JP5948158B2 - LPI vehicle heat exchanger - Google Patents

LPI vehicle heat exchanger Download PDF

Info

Publication number
JP5948158B2
JP5948158B2 JP2012132154A JP2012132154A JP5948158B2 JP 5948158 B2 JP5948158 B2 JP 5948158B2 JP 2012132154 A JP2012132154 A JP 2012132154A JP 2012132154 A JP2012132154 A JP 2012132154A JP 5948158 B2 JP5948158 B2 JP 5948158B2
Authority
JP
Japan
Prior art keywords
connection channel
temperature
inlet
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012132154A
Other languages
Japanese (ja)
Other versions
JP2013119853A (en
Inventor
明 桓 金
明 桓 金
載 然 金
載 然 金
完 濟 趙
完 濟 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of JP2013119853A publication Critical patent/JP2013119853A/en
Application granted granted Critical
Publication of JP5948158B2 publication Critical patent/JP5948158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • F02M21/0212Hydrocarbon fuels, e.g. methane or acetylene comprising at least 3 C-Atoms, e.g. liquefied petroleum gas [LPG], propane or butane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

本発明は、LPI車両用熱交換器に関し、より詳細には、エアコンシステムを循環する冷媒と、エンジンからリターンされるLPG燃料とを相互熱交換させ、LPG燃料を冷却させるようにするLPI車両用熱交換器に関する。   The present invention relates to a heat exchanger for an LPI vehicle, and more specifically, for an LPI vehicle that causes the refrigerant circulating in the air conditioner system and the LPG fuel returned from the engine to exchange heat with each other to cool the LPG fuel. It relates to a heat exchanger.

一般的に、LPI(Liquefied Petroleum Injection:LPGを液状で噴射する装置)エンジンは、ボンベ(Bombe)の圧力に依存する機械式LPG燃料噴射方式とは異なり、ボンベ内に燃料ポンプを設け、前記燃料ポンプによりLPG燃料を高圧(5〜15bar)で液状化させる。前記液状燃料はインジェクタ(Injector)を用いて気筒に噴射することにより、エンジンを駆動する。   In general, an LPI (Liquid Petroleum Injection: LPG injection device) engine is different from a mechanical LPG fuel injection method that relies on the pressure of a bomb, and a fuel pump is provided in the bomb. LPG fuel is liquefied at high pressure (5 to 15 bar) by a pump. The liquid fuel is injected into the cylinder using an injector, thereby driving the engine.

このようなLPIエンジンは、液状の燃料を噴射するため、ベポライザ(Vaporizer)やミキサ(Mixer)などの構成部品は必要としない。代わりに、高圧インジェクタ、ボンベに設けられる燃料ポンプ、燃料供給ライン、LPI専用電子制御装置(ECU)、および燃料の圧力を調整するレギュレータユニットが追加的に必要になる。   Since such an LPI engine injects liquid fuel, no components such as a vaporizer or a mixer are required. Instead, a high-pressure injector, a fuel pump provided in the cylinder, a fuel supply line, an LPI dedicated electronic control unit (ECU), and a regulator unit for adjusting the fuel pressure are additionally required.

このようなLPIエンジンの電子制御装置は、各種センサの入力信号を受信してエンジンの状態を判断し、最適な空燃比およびエンジン性能向上のために、燃料ポンプ、インジェクタおよび点火コイルを制御する。   Such an electronic control unit of an LPI engine receives input signals from various sensors, determines the state of the engine, and controls a fuel pump, an injector, and an ignition coil in order to improve the optimal air-fuel ratio and engine performance.

そして、エンジンで要求する燃料量に応じて燃料ポンプを制御して液状燃料をエンジンに供給し、LPIインジェクタは、シリンダに順次燃料を噴射し、最適な空燃比を実現する。   Then, the fuel pump is controlled according to the amount of fuel required by the engine to supply liquid fuel to the engine, and the LPI injector sequentially injects fuel into the cylinder to achieve an optimum air-fuel ratio.

しかし、従来のLPIシステムが適用された車両は、エンジンから高温のリターン燃料がボンベにリターンされるため、ボンベ内のLPG燃料の温度が上昇し、これにより、ボンベの内部圧力が高くなる現象が発生していた。特に、ボンベの内部圧力が充填所の充填圧力より高い場合には、LPG燃料がボンベ内に充填されないという問題があった。
(例えば特許文献1参照)
However, in a vehicle to which the conventional LPI system is applied, since the high-temperature return fuel is returned from the engine to the cylinder, the temperature of the LPG fuel in the cylinder rises, thereby causing a phenomenon that the internal pressure of the cylinder increases. It has occurred. In particular, when the internal pressure of the cylinder is higher than the filling pressure at the filling station, there is a problem that the LPG fuel is not filled into the cylinder.
(For example, see Patent Document 1)

エンジンからリターンされる燃料の温度を下げるためには、別の燃料冷却装置をリターンライン上に設けなければならないため、製作および設置費用が上昇し、狭いエンジンルームの内部における設置空間の確保に制約が発生するなどの問題も抱えていた。   In order to lower the temperature of the fuel returned from the engine, another fuel cooling device must be installed on the return line, which increases the manufacturing and installation costs, and restricts the installation space in the narrow engine room. There was also a problem such as that occurred.

特開2008−267190号公報JP 2008-267190 A

本発明は前記のような点に鑑みてなされたものであって、本発明の目的は、エアコンシステムを循環する冷媒と、エンジンからボンベにリターンされるLPG燃料とを相互熱交換させることにより、LPG燃料の温度を下げた後、ボンベに流入させ、ボンベの内部圧力が上昇するのを防止するようにするLPI車両用熱交換器を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to perform mutual heat exchange between the refrigerant circulating in the air conditioner system and the LPG fuel returned to the cylinder from the engine. An object of the present invention is to provide an LPI vehicle heat exchanger that lowers the temperature of the LPG fuel and then flows into the cylinder to prevent an increase in the internal pressure of the cylinder.

また、冷媒とLPG燃料とを熱交換させると同時に、凝縮器から供給される中温高圧の液体冷媒と、蒸発器から供給される低温低圧の気体冷媒とを熱交換させることにより、過冷効果を利用して冷媒の冷却効率を向上させるLPI車両用熱交換器を提供することにある。   In addition, heat exchange is performed between the refrigerant and the LPG fuel, and at the same time, heat exchange is performed between the medium-temperature and high-pressure liquid refrigerant supplied from the condenser and the low-temperature and low-pressure gas refrigerant supplied from the evaporator. An object of the present invention is to provide an LPI vehicular heat exchanger that improves the cooling efficiency of the refrigerant.

これにより、エアコンシステム性能の低下を防止し、冷房性能を向上することができる。   Thereby, the fall of an air-conditioner system performance can be prevented and a cooling performance can be improved.

前記目的を達成するための本発明の実施形態に係るLPI車両用熱交換器は、LPG燃料を使用するLPI車両でエンジンからリターンされる高温のLPG燃料を冷却するためのLPI車両用熱交換器において、複数のプレートが積層されて第1、第2、第3連結流路を形成し、第1、第2、第3連結流路に第1、第2、第3作動流体がそれぞれ流入して前記第1、第2、第3連結流路を通過しながら相互熱交換が行われ、第1、第2、第3連結流路に供給された第1、第2、第3作動流体は互いに混合されずに循環する放熱部と、前記放熱部の一面に形成されており、前記第1、第2、第3連結流路にそれぞれ連結され、前記第1、第2、第3作動流体を前記第1、第2、第3連結流路にそれぞれ供給する第1、第2、第3流入口と、前記第1、第2、第3流入口に対応して前記放熱部の他面にそれぞれ形成され、前記第1、第2、第3連結流路にそれぞれ連結され、前記第1、第2、第3作動流体をそれぞれ第1、第2、第3連結流路から排出する第1、第2、第3排出口とを含むことを特徴とする。   To achieve the above object, an LPI vehicle heat exchanger according to an embodiment of the present invention is an LPI vehicle heat exchanger for cooling high-temperature LPG fuel returned from an engine in an LPI vehicle using LPG fuel. A plurality of plates are stacked to form first, second, and third connection channels, and the first, second, and third working fluids flow into the first, second, and third connection channels, respectively. The first, second, and third working fluids supplied to the first, second, and third connection channels are exchanged while passing through the first, second, and third connection channels. A heat dissipating part that circulates without being mixed with each other, and is formed on one surface of the heat dissipating part, and is connected to the first, second, and third connecting flow paths, respectively, and the first, second, and third working fluids Are supplied to the first, second and third connecting flow paths, respectively, Corresponding to the first, second, and third inlets, formed on the other surface of the heat radiating portion, respectively, connected to the first, second, and third connecting flow paths, respectively, the first, second, and third It is characterized by including the 1st, 2nd, 3rd discharge port which discharges working fluid from the 1st, 2nd, 3rd connection channel, respectively.

前記第1作動流体は、エンジンからリターンされるLPG燃料であり、前記第2作動流体は、エアコンシステムの凝縮器から供給される中温高圧の液体冷媒であり、前記第3作動流体は、蒸発器から供給される低温低圧の気体冷媒であることを特徴とする。   The first working fluid is LPG fuel returned from the engine, the second working fluid is a medium-temperature and high-pressure liquid refrigerant supplied from a condenser of an air conditioner system, and the third working fluid is an evaporator. A low-temperature and low-pressure gaseous refrigerant supplied from

前記第1流入口は、前記放熱部の一面で1つの角部に形成され、前記第1排出口は、前記放熱部の他面で前記第1流入口に対角線方向に向かい合う角部に形成できることを特徴とする。   The first inlet may be formed at one corner on one surface of the heat radiating portion, and the first outlet may be formed at a corner facing the first inlet on a diagonal direction on the other surface of the heat radiating portion. It is characterized by.

前記第2流入口は、前記放熱部の一面で前記第1流入口の長手方向の反対側角部に形成され、前記第2排出口は、前記放熱部の他面で前記第2流入口の幅方向の反対側角部に形成できることを特徴とする。   The second inlet is formed on one surface of the heat radiating portion at a corner opposite to the longitudinal direction of the first inlet, and the second outlet is formed on the other surface of the heat radiating portion of the second inlet. It can be formed at opposite corners in the width direction.

前記第3流入口は、前記放熱部の一面で前記第1流入口から長手方向に離隔して形成され、前記第3排出口は、前記放熱部の他面には前記第3流入口の幅方向の反対側に形成できることを特徴とする。   The third inflow port is formed on one surface of the heat radiating portion and spaced apart from the first inflow port in the longitudinal direction, and the third discharge port is formed on the other surface of the heat radiating portion on the width of the third inflow port. It can be formed on the opposite side of the direction.

LPG燃料は、前記第1流入口、第1連結流路および第1排出口を介して循環し、低温低圧の気体冷媒は、前記第2流入口、第2連結流路および第2排出口を介して循環し、中温高圧の液体冷媒は、前記第3流入口、第3連結流路および第3排出口を介して循環することを特徴とする。   The LPG fuel circulates through the first inlet, the first connection channel, and the first outlet, and the low-temperature and low-pressure gas refrigerant passes through the second inlet, the second connection channel, and the second outlet. The medium-temperature and high-pressure liquid refrigerant circulates through the third inflow port, the third connection channel, and the third discharge port.

前記第1連結流路は、前記放熱部の内部で中央部に位置し、前記第2連結流路は、前記放熱部の上部では前記第1連結流路に隣接して配置され、前記放熱部の下部では前記第1連結流路から離隔して形成され、そして、前記第3連結流路は、前記放熱部の上部では前記第2連結流路の上部に位置し、前記放熱部の下部では前記第1連結流路と前記第2連結流路との間に形成できることを特徴とする。   The first connection channel is located in a central portion inside the heat radiating unit, and the second connection channel is disposed adjacent to the first connection channel at an upper part of the heat radiating unit. The third connection channel is located above the second connection channel at the top of the heat dissipating unit, and at the bottom of the heat dissipating unit. It can be formed between the first connection channel and the second connection channel.

低温低圧の気体冷媒と中温高圧の液体冷媒は、前記第2連結流路と第3連結流路内で互いに反対方向に流動することができることを特徴とする。   The low-temperature and low-pressure gas refrigerant and the medium-temperature and high-pressure liquid refrigerant can flow in opposite directions in the second connection channel and the third connection channel.

前記第1流入口はエンジンに連結され、前記第2流入口はエアコンシステムの凝縮器に連結され、前記第3流入口はエアコンシステムの蒸発器に連結できることを特徴とする。   The first inlet may be connected to an engine, the second inlet may be connected to a condenser of an air conditioner system, and the third inlet may be connected to an evaporator of an air conditioner system.

前記第1排出口はLPG燃料がリターンされて貯蔵されるボンベに連結され、前記第2排出口はエアコンシステムの圧縮器に連結され、前記第3排出口はエアコンシステムの膨張弁に連結できることを特徴とする。   The first outlet is connected to a cylinder in which LPG fuel is returned and stored, the second outlet is connected to a compressor of the air conditioner system, and the third outlet can be connected to an expansion valve of the air conditioner system. Features.

前記放熱部は、複数のプレートが積層されるプレート型放熱部であることを特徴とする。   The heat dissipation part is a plate-type heat dissipation part in which a plurality of plates are stacked.

本発明の実施形態に係るLPI車両用熱交換器は、エアコンシステムを循環する冷媒と、ボンベにリターンされるLPG燃料とを相互熱交換させ、LPG燃料の温度を下げた後、ボンベ5に流入させるので、ボンベ5の内部圧力上昇を防止することができる。   The heat exchanger for an LPI vehicle according to an embodiment of the present invention exchanges heat between the refrigerant circulating in the air conditioner system and the LPG fuel returned to the cylinder, lowers the temperature of the LPG fuel, and then flows into the cylinder 5 Therefore, an increase in the internal pressure of the cylinder 5 can be prevented.

さらに、凝縮器から供給される中温高圧の液体冷媒と、蒸発器から供給される低温低圧の気体冷媒とを、冷媒の過冷効果を利用して相互熱交換させるので、冷媒の冷却効率を向上することができる。   In addition, the medium temperature and high pressure liquid refrigerant supplied from the condenser and the low temperature and low pressure gas refrigerant supplied from the evaporator are exchanged with each other using the subcooling effect of the refrigerant, improving the cooling efficiency of the refrigerant. can do.

また、狭いエンジンルーム内部で冷媒の過冷とLPG燃料の冷却を同時に行うので、空間活用性を向上させ、レイアウトを簡素化することができる。   In addition, since the refrigerant is supercooled and the LPG fuel is simultaneously cooled in a narrow engine room, space utilization can be improved and the layout can be simplified.

本発明の実施形態に係るLPI車両用熱交換器が適用されたエアコンシステムの構成図である。It is a lineblock diagram of an air-conditioning system to which a heat exchanger for LPI vehicles concerning an embodiment of the present invention is applied. 本発明の実施形態に係るLPI車両用熱交換器の正面斜視図である。It is a front perspective view of the heat exchanger for LPI vehicles concerning the embodiment of the present invention. 本発明の実施形態に係るLPI車両用熱交換器の背面斜視図である。It is a back perspective view of the heat exchanger for LPI vehicles concerning an embodiment of the present invention. 図2のA−A線に沿った断面図である。It is sectional drawing along the AA line of FIG. 図2のB−B線に沿った断面図である。It is sectional drawing along the BB line of FIG. 図2のC−C線に沿った断面図である。It is sectional drawing along CC line of FIG. 本発明の実施形態に係るLPI車両用熱交換器の作動状態図である。It is an operation state figure of the heat exchanger for LPI vehicles concerning an embodiment of the present invention.

以下、本発明の好ましい実施形態を、添付した図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

これに先立ち、本明細書に記載された実施形態と図面に示された構成は、本発明の最も好ましい一実施形態に過ぎず、本発明の技術的思想を全て代弁するものではないため、本出願時点においてこれらを代替できる多様な均等物と変形例があり得ることを理解しなければならない。   Prior to this, the embodiment described in the present specification and the configuration shown in the drawings are only the most preferred embodiment of the present invention, and do not represent all the technical ideas of the present invention. It should be understood that there are various equivalents and variations that can be substituted at the time of filing.

図1は、本発明の実施形態に係るLPI車両用熱交換器が適用されたエアコンシステムの構成図であり、図2および図3は、本発明の実施形態に係るLPI車両用熱交換器の正面斜視図および背面斜視図であり、図4は、図2のA−A線に沿った断面図であり、図5は、図2のB−B線に沿った断面図であり、図6は、図2のC−C線に沿った断面図である。   FIG. 1 is a configuration diagram of an air conditioner system to which an LPI vehicle heat exchanger according to an embodiment of the present invention is applied. FIGS. 2 and 3 are diagrams of an LPI vehicle heat exchanger according to an embodiment of the present invention. 4 is a front perspective view and a rear perspective view, FIG. 4 is a cross-sectional view taken along line AA in FIG. 2, and FIG. 5 is a cross-sectional view taken along line BB in FIG. These are sectional drawings along the CC line of FIG.

これらの図を参照すれば、本発明の実施形態に係るLPI車両用熱交換器100は、エアコンシステムを循環する冷媒と、エンジン3からボンベ5にリターンされるLPG燃料とを相互熱交換させることにより、LPG燃料の温度を下げた後、ボンベ5に流入させる。これにより、前記熱交換器100は、ボンベの内部圧力が上昇するのを防止可能な構造からなる。   Referring to these drawings, an LPI vehicle heat exchanger 100 according to an embodiment of the present invention mutually exchanges heat between the refrigerant circulating in the air conditioner system and the LPG fuel returned to the cylinder 5 from the engine 3. Thus, after the temperature of the LPG fuel is lowered, it is caused to flow into the cylinder 5. Accordingly, the heat exchanger 100 has a structure capable of preventing the internal pressure of the cylinder from increasing.

また、冷媒とLPG燃料とを熱交換させると同時に、凝縮器20から供給される中温高圧の液体冷媒と、蒸発器40から供給される低温低圧の気体冷媒とを熱交換させることにより、過冷効果を利用して冷媒の冷却効率を向上させる。これにより、前記熱交換器100は、エアコンシステムの性能の低下を防止し、冷房性能の向上を可能とする構造からなる。   In addition, heat exchange is performed between the refrigerant and the LPG fuel, and at the same time, heat exchange is performed between the medium-temperature and high-pressure liquid refrigerant supplied from the condenser 20 and the low-temperature and low-pressure gas refrigerant supplied from the evaporator 40, thereby Use the effect to improve the cooling efficiency of the refrigerant. As a result, the heat exchanger 100 has a structure that prevents the performance of the air conditioner system from being lowered and improves the cooling performance.

ここで、本発明の実施形態に係るLPI車両用熱交換器100は、図1に示すように、冷媒を圧縮する圧縮器10と、前記圧縮器10から圧縮された冷媒を受けて凝縮させる凝縮器20と、前記凝縮器20により凝縮された液体冷媒を膨張させる膨張弁30と、前記膨張弁30により膨張した冷媒を空気との熱交換により蒸発させる蒸発器40とを含むエアコンシステムに用いられる。   Here, as shown in FIG. 1, an LPI vehicle heat exchanger 100 according to an embodiment of the present invention includes a compressor 10 that compresses a refrigerant, and a condensation that receives and condenses the refrigerant compressed from the compressor 10. Used in an air conditioner system that includes an evaporator 20, an expansion valve 30 that expands the liquid refrigerant condensed by the condenser 20, and an evaporator 40 that evaporates the refrigerant expanded by the expansion valve 30 by heat exchange with air. .

ここで、前記熱交換器100は、LPG燃料を使用するLPI車両でエンジン3からリターンされる高温のLPG燃料を冷媒との熱交換により冷却させる。   Here, the heat exchanger 100 cools the high-temperature LPG fuel returned from the engine 3 in the LPI vehicle using the LPG fuel by heat exchange with the refrigerant.

このために、本発明の実施形態に係るLPI車両用熱交換器100は、図2および図3に示すように、放熱部110と、複数の流入口120と、複数の排出口130とを含んで構成され、以下にこれを各構成別により詳細に説明する。   To this end, the LPI vehicle heat exchanger 100 according to the embodiment of the present invention includes a heat radiating portion 110, a plurality of inlets 120, and a plurality of outlets 130, as shown in FIGS. This will be described in more detail below for each configuration.

まず、前記放熱部110は、複数のプレート111が積層されて形成され、隣接するプレート111の間には複数の連結流路140が形成される。また、複数の作動流体は、前記複数の連結流路140を通過しながら相互熱交換が行われる。   First, the heat radiating part 110 is formed by laminating a plurality of plates 111, and a plurality of connection channels 140 are formed between adjacent plates 111. The plurality of working fluids exchange heat with each other while passing through the plurality of connection channels 140.

このように構成される前記放熱部110は、複数のプレート111が積層されるプレート型(あるいは、「板型」ともいう)放熱部として形成される。   The heat dissipating part 110 configured as described above is formed as a plate type (or “plate type”) heat dissipating part in which a plurality of plates 111 are stacked.

ここで、前記複数の作動流体は、前記エンジン3からリターンされるLPG燃料と、エアコンシステムの凝縮器20から供給される中温高圧の液体冷媒と、蒸発器40から供給される低温低圧の気体冷媒とを含む。   Here, the plurality of working fluids include LPG fuel returned from the engine 3, medium temperature and high pressure liquid refrigerant supplied from the condenser 20 of the air conditioner system, and low temperature and low pressure gas refrigerant supplied from the evaporator 40. Including.

本実施形態において、前記複数の流入口120は、前記放熱部110の一面に形成されており、前記複数の作動流体は、前記複数の流入口120を介して前記放熱部110の内部に流入する。前記複数の流入口120は前記複数の連結流路140に連結される。   In the present embodiment, the plurality of inlets 120 are formed on one surface of the heat radiating unit 110, and the plurality of working fluids flow into the heat radiating unit 110 through the plurality of inlets 120. . The plurality of inlets 120 are connected to the plurality of connection channels 140.

そして、前記複数の排出口130は、前記複数の流入口120に対応し、前記放熱部110の他面に形成されている。前記放熱部110の内部を流れる複数の作動流体は、前記複数の排出口130を介して排出される。前記複数の排出口130は前記複数の連結流路140に連結される。   The plurality of outlets 130 correspond to the plurality of inlets 120 and are formed on the other surface of the heat radiating unit 110. The plurality of working fluids flowing through the heat radiating unit 110 are discharged through the plurality of discharge ports 130. The plurality of outlets 130 are connected to the plurality of connection channels 140.

ここで、前記複数の流入口120は、前記放熱部110の一面に長手方向にそれぞれ離隔して形成される第1、第2および第3流入口121、123、125を含む。   Here, the plurality of inlets 120 include first, second, and third inlets 121, 123, and 125 that are formed on one surface of the heat dissipating unit 110 so as to be spaced apart from each other in the longitudinal direction.

そして、前記複数の排出口130は、前記第1、第2および第3流入口121、123、125にそれぞれ対応し、前記放熱部110の他面に互いに離隔して形成される第1、第2および第3排出口131、133、135を含む。前記第1、第2および第3排出口131、133、135は、前記複数の連結流路140を介して前記第1、第2および第3流入口121、123、125にそれぞれ連結される。   The plurality of discharge ports 130 correspond to the first, second, and third inflow ports 121, 123, and 125, respectively, and are formed on the other surface of the heat radiating unit 110 to be separated from each other. 2 and third discharge ports 131, 133, 135. The first, second, and third discharge ports 131, 133, and 135 are connected to the first, second, and third inlet ports 121, 123, and 125 through the plurality of connection channels 140, respectively.

本実施形態において、前記第1流入口121は、前記放熱部110の一面で1つの角部に形成され、前記第1排出口131は、前記放熱部110の他面で前記第1流入口121に対角線方向に向かい合う角部に形成される。   In the present embodiment, the first inlet 121 is formed at one corner on one surface of the heat radiating part 110, and the first outlet 131 is formed on the other surface of the heat radiating part 110. Are formed at corners facing diagonally.

また、前記第2流入口123は、前記放熱部110の一面で前記第1流入口121の長手方向の反対側角部に形成され、第2排出口133は、前記放熱部110の他面で第2流入口123の幅方向の反対側角部に形成される。   The second inflow port 123 is formed on one surface of the heat radiating unit 110 at a corner opposite to the longitudinal direction of the first inflow port 121, and the second discharge port 133 is formed on the other surface of the heat radiating unit 110. The second inflow port 123 is formed at the opposite corner in the width direction.

そして、前記第3流入口125は、前記放熱部110の一面で前記第1流入口121から長手方向に離隔して形成され、前記第3排出口135は、前記放熱部110の他面で前記第3流入口125の幅方向の反対側に形成される。   The third inlet 125 is formed on one surface of the heat radiating part 110 and is spaced apart from the first inlet 121 in the longitudinal direction, and the third outlet 135 is formed on the other surface of the heat radiating part 110. The third inlet 125 is formed on the opposite side in the width direction.

ここで、LPG燃料は、前記第1流入口121と第1排出口131を介して循環し、低温低圧の気体冷媒は、前記第2流入口123と第2排出口133を介して循環し、中温高圧の液体冷媒は、前記第3流入口125と第3排出口135を介して循環する。   Here, the LPG fuel circulates through the first inlet 121 and the first outlet 131, and the low-temperature and low-pressure gas refrigerant circulates through the second inlet 123 and the second outlet 133, The medium temperature and high pressure liquid refrigerant circulates through the third inlet 125 and the third outlet 135.

つまり、前記第1排出口131はLPG燃料がリターンされて貯蔵されるボンベ5に相互連結され、前記第2排出口133はエアコンシステムの圧縮器10に相互連結され、放熱部110を通過した低温低圧の気体冷媒を圧縮器10に供給するようになっている。   That is, the first outlet 131 is interconnected to the cylinder 5 where LPG fuel is returned and stored, and the second outlet 133 is interconnected to the compressor 10 of the air conditioner system and passes through the heat radiating unit 110. A low-pressure gaseous refrigerant is supplied to the compressor 10.

そして、前記第3排出口135は、エアコンシステムの膨張弁30に相互連結され、前記放熱部110を通過した中温高圧の液体冷媒を膨張弁30に供給するようになっている。   The third discharge port 135 is interconnected with the expansion valve 30 of the air conditioner system, and supplies the medium temperature and high pressure liquid refrigerant that has passed through the heat radiating unit 110 to the expansion valve 30.

一方、前記流入口120と排出口130にはそれぞれ連結ポート(図示せず)が装着可能であり、前記連結ポートに装着される連結ホースまたは連結配管などを介してエアコンシステム、エンジン3およびボンベ5にそれぞれ連結可能である。   On the other hand, a connection port (not shown) can be attached to each of the inflow port 120 and the discharge port 130, and the air conditioner system, the engine 3 and the cylinder 5 are connected via a connection hose or a connection pipe attached to the connection port. Can be connected to each other.

本実施形態において、前記複数の連結流路140は、第1、第2および第3連結流路141、143、145を含み、以下にこれをより詳細に説明する。   In the present embodiment, the plurality of connection channels 140 include first, second, and third connection channels 141, 143, and 145, which will be described in more detail below.

まず、前記第1連結流路141は、図4に示すように、前記第1流入口121を介して流入したLPG燃料が移動するようになっており、前記放熱部110の内部で中央部に位置する。   First, as shown in FIG. 4, the first connection channel 141 is configured such that the LPG fuel that has flowed in through the first inlet 121 moves, and is located in the center of the heat radiating unit 110. To position.

本実施形態において、前記第2連結流路143は、図5に示すように、前記放熱部110の上部では前記第1連結流路141に隣接して配置され、前記放熱部110の下部では前記第1連結流路141から離隔して形成される。前記放熱部110の上部の第2連結流路143と前記放熱部110の下部の第2連結流路143とは、前記放熱部110の内部で連結され、前記第2流入口123を介して流入する低温低圧の気体冷媒が前記第2連結流路143内で移動する。   In the present embodiment, as shown in FIG. 5, the second connection channel 143 is disposed adjacent to the first connection channel 141 in the upper part of the heat radiating unit 110 and in the lower part of the heat radiating unit 110. It is formed apart from the first connection channel 141. The second connection channel 143 at the upper part of the heat radiating unit 110 and the second connection channel 143 at the lower part of the heat radiating unit 110 are connected inside the heat radiating unit 110 and flowed in through the second inlet 123. The low-temperature and low-pressure gaseous refrigerant that moves moves in the second connection channel 143.

つまり、前記第1連結流路141を通過するLPG燃料は、第1連結流路141の上部に隣接して位置する第2連結流路143を流れる低温低圧の気体冷媒と熱交換されて冷却される。   That is, the LPG fuel passing through the first connection channel 141 is cooled by heat exchange with a low-temperature and low-pressure gas refrigerant flowing through the second connection channel 143 located adjacent to the top of the first connection channel 141. The

そして、前記第3連結流路145は、図6に示すように、前記放熱部110の上部では前記第2連結流路143の上部に位置し、前記放熱部110の下部では前記第1連結流路141と前記第2連結流路143との間に形成される。前記放熱部110の上部の第3連結流路145と前記放熱部110の下部の第3連結流路145とは、前記放熱部110の内部で連結され、前記第3流入口125を介して流入する中温高圧の液体冷媒が前記第3連結流路145内で移動する。   As shown in FIG. 6, the third connection channel 145 is positioned above the second connection channel 143 above the heat dissipating unit 110, and the first connection flow is positioned below the heat dissipating unit 110. A path 141 is formed between the second connection channel 143. The third connection channel 145 in the upper part of the heat radiating unit 110 and the third connection channel 145 in the lower part of the heat radiating unit 110 are connected inside the heat radiating unit 110 and flow in via the third inlet 125. The medium-temperature and high-pressure liquid refrigerant that moves moves in the third connection channel 145.

つまり、前記第2連結流路143は、前記放熱部110の内部において、前記第1連結流路141の上部と放熱部110の下部に位置する第3連結流路145の下部とを相互連結するように形成される。   That is, the second connection channel 143 interconnects the upper part of the first connection channel 141 and the lower part of the third connection channel 145 located below the heat dissipation unit 110 in the heat dissipation unit 110. Formed as follows.

これにより、前記第2連結流路143を通過する低温低圧の気体冷媒は、放熱部110の上部で前記第1連結流路141を通過するLPG燃料と熱交換され、前記放熱部110の下部で前記第3連結流路145を通過する中温高圧の液体冷媒と熱交換される。   As a result, the low-temperature and low-pressure gaseous refrigerant passing through the second connection channel 143 is heat-exchanged with the LPG fuel passing through the first connection channel 141 at the upper part of the heat dissipation unit 110, and at the lower part of the heat dissipation unit 110. Heat exchange with the medium-temperature and high-pressure liquid refrigerant passing through the third connection channel 145 is performed.

したがって、LPG燃料と中温高圧の液体冷媒は、低温低圧の気体冷媒との熱交換により冷却される。   Therefore, the LPG fuel and the medium temperature / high pressure liquid refrigerant are cooled by heat exchange with the low temperature / low pressure gas refrigerant.

前記第2流入口123と第3流入口125が前記放熱部110の一面で互いに反対方向に形成されているため、低温低圧の気体冷媒と中温高圧の液体冷媒は、前記第2連結流路143と第3連結流路145内で互いに反対方向に流れるようになっている。   Since the second inlet 123 and the third inlet 125 are formed in opposite directions on one surface of the heat radiating part 110, the low-temperature and low-pressure gas refrigerant and the medium-temperature and high-pressure liquid refrigerant are connected to the second connection channel 143. And flow in opposite directions within the third connection channel 145.

これにより、低温低圧の気体冷媒と中温高圧の液体冷媒との熱交換効率は向上する。   Thereby, the heat exchange efficiency between the low-temperature and low-pressure gas refrigerant and the medium-temperature and high-pressure liquid refrigerant is improved.

また、前記第3連結流路145を通過する中温高圧の液体冷媒の内部に含まれている不凝縮気体冷媒が、第2連結流路143を通過する低温低圧の気体冷媒との熱交換により凝縮されることにより、不凝縮気体冷媒によるエアコンシステムの効率の低下を防止し、膨張弁30の膨張効率が増大する。   Further, the non-condensed gas refrigerant contained in the medium-temperature and high-pressure liquid refrigerant passing through the third connection channel 145 is condensed by heat exchange with the low-temperature and low-pressure gas refrigerant passing through the second connection channel 143. As a result, the efficiency of the air conditioner system is prevented from decreasing due to the non-condensable gas refrigerant, and the expansion efficiency of the expansion valve 30 is increased.

以下、このように構成される本発明の実施形態に係るLPI車両用熱交換器100の作動および作用を詳細に説明する。   Hereinafter, the operation and action of the heat exchanger 100 for an LPI vehicle according to the embodiment of the present invention configured as described above will be described in detail.

図7は、本発明の実施形態に係るLPI車両用熱交換器の使用状態図である。   FIG. 7 is a use state diagram of the heat exchanger for an LPI vehicle according to the embodiment of the present invention.

まず、エンジン3からリターンされる高温状態のLPG燃料は、図7の(S1)のように、前記第1流入口121を介して流入して第1連結流路141を通過し、第1排出口131を介してボンベ5に排出される。   First, as shown in FIG. 7 (S1), the high-temperature LPG fuel returned from the engine 3 flows in through the first inflow port 121 and passes through the first connection flow path 141, and the first exhaust. The gas is discharged to the cylinder 5 through the outlet 131.

前記蒸発器40から供給される低温低圧の気体冷媒は、図7の(S2)のように、前記第2流入口123を介して流入して第2連結流路143を通過し、第2排出口133を介して圧縮器10に排出される。   The low-temperature and low-pressure gaseous refrigerant supplied from the evaporator 40 flows in through the second inlet 123 and passes through the second connection channel 143 as shown in (S2) of FIG. It is discharged to the compressor 10 through the outlet 133.

ここで、LPG燃料は、前記第1連結流路141内で移動し、低温低圧の気体冷媒は、前記放熱部110の上部で第1連結流路141の上部に位置する第2連結流路143内で移動する。したがって、前記LPG燃料は、低温低圧の気体冷媒と相互熱交換されながら冷却される。   Here, the LPG fuel moves in the first connection channel 141, and the low-temperature and low-pressure gaseous refrigerant is a second connection channel 143 located above the heat dissipation part 110 and above the first connection channel 141. Move in. Therefore, the LPG fuel is cooled while exchanging heat with a low-temperature and low-pressure gaseous refrigerant.

そして、前記凝縮器20から供給される中温高圧の液体冷媒は、図7の(S3)のように、前記第3流入口125を介して流入して第3連結流路145を通過し、第3排出口135を介して膨張弁30に排出される。   Then, the medium-temperature and high-pressure liquid refrigerant supplied from the condenser 20 flows in through the third inlet 125 and passes through the third connection channel 145 as shown in (S3) of FIG. 3 is discharged to the expansion valve 30 through the discharge port 135.

この時、前記放熱部110の上部において、低温低圧の気体冷媒は、第2連結流路143内で移動し、中温高圧の液体冷媒は、第2連結流路143の上部に位置する第3連結流路145内で移動する。また、前記低温低圧の気体冷媒は、中温高圧の液体冷媒とは反対方向に流れる。したがって、中温高圧の液体冷媒は、低温低圧の気体冷媒と相互熱交換が行われる。   At this time, the low-temperature and low-pressure gas refrigerant moves in the second connection channel 143 in the upper part of the heat dissipating unit 110, and the medium-temperature and high-pressure liquid refrigerant moves in the third connection channel 143. It moves in the channel 145. The low-temperature and low-pressure gas refrigerant flows in the opposite direction to the medium-temperature and high-pressure liquid refrigerant. Therefore, the medium temperature and high pressure liquid refrigerant exchanges heat with the low temperature and low pressure gas refrigerant.

中温高圧の液体冷媒が、前記放熱部110の上部で第2連結流路143の上部に位置する第3連結流路145を通過するため、中温高圧の液体冷媒は、エンジンルーム内の熱気が低温低圧の気体冷媒に直接伝達されるのを防止し、気体冷媒の温度上昇を防止する機能を果たす。   Since the medium temperature and high pressure liquid refrigerant passes through the third connection channel 145 located above the second connection channel 143 above the heat radiating unit 110, the medium temperature and high pressure liquid refrigerant has a low temperature in the engine room. It prevents the direct transmission to the low-pressure gas refrigerant and prevents the temperature of the gas refrigerant from rising.

これにより、気体冷媒の温度上昇によるエアコンシステムの冷却性能の低下を未然に防ぐことができる。   Thereby, the fall of the cooling performance of the air-conditioning system by the temperature rise of gaseous refrigerant can be prevented beforehand.

そして、前記放熱部110の下部では、中温高圧の液体冷媒が、第1連結流路141の下部に配置される第3連結流路145を通過する。したがって、第1連結流路141を通過するLPG燃料が低温低圧の気体冷媒との熱交換時に過冷するのを防止し、LPG燃料は適正水準の温度に冷却される。   In the lower part of the heat radiating unit 110, the medium-temperature and high-pressure liquid refrigerant passes through the third connection channel 145 disposed at the lower part of the first connection channel 141. Therefore, the LPG fuel that passes through the first connection channel 141 is prevented from being overcooled during heat exchange with the low-temperature and low-pressure gaseous refrigerant, and the LPG fuel is cooled to an appropriate level.

このように、適正水準の温度に冷却されたLPG燃料は、前記第1排出口131を介して前記ボンベ5に供給される。   Thus, the LPG fuel cooled to an appropriate level of temperature is supplied to the cylinder 5 through the first exhaust port 131.

したがって、前記熱交換器100は、エンジン3からリターンされた高温のLPG燃料を、低温低圧の気体冷媒および中温高圧の液体冷媒と熱交換させ、適正水準の温度に冷却された後、ボンベ5に供給される。したがって、高温状態のLPG燃料がボンベ5に流入してボンベ5の内部圧力が上昇するのを防止する。   Therefore, the heat exchanger 100 heat-exchanges the high-temperature LPG fuel returned from the engine 3 with the low-temperature and low-pressure gas refrigerant and the medium-temperature and high-pressure liquid refrigerant, and after cooling to an appropriate level, Supplied. Accordingly, it is possible to prevent the LPG fuel in a high temperature state from flowing into the cylinder 5 and increasing the internal pressure of the cylinder 5.

一方、前記第3連結流路145を通過する中温高圧の液体冷媒の内部に含まれている不凝縮気体冷媒は、第2連結流路143を通過する低温低圧の気体冷媒との熱交換により凝縮される。したがって、不凝縮気体冷媒によるエアコンシステムの効率の低下を防止し、膨張弁30の膨張効率を増大することができる。   On the other hand, the non-condensed gas refrigerant contained in the medium-temperature and high-pressure liquid refrigerant passing through the third connection channel 145 is condensed by heat exchange with the low-temperature and low-pressure gas refrigerant passing through the second connection channel 143. Is done. Therefore, it is possible to prevent the efficiency of the air conditioner system from decreasing due to the non-condensable gas refrigerant and to increase the expansion efficiency of the expansion valve 30.

したがって、本発明の実施形態に係るLPI車両用熱交換器100は、エアコンシステムを循環する冷媒と、ボンベ5にリターンされるLPG燃料とを相互熱交換させることにより、LPG燃料の温度を下げた後、ボンベ5に流入する。したがって、ボンベ5の内部圧力が上昇するのを防止することができる。   Therefore, the LPI vehicle heat exchanger 100 according to the embodiment of the present invention reduces the temperature of the LPG fuel by exchanging heat between the refrigerant circulating in the air conditioner system and the LPG fuel returned to the cylinder 5. Then, it flows into the cylinder 5. Therefore, it is possible to prevent the internal pressure of the cylinder 5 from increasing.

また、ボンベ5の内部圧力が上昇するのを防止することにより、燃料の充填時、ボンベ5への燃料注入を円滑にし、商品性を向上することができる。   Further, by preventing the internal pressure of the cylinder 5 from increasing, fuel can be smoothly injected into the cylinder 5 at the time of fuel filling, and the merchantability can be improved.

さらに、本発明の実施形態に係るLPI車両用熱交換器100は、凝縮器20から供給される中温高圧の液体冷媒と、蒸発器40から供給される低温低圧の気体冷媒とを相互熱交換させる、この場合、冷媒の過冷効果を利用して冷媒の冷却効率を向上させ、エアコンシステムの性能の低下を防止し、冷房性能を向上することができる。   Furthermore, the LPI vehicle heat exchanger 100 according to the embodiment of the present invention exchanges heat between the medium-temperature and high-pressure liquid refrigerant supplied from the condenser 20 and the low-temperature and low-pressure gas refrigerant supplied from the evaporator 40. In this case, it is possible to improve the cooling efficiency of the refrigerant by utilizing the cooling effect of the refrigerant, to prevent the performance of the air conditioner system from being lowered, and to improve the cooling performance.

また、狭いエンジンルームの内部で冷媒の過冷とLPG燃料の冷却を同時に行うことにより、空間活用性を向上し、レイアウトを簡素化することができる。   Further, by simultaneously performing cooling of the refrigerant and cooling of the LPG fuel in a narrow engine room, it is possible to improve space utilization and simplify the layout.

以上のように、本発明は、限定された実施形態と図面により説明したが、本発明はこれにより限定されず、本発明の属する技術分野における通常の知識を有する者であれば、本発明の技術思想と技術的範囲内で多様な修正および変形が可能である。   As described above, the present invention has been described with reference to the embodiments and the drawings. However, the present invention is not limited thereto, and any person having ordinary knowledge in the technical field to which the present invention belongs can be used. Various modifications and variations are possible within the technical idea and the technical scope.

本発明は、LPI車両用熱交換器の分野に適用できる。   The present invention can be applied to the field of heat exchangers for LPI vehicles.

3:エンジン
5:ボンベ
10:圧縮器
20:凝縮器
30:膨張弁
40:蒸発器
100:LPI車両用熱交換器
110:放熱部
111:プレート
120:流入口
121、123、125:第1、第2、第3流入口
130:排出口
131、133、135:第1、第2、第3排出口
140:連結流路
141、143、145:第1、第2、第3連結流路
3: Engine 5: Cylinder 10: Compressor 20: Condenser 30: Expansion valve 40: Evaporator 100: Heat exchanger for LPI vehicle 110: Heat radiation part 111: Plate 120: Inlet 121, 123, 125: First, Second and third inlets 130: outlets 131, 133, 135: first, second, and third outlets 140: connection channels 141, 143, and 145: first, second, and third connection channels

Claims (10)

LPG燃料を使用するLPI車両でエンジンからリターンされる高温のLPG燃料を冷却するためのLPI車両用熱交換器において、
複数のプレートが積層されて形成された放熱部に、第1、第2、第3連結流路を形成し、
前記放熱部の一面に前記第1、第2、第3連結流路にそれぞれ連結される第1、第2、第3流入口がそれぞれ離隔して形成され、
前記放熱部の他面に前記第1、第2、第3連結流路にそれぞれ連結される第1、第2、第3排出口がそれぞれ離隔して形成され、
前記エンジンからリターンされる高温状態のLPG燃料が、前記第1流入口を介して流入し、前記第1連結流路を通過し、前記第1排出口を介してボンベに排出され、
車両用エアコンの蒸発器から供給される低温低圧の気体冷媒が、前記第2流入口を介して流入し、前記第2連結流路を通過し、前記第2排出口を介して圧縮器に排出され、
前記車両用エアコンの凝縮器から供給される中温高圧の液体冷媒が、前記第3流入口を介して流入し、前記第3連結流路を通過し、前記第3排出口を介して膨張弁に排出され、
前記高温状態のLPG燃料、低温低圧の気体冷媒及び中温高圧の液体冷媒のそれぞれが前記第1、第2、第3連結流路を通過しながら相互熱交換が行われることを特徴とするLPI車両用熱交換器。
In an LPI vehicle heat exchanger for cooling high temperature LPG fuel returned from an engine in an LPI vehicle using LPG fuel,
In the heat radiating part formed by laminating a plurality of plates , the first, second and third connection flow paths are formed,
First front Symbol on a surface of the heat radiating portion, the second, first that will be connected respectively to the third connecting flow path, the second, third inlet port is spaced apart from each
Other surface before Symbol first the heat radiating portion, the second, first that will be connected respectively to the third connecting flow path, the second, third outlet is spaced apart from each
High-temperature LPG fuel returned from the engine flows in through the first inlet, passes through the first connection channel, and is discharged into the cylinder through the first outlet.
A low-temperature and low-pressure gaseous refrigerant supplied from an evaporator of a vehicle air conditioner flows in through the second inlet, passes through the second connection channel, and is discharged to the compressor through the second outlet. And
Medium temperature and high pressure liquid refrigerant supplied from a condenser of the vehicle air conditioner flows in through the third inlet, passes through the third connection channel, and passes through the third outlet to the expansion valve. Discharged,
LPG fuel in the high temperature state, the low temperature the each first low-pressure gas refrigerant and intermediate temperature high pressure liquid refrigerant, a second, mutual heat exchange is performed while passing through the third connecting channel, wherein the Turkey Heat exchanger for LPI vehicles.
前記第1流入口は、前記放熱部の一面で1つの角部に形成され、前記第1排出口は、前記放熱部の他面で前記第1流入口に対角線方向に向かい合う角部に形成されることを特徴とする請求項1に記載のLPI車両用熱交換器。   The first inlet is formed at one corner on one surface of the heat radiating portion, and the first outlet is formed at a corner facing the first inlet on a diagonal direction on the other surface of the heat radiating portion. The heat exchanger for an LPI vehicle according to claim 1. 前記第2流入口は、前記放熱部の一面で前記第1流入口の長手方向の反対側角部に形成され、前記第2排出口は、前記放熱部の他面で前記第2流入口の幅方向の反対側角部に形成されることを特徴とする請求項1に記載のLPI車両用熱交換器。   The second inlet is formed on one surface of the heat radiating portion at a corner opposite to the longitudinal direction of the first inlet, and the second outlet is formed on the other surface of the heat radiating portion of the second inlet. The LPI vehicle heat exchanger according to claim 1, wherein the LPI vehicle heat exchanger is formed at a corner opposite to the width direction. 前記第3流入口は、前記放熱部の一面で前記第1流入口から長手方向に離隔して形成され、前記第3排出口は、前記放熱部の他面には前記第3流入口の幅方向の反対側に形成されることを特徴とする請求項1に記載のLPI車両用熱交換器。   The third inflow port is formed on one surface of the heat radiating portion and spaced apart from the first inflow port in the longitudinal direction, and the third discharge port is formed on the other surface of the heat radiating portion on the width of the third inflow port. The LPI vehicle heat exchanger according to claim 1, wherein the heat exchanger is formed on an opposite side of the direction. LPG燃料は、前記第1流入口、第1連結流路および第1排出口を介して循環し、低温低圧の気体冷媒は、前記第2流入口、第2連結流路および第2排出口を介して循環し、中温高圧の液体冷媒は、前記第3流入口、第3連結流路および第3排出口を介して循環することを特徴とする請求項1に記載のLPI車両用熱交換器。   The LPG fuel circulates through the first inlet, the first connection channel, and the first outlet, and the low-temperature and low-pressure gas refrigerant passes through the second inlet, the second connection channel, and the second outlet. 2. The LPI vehicle heat exchanger according to claim 1, wherein the medium-temperature and high-pressure liquid refrigerant circulates through the third inflow port, the third connection flow path, and the third exhaust port. . 前記第1連結流路は、前記放熱部の内部で中央部に位置し、
前記第2連結流路は、前記放熱部の上部では前記第1連結流路に隣接して配置され、前記放熱部の下部では前記第1連結流路から離隔して形成され、そして、
前記第3連結流路は、前記放熱部の上部では前記第2連結流路の上部に位置し、前記放熱部の下部では前記第1連結流路と前記第2連結流路との間に形成されることを特徴とする請求項に記載のLPI車両用熱交換器。
The first connection channel is located in a central part inside the heat dissipation part,
The second connection channel is disposed adjacent to the first connection channel in the upper part of the heat dissipation part, and is formed separately from the first connection channel in the lower part of the heat dissipation part, and
The third connection channel is located above the second connection channel above the heat dissipating unit, and is formed between the first connection channel and the second connection channel below the heat dissipating unit. The LPI vehicle heat exchanger according to claim 5 , wherein the heat exchanger is for LPI vehicles.
低温低圧の気体冷媒と中温高圧の液体冷媒は、前記第2連結流路と第3連結流路内で互いに反対方向に流動することを特徴とする請求項に記載のLPI車両用熱交換器。 6. The heat exchanger for an LPI vehicle according to claim 5 , wherein the low-temperature and low-pressure gas refrigerant and the medium-temperature and high-pressure liquid refrigerant flow in opposite directions in the second connection channel and the third connection channel. . 前記第1流入口はエンジンに連結され、前記第2流入口はエアコンシステムの凝縮器に連結され、前記第3流入口はエアコンシステムの蒸発器に連結されていることを特徴とする請求項1に記載のLPI車両用熱交換器。   The first inlet is connected to an engine, the second inlet is connected to a condenser of an air conditioner system, and the third inlet is connected to an evaporator of the air conditioner system. The heat exchanger for LPI vehicles described in 2. 前記第1排出口はLPG燃料がリターンされて貯蔵されるボンベに連結され、前記第2排出口はエアコンシステムの圧縮器に連結され、前記第3排出口はエアコンシステムの膨張弁に連結されることを特徴とする請求項1に記載のLPI車両用熱交換器。   The first outlet is connected to a cylinder in which LPG fuel is returned and stored, the second outlet is connected to a compressor of an air conditioner system, and the third outlet is connected to an expansion valve of the air conditioner system. The heat exchanger for LPI vehicles according to claim 1 characterized by things. 前記放熱部は、複数のプレートが積層されるプレート型放熱部であることを特徴とする請求項1に記載のLPI車両用熱交換器。   The LPI vehicle heat exchanger according to claim 1, wherein the heat dissipating unit is a plate heat dissipating unit in which a plurality of plates are stacked.
JP2012132154A 2011-12-07 2012-06-11 LPI vehicle heat exchanger Active JP5948158B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110130580A KR101316861B1 (en) 2011-12-07 2011-12-07 Heat exchanger for lpi vehicle
KR10-2011-0130580 2011-12-07

Publications (2)

Publication Number Publication Date
JP2013119853A JP2013119853A (en) 2013-06-17
JP5948158B2 true JP5948158B2 (en) 2016-07-06

Family

ID=48464728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132154A Active JP5948158B2 (en) 2011-12-07 2012-06-11 LPI vehicle heat exchanger

Country Status (5)

Country Link
US (1) US20130146246A1 (en)
JP (1) JP5948158B2 (en)
KR (1) KR101316861B1 (en)
CN (1) CN103147886B (en)
DE (1) DE102012105604B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886075B1 (en) * 2012-10-26 2018-08-07 현대자동차 주식회사 Heat exchanger for vehicle
KR102017044B1 (en) * 2013-07-10 2019-09-02 현대자동차주식회사 Air conditioner system for vehicle
JP5907183B2 (en) * 2014-01-22 2016-04-26 トヨタ自動車株式会社 Vehicle fuel cooling system
EP2985443B1 (en) * 2014-08-15 2017-02-22 Wärtsilä Finland Oy A fuel system for an internal combustion piston engine and a method of operating an internal combustion engine
KR101745270B1 (en) * 2016-07-13 2017-06-08 현대자동차주식회사 System for cooling filling lpg bombe of bi-fuel vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790145A (en) * 1987-11-13 1988-12-13 Eaton Corporation Superheat control of air conditioning system incorporating fuel cooler
US5245833A (en) * 1992-05-19 1993-09-21 Martin Marietta Energy Systems, Inc. Liquid over-feeding air conditioning system and method
US5462113A (en) * 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
JP3936088B2 (en) * 1998-12-08 2007-06-27 大阪瓦斯株式会社 Three-fluid plate heat exchanger and method for manufacturing the same
JP2000337784A (en) * 1999-05-24 2000-12-08 Nhk Spring Co Ltd Plate type heat exchanger for three liquids
JP2001355994A (en) * 2000-06-12 2001-12-26 Toyo Radiator Co Ltd Stacked type heat exchanger for cooling gas
JP2001355978A (en) * 2000-06-12 2001-12-26 Toyo Radiator Co Ltd Gas cooling laminated heat exchanger
EP1293654A3 (en) * 2001-09-18 2004-02-11 Karlheinrich Winkelmann Fuel injection system for an internal combustion engine
JP3942405B2 (en) * 2001-11-07 2007-07-11 大阪瓦斯株式会社 Three-fluid heat exchanger
JP4031668B2 (en) * 2002-05-23 2008-01-09 東京ラヂエーター製造株式会社 Heat exchanger
JP4606786B2 (en) * 2004-06-23 2011-01-05 株式会社ティラド Multi-fluid heat exchanger
JP2008144713A (en) * 2006-12-12 2008-06-26 Toyota Motor Corp Fuel cooling device and its manufacturing method
JP4715800B2 (en) * 2007-04-17 2011-07-06 トヨタ自動車株式会社 Fuel cooling device
DE102010012869A1 (en) * 2009-03-26 2010-09-30 Modine Manufacturing Co., Racine heat exchanger module
KR101734281B1 (en) * 2011-05-20 2017-05-12 현대자동차 주식회사 Condenser for vehicle

Also Published As

Publication number Publication date
CN103147886A (en) 2013-06-12
DE102012105604B4 (en) 2021-05-06
KR101316861B1 (en) 2013-10-08
US20130146246A1 (en) 2013-06-13
CN103147886B (en) 2018-02-16
DE102012105604A1 (en) 2013-06-13
JP2013119853A (en) 2013-06-17
KR20130063945A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP6022156B2 (en) Vehicle capacitors
JP6128853B2 (en) Vehicle heat exchanger
KR101294082B1 (en) Heat exchanger for lpi vehicle
JP5948158B2 (en) LPI vehicle heat exchanger
KR101929910B1 (en) Cold reserving heat exchanger
US20160010929A1 (en) Stacked heat exchanger
KR20150079448A (en) Cooling module and Cooling System for Vehicles
JP6580451B2 (en) Heat exchanger
CN102759147B (en) Air-conditioning multiple on-line system
KR102170459B1 (en) Air conditioner system for vehicle
KR20150140780A (en) Refrigerant evaporator
JP2014114803A (en) Return fuel cooling system for lpi vehicle
CN104823014A (en) Heat exchanger
KR20190051934A (en) Cooling module and Cooling System for Vehicles
KR102439432B1 (en) Cooling module for hybrid vehicle
JP2012245866A (en) Combined heat exchanger system
KR102588981B1 (en) Integrated plate-type heat exchanger
KR102206973B1 (en) Air conditioner system for vehicle
KR20160012397A (en) Air conditioner system for vehicle
US20140182326A1 (en) Heat Exchanger For A Heating, Ventilation And/Or Air-Conditioning Unit
KR101339263B1 (en) Heat exchanger for lpi vehicle
JP4690867B2 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5948158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250