the jacket body made of thermoplastic resin at a position one step down from the peripheral wall, and the stepped surface and the peripheral edge of the lid plate portion of the sealing body Are joined,
A cylindrical space is defined in the recess by the bottom surface of the recess and the plurality of fins of the jacket body made of thermoplastic resin , and the space functions as a flow path through which cooling water flows .
The sealing body has an anodized film formed on a contact surface with the jacket body made of a thermoplastic resin, and the thermoplastic resin has entered the concave and convex portions formed on the anodized film. Liquid-cooled jacket characterized by
JP2014115837A 2008-12-09 2014-06-04 Liquid cooling jacket Active JP5949836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115837A JP5949836B2 (en) 2008-12-09 2014-06-04 Liquid cooling jacket

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008313508 2008-12-09
JP2008313508 2008-12-09
JP2014115837A JP5949836B2 (en) 2008-12-09 2014-06-04 Liquid cooling jacket

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013262645A Division JP5949742B2 (en) 2008-12-09 2013-12-19 Liquid cooling jacket

Publications (2)

Publication Number Publication Date
JP2014158055A JP2014158055A (en) 2014-08-28
JP5949836B2 true JP5949836B2 (en) 2016-07-13

Family

ID=50611754

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013262645A Active JP5949742B2 (en) 2008-12-09 2013-12-19 Liquid cooling jacket
JP2014115837A Active JP5949836B2 (en) 2008-12-09 2014-06-04 Liquid cooling jacket
JP2014115835A Active JP5949835B2 (en) 2008-12-09 2014-06-04 Liquid cooling jacket

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013262645A Active JP5949742B2 (en) 2008-12-09 2013-12-19 Liquid cooling jacket

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014115835A Active JP5949835B2 (en) 2008-12-09 2014-06-04 Liquid cooling jacket

Country Status (1)

Country Link
JP (3) JP5949742B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949742B2 (en) * 2008-12-09 2016-07-13 日本軽金属株式会社 Liquid cooling jacket
JP6460921B2 (en) * 2015-06-15 2019-01-30 三菱電機株式会社 Cooling device for power semiconductor device and manufacturing method thereof
JP7117108B2 (en) * 2018-01-25 2022-08-12 三井化学株式会社 Cooling system
WO2020138211A1 (en) * 2018-12-25 2020-07-02 三井化学株式会社 Cooling unit, method for manufacturing cooling unit, and structure
US11350545B2 (en) 2019-12-05 2022-05-31 Ge Aviation Systems Llc Cold plate assembly for an electronic component

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367196A (en) * 1992-09-17 1994-11-22 Olin Corporation Molded plastic semiconductor package including an aluminum alloy heat spreader
WO1998042022A1 (en) * 1997-03-18 1998-09-24 Seiko Epson Corporation Semiconductor device and method of manufacturing same
JP2000012759A (en) * 1998-06-25 2000-01-14 Dainippon Printing Co Ltd Lead frame member and manufacture thereof, and resin sealed semiconductor device provided therewith
JP2003039183A (en) * 2001-07-25 2003-02-12 Hitachi Ltd Friction stir welding method and welded body
JP2003101277A (en) * 2001-09-26 2003-04-04 Toyota Motor Corp Structural body for cooling heating element and manufacturing method thereof
JP4038455B2 (en) * 2003-08-21 2008-01-23 三菱電機株式会社 Semiconductor device
JP4450632B2 (en) * 2004-01-09 2010-04-14 三菱電機株式会社 Power converter
JP2005274120A (en) * 2004-02-24 2005-10-06 Showa Denko Kk Liquid cooled type cooling plate
JP4403867B2 (en) * 2004-04-08 2010-01-27 三菱電機株式会社 Heat sink for electronic equipment
JP4464806B2 (en) * 2004-12-08 2010-05-19 三菱電機株式会社 Power converter
JP4305406B2 (en) * 2005-03-18 2009-07-29 三菱電機株式会社 Cooling structure
JP4687541B2 (en) * 2005-04-21 2011-05-25 日本軽金属株式会社 Liquid cooling jacket
JP4452220B2 (en) * 2005-08-19 2010-04-21 東ソー株式会社 Composite and production method thereof
JP2007324351A (en) * 2006-05-31 2007-12-13 Toyota Central Res & Dev Lab Inc Pressure-contact semiconductor module
JP4952094B2 (en) * 2006-07-03 2012-06-13 トヨタ自動車株式会社 Semiconductor module
JP5949742B2 (en) * 2008-12-09 2016-07-13 日本軽金属株式会社 Liquid cooling jacket

Also Published As

Publication number Publication date
JP5949835B2 (en) 2016-07-13
JP2014053649A (en) 2014-03-20
JP2014158055A (en) 2014-08-28
JP5949742B2 (en) 2016-07-13
JP2014168100A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP5531573B2 (en) Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
JP5949836B2 (en) Liquid cooling jacket
JP5262822B2 (en) Manufacturing method of liquid cooling jacket
JP6489219B2 (en) Joining method, liquid cooling jacket manufacturing method, and liquid cooling jacket
JP4962423B2 (en) Manufacturing method of heat transfer plate
TW201710006A (en) Method for manufacturing liquid-cooled jacket, and liquid-cooled jacket
JP5573973B2 (en) Manufacturing method of liquid cooling jacket
JP5136072B2 (en) Manufacturing method of liquid cooling jacket
WO2017119232A1 (en) Joining method and method of manufacturing liquid-cooled jacket
WO2017033849A1 (en) Method for manufacturing liquid-cooled jacket, and liquid-cooled jacket
JP2010179349A (en) Method for manufacturing liquid-cooled jacket, and friction stir welding method
WO2013094246A1 (en) Method for manufacturing liquid cooling jacket
JP5062155B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
JP5343548B2 (en) Manufacturing method of liquid cooling jacket
JP2015171732A (en) Manufacturing method for liquid-cooled jacket
JP2013252563A (en) Method for producing liquid-cooled jacket
JP2011115845A (en) Friction stir welding method and friction stir welded product
JP2021115598A (en) Method of manufacturing liquid-cooled jacket and frictional agitation bonding method
JP6950580B2 (en) How to manufacture a liquid-cooled jacket
KR20080057965A (en) Welding tool and method for friction stir spot welding using the same
JP2021186858A (en) Liquid-cooled jacket manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350