JP5949371B2 - 発電源の冷却装置 - Google Patents

発電源の冷却装置 Download PDF

Info

Publication number
JP5949371B2
JP5949371B2 JP2012205296A JP2012205296A JP5949371B2 JP 5949371 B2 JP5949371 B2 JP 5949371B2 JP 2012205296 A JP2012205296 A JP 2012205296A JP 2012205296 A JP2012205296 A JP 2012205296A JP 5949371 B2 JP5949371 B2 JP 5949371B2
Authority
JP
Japan
Prior art keywords
coolant
liquid
cooling
buffer tank
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012205296A
Other languages
English (en)
Other versions
JP2014058931A (ja
Inventor
正芳 大橋
正芳 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2012205296A priority Critical patent/JP5949371B2/ja
Publication of JP2014058931A publication Critical patent/JP2014058931A/ja
Application granted granted Critical
Publication of JP5949371B2 publication Critical patent/JP5949371B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fuel Cell (AREA)

Description

本発明は、バッファタンクを備えて冷却液を循環させることによりガスエンジン発電機または燃料電池を冷却する冷却装置に関する。
近年、電源の多様化が提唱され、各種の分散型発電装置の開発及び普及が促進されている。分散型発電装置は、当初はオフィスや集合住宅などへの適用が多かったが、ガスエンジン発電機や燃料電池などについては小形小容量化が実現されて、一般家庭へも適用されるようになってきている。この種の分散型発電装置は、電気出力だけでなく熱出力も利用できるコージェネレーションシステムとして使用される場合が多い。この場合、発電源を冷却しながら熱出力を利用する用途として、冷却液回路、循環ポンプ、及び液々熱交換器を備えて冷却液を循環させる構造の冷却装置が一般的に採用されている。さらに、電気負荷に対して熱負荷が相対的に小さいときに余剰の熱を蓄積する蓄熱機能、及び冷却液の温度上昇を抑制するバッファ機能を具備するために、冷却液の液量を多くしてバッファタンクに貯留することが行われている。
特許文献1に開示された燃料電池システムは、コージェネレーションシステムとして使用できる分散型発電装置の一技術例である。この燃料電池システムは、燃料電池で発生した熱を外部へ取り出すための第1熱媒体(冷却液)と、第1熱媒体搬送手段(循環ポンプ)と、温度検知器(液温センサ)とを備え、第1熱媒体搬送手段は温度検知器よりも低い位置に構成し、温度検知器が検知する第1熱媒体の温度異常で運転を停止する。この構成によれば、第1熱媒体が次第に減少した場合に、まず温度検知器が第1熱媒体で満たされなくなって温度異常が発生するので、第1熱媒体搬送手段が第1熱媒体を搬送しなくなる以前に運転を停止でき、第1熱媒体の減少を判定する水位検知器を省略できる、と記載されている。
特開2010−287361号公報
ところで、特許文献1では、水位検知器(液面センサ)を省略することでコストを低減できる点は好ましいが、温度検知器の温度異常の判定が遅れてシステム停止に手間取るおそれがある。詳述すると、第1熱媒体搬送手段は、第1熱媒体が徐々に減少しても、媒体入口が第1熱媒体で満たされている間は正常な搬送(ポンプの吐出)を行うので、流路の途中の温度検知器まで第1熱媒体が圧送される。したがって、温度検知器ですぐに温度異常は発生しない。温度異常が実際に発生するのは、第1熱媒体に空気が混入しながら循環するようになってからであり、第1熱媒体が相当量減少してその液面が第1熱媒体搬送手段まで低下した後である。したがって、水位検知器を備える構成と比較して、運転を停止するタイミングが遅れる。
このように、コスト低減を志向して液面センサを省略したときに冷却液の循環量不足の検出が遅れる問題点は、燃料電池に限定されるものではなく、類似の冷却構造を有するガスエンジン発電機にも共通する。
本発明は上記背景技術の問題点に鑑みてなされたものであり、液面センサを省略してコストを低廉化しつつ、冷却液の循環量不足を遅滞なく検出できる発電源の冷却装置を提供することを解決すべき課題とする。
本発明の発電源の冷却装置は、ガスエンジン発電機または燃料電池からなる発電源を冷却するための冷却液を貯留するバッファタンクと、前記発電源に接して配設されるとともに前記バッファタンクを含んで形成され前記冷却液が流れる冷却液回路と、前記冷却液回路内で前記冷却液を循環させる循環ポンプと、前記循環ポンプの回転数を検出する回転数センサと、前記冷却液回路の途中に設けられて前記冷却液の温度を検出する液温センサと、前記循環ポンプの回転数及び前記冷却液の温度を監視する監視制御部とを備え、前記バッファタンクは、前記冷却液が許容漏洩量の限度まで漏洩したときの液面位置に、前記冷却液が前記冷却液回路に流出する液出口を有し、前記監視制御部は、前記循環ポンプの回転数及び前記冷却液の温度の少なくとも一方の異常に基づいて、前記冷却液の不足を検出する。
さらに、前記バッファタンク、前記冷却液回路、及び前記循環ポンプから漏洩した冷却液を受け止めて外部への漏出を防止する漏出防止パンをさらに備え、前記冷却液の許容漏洩量は、前記漏出防止パンの容積に基づいて定められていることが好ましい。
また、前記冷却液の許容漏洩量は、前記冷却液が前記バッファタンク内で中間高さよりも高い液面位置を維持するように定められていてもよい。
さらに、前記バッファタンクは、前記液出口よりも低い位置に、前記冷却液が前記冷却液回路から流入する液入口を有することが好ましい。
さらに、前記冷却液回路は、前記バッファタンクを経由しないで前記冷却液を循環させるバイパス回路と、前記冷却液が前記バッファタンクと前記バイパス回路とに分流する比率を制御する制御弁とを有していてもよい。
また、前記発電源は電気出力及び熱出力を得るコージェネレーションシステムに使用されており、前記冷却液回路は前記熱出力を得る回路であってもよい。
本発明の発電源の冷却装置では、冷却液が許容漏洩量の限度まで漏洩すると、バッファタンク内の冷却液の液面が液出口まで低下し、冷却液に空気が混入して循環されるようになる。このため、循環ポンプの負荷が変化して回転数に異常が生じ、また、発電源を冷却する性能が変化して冷却液の温度に異常が生じる。したがって、監視制御部は、循環ポンプの回転数及び冷却液の温度の少なくとも一方の異常に基づいて冷却液の循環量不足を検出できる。つまり、液面センサを省略してコストを低廉化しても、冷却液が許容漏洩量の限度まで漏洩したときに、冷却液の循環量不足を遅滞なく検出でき、迅速に異常時処置を実施できる。
さらに、漏出防止パンを備える態様では、冷却液の許容漏洩量が漏出防止パンの容積に基づいて定められるので、漏洩した冷却液が外部に漏出し始める以前に確実に冷却液の循環量不足を検出できる。
また、冷却液の許容漏洩量がバッファタンク内の中間高さよりも高い液面位置を維持するように定められている態様では、バッファタンクの半分以上まで冷却液が残っている漏洩の軽微な段階で、確実に冷却液の循環量不足を検出できる。
さらに、バッファタンクの液出口よりも低い位置に液入口を有する態様では、発電源を冷却した相対的に温かい冷却液がバッファタンクの下部に流入し、密度差により相対的に冷たい冷却液と混ざり合う。したがって、バッファタンク内部の冷却液の温度分布を均一化して適正温度に保つことが容易になり、相対的に温かい冷却液が発電源に循環されて冷却性能が低下するおそれを解消できる。仮に、液入口が高いと、相対的に温かい冷却液がバッファタンクの上部に流入し滞留して上下温度差が大きくなり、温かい冷却液が発電源に循環されて十分な冷却効果が発生しなくなるおそれがある。
さらに、冷却液回路がバイパス回路及び制御弁を有する態様では、発電源の始動時の暖機運転を効率化できる。例えば、発電源を長く停止すると、バッファタンク内及び冷却液回路内の冷却液は低い温度になっている。この場合、次の始動時には、バッファタンク内を含む全部の冷却液を循環させるのでなく、バイパス回路を用いて冷却液回路内の一部の冷却液のみを循環させる。これにより、冷却液を適正温度まで迅速に上昇させることができ、暖機運転を短時間で終了できる。
また、発電源がコージェネレーションシステムに使用される態様では、例えば熱交換器を用いて冷却液回路から熱出力を得ることができる。この場合、一般的な冷却装置と異なって冷却液の液温が低いほど良いとは言えず、熱出力の利用の観点から冷却液を適正温度に保つことが好ましい。したがって、前述したバッファタンクの液出口よりも低い位置に液入口を有する態様や、前述した冷却液回路がバイパス回路及び制御弁を有する態様をコージェネレーションシステムに適用することで、熱出力を効率的に利用できる。
本発明の実施形態の発電源の冷却装置を模式的に説明する全体構成図である。 監視制御部の監視制御フローを説明するフローチャートの図である。 実施形態の発電源の冷却装置において、冷却液の流れを示す図である。 実施形態の発電源の冷却装置において、冷却液が許容漏洩量の限度まで漏洩したときの動作を説明する図である。 参考形態の発電源の冷却装置を模式的に説明する全体構成図である。
本発明を実施するための実施形態を、図1〜図4を参考にして説明する。図1は、本発明の実施形態の発電源の冷却装置1を模式的に説明する全体構成図である。冷却装置1は、冷却液を循環させて発電源であるガスエンジン発電機2を冷却する装置であり、コージェネレーションシステムとして使用される。冷却装置1は、バッファタンク3、冷却液回路4、循環ポンプ5、回転数センサ55、エンジン入口液温センサ61、エンジン出口液温センサ62、及び監視制御部7などで構成されている。
バッファタンク3は、ガスエンジン発電機2を冷却するための冷却液を貯留するタンクである。バッファタンク3は、冷却液が流出する液出口31、及び冷却液が流入する液入口32を有している。冷却液には、例えば、JIS規格に規定される不凍液の一種であるロングライフクーラント(記号LLC)を用いることができる。ロングライフクーラントは、水にエチレングリコールを溶解させて氷結点を下げたものであり、冬季の寒冷地で周囲温度がー30℃まで低下しても凍結しない。これに限定されず、他の種類の冷却液を用いてもよい。
バッファタンク3は、電気負荷に対して熱負荷が相対的に小さいときに、コ−ジェネレーションシステムの熱出力を一時的に蓄積する蓄熱機能を有している。別の見方をすれば、余剰の熱で冷却液が温度上昇することを抑制するバッファ機能を有している。所望する蓄熱機能及びバッファ機能を実現するために、バッファタンク3に貯留する冷却液の液量が適正に設定される。
冷却液回路4は、ガスエンジン発電機2に接して配設されるとともに、バッファタンク3を含んで形成され、冷却液が流れる周回路である。冷却液回路4は、バッファタンク3の液出口31からガスエンジン発電機2に接するまでの往路部41、ガスエンジン発電機2の高温部に接して冷却効果を発揮する冷却作用部42(破線示)、及びガスエンジン発電機2から離れてバッファタンク3の液入口32に戻るまでの復路部43を含んで形成される。冷却作用部42は、冷却ジャケットなどと呼称される部位であり、その構造は特に限定されない。
循環ポンプ5は、冷却液回路4の往路部41の途中に設けられている。循環ポンプ5の吸込口51はバッファタンク3の液出口31に連通され、吐出口52は冷却作用部42の入口に連通されている。循環ポンプ5には、駆動モータによって回転駆動される一般的なものを用いることができる。循環ポンプ5の回転数Nは、負荷の軽重に依存して変化する。例えば、冷却液回路4の一部が何らかの原因により変形して流路断面積が減少すると、負荷が重くなって回転数Nが減少する。また例えば、冷却液に空気が混入すると、負荷が軽くなって回転数Nが増加する。
回転数センサ55は、循環ポンプ5の回転数Nを検出するセンサである。回転数センサ55は、例えば、回転部に磁石を取り付けて固定部から磁界の変化を検出する方式のセンサとすることができる。回転数センサ55は、検出した回転数Nの信号を監視制御部7に伝送する。
エンジン入口液温センサ61は、冷却液回路4の往路部41と冷却作用部42との接続点に配設されている。エンジン入口液温センサ61は、冷却作用部42に流入する直前の冷却液の相対的に低い液温、すなわちエンジン入口液温T1を検出し、その信号を監視制御部7に伝送する。一方、エンジン出口液温センサ62は、冷却液回路4の冷却作用部42と復路部43との接続点に配設されている。エンジン出口液温センサ62は、冷却作用部42から流出した直後の冷却液の相対的に高い液温、すなわちエンジン出口液温T2を検出し、その信号を監視制御部7に伝送する。
また、冷却液回路4の復路部43には、制御弁44および液々熱交換器45が設けられている。制御弁44は、内部を流れる冷却液の液温に応じて、バッファタンク3とバイパス回路46とに分流する比率を自動的に制御する三方弁である。制御弁44の流入ポート441は、冷却作用部42の出口に連通されている。制御弁44の低温時流出ポート442は、バイパス回路46を用いて循環ポンプ5の吸込口51に連通されている。制御弁44の高温時流出ポート443は、液々熱交換器45の一次側配管451を経由してバッファタンク3の液入口32に連通されている。
制御弁44の内部を流れる冷却液が所定の低温値以下であると、低温時流出ポート442が開き、高温時流出ポート443が閉じる。このとき、冷却液は、流入ポート441から低温時流出ポート442へと流れる。所定の低温値として60℃を例示でき、これに限定されない。冷却液が所定の高温値以上であると、低温時流出ポート442が閉じ、高温時流出ポート443が開く。このとき、冷却液は、流入ポート441から高温時流出ポート443へと流れる。
また、冷却液が所定の低温値と高温値の間であると、低温時流出ポート442及び高温時流出ポート443の両方が液温に依存した開度で開き、流出の分流比が自動的に制御される。すなわち、冷却液が所定の低温値に近いと、低温時流出ポート442の分流比が大で、高温時流出ポート443の分流比が小となる。そして、冷却液の液温が所定の低温値から高温値まで増加するにつれて、低温時流出ポート442の分流比が徐々に減少し、高温時流出ポート443の分流比が徐々に増加する。
液々熱交換器45は、コ−ジェネレーションシステムとして、ガスエンジン発電機2の熱出力を外部で利用可能とする部位である。液々熱交換器45は、一次側配管451及び二次側配管452で構成され、一次側配管451内の冷却液から二次側配管452内の熱移送媒体へと熱が移動する。二次側の熱移送媒体は、一次側の冷却液と同じロングライフクーラントでもよいし、異なる流体でもよい。一次側配管451の一端は制御弁44の高温時流出ポート443に連通され、他端はバッファタンク3の液入口32に連通されている。二次側配管452は図略の熱負荷に連通されており、熱出力を利用するための周回路が形成されている。
実施形態の発電源の冷却装置1は、図1に示されるように、漏出防止パン8をさらに備えている。漏出防止パン8は、バッファタンク3、冷却液回路4、及び循環ポンプ5の下方に拡がって配設されており、これら3、4、5から漏洩した冷却液を受け止めて外部への漏出を防止する。冷却液の許容漏洩量は、漏出防止パン8の容積に基づいて定められている。つまり、漏出防止パン8の容積から或る程度のマージンを差し引いて冷却液の許容漏洩量が定められている。
ここで、図1には、冷却液が漏洩していない正常時のバッファタンク3内の冷却液の液面位置L1が示されている。そして、バッファタンク3は、冷却液が許容漏洩量の限度まで漏洩したときの液面位置L2に液出口31を有している。液面位置L2は、バッファタンク3内で中間高さよりも高く、約70%の高さ位置に定められている。つまり、冷却液の許容漏洩量は、冷却液がバッファタンク3内で中間高さよりも高い液面位置を維持するように定められている。
一方、バッファタンク3は、液出口31より大幅に低く底部に近い位置に液入口32を有している。一般的な冷却装置では液出口はバッファタンクの下部に設けられ、液入口はバッファタンクの上部に設けられる場合が多く、本実施形態では液出口31と液入口32との上下関係が逆になっている。
監視制御部7は、循環ポンプ5の回転数N、エンジン入口液温T1、及びエンジンエンジン出口液温T2を監視する。監視制御部7には、例えば、マイコンを内蔵してソフトウェアで作動する電子制御装置を用いることができる。図2は、監視制御部7の監視制御フローを説明するフローチャートの図である。
図2のステップS1で、ガスエンジン発電機2が運転を開始すると、循環ポンプ5が作動する。ステップS2で、監視制御部7は、エンジン入口液温センサ61からエンジン入口液温T1の信号を受け取り、エンジン出口液温センサ62からエンジン出口液温T2の信号を受け取る。次に、ステップS3で、冷却液の温度異常が発生しているか否かを判定する。
具体的には、エンジン出口液温T2からエンジン入口液温T1を減算して上下温度差ΔTを求め(ΔT=T2−T1)、上下温度差ΔTが許容温度差以下のときに正常と判定し、上下温度差ΔTが許容温度差を越えたときに温度異常と判定する。許容温度差として30℃を例示でき、これに限定されない。上下温度差ΔTの増加は、冷却作用部42内を流れる冷却液の循環量の減少によって引き起こされる。このような温度異常が発生する原因としては、冷却液への空気の混入、循環ポンプ5の故障、冷却液回路4の狭窄変形などが考えられる。
また、監視制御部7は、エンジン入口液温T1及びエンジン出口液温T2が許容上限温度以下のときに正常と判定し、少なくとも一方(通常はエンジン出口液温T2)が許容上限温度を越えたときに蓄熱限界状態と判定する。許容上限温度として90℃を例示でき、これに限定されない。蓄熱限界状態は、電気負荷に対して熱負荷が相対的に小さいときに、余剰の熱で冷却液の平均液温が徐々に上昇して発生する。蓄熱限界状態は異常状態とは言えないが、ガスエンジン発電機2の運転を継続すべきでない。
ステップS3で、正常のときステップS4に進み、温度異常及び蓄熱限界状態のときステップS6に進む。ステップS4で、監視制御部7は、回転数センサ55から回転数Nの信号を受け取る。次に、ステップS5で、循環ポンプ5の回転数異常が発生しているか否かを判定する。具体的には、回転数Nが規定回転数の所定誤差範囲内に収まっているときに正常と判定してステップS2に戻り、回転数Nが所定誤差範囲を逸脱しているときに回転数異常と判定してステップS6に進む。
ステップS2に戻った以降は、冷却液の温度異常および循環ポンプ5の回転数異常の監視を繰り返して行う。温度異常及び蓄熱限界状態や回転数異常でステップS6に進んだときには、異常時処置としてガスエンジン発電機2を停止する。また、ガスエンジン発電機2が自冷発電容量を有する場合は、異常時処置として電気出力を自冷発電容量以下まで低下させるようにしてもよい。その他にも、異常時処置として一般的な異常表示や異常通報などを行うようにしてもよい。
次に、上述のように構成された実施形態の発電源の冷却装置1の動作、作用について説明する。図3は、実施形態の発電源の冷却装置1での冷却液の流れを示す図である。図3において、太い破線のループは制御弁44で冷却液が所定の低温値以下であるときの流れを示し、太い矢印は制御弁44で冷却液が所定の高温値以上であるときの流れを示している。
ガスエンジン発電機2が運転して循環ポンプ5が作動しているとき、冷却液の流れは、制御弁44により自動的に制御される。運転開始直後などには、制御弁44で冷却液が所定の低温値以下となっており、冷却液の流れは太い破線のループで示される。すなわち、循環ポンプ5の吐出口52から吐出された冷却液は、エンジン入口液温センサ61を通過して冷却作用部42に入り、ガスエンジン発電機2を冷却して液温が上昇する。液温が上昇した冷却液は、冷却作用部42を出てエンジン出口液温センサ62を通過し、制御弁44の流入ポート441から低温時流出ポート442を経由し、バイパス回路46から循環ポンプ5の吸入口51へと循環する。
このように、運転開始直後などで冷却液が低温のときには、冷却液回路4内の一部の冷却液のみを循環させるので、冷却液の液温は迅速に上昇する。制御弁44で冷却液が所定の低温値を超えると、制御弁44に流入した冷却液の一部が高温時流出ポート443から流出するようになる。つまり、冷却液は、バイパス回路46と液々熱交換器45及びバッファタンク3とに分流する。これにより、液々熱交換器45で熱出力を外部の熱負荷に供給できるようになる。
さらに、制御弁44で冷却液が所定の高温値を超えると、低温時流出ポート442が完全に閉じ、太い矢印で示されるように冷却液が流れる。すなわち、冷却液は、循環ポンプ5の吐出口52からエンジン入口液温センサ61、冷却作用部42、及びエンジン出口液温センサ62を通過して制御弁44の流入ポート441に達する。さらに、冷却液は、制御弁44の高温時流出ポート443から流出して、液々熱交換器45の一次側配管451を通過し、液入口32からバッファタンク3に流入する。
ここで、バッファタンク3の底部に近い位置に流入した冷却液は、貯留されていた冷却液と比較して相対的に温度が高く密度が小さいので、バッファタンク3内を上昇しながら貯留されていた冷却液と混ざり合う。これにより、バッファタンク3内の冷却液の液温が概ね均一化される。一方、循環ポンプ5の吸入口51の吸入圧により、冷却液がバッファタンク3の液出口31から流出して循環ポンプ5へと循環される。
なお、ガスエンジン発電機2の停止時にも、熱出力を利用することができるようになっている。すなわち、ガスエンジン発電機2が停止していても、バッファタンク3内の冷却液に十分な蓄熱が既に行われていて液温が制御弁44の所定の高温値を超えている場合に、循環ポンプ5は作動できるようになっている。これにより、冷却液は太い矢印で示されるように循環し、液々熱交換器45で熱出力を外部の熱負荷に供給できる。
次に、冷却液が漏洩した場合の動作について説明する。図4は、実施形態の発電源の冷却装置1において、冷却液が許容漏洩量の限度まで漏洩したときの動作を説明する図である。何らかの原因によりバッファタンク3、冷却液回路4、及び循環ポンプ5から冷却液が漏洩すると、漏出防止パン8に受け止められて外部への漏出が防止される。そして、漏洩量が許容漏洩量の限度に達したとき、図4に示されるように、バッファタンク3内の冷却液の液面位置L2がちょうど液出口31に一致する。
このため、液出口31から流出して循環ポンプ5へ向かう冷却液に空気が混入するようになる。これにより、循環ポンプ5では、負荷が軽くなって回転数Nが増加する。また、冷却作用部42を流れる冷却液の実際の循環量が減少して、上下温度差ΔTが増加する。したがって、監視制御部7は冷却液の循環量不足を検出できる。
さらに、漏洩が継続してバッファタンク3内の冷却液の液面位置L3が液出口31よりもわずかでも低下したときには、空気のみが冷却液回路4を循環するようになる。したがって、循環ポンプ5の回転数Nの異常、及び上下温度差ΔTの異常は顕著なものとなり、監視制御部7は冷却液の循環量不足を一層確実に検出できる。
次に、実施形態の発電源の冷却装置1の効果について、参考形態と比較しながら説明する。図5は、参考形態の発電源の冷却装置9を模式的に説明する全体構成図である。参考形態の冷却装置9を構成する各部位は実施形態に略一致しており、バッファタンク3Aの液出口31A及び液入口32Aの高さ位置が異なっている。すなわち、液出口31Aはバッファタンク3Aの下部に設けられ、液入口32Aはバッファタンク3Aの上部に設けられている。
参考形態において、監視制御部7Aが循環ポンプ5の回転数N及び上下温度差ΔTを監視する場合、バッファタンク3A内の冷却液の殆どが漏洩して液面位置L4が下部の液出口31Aに低下するまで循環量不足を検出できない。したがって、迅速な異常検出を行うためには、バッファタンク3A内に例えば光反射検出方式の液面センサ33を設けて、液面位置の信号を監視制御部7Aに伝送する必要がある。
これに対して実施形態では、液面センサ33を省略してコストを低廉化しても、冷却液が許容漏洩量の限度まで漏洩した時点、すなわちバッファタンク3の中間高さよりも高い液面位置L2(約70%の高さ位置)で回転数Nの異常及び上下温度差ΔTの異常が発生する。したがって、監視制御部7は、冷却液の循環量不足を遅滞なく検出でき、迅速に異常時処置を実施できる。
さらに、冷却液の許容漏洩量が漏出防止パン8の容積に基づいて定められるので、漏洩した冷却液が外部に漏出し始める以前に確実に冷却液の循環量不足を検出できる。また、バッファタンク3の約70%の高さ位置まで冷却液が残っている漏洩の軽微な段階で、確実に冷却液の循環量不足を検出できる。
さらに、バッファタンク3の液出口31よりも低い位置に液入口32を有するので、バッファタンク3内部の冷却液を均一化して適正温度に保つことが容易になり、冷却性能が低下するおそれを解消できる。また、バイパス回路46及び制御弁44を有するので、ガスエンジン発電機2の始動時の暖機運転を効率化できる。
また、ガスエンジン発電機2はコージェネレーションシステムに使用されるので、液々熱交換器45を用いて冷却液回路4から熱出力を得ることができる。加えて、冷却液を適正温度に保つことが容易になっており、熱出力を効率的に利用できる。
なお、実施形態の発電源としてのガスエンジン発電機2を燃料電池に置き換えることも可能である。また、漏出防止パン8は必要でなく、冷却液回路4内の制御弁44およびバイパス回路46を省略してもよい。さらに、冷却液が許容漏洩量の限度まで漏洩したときのバッファタンク3の液面位置L2を約70%の高さ位置としているのは一例であって、適宜変更できる。本発明は、その他にも様々な応用や変形が可能である。
1:発電源の冷却装置
2:ガスエンジン発電機(発電源)
3、3A:バッファタンク
31、31A:液出口 32、32A:液入口 33:液面センサ
4:冷却液回路 41:往路部 42:冷却作用部 43:復路部
44:制御弁 45:液々熱交換器 46:バイパス回路
5:循環ポンプ 55:回転数センサ
61:エンジン入口液温センサ 62:エンジン出口液温センサ
7:監視制御部
8:漏出防止パン
T1:エンジン入口液温 T2:エンジン出口液温
N:循環ポンプの回転数

Claims (6)

  1. ガスエンジン発電機または燃料電池からなる発電源を冷却するための冷却液を貯留するバッファタンクと、前記発電源に接して配設されるとともに前記バッファタンクを含んで形成され前記冷却液が流れる冷却液回路と、前記冷却液回路内で前記冷却液を循環させる循環ポンプと、前記循環ポンプの回転数を検出する回転数センサと、前記冷却液回路の途中に設けられて前記冷却液の温度を検出する液温センサと、前記循環ポンプの回転数及び前記冷却液の温度を監視する監視制御部とを備え、
    前記バッファタンクは、前記冷却液が許容漏洩量の限度まで漏洩したときの液面位置に、前記冷却液が前記冷却液回路に流出する液出口を有し、
    前記監視制御部は、前記循環ポンプの回転数及び前記冷却液の温度の少なくとも一方の異常に基づいて、前記冷却液の循環量不足を検出する発電源の冷却装置。
  2. 前記バッファタンク、前記冷却液回路、及び前記循環ポンプから漏洩した冷却液を受け止めて外部への漏出を防止する漏出防止パンをさらに備え、
    前記冷却液の許容漏洩量は、前記漏出防止パンの容積に基づいて定められている請求項1に記載の発電源の冷却装置。
  3. 前記冷却液の許容漏洩量は、前記冷却液が前記バッファタンク内で中間高さよりも高い液面位置を維持するように定められている請求項1または2に記載の発電源の冷却装置。
  4. 前記バッファタンクは、前記液出口よりも低い位置に、前記冷却液が前記冷却液回路から流入する液入口を有する請求項1〜3のいずれか一項に記載の発電源の冷却装置。
  5. 前記冷却液回路は、前記バッファタンクを経由しないで前記冷却液を循環させるバイパス回路と、前記冷却液が前記バッファタンクと前記バイパス回路とに分流する比率を制御する制御弁とを有する請求項1〜4のいずれか一項に記載の発電源の冷却装置。
  6. 前記発電源は電気出力及び熱出力を得るコージェネレーションシステムに使用されており、前記冷却液回路は前記熱出力を得る回路である請求項1〜5のいずれか一項に記載の発電源の冷却装置。
JP2012205296A 2012-09-19 2012-09-19 発電源の冷却装置 Expired - Fee Related JP5949371B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205296A JP5949371B2 (ja) 2012-09-19 2012-09-19 発電源の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205296A JP5949371B2 (ja) 2012-09-19 2012-09-19 発電源の冷却装置

Publications (2)

Publication Number Publication Date
JP2014058931A JP2014058931A (ja) 2014-04-03
JP5949371B2 true JP5949371B2 (ja) 2016-07-06

Family

ID=50615610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205296A Expired - Fee Related JP5949371B2 (ja) 2012-09-19 2012-09-19 発電源の冷却装置

Country Status (1)

Country Link
JP (1) JP5949371B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137052B2 (ja) * 2014-05-23 2017-05-31 トヨタ自動車株式会社 エンジン冷却装置
KR101846625B1 (ko) 2015-10-23 2018-04-09 현대자동차주식회사 냉각수 상태 진단 시스템 및 방법
US10054030B2 (en) 2016-06-01 2018-08-21 GM Global Technology Operations LLC Engine cooling systems and methods
JP6788844B2 (ja) * 2016-11-21 2020-11-25 トヨタ自動車株式会社 燃料電池システム
CN108091904B (zh) 2016-11-21 2020-09-22 丰田自动车株式会社 燃料电池系统
JP6802984B2 (ja) * 2017-04-14 2020-12-23 トヨタ自動車株式会社 燃料電池冷却システム
KR101984403B1 (ko) * 2017-10-25 2019-09-03 두산중공업 주식회사 작동유체냉각장치 및 이를 이용한 발전 플랜트
CN107732339B (zh) * 2017-10-27 2020-04-24 吉利汽车研究院(宁波)有限公司 用于车辆动力电池包的检测系统及其检测方法、车辆
CN108397276B (zh) * 2018-02-28 2019-10-01 安徽江淮汽车集团股份有限公司 一种发动机膨胀水箱
CN111720201B (zh) * 2020-07-23 2023-09-01 中船动力有限公司 柴油发电机冷却水供水系统
KR20220038993A (ko) * 2020-09-21 2022-03-29 현대자동차주식회사 냉각수온 기반 엔진과열방지 방법 및 엔진 시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389889B1 (en) * 1999-05-19 2002-05-21 Curtis A. Ford Methods of and apparatus for identifying faults in internal combustion engine cooling systems
JP4555600B2 (ja) * 2003-04-30 2010-10-06 本田技研工業株式会社 燃料電池の冷却装置
JP5239112B2 (ja) * 2005-03-18 2013-07-17 日産自動車株式会社 燃料電池システム
JP2008057340A (ja) * 2006-08-29 2008-03-13 Toyota Motor Corp 内燃機関の排気熱回収装置
JP5434283B2 (ja) * 2009-06-10 2014-03-05 パナソニック株式会社 燃料電池システム
JP5527305B2 (ja) * 2011-10-31 2014-06-18 株式会社デンソー 内燃機関用吸気冷却装置及びその水漏れ検出方法

Also Published As

Publication number Publication date
JP2014058931A (ja) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5949371B2 (ja) 発電源の冷却装置
EP3406960B1 (en) Cold hydrogen supply station and hydrogen cooling device
JP5047367B2 (ja) 船舶用排熱回収システムの制御方法及び制御装置
CN106785192A (zh) 一种热管理系统
US11462757B2 (en) Fuel cell system
JP2013155911A (ja) 熱源機制御システム
JP5704398B2 (ja) 熱回収装置、コージェネレーションシステム、並びに、配管の誤接続検知方法
JP6766639B2 (ja) 燃料電池冷却システム
KR102370941B1 (ko) 오일온도를 제어할 수 있는 인터쿨러 냉각장치 및 이의 제어방법
JP2008057340A (ja) 内燃機関の排気熱回収装置
JP2008104355A (ja) 水力発電所用発電機軸受の冷却システム
JP2015109339A (ja) 電子システム及び電子システムの制御方法
JP2002216817A (ja) 燃料電池冷却液の導電率管理装置
JP2006024431A (ja) 燃料電池システム
CN117039263A (zh) 换电站液冷系统、方法、设备及可读介质
JP4833707B2 (ja) 排熱回収装置
JP2018137176A (ja) 燃料電池車両
KR20160003681A (ko) 유체 공급장치
US11530743B2 (en) Vehicle
US3935488A (en) Method of operating a fluid-cooled hydropower generator
JP2024016503A (ja) 駆動装置、故障検知方法、及びプログラム
KR100990034B1 (ko) 대기상태를 가지는 드레인 다운식 밀폐형 태양열 시스템의 제어방법
JP2011257130A (ja) 排熱回収装置
JP6071388B2 (ja) 燃料電池システムの冷却制御装置
KR102259498B1 (ko) 컨테이너선의 냉각 제어 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5949371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees