JP5942421B2 - Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite - Google Patents

Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite Download PDF

Info

Publication number
JP5942421B2
JP5942421B2 JP2011284244A JP2011284244A JP5942421B2 JP 5942421 B2 JP5942421 B2 JP 5942421B2 JP 2011284244 A JP2011284244 A JP 2011284244A JP 2011284244 A JP2011284244 A JP 2011284244A JP 5942421 B2 JP5942421 B2 JP 5942421B2
Authority
JP
Japan
Prior art keywords
rfl
rubber composition
fiber
vinyl chloride
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011284244A
Other languages
Japanese (ja)
Other versions
JP2013064097A (en
Inventor
昭典 浜田
昭典 浜田
正人 深町
正人 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2011284244A priority Critical patent/JP5942421B2/en
Priority to KR1020147005355A priority patent/KR20140057570A/en
Priority to PCT/JP2012/071903 priority patent/WO2013031862A1/en
Publication of JP2013064097A publication Critical patent/JP2013064097A/en
Application granted granted Critical
Publication of JP5942421B2 publication Critical patent/JP5942421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、接着助剤、RFL接着剤処理液及びゴム組成物−繊維複合体に関するものであり、特にゴム組成物と繊維間の初期接着力や耐熱劣化後の接着力を高める接着助剤、RFL接着剤処理液及びゴム組成物−繊維複合体に関する。   The present invention relates to an adhesion assistant, an RFL adhesive treatment liquid, and a rubber composition-fiber composite, and in particular, an adhesion assistant that increases the initial adhesion between the rubber composition and the fiber and the adhesion after heat deterioration, The present invention relates to an RFL adhesive treatment liquid and a rubber composition-fiber composite.

タイヤ、ベルト、ホース、空気バネ等のゴム製品が自動車部品や工業用部品や建築資材等の分野で使用されている。これらの製品は、天然ゴムやスチレンブタジエンゴム、クロロスルホン化ポリエチレン等のゴムを原料に、カーボンブラック、可塑剤、老化防止剤、加硫促進剤等を配合したゴム組成物に、接着剤を含浸・乾燥させたポリエステル繊維、ポリアミド繊維、ガラス繊維等の繊維を加硫接着した複合体として製造されている。   Rubber products such as tires, belts, hoses and air springs are used in fields such as automobile parts, industrial parts and building materials. These products are made from rubber such as natural rubber, styrene butadiene rubber, and chlorosulfonated polyethylene, and rubber compositions containing carbon black, plasticizer, anti-aging agent, vulcanization accelerator, etc. are impregnated with adhesive. -Manufactured as a composite of vulcanized and bonded fibers such as dried polyester fiber, polyamide fiber, and glass fiber.

ゴム組成物と繊維間の接着力を高める接着剤としては、レゾルシンとホルマリンの縮合物溶液(RF液)や、RF液にビニルピリジンスチレンブタジエン共重合体樹脂ラテックス等のゴムラテックスを混合した処理液(RFL液)、さらにはRFL液にイソシアネート化合物やエポキシ化合物等を混合した処理液等が用いられている。これらの接着剤はゴムや繊維間の接着力を高めるが、高温加硫や耐熱劣化に伴い、ゴム組成物中の加硫促進剤や加硫剤等の副原料が繊維へ移行し、ゴム組成物や繊維の劣化が生じゴム組成物と繊維間の接着力が低下する。これを防止するため以下のような各種の塩素系化合物の使用による劣化防止が提案されている。   Examples of the adhesive that enhances the adhesion between the rubber composition and the fibers include resorcin-formalin condensate solution (RF liquid), and processing liquid in which a rubber latex such as vinylpyridine styrene butadiene copolymer resin latex is mixed with the RF liquid. (RFL liquid), and further, a treatment liquid in which an isocyanate compound, an epoxy compound, or the like is mixed with the RFL liquid is used. These adhesives increase the adhesive strength between rubber and fiber, but with high temperature vulcanization and heat deterioration, auxiliary materials such as vulcanization accelerators and vulcanizing agents in the rubber composition migrate to the fiber, and the rubber composition Deterioration of objects and fibers occurs, and the adhesive force between the rubber composition and the fibers decreases. In order to prevent this, it has been proposed to prevent deterioration by using the following various chlorinated compounds.

(1)RFL液に、成膜形成温度を200℃以下のビニルハライド基を含有する化合物、例えば塩化ビニルのホモポリマー、塩化ビニルと酢酸ビニル、塩化ビニルと塩化ビニリデン、塩化ビニルとアクリロニトリル、塩化ビニル、酢酸ビニルと無水マレイン酸の三元共重合体、あるいはそれらの混合物のラテックスを加えた処理液をポリエステル繊維へ含浸・乾燥した後、ゴム組成物と処理繊維を加硫接着する(例えば特許文献1)。この方法は初期接着力や耐熱劣化後の接着力は優れるが、ポリエステル繊維以外の繊維に対しては初期接着力や耐熱接着力が優れない課題があった。また、RFL接着剤処理液の乳化安定性も優れない課題があった。   (1) A compound containing a vinyl halide group having a film formation temperature of 200 ° C. or less in the RFL solution, such as vinyl chloride homopolymer, vinyl chloride and vinyl acetate, vinyl chloride and vinylidene chloride, vinyl chloride and acrylonitrile, vinyl chloride The polyester fiber is impregnated and dried with a treatment solution to which a terpolymer of vinyl acetate and maleic anhydride or a mixture thereof is added, and then the rubber composition and the treated fiber are vulcanized and bonded (for example, Patent Documents). 1). This method is excellent in initial adhesive strength and adhesive strength after heat deterioration, but has a problem that initial adhesive strength and thermal adhesive strength are not excellent for fibers other than polyester fibers. Further, there is a problem that the emulsion stability of the RFL adhesive treatment liquid is not excellent.

(2)RF液に、塩化ビニル共重合体ラテックスとクロロスルホン化ポリエチレンラテックスの併用、例えば塩化ビニルとエチレン等のオレフィン類、塩化ビニルとメチルアクリレート等のアルキルアクリレート類、塩化ビニルと酢酸ビニル類等の塩化ビニル共重合体ラテックスと、エポキシ化合物やブロックイソシアネート化合物を混合し芳香族ポリアミド繊維へ含浸・乾燥後、更にクロロスルホン化ポリエチレンラテックスとRF液に含浸・乾燥した後、塩素化ポリエチレンゴムと加硫接着を行う(例えば特許文献2)。この方法は、確かに初期接着力や耐熱接着力は優れるが、その効果は塩素化ポリエチレンと芳香族ポリアミド繊維に限られ、他の繊維やゴムの耐熱接着性を向上するものではなかった。   (2) Combined use of vinyl chloride copolymer latex and chlorosulfonated polyethylene latex in RF solution, for example, olefins such as vinyl chloride and ethylene, alkyl acrylates such as vinyl chloride and methyl acrylate, vinyl chloride and vinyl acetate, etc. After mixing with vinyl chloride copolymer latex and epoxy compound or blocked isocyanate compound and impregnating and drying in aromatic polyamide fiber, further impregnating and drying in chlorosulfonated polyethylene latex and RF solution, and adding with chlorinated polyethylene rubber. Sulfur bonding is performed (for example, Patent Document 2). This method certainly has excellent initial adhesive strength and heat-resistant adhesive strength, but its effect is limited to chlorinated polyethylene and aromatic polyamide fibers, and does not improve the heat-resistant adhesive properties of other fibers and rubbers.

(3)パラ−クロロフェノールもしくはその誘導体とレゾルシンとホルムアルデヒドとの縮合による樹脂液を大量のアンモニアで合成した水溶液に、RFL液を混合・分散させ、その後テトロン繊維を含浸・乾燥し、ゴム組成物と加硫接着する(例えば特許文献3)。この方法は、確かに初期接着力や耐熱接着力は改良されるものの、その効果はテトロン繊維に限られ、アンモニアの揮発による作業環境の悪化や、これを用いた配合液の貯蔵安定性に問題があった。   (3) An RFL solution is mixed and dispersed in an aqueous solution obtained by synthesizing a resin solution obtained by condensing para-chlorophenol or a derivative thereof, resorcinol and formaldehyde with a large amount of ammonia, and then impregnated and dried with a Tetron fiber. And vulcanized (for example, Patent Document 3). Although this method certainly improves the initial adhesive strength and heat-resistant adhesive strength, its effect is limited to tetron fibers, and there is a problem with the deterioration of the working environment due to volatilization of ammonia and the storage stability of the liquid mixture using this. was there.

特開2000−234275号公報JP 2000-234275 A 特許3765072号公報Japanese Patent No. 3765072 特公昭46−11251号公報Japanese Examined Patent Publication No. 46-11251

本発明は上記の課題に鑑みてなされたものであり、その目的は、テトロン繊維、ナイロン繊維、ガラス繊維等の各種繊維と、天然ゴム、スチレンブタジエンゴム等の各種ゴム組成物間の接着力や、熱劣化後の繊維とゴム組成物間の耐熱接着力に優れ、RFL接着剤処理液の乳化安定性に優れた接着助剤を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to provide adhesion between various fibers such as tetron fiber, nylon fiber, and glass fiber and various rubber compositions such as natural rubber and styrene butadiene rubber. Another object of the present invention is to provide an adhesion assistant that is excellent in heat-resistant adhesive force between a fiber after heat deterioration and a rubber composition and excellent in emulsion stability of an RFL adhesive treatment solution.

本発明者らは、上記の課題を解決するため、鋭意研究を重ねた結果、特定の塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスが、上記の課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は、塩化ビニルと所定の(メタ)アクリル酸アルキルエステルを含み、pH3〜8、平均粒子径0.05〜1.0μmである塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスを含有することを特徴とする接着助剤、RFL接着剤処理液及びゴム組成物−繊維複合体である。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a specific vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex can solve the above-mentioned problems. It came to complete. That is, the present invention includes a vinyl chloride- (meth) acrylic acid alkyl ester copolymer containing vinyl chloride and a predetermined (meth) acrylic acid alkyl ester, having a pH of 3 to 8 and an average particle size of 0.05 to 1.0 μm. An adhesion aid, an RFL adhesive treatment liquid, and a rubber composition-fiber composite, characterized by containing latex.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の接着助剤は、塩化ビニルと下記一般式(1)で示されるアルキル(メタ)アクリル酸エステルを含む塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスを含有するものである。   The adhesion assistant of the present invention contains a vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex containing vinyl chloride and an alkyl (meth) acrylic acid ester represented by the following general formula (1).

Figure 0005942421
(式中、Rは水素又はメチル基を表し、nは1〜10の整数を表す。)
本発明の接着助剤が含有する塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスは、pH3〜8である。pHが3未満又は8を超えると、(メタ)アクリル酸アルキルエステルのエステルが加水分解を受け易く初期及び耐熱劣化後の接着力が損なわれる。
Figure 0005942421
(In the formula, R 1 represents hydrogen or a methyl group, and n represents an integer of 1 to 10.)
The vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex contained in the adhesion aid of the present invention has a pH of 3-8. If the pH is less than 3 or exceeds 8, the ester of the (meth) acrylic acid alkyl ester is easily hydrolyzed, and the adhesive strength after the initial stage and after heat resistance deterioration is impaired.

本発明の接着助剤が含有する塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスは、平均粒子径が0.05〜1.0μmである。平均粒子径が0.05μm未満だと、初期及び耐熱劣化後の接着力が損なわれ、平均粒子径1.0μmを超えるとRFL液と混合・分散したRFL接着剤処理液の貯蔵安定性やゴム組成物−繊維複合体の接着力が損なわれる。   The vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex contained in the adhesion aid of the present invention has an average particle size of 0.05 to 1.0 μm. If the average particle size is less than 0.05 μm, the initial and post-heat deterioration adhesive strength is impaired, and if the average particle size exceeds 1.0 μm, the storage stability and rubber of the RFL adhesive treatment liquid mixed and dispersed with the RFL liquid The adhesive strength of the composition-fiber composite is impaired.

塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックス中の塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体は、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力をより向上させ、RFL接着剤処理液の貯蔵安定性をより向上させるため、共重合体中の塩化ビニル/(メタ)アクリル酸アルキルエステルの重量比が98/2〜80/20の範囲であることが好ましい。   The vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex in the vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex provides the initial adhesive strength of the rubber composition-fiber composite and the adhesive strength after heat degradation. In order to further improve and improve the storage stability of the RFL adhesive treatment liquid, the weight ratio of vinyl chloride / (meth) acrylic acid alkyl ester in the copolymer is in the range of 98/2 to 80/20. Is preferred.

本発明の接着助剤が含有する塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスは、RFL液中に本発明の接着助剤を混合分散させた際の加水分解をより防止し、耐熱劣化後の接着性をより向上させるために、スルホン酸塩又は硫酸エステル塩を有する有機化合物及び高級脂肪酸塩を含有することが好ましい。   The vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex contained in the adhesion aid of the present invention further prevents hydrolysis when the adhesion aid of the present invention is mixed and dispersed in the RFL liquid, and is heat resistant. In order to further improve the adhesiveness after deterioration, it is preferable to contain an organic compound having a sulfonate or sulfate ester salt and a higher fatty acid salt.

スルホン酸塩を有する有機化合物としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸アンモニウム等のアルキルベンゼンスルホン酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩類;アルキルナフタレンスルホン酸ナトリウム等のアルキルナフタレンスルホン酸塩類;アルキルジフェニルエーテルジスルホン酸ナトリウム等のアルキルジフェニルエーテルジスルホン酸塩類等が挙げられる。硫酸エステル塩を有する有機化合物としては、例えば、ラウリル硫酸エステルナトリウム、ミリスチル硫酸エステルナトリウム等のアルキル硫酸エステル塩類;ポリオキシエチレンアルキル硫酸エステル塩類、ポリオキシエチレンアルキルアリール硫酸エステル塩類等が挙げられる。スルホン酸塩又は硫酸エステル塩を有する有機化合物の含有量としては、ラテックスをより安定化させるため、塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体100重量部に対して、0.20〜10.0重量部が好ましい。   Examples of the organic compound having a sulfonate include alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate and ammonium dodecylbenzenesulfonate; dialkylsulfosuccinates such as sodium dioctylsulfosuccinate and sodium dihexylsulfosuccinate; alkylnaphthalenesulfonic acid Examples thereof include alkyl naphthalene sulfonates such as sodium; alkyl diphenyl ether disulfonates such as sodium alkyl diphenyl ether disulfonate. Examples of the organic compound having a sulfate ester salt include alkyl sulfate esters such as sodium lauryl sulfate and sodium myristyl sulfate; polyoxyethylene alkyl sulfate salts, polyoxyethylene alkylaryl sulfate salts, and the like. As content of the organic compound which has a sulfonate or a sulfate ester salt, in order to stabilize latex more, 0.20-10 with respect to 100 weight part of vinyl chloride- (meth) acrylic-acid alkylester copolymers. 0.0 part by weight is preferred.

高級脂肪酸塩としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸等とアルカリとの塩が挙げられる。入手のしやすさから、ナトリウム、カリウム、アンモニア、トリエタノールアミンとの塩が好ましい。高級脂肪酸塩の含有量は、pHを3〜8とするために、0.05〜3.0重量部が好ましく、0.1〜1.0重量部がさらに好ましい。   Examples of the higher fatty acid salt include salts of lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and the like with an alkali. From the viewpoint of availability, a salt with sodium, potassium, ammonia, or triethanolamine is preferable. The content of the higher fatty acid salt is preferably 0.05 to 3.0 parts by weight, more preferably 0.1 to 1.0 parts by weight, in order to adjust the pH to 3 to 8.

本発明の接着助剤が含有する塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスは、必要に応じて、重合をより安定化させたり、スケール発生をより防止するために、重合開始剤、連鎖移動剤、還元剤、pH緩衝剤等を含有することができる。   The vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex contained in the adhesion aid of the present invention is a polymerization initiator in order to further stabilize the polymerization or prevent the occurrence of scale, if necessary. , A chain transfer agent, a reducing agent, a pH buffering agent, and the like.

本発明の接着助剤が含有する塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスは、塩化ビニル単量体と、下記一般式(2)で示される(メタ)アクリル酸アルキルエステルの単量体を、例えば、乳化重合、ミクロ懸濁重合、シード乳化重合、シードミクロ懸濁重合等により製造することができる。   The vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex contained in the adhesion aid of the present invention is a simple substance of a vinyl chloride monomer and a (meth) acrylic acid alkyl ester represented by the following general formula (2). The polymer can be produced, for example, by emulsion polymerization, microsuspension polymerization, seed emulsion polymerization, seed microsuspension polymerization or the like.

Figure 0005942421
(式中、Rは水素又はメチル基を表し、nは1〜10の整数を表す。)
塩化ビニル単量体と共重合する上記式(1)で示される(メタ)アクリル酸アルキルエステルの単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソ−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸イソ−ペンチル、(メタ)アクリル酸n−ヘキシチル、(メタ)アクリル酸イソ−ヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチル−ヘキシル、(メタ)アクリル酸n−デシル等が好適なものとして挙げられることができ、これらは2種以上でも用いることができる。なお、上記式(1)のn=0では、得られるゴム組成物−繊維複合体の成型体の初期接着力が損なわれ、n=11以上では、得られる塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスの平均粒子径が1.0μmを超え、RFL接着剤処理液の貯蔵安定性が低下する。
Figure 0005942421
(In the formula, R 1 represents hydrogen or a methyl group, and n represents an integer of 1 to 10.)
Examples of the monomer of the alkyl (meth) acrylate ester represented by the above formula (1) that is copolymerized with the vinyl chloride monomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) N-butyl acrylate, iso-butyl (meth) acrylate, n-pentyl (meth) acrylate, iso-pentyl (meth) acrylate, n-hexyl (meth) acrylate, iso-hexyl (meth) acrylate , (Meth) acrylic acid n-octyl, (meth) acrylic acid 2-ethyl-hexyl, (meth) acrylic acid n-decyl, and the like may be mentioned as preferred, and these may be used in two or more. it can. When n = 0 in the above formula (1), the initial adhesive strength of the resulting molded rubber composition-fiber composite is impaired, and when n = 11 or more, the resulting vinyl chloride-alkyl (meth) acrylate is obtained. The average particle diameter of the ester copolymer latex exceeds 1.0 μm, and the storage stability of the RFL adhesive treatment liquid is lowered.

塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスを製造する際に、スルホン酸塩又は硫酸エステル塩を有する有機化合物及び高級脂肪酸塩を添加することができる。スルホン酸塩又は硫酸エステル塩を有する有機化合物は、重合開始前、重合中、重合終了後に適時添加することができる。高級脂肪酸塩は、重合開始前、重合中、重合終了後のいずれでも添加することができ、重合中に高級脂肪酸塩を逐次又は分割して添加することも可能である。スルホン酸塩又は硫酸エステル塩を有する有機化合物、高級脂肪酸塩については、上で説明した通りである。   When producing a vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex, an organic compound having a sulfonate salt or a sulfate ester salt and a higher fatty acid salt can be added. The organic compound having a sulfonate or a sulfate ester salt can be added as appropriate before the start of polymerization, during the polymerization, or after the completion of the polymerization. The higher fatty acid salt can be added before the start of polymerization, during the polymerization, or after the completion of the polymerization, and the higher fatty acid salt can be added successively or divided during the polymerization. The organic compound having a sulfonate or sulfate ester salt and the higher fatty acid salt are as described above.

塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスを製造する際に、重合の開始を目的に重合開始剤や、重合の安定化やスケール発生量の低減を目的として連鎖移動剤、還元剤、pH緩衝剤等を添加することができる。   When producing a vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex, a polymerization initiator for the purpose of initiation of polymerization, a chain transfer agent, a reducing agent for the purpose of stabilizing the polymerization and reducing the amount of scale generated PH buffering agents and the like can be added.

ここに、重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の水溶性開始剤、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2−メチルブチロニトリル、ラウロイルパーオキサイド、t−ブチルペルオキシピバレート、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート等の油溶性開始剤等を挙げることができる。   Examples of the polymerization initiator include water-soluble initiators such as potassium persulfate and ammonium persulfate, 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methylbutyronitrile, Examples thereof include oil-soluble initiators such as lauroyl peroxide, t-butylperoxypivalate, diacyl peroxide, peroxyester, and peroxydicarbonate.

連鎖移動剤としては塩化ビニル系重合体の重合度を調整できるものであればよく、例えば、トリクロロエチレン、四塩化炭素等のハロゲン化炭化水素;2−メルカプトエタノール、3−メルカプトプロピオン酸オクチル、ドデシルメルカプタン等のメルカプタン類;アセトン、n−ブチルアルデヒド等のアルデヒド類等が挙げられる。   Any chain transfer agent may be used as long as it can adjust the degree of polymerization of the vinyl chloride polymer. Examples thereof include halogenated hydrocarbons such as trichloroethylene and carbon tetrachloride; 2-mercaptoethanol, octyl 3-mercaptopropionate, and dodecyl mercaptan. And aldehydes such as acetone and n-butyraldehyde.

還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸アンモニウム、亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、メタ重亜硫酸カリウム、亜二チオン酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、L−アスコルビン酸、デキストローズ、硫酸第一鉄、硫酸銅等が挙げられる。   Examples of the reducing agent include sodium sulfite, ammonium sulfite, sodium hydrogen sulfite, ammonium hydrogen sulfite, ammonium thiosulfate, potassium metabisulfite, sodium dithionite, sodium formaldehyde sulfoxylate, L-ascorbic acid, dextrose, Examples thereof include ferrous sulfate and copper sulfate.

pH緩衝剤としては、例えば、リン酸一水素アルカリ金属塩、リン酸二水素アルカリ金属塩、フタル酸水素カリウム、ホウ酸―苛性カリウム、炭酸水素ナトリウム等が挙げられる。   Examples of the pH buffering agent include alkali metal monohydrogen phosphate, alkali metal dihydrogen phosphate, potassium hydrogen phthalate, boric acid-caustic potassium, sodium hydrogen carbonate, and the like.

重合温度は、特に限定するものではないが、30〜100℃が好ましく、40〜80℃がさらに好ましい。   The polymerization temperature is not particularly limited, but is preferably 30 to 100 ° C, more preferably 40 to 80 ° C.

本発明の接着助剤は、塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスの他に、必要に応じて、老化防止剤、酸化防止剤、防腐剤、防黴剤等を含有することができる。   The adhesion aid of the present invention contains, in addition to vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex, an anti-aging agent, an antioxidant, an antiseptic, an antifungal agent, etc., as necessary. Can do.

本発明のRFL接着剤処理液は、上記した接着助剤、及びレゾルシンとホルマリン縮合物の水溶液とゴムラテックスを含むRFL液を含有するものである。   The RFL adhesive treatment liquid of the present invention contains the above-mentioned adhesion assistant, an RFL liquid containing an aqueous solution of resorcin and formalin condensate, and rubber latex.

RFL液が含むレゾルシンとホルマリン縮合物の水溶液は、例えば、1,3−ベンゼンジオール、1,5−ベンゼンジオール、ビスヒドロキシメチルフェノール、ビスヒドロキシエチルフェノールの如きビスヒドロキシアルキルフェノール等のレゾルシンとホルマリンとの縮合物の水溶液が挙げられる。これらは、水酸化ナトリウム、水酸化カリウム、アンモニア等の塩基性触媒、もしくは塩酸、硫酸等の酸触媒によって製造される。   The aqueous solution of resorcin and formalin condensate contained in the RFL solution is, for example, a resorcin such as 1,3-benzenediol, 1,5-benzenediol, bishydroxymethylphenol, bishydroxyalkylphenol such as bishydroxyethylphenol, and formalin. An aqueous solution of the condensate can be mentioned. These are produced by a basic catalyst such as sodium hydroxide, potassium hydroxide or ammonia, or an acid catalyst such as hydrochloric acid or sulfuric acid.

RFL液が含むゴムラテックスは、例えば、ビニルピリジン−スチレン−ブタジエン系共重合体ラテックス、ビニルピリジン−スチレン−ブタジエン系共重合体ラテックスをカルボキシル基等で変性した変性ラテックス、スチレン−ブタジエン系共重合体ラテックス及びその変性ラテックス、アクリロニトリル−ブタジエン系ゴム及びその変性ラテックス、天然ゴムラテックス、クロロプレンゴムラテックス、ブチルゴムラテックス、アクリル酸エステル共重合体ラテックス等から選ばれた1種または2種以上を混合したラテックス混合物としても使用可能であるが、中でもビニルピリジン−スチレン−ブタジエン系共重合体ラテックスを含むことが望ましい。   The rubber latex contained in the RFL liquid is, for example, a vinylpyridine-styrene-butadiene copolymer latex, a modified latex obtained by modifying a vinylpyridine-styrene-butadiene copolymer latex with a carboxyl group, or a styrene-butadiene copolymer. Latex and its modified latex, acrylonitrile-butadiene rubber and its modified latex, natural rubber latex, chloroprene rubber latex, butyl rubber latex, acrylate copolymer latex, etc. In particular, it is desirable to contain a vinylpyridine-styrene-butadiene copolymer latex.

レゾルシンとホルマリン縮合物の水溶液とゴムラテックスを含むRFL液は、レゾルシンとホルマリン縮合物の水溶液とゴムラテックスを任意の割合で混合することで得られる。   The RFL liquid containing an aqueous solution of resorcin and formalin condensate and rubber latex can be obtained by mixing an aqueous solution of resorcin and formalin condensate and rubber latex in an arbitrary ratio.

本発明のRFL接着剤処理液は、接着助剤をレゾルシンとホルマリン縮合物の水溶液とゴムラテックスを含むRFL液に混合・分散して得られる。混合・分散する方法としては、特に限定するものではないが、例えば、攪拌翼による混合分散、ホモジナイザー等による混合分散等が挙げられる。   The RFL adhesive treatment liquid of the present invention is obtained by mixing and dispersing an adhesion assistant in an RFL liquid containing an aqueous solution of resorcin and formalin condensate and rubber latex. The mixing / dispersing method is not particularly limited, and examples thereof include mixing / dispersing with a stirring blade and mixing / dispersing with a homogenizer.

本発明のRFL接着剤処理液には、必要に応じて、イソシアネート化合物、ブロックイソシアネート化合物、エポキシ化合物等を含有していてもよい。   The RFL adhesive treatment liquid of the present invention may contain an isocyanate compound, a blocked isocyanate compound, an epoxy compound, or the like as necessary.

イソシアネート化合物としては、例えば、トリレンジイソシアネート、m−フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等のポリイソシアネート、またはこれらのイソシアネートと活性水素原子を2個以上有する化合物、例えば、トリメチロールプロパンヤペンタエリスリトール等と反応して得られる多価アルコール付加ポリイソシアネート化合物等が挙げられる。   Examples of isocyanate compounds include polyisocyanates such as tolylene diisocyanate, m-phenylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, polymethylene polyphenyl polyisocyanate, or compounds having two or more of these isocyanates and active hydrogen atoms, for example, And polyhydric alcohol-added polyisocyanate compounds obtained by reacting with trimethylolpropane yapentaerythritol and the like.

ブロックイソシアネート化合物としては、前記ポリイソシアネートに、例えば、ジフェニルアミン、キシリジン等の芳香族第2級アミン類;フタル酸イミド類;カプロラクタム、バレロラクタム等のラクタム類;アセトキシム、メチルエチルケトンオキシム、シクロヘキサンオキシム等のオキシム類等のブロック化剤を反応させたブロック化ポリイソシアネート化合物が挙げられる。   Examples of the blocked isocyanate compound include polyisocyanates such as aromatic secondary amines such as diphenylamine and xylidine; phthalimides; lactams such as caprolactam and valerolactam; oximes such as acetoxime, methyl ethyl ketone oxime, and cyclohexaneoxime. Examples thereof include blocked polyisocyanate compounds obtained by reacting a blocking agent such as a kind.

エポキシ化合物としては、特に限定されるものではないが、分子内に2個以上のエポキシ有するポリエポキシド化合物で、例えば、エチレングリコール、グリセロール、ソルビトール、ペンタエリスリトール、ポリエチレングリコール等の多価アルコール類やエピクロルヒドリンの如きハロゲン含有エポキシド類との反応物、レゾルシン、ビス(4−ヒドロキシフェニル)ジメチルメタン、フェノール・ホルムアルデヒド樹脂等の多価フェノール類と前記ハロゲン含有エポキシド類との反応物や、3,4−エポキシシクロヘキセンエポキシド、3,4−エポキシシクロヘキシルメチル、3,4−エポキシシクロヘキセンカルボキシレート、ビス(3,4−エポキシ−6−メチル−シクロメチル)アジペート等が挙げられる。   Although it does not specifically limit as an epoxy compound, It is a polyepoxide compound which has two or more epoxy in a molecule | numerator, for example, polyhydric alcohols, such as ethylene glycol, glycerol, sorbitol, pentaerythritol, polyethyleneglycol, and epichlorohydrin. Reaction products such as halogen-containing epoxides, reaction products of resorcin, bis (4-hydroxyphenyl) dimethylmethane, polyhydric phenols such as phenol / formaldehyde resin and the halogen-containing epoxides, and 3,4-epoxycyclohexene Examples thereof include epoxide, 3,4-epoxycyclohexylmethyl, 3,4-epoxycyclohexenecarboxylate, and bis (3,4-epoxy-6-methyl-cyclomethyl) adipate.

これらのイソシアネート化合物、ブロックイソシアネート化合物、エポキシ化合物を繊維処理剤として、直接、繊維に有機溶剤に酢酸エチル等に希釈し塗布乾燥してもよく、または、RFL接着剤処理液に混合・分散させる方法は、これらの化合物をそのままか、必要に応じて少量の溶媒に溶解した後、アルキルベンゼンスルホン酸ナトリウム等の陰イオン界面活性剤やポリオキシエチレンアルキルフェニールエーテル類等のノニオン系乳化剤を用いて攪拌機による混合・分散させてもよい。   These isocyanate compounds, blocked isocyanate compounds, and epoxy compounds may be used as fiber treatment agents, and the fibers may be directly diluted with an organic solvent in ethyl acetate or the like, coated and dried, or mixed and dispersed in an RFL adhesive treatment solution. These compounds can be used as they are or after being dissolved in a small amount of a solvent as required, and then mixed with an anionic surfactant such as sodium alkylbenzene sulfonate or a nonionic emulsifier such as polyoxyethylene alkylphenyl ether. You may mix and disperse.

本発明のRFL接着剤処理液により処理される繊維は、ポリエステル繊維、ナイロン繊維、ガラス繊維、レーヨン繊維、ビニロン繊維、スフ等が挙げられるが特に限定されるものではない。また繊維の形状は糸状、コード状、織物、不織布、シート、短繊維、フィルム、シート等の種々の形態があるが特に限定されるものではない。   Examples of the fiber to be treated with the RFL adhesive treatment liquid of the present invention include polyester fiber, nylon fiber, glass fiber, rayon fiber, vinylon fiber, and soot, but are not particularly limited. The shape of the fiber includes various forms such as a thread, a cord, a woven fabric, a nonwoven fabric, a sheet, a short fiber, a film, and a sheet, but is not particularly limited.

繊維を本発明のRFL接着剤処理液に浸漬させる方法は、特に限定されるものではないが、1)本発明のRFL接着剤処理液を繊維に含浸乾燥させる方法、2)イソシアネート化合物、ブロックイソシアネート化合物またはエポキシ化合物を予め酢酸エチル等の有機溶剤に希釈し繊維に浸漬乾燥した後、本発明のRFL接着剤処理液をその繊維に含浸乾燥させる方法、3)イソシアネート化合物、ブロックイソシアネート化合物またはエポキシ化合物を本発明のRFL接着剤処理液に混合・分散させ繊維に含浸乾燥させる方法等があげられる。   The method of immersing the fiber in the RFL adhesive treatment liquid of the present invention is not particularly limited, but 1) a method of impregnating and drying the fiber of the RFL adhesive treatment liquid of the present invention 2) isocyanate compound, blocked isocyanate A method in which a compound or an epoxy compound is previously diluted in an organic solvent such as ethyl acetate and immersed and dried in a fiber, and then the fiber is impregnated and dried with the RFL adhesive treatment liquid of the present invention. 3) Isocyanate compound, blocked isocyanate compound or epoxy compound Can be mixed and dispersed in the RFL adhesive treatment solution of the present invention and impregnated and dried into fibers.

本発明のRFL接着剤処理液によって含浸処理された繊維は、80〜150℃で水分を除去する乾燥処理を行った後、RFL接着処理液の樹脂化や繊維との化学結合を促進するため150℃以上の温度で熱処理(ベーキング)を行うことが好ましいが、ベーキング方法に特に制限はない。なお、ベーキング処理を行う必要のない繊維はこの処理を行わなくても良い。   The fiber impregnated with the RFL adhesive treatment liquid of the present invention is subjected to a drying process for removing moisture at 80 to 150 ° C., and is then used to promote resinification of the RFL adhesion treatment liquid and chemical bonding with the fiber. Although it is preferable to perform heat treatment (baking) at a temperature of 0 ° C. or higher, there is no particular limitation on the baking method. In addition, the fiber which does not need to perform a baking process does not need to perform this process.

本発明のゴム組成物−繊維複合体に用いられるゴム組成物とは、原料ゴムと、充填剤、可塑剤、加硫剤、加硫促進剤、老化防止剤及び加工助剤等からなる副原料物を混練して得られるゴム配合物のことである。   The rubber composition used in the rubber composition-fiber composite of the present invention is a raw material rubber and a secondary raw material comprising a filler, a plasticizer, a vulcanizing agent, a vulcanization accelerator, an antiaging agent, a processing aid and the like. It is a rubber compound obtained by kneading a product.

原料ゴムは特に限定されるものでは無いが、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム,ハロゲン化ブチルゴム等の不飽和型ゴム、クロロスルホン化ポリエチレン(CSM)、塩素化ポリエチレン、水素添加ニトリルゴム、エチレンプロピレンゴム、エピクロルヒドリンゴムやフッ素ゴム、アクリルゴム、シリコーンゴム等の飽和型ゴム等が挙げられるが、これらは単独の使用もしくは2種以上のゴムを併用しても構わない。   The raw rubber is not particularly limited, but is an unsaturated rubber such as natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber, halogenated butyl rubber, Examples include chlorosulfonated polyethylene (CSM), chlorinated polyethylene, hydrogenated nitrile rubber, ethylene propylene rubber, epichlorohydrin rubber, saturated rubber such as fluoro rubber, acrylic rubber, and silicone rubber. You may use together the rubber | gum of a seed | species or more.

副原料物は、例えば、カーボンブラックやマイカ、シリカ、クレイ、水酸化マグネシウム、水酸化アルミニウム、黒鉛、マイカ、フェライト等の充填剤に加え、パラフィン系オイル、ナフテン系オイル、アロマ系オイル、大豆油、菜種油等の植物油、ジブチルフタル酸エステルやジオクチルフタル酸エステル等のフタル酸エステル類、液状ブタジエンゴム等液状ゴム等の可塑剤、硫黄、ベンゾイルパーオキサイド等の加硫剤、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、モルホリノジチオベンゾチアゾール、ジフェニルチオウレア、ジフェニルグアニジン、メルカプトベンゾチアゾール、N−スルフェンアミド、ジメチルジカルバミン酸亜鉛等の加硫促進剤、酸化マグネシウム、鉛丹等の金属酸化物からなる加硫促進助剤、無水フタル酸、ニトロソジフェニルアミン等のスコーチ防止剤、N−イソプロピルN’−フェニル−p−フェニレンジアミン、2,6−ジ−t−ブチルカテコール、メルカプトベンツイミダゾール等の老化防止剤、チオキシレノール、ジキシルジスルフィド等の素練り促進剤、ワックス、ステアリン酸等の活剤、テルペンフェノール、ガムロジン、トール油ロジン等の粘着付与剤、重炭酸ナトリウム、アゾジカルボンアミド、p,p’−オキシビス(ベンゼンスルホニルヒドラジド)等の発泡剤等が挙げられ、これらを使用するにあたり特に制限はない。   For example, in addition to fillers such as carbon black, mica, silica, clay, magnesium hydroxide, aluminum hydroxide, graphite, mica and ferrite, the auxiliary raw materials are paraffinic oil, naphthenic oil, aroma oil, soybean oil Vegetable oils such as rapeseed oil, phthalates such as dibutyl phthalate and dioctyl phthalate, plasticizers such as liquid rubber such as liquid butadiene rubber, vulcanizing agents such as sulfur and benzoyl peroxide, tetramethylthiuram disulfide, tetraethyl Vulcanization accelerators such as thiuram disulfide, morpholinodithiobenzothiazole, diphenylthiourea, diphenylguanidine, mercaptobenzothiazole, N-sulfenamide, zinc dimethyldicarbamate, and metal oxides such as magnesium oxide and lead oxide Accelerator, scorch inhibitor such as phthalic anhydride, nitrosodiphenylamine, anti-aging agent such as N-isopropyl N′-phenyl-p-phenylenediamine, 2,6-di-t-butylcatechol, mercaptobenzimidazole, thio Peptizers such as xylenol and dixyl disulfide, active agents such as wax and stearic acid, tackifiers such as terpene phenol, gum rosin and tall oil rosin, sodium bicarbonate, azodicarbonamide, p, p'-oxybis ( Examples thereof include foaming agents such as benzenesulfonyl hydrazide, and there are no particular restrictions on the use of these.

原料ゴムと副原料物の混練は、オープンロール、加圧ニーダー、バンバリーミキサー等のミキサーによって混合分散されるが特に制約を受けるものではない。   The kneading of the raw rubber and the auxiliary raw material is not particularly restricted but is mixed and dispersed by a mixer such as an open roll, a pressure kneader, or a Banbury mixer.

繊維の形態がコード、織物、シート等である場合、例えば、ゴム組成物と繊維間の接着力を高める本発明のRFL接着剤処理液により浸漬し、乾燥し水分を除去した後、繊維(ベーキング処理が必要な繊維はベーキング処理を施した繊維)とゴム組成物を密着させ、これを加硫することにより、ゴム組成物と繊維との接着を同時に行い、本発明のゴム組成物−繊維複合体を得ることができる。また、繊維の形態が短繊維である場合、例えば、ゴム組成物と本発明のRFL接着剤処理液により浸漬し、乾燥した短繊維とを混練し、これを加硫することにより、ゴム組成物と繊維との接着を同時に行い、本発明のゴム組成物−繊維複合体を得ることができる。加硫方法には、例えば、プレス加硫、蒸気加硫、熱空気加硫、UHF加硫、電子線加硫または溶融塩加硫等があり、いずれの方法を用いてもよい。   When the form of the fiber is a cord, a woven fabric, a sheet, etc., for example, the fiber is baked after being dipped in the RFL adhesive treatment liquid of the present invention that enhances the adhesion between the rubber composition and the fiber and dried to remove moisture. The fiber that needs to be treated is a fiber that has been subjected to a baking treatment) and the rubber composition, and the rubber composition is vulcanized to simultaneously bond the rubber composition and the fiber. You can get a body. When the fiber is short fiber, for example, the rubber composition is immersed in the RFL adhesive treatment liquid of the present invention, dried short fibers are kneaded and vulcanized to obtain a rubber composition. The rubber composition-fiber composite of the present invention can be obtained by simultaneously bonding the fiber and the fiber. Examples of the vulcanization method include press vulcanization, steam vulcanization, hot air vulcanization, UHF vulcanization, electron beam vulcanization, and molten salt vulcanization, and any method may be used.

本発明のゴム組成物−繊維複合体の成型体は、上記した本発明のゴム組成物−繊維複合体を成型することで得ることができる。成型方法としては、例えば、カレンダ加工、押出し成型、射出成型、圧縮成型等が挙げられ、これらは特に限定されるものではない。   The molded article of the rubber composition-fiber composite of the present invention can be obtained by molding the above-described rubber composition-fiber composite of the present invention. Examples of the molding method include calendering, extrusion molding, injection molding, and compression molding, and these are not particularly limited.

本発明の接着助剤をRFL液に混合・分散した本発明のRFL接着剤処理液は貯蔵安定性や作業環境性に優れるものであり、繊維に含浸後乾燥することにより、本発明のゴム組成物−繊維複合体は、ゴム組成物と繊維間の初期接着力や耐熱劣化後の接着力に優れる。   The RFL adhesive treatment liquid of the present invention in which the adhesion assistant of the present invention is mixed and dispersed in the RFL liquid is excellent in storage stability and work environment, and is impregnated into a fiber and then dried to obtain a rubber composition of the present invention. The object-fiber composite is excellent in the initial adhesive force between the rubber composition and the fiber and the adhesive force after heat deterioration.

以下の実施例、比較例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例により何らの制限を受けるものではない。   The present invention will be described more specifically with reference to the following examples and comparative examples, but the present invention is not limited to these examples.

なお、以下の実施例、比較例における繊維処理液及びゴム組成物−繊維複合体の評価法は以下のとおりである。   In addition, the evaluation method of the fiber treatment liquid and rubber composition-fiber composite in the following Examples and Comparative Examples is as follows.

<pHの測定法>
pHメーター(商品名D−12、堀場製作所(株)製)を用いて、濃度調整をせず室温にて塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスのpHを測定した。
<Measurement method of pH>
Using a pH meter (trade name D-12, manufactured by Horiba, Ltd.), the pH of the vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex was measured at room temperature without adjusting the concentration.

<平均粒子径の測定方法>
塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスの平均粒子径は、粒径分布測定機(マイクロトラックUPA150、日機装社製)を用い、分散媒の屈折率を1.33に設定し粒径分布を測定し、メジアン粒径を求め、各々の樹脂粒子の平均粒子径とした。
<Measurement method of average particle diameter>
The average particle size of the vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex was determined by using a particle size distribution analyzer (Microtrac UPA150, manufactured by Nikkiso Co., Ltd.) and setting the refractive index of the dispersion medium to 1.33. The diameter distribution was measured, the median particle diameter was determined, and the average particle diameter of each resin particle was obtained.

<RFL接着剤処理液の貯蔵安定性>
RFL接着剤処理液を30mlのサンプル瓶に25.0g入れ、1週間、常温(23℃)で放置し、沈降物の有無を以下のとおり評価した。
<Storage stability of RFL adhesive treatment liquid>
25.0 g of the RFL adhesive treatment solution was placed in a 30 ml sample bottle and allowed to stand at room temperature (23 ° C.) for 1 week, and the presence or absence of sediment was evaluated as follows.

○:沈降物の発生が全くない。     ○: No sediment is generated.

△:僅かに発生が見られた。     Δ: Slight occurrence was observed.

×:多量の沈降物発生が見られた。     X: A large amount of sediment was observed.

<ゴム組成物−繊維複合体の初期接着力の測定>
恒温室(25℃、相対湿度65%)で1日以上放置したゴム組成物−繊維複合体のシートをJISK6502に準拠し、幅25mm、長さ100mm以上の短冊状の試験片を作製した。試験片は、引張り試験機(オリエンテック社製、型式RTM−500)を用い50mm/分の剥離速度で加硫ゴム組成物と繊維間の剥離試験を行い剥離力を求め、初期の接着力とした。
<Measurement of initial adhesive strength of rubber composition-fiber composite>
A sheet of the rubber composition-fiber composite that was left in a temperature-controlled room (25 ° C., relative humidity 65%) for 1 day or longer was made into a strip-shaped test piece having a width of 25 mm and a length of 100 mm or more in accordance with JISK6502. The test piece was subjected to a peel test between the vulcanized rubber composition and the fiber at a peel rate of 50 mm / min using a tensile tester (Orientec Co., Ltd., Model RTM-500) to determine the peel strength, and the initial adhesive strength and did.

<ゴム組成物−繊維複合体の耐熱劣化後の接着力の測定>
ゴム組成物−繊維複合体のシートを175℃、2時間の後加硫をギヤーオーブン中で行い、ゴム組成物−繊維複合体シートの剥離試験を初期接着強度と同様の方法で行い耐熱劣化後の接着力とした。
<Measurement of adhesive strength of rubber composition-fiber composite after heat resistance deterioration>
The rubber composition-fiber composite sheet was post-vulcanized at 175 ° C. for 2 hours in a gear oven, and the peel test of the rubber composition-fiber composite sheet was performed in the same manner as the initial adhesive strength, after heat resistance deterioration The adhesive strength was.

実施例1
表1に示す通り、2.5Lオートクレーブ中に初期仕込みとして脱イオン水670.0g、塩化ビニル単量体540.0g、アクリル酸ブチル単量体60.0g、3重量%濃度の過硫酸カリウム水溶液5.4g及び5重量%濃度のドデシルベンゼンスルホン酸ナトリウム水溶液60.0gを仕込み、温度を66℃に上げて、乳化重合を開始した。温度を66℃に保ち、重合開始60分後より、5重量%ドデシルベンゼンスルホン酸ナトリウム水溶液130.0gと5重量%ラウリン酸カリウム水溶液46.0gを240分間かけて連続添加した。66℃におけるオートクレーブ内の圧力が0.7MPaまで低下した後、未反応の塩化ビニル単量体およびアクリル酸ブチル単量体を回収した。これに5重量%ドデシルベンゼンスルホン酸ナトリウム水溶液56.4g、5重量%ラウリン酸カリウム水溶液21.6gを追加添加し、接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)を得た(pH6.7、平均粒子径0.12μm)。
Example 1
As shown in Table 1, 670.0 g of deionized water, 540.0 g of vinyl chloride monomer, 60.0 g of butyl acrylate monomer, and 3% by weight potassium persulfate aqueous solution as an initial charge in a 2.5 L autoclave 5.4 g and 50.0 g sodium dodecylbenzenesulfonate aqueous solution having a concentration of 5% by weight were charged, the temperature was raised to 66 ° C., and emulsion polymerization was started. The temperature was kept at 66 ° C., and 60 minutes after the start of the polymerization, 130.0 g of 5 wt% sodium dodecylbenzenesulfonate aqueous solution and 46.0 g of 5 wt% potassium laurate aqueous solution were continuously added over 240 minutes. After the pressure in the autoclave at 66 ° C. dropped to 0.7 MPa, unreacted vinyl chloride monomer and butyl acrylate monomer were recovered. To this was added 56.4 g of 5 wt% aqueous sodium dodecylbenzenesulfonate solution and 21.6 g of 5 wt% aqueous potassium laurate solution to obtain an adhesion assistant (vinyl chloride / butyl acrylate copolymer latex) (pH 6). .7, average particle size 0.12 μm).

Figure 0005942421
実施例2〜3
表1に示す通り、実施例1と同様の操作で、アクリル酸ブチル単量体の替わりにアクリル酸メチル単量体(実施例2)、アクリル酸2−エチルへキシル単量体(実施例3)を共重合成分とし、接着助剤(塩化ビニル/アクリル酸メチル共重合体ラテックス、塩化ビニル/アクリル酸2−エチルヘキシル共重合体ラテックス)を各々得た(pH及び平均粒子径を表1に示す)。
Figure 0005942421
Examples 2-3
As shown in Table 1, in the same manner as in Example 1, methyl acrylate monomer (Example 2), 2-ethylhexyl acrylate monomer (Example 3) instead of butyl acrylate monomer ) Was used as a copolymer component, and adhesion aids (vinyl chloride / methyl acrylate copolymer latex, vinyl chloride / 2-ethylhexyl acrylate copolymer latex) were obtained (pH and average particle diameter are shown in Table 1). ).

実施例4〜5
表1に示す通り、実施例1と同様の操作で、2.5Lオートクレーブ中に脱イオン水670.0g、塩化ビニル単量体540.0g、アクリル酸ブチル単量体60.0gを仕込み、5重量%ドデシルベンゼンスルホン酸ナトリウム水溶液量を変更し、接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)を得た(pH及び平均粒子径を表1に示す)。
Examples 4-5
As shown in Table 1, in the same manner as in Example 1, 670.0 g of deionized water, 540.0 g of vinyl chloride monomer, and 60.0 g of butyl acrylate monomer were charged into a 2.5 L autoclave. The amount of aqueous sodium dodecylbenzenesulfonate solution was changed to obtain an adhesion assistant (vinyl chloride / butyl acrylate copolymer latex) (pH and average particle size are shown in Table 1).

実施例6
<RF液の調製>
レゾルシン16.6g、ホルマリン37%水溶液14.7g(乾燥重量5.4g)、水酸化ナトリウム1.3g及び水334.4gを0.5リットルビーカー中で溶解し、室温(25℃)で2時間マグネチックスターラーを用い攪拌し縮合させた後、樹脂固形分6.4重量%のRF液366.0gを得た。
Example 6
<Preparation of RF solution>
16.6 g of resorcin, 14.7 g of formalin 37% aqueous solution (dry weight 5.4 g), 1.3 g of sodium hydroxide and 334.4 g of water were dissolved in a 0.5 liter beaker, and the mixture was heated at room temperature (25 ° C.) for 2 hours. After stirring and condensing using a magnetic stirrer, 366.0 g of RF liquid having a resin solid content of 6.4% by weight was obtained.

<RFL液の調製>
固形分にして、RF23.3gとポリビニルピリジン・スチレン・ブタジエンゴム100.0gになるようにRF液366.0g及びポリビニルピリジン・スチレン・ブタジエンゴムラテックス(日本ゼオン社製、ニポール2518GL)250.0gを1リットルの攪拌機のついたビーカーに入れ、攪拌しながら約20時間熟成し、固形分濃度20重量%のRFL液616.0gを得た。
<Preparation of RFL solution>
Solid content, RF solution 36.0g and polyvinyl pyridine styrene butadiene rubber 100.0g RF liquid 366.0g and polyvinyl pyridine styrene butadiene rubber latex (Nippon Zeon, Nipol 2518GL) 250.0g The mixture was placed in a beaker equipped with a 1 liter stirrer and aged for about 20 hours while stirring to obtain 616.0 g of RFL solution having a solid content concentration of 20% by weight.

<RFL接着剤処理液の調製>
固形分にして、RFL樹脂100.0重量部と実施例1で調製した塩化ビニル/アクリル酸ブチル共重合体20.0重量部になるようにRFL液200.0g及び接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)22.3gを0.5リットルビーカーに入れ、マグネチックスターラーで攪拌しながら10分間熟成後、イソシアネート化合物として2.1重量部のバルカボンドMDX(アクロスケミカル社製)4.3gを加え20分間攪拌した後100メッシュの金網でろ過し、固形分濃度21重量%のRFL接着剤処理液を調製した。
<Preparation of RFL adhesive treatment liquid>
200.0 g of RFL solution and an adhesion assistant (vinyl chloride / vinyl chloride / sodium chloride) were used so that the solid content was 100.0 parts by weight of RFL resin and 20.0 parts by weight of the vinyl chloride / butyl acrylate copolymer prepared in Example 1. 22.3 g of butyl acrylate copolymer latex) was placed in a 0.5 liter beaker, aged for 10 minutes while stirring with a magnetic stirrer, and then 2.1 parts by weight of VALQUABOND MDX (manufactured by Across Chemical Co.) as an isocyanate compound. .3 g was added and stirred for 20 minutes, followed by filtration through a 100 mesh wire netting to prepare an RFL adhesive treatment solution having a solid content concentration of 21% by weight.

<RFL接着剤処理液での処理(テトロン繊維の調製)>
テトロン布(敷島カンバス社製、T−81)をRFL接着剤処理液に10分間浸漬後、140℃のギヤーオーブンで乾燥し、引き続いて240℃の電熱プレス上で2分間無圧のベーキング処理を行い、RFL接着剤処理液による処理繊維とした。
<Treatment with RFL Adhesive Treatment Solution (Preparation of Tetron Fiber)>
Tetron cloth (Shikishima canvas, T-81) is immersed in the RFL adhesive treatment solution for 10 minutes, dried in a 140 ° C gear oven, and then subjected to a pressureless baking process for 2 minutes on an electric heat press at 240 ° C. And treated with an RFL adhesive treatment solution.

<ゴム組成物の調製>
天然ゴムを原料ゴムとし、以下の配合により天然ゴム組成物を12インチロールで調製した。
<Preparation of rubber composition>
Natural rubber was used as a raw rubber, and a natural rubber composition was prepared with a 12-inch roll by the following composition.

天然ゴム 100.0重量部
亜鉛華 5.0
ステアリン酸 2.0
FEFカーボンブラック 45.0
プロセス油 5.0
N−オキシジエチレン−2−ベンゾチアジルスルフェンアミド 1.0
硫黄 2.5
2,2,4−トリメチル−1,2−ジヒドロキノリン重合物 1.0
1,3−ジフェニルグアニジン 0.2
<ゴム組成物−繊維複合体の調製>
ゴム組成物−繊維複合体は、RFL接着剤処理液で処理したテトロン繊維を天然ゴム組成物ではさみ、150℃で30分間プレス加硫して調製した。その後恒温室(25℃、相対湿度65%)で1日以上放置し、初期接着力を測定した。耐熱劣化後の接着力は、ゴム組成物−繊維複合体を175℃のオーブンにいれた後の接着力を測定した。その結果を表2に示す。表2から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(天然ゴム組成物−テトロン繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
Natural rubber 100.0 parts by weight Zinc flower 5.0
Stearic acid 2.0
FEF carbon black 45.0
Process oil 5.0
N-oxydiethylene-2-benzothiazylsulfenamide 1.0
Sulfur 2.5
2,2,4-Trimethyl-1,2-dihydroquinoline polymer 1.0
1,3-diphenylguanidine 0.2
<Preparation of rubber composition-fiber composite>
The rubber composition-fiber composite was prepared by sandwiching a tetron fiber treated with an RFL adhesive treatment solution with a natural rubber composition and press vulcanizing at 150 ° C. for 30 minutes. Thereafter, it was left in a thermostatic chamber (25 ° C., relative humidity 65%) for 1 day or longer, and the initial adhesive strength was measured. The adhesive strength after heat resistance deterioration was measured after the rubber composition-fiber composite was placed in an oven at 175 ° C. The results are shown in Table 2. As is apparent from Table 2, the RFL adhesive treatment liquid is excellent in storage stability, and the obtained rubber composition-fiber composite (natural rubber composition-tetron fiber composite) has an initial adhesive strength and after heat deterioration. Adhesive strength was excellent.

Figure 0005942421
実施例7〜8
実施例6と同様にして、表2に示すとおりの実施例2〜3で調製した接着助剤(塩化ビニル/アクリル酸メチル共重合体ラテックス、塩化ビニル/アクリル酸2−エチルヘキシル共重合体ラテックス)を用いたRFL接着剤処理液、ゴム組成物−繊維複合体を調製し、評価した。その結果を表2に示す。表2から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(天然ゴム組成物−テトロン繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
Figure 0005942421
Examples 7-8
In the same manner as in Example 6, adhesion promoters prepared in Examples 2 to 3 as shown in Table 2 (vinyl chloride / methyl acrylate copolymer latex, vinyl chloride / 2-ethylhexyl acrylate copolymer latex) An RFL adhesive treatment solution and a rubber composition-fiber composite were prepared and evaluated. The results are shown in Table 2. As is apparent from Table 2, the RFL adhesive treatment liquid is excellent in storage stability, and the obtained rubber composition-fiber composite (natural rubber composition-tetron fiber composite) has an initial adhesive strength and after heat deterioration. Adhesive strength was excellent.

実施例9〜10
実施例6と同様にして、実施例4〜5で調製した粒子径の異なる接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)を用いたRFL接着剤処理液、ゴム組成物−繊維複合体を調製し、評価した。その結果を表2に示す。表2から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(天然ゴム組成物−テトロン繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
Examples 9-10
In the same manner as in Example 6, RFL adhesive treatment liquid, rubber composition-fiber composite using adhesion assistants (vinyl chloride / butyl acrylate copolymer latex) having different particle diameters prepared in Examples 4 to 5 The body was prepared and evaluated. The results are shown in Table 2. As is apparent from Table 2, the RFL adhesive treatment liquid is excellent in storage stability, and the obtained rubber composition-fiber composite (natural rubber composition-tetron fiber composite) has an initial adhesive strength and after heat deterioration. Adhesive strength was excellent.

実施例11
<ゴム組成物の調製>
スチレン・ブタジエンゴム(SBR)を原料ゴムとし、以下の配合によりSBR組成物を12インチロールで調製した。
Example 11
<Preparation of rubber composition>
A styrene-butadiene rubber (SBR) was used as a raw rubber, and an SBR composition was prepared with a 12-inch roll by the following composition.

SBR(JSR1502、JSR社製) 100.0重量部
亜鉛華 3.0
ステアリン酸 2.0
FEFカーボンブラック 85.0
プロセス油 20.0
N−オキシジエチレン−2−ベンゾチアジルスルフェンアミド 1.0
硫黄 1.5
2,2,4−トリメチル−1,2−ジヒドロキノリン重合物 1.0
1,3−ジフェニルグアニジン 0.2
<ゴム組成物−繊維複合体の調製>
ゴム組成物−繊維複合体は、RFL接着剤処理液で処理したテトロン繊維をSBR組成物ではさみ、150℃で30分間プレス加硫して調製し、実施例6と同様の方法で評価した。その結果を表2に示す。表2から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(SBR組成物−テトロン繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
SBR (JSR1502, manufactured by JSR) 100.0 parts by weight Zinc flower 3.0
Stearic acid 2.0
FEF carbon black 85.0
Process oil 20.0
N-oxydiethylene-2-benzothiazylsulfenamide 1.0
Sulfur 1.5
2,2,4-Trimethyl-1,2-dihydroquinoline polymer 1.0
1,3-diphenylguanidine 0.2
<Preparation of rubber composition-fiber composite>
The rubber composition-fiber composite was prepared by sandwiching a tetron fiber treated with an RFL adhesive treatment solution with an SBR composition, press vulcanized at 150 ° C. for 30 minutes, and evaluated in the same manner as in Example 6. The results are shown in Table 2. As is clear from Table 2, the RFL adhesive treatment solution is excellent in storage stability, and the obtained rubber composition-fiber composite (SBR composition-tetron fiber composite) has an initial adhesive strength and adhesion after heat deterioration. The power was excellent.

実施例12
<ゴム組成物の調製>
クロロプレンゴム(CR)を原料ゴムとし、以下の配合によりCR組成物を12インチロールで調製した。
Example 12
<Preparation of rubber composition>
A chloroprene rubber (CR) was used as a raw rubber, and a CR composition was prepared with a 12-inch roll by the following composition.

CR(R−10、東ソー製) 100.0重量部
亜鉛華 5.0
酸化マグネシウム 4.0
ステアリン酸 1.5
FEFカーボンブラック 40.0
ジオクチルアジピン酸ビス(2−エチルヘキシル) 5.0
オクチル化ジフェニルアミン 2.0
N,N’−ジフェニル−p−フェニレンジアミン 0.35
<ゴム組成物−繊維複合体の調製>
ゴム組成物−繊維複合体は、RFL接着剤処理液で処理したテトロン繊維をCR組成物ではさみ、150℃で30分間プレス加硫して調製し、実施例6と同様の方法で評価した。その結果を表3に示す。表3から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(CR組成物−テトロン繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
CR (R-10, manufactured by Tosoh Corporation) 100.0 parts by weight Zinc flower 5.0
Magnesium oxide 4.0
Stearic acid 1.5
FEF carbon black 40.0
Dioctyl adipate bis (2-ethylhexyl) 5.0
Octylated diphenylamine 2.0
N, N′-diphenyl-p-phenylenediamine 0.35
<Preparation of rubber composition-fiber composite>
A rubber composition-fiber composite was prepared by sandwiching a tetron fiber treated with an RFL adhesive treatment solution with a CR composition, press vulcanized at 150 ° C. for 30 minutes, and evaluated in the same manner as in Example 6. The results are shown in Table 3. As is apparent from Table 3, the RFL adhesive treatment solution is excellent in storage stability, and the resulting rubber composition-fiber composite (CR composition-tetron fiber composite) has an initial adhesive strength and adhesion after heat deterioration. The power was excellent.

Figure 0005942421
実施例13
<ゴム組成物の調製>
クロロスルホン化ポリエチレンゴム(CSM)を原料ゴムとし、以下の配合によりCSM組成物を12インチロールで調製した。
Figure 0005942421
Example 13
<Preparation of rubber composition>
Chlorosulfonated polyethylene rubber (CSM) was used as a raw rubber, and a CSM composition was prepared with a 12-inch roll by the following composition.

CSM(エクトス(登録商標)T1010、東ソー製) 100.0重量部
酸化マグネシウム 4.0
ステアリン酸 1.5
SRFカーボンブラック 40.0
ペンタエリスリトール 3.0
ジペンタメチレンジスルフィド 0.2
<ゴム組成物−繊維複合体の調製>
ゴム組成物−繊維複合体は、予めイソシアネート化合物であるディスモジュールRE(住友バイエル社製)を酢酸エチルで希釈した5%溶液に浸漬し、140℃で乾燥したテトロン繊維を、樹脂固形分にして、RFL樹脂100.0重量部と実施例1で調製した塩化ビニル/アクリル酸ブチル共重合体20.0重量部になるようにしたRFL接着剤処理液で処理したテトロン繊維をCSM組成物ではさみ、150℃で30分間プレス加硫して調製し、実施例6と同様の方法で評価した。その結果を表3に示す。表3から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(CSM組成物−テトロン繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
CSM (Ectos (registered trademark) T1010, manufactured by Tosoh Corporation) 100.0 parts by weight Magnesium oxide 4.0
Stearic acid 1.5
SRF carbon black 40.0
Pentaerythritol 3.0
Dipentamethylene disulfide 0.2
<Preparation of rubber composition-fiber composite>
The rubber composition-fiber composite was prepared by immersing a dismodule RE (manufactured by Sumitomo Bayer), which is an isocyanate compound, in a 5% solution diluted with ethyl acetate and drying Tetron fiber dried at 140 ° C. as a resin solid content. The Tetron fiber treated with the RFL adhesive treatment solution so as to be 100.0 parts by weight of RFL resin and 20.0 parts by weight of the vinyl chloride / butyl acrylate copolymer prepared in Example 1 was sandwiched with the CSM composition. It was prepared by press vulcanization at 150 ° C. for 30 minutes and evaluated in the same manner as in Example 6. The results are shown in Table 3. As is apparent from Table 3, the RFL adhesive treatment solution is excellent in storage stability, and the obtained rubber composition-fiber composite (CSM composition-tetron fiber composite) has an initial adhesive strength and adhesion after heat deterioration. The power was excellent.

実施例14〜17
<RF液の調製>
レゾルシン11.0g、ホルマリン37%水溶液16.2g(乾燥重量6.0g)、水酸化ナトリウム0.3g及び水235.8gを0.5リットルビーカー中で溶解し、室温(25℃)で6時間マグネチックスターラーを用い攪拌し縮合させた後、樹脂固形分6.5重量%のRF液266.0gを得た。
Examples 14-17
<Preparation of RF solution>
Resorcin 11.0 g, formalin 37% aqueous solution 16.2 g (dry weight 6.0 g), sodium hydroxide 0.3 g and water 235.8 g were dissolved in a 0.5 liter beaker and heated at room temperature (25 ° C.) for 6 hours. After stirring and condensing using a magnetic stirrer, 266.0 g of RF liquid having a resin solid content of 6.5% by weight was obtained.

<RFL液の調製>
固形分にして、RF17.3gとポリビニルピリジン・スチレン・ブタジエンゴム100.0gになるようにRF液266.0重量部及びポリビニルピリジン・スチレン・ブタジエンゴムラテックス(日本ゼオン社製、ニポール2518FS)247.0g及び水74.0gを加え1リットルの攪拌機のついたビーカーに入れ、攪拌しながら約20時間熟成し、固形分濃度20重量%のRFL液587.0gを得た。
<Preparation of RFL solution>
266.0 parts by weight of RF solution and polyvinylpyridine / styrene / butadiene rubber latex (Nipol 2518FS, manufactured by Nippon Zeon Co., Ltd.) 247. The solid content is RF 17.3 g and polyvinylpyridine / styrene / butadiene rubber 100.0 g. 0 g and 74.0 g of water were added, and the mixture was placed in a beaker equipped with a 1 liter stirrer and aged for about 20 hours with stirring to obtain 587.0 g of RFL solution having a solid content concentration of 20% by weight.

<RFL接着剤処理液の調製>
固形分にして、RFL樹脂100.0重量部と実施例1で調製した塩化ビニル/アクリル酸ブチル共重合体20.0重量部になるようにRFL液200.0g及び接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)22.3gを0.5リットルビーカーに入れ、マグネチックスターラーで攪拌しながら30分間熟成後、固形分濃度21重量%のRFL接着剤処理液を調製した。
<Preparation of RFL adhesive treatment liquid>
200.0 g of RFL solution and an adhesion assistant (vinyl chloride / vinyl chloride / sodium chloride) were used so that the solid content was 100.0 parts by weight of RFL resin and 20.0 parts by weight of the vinyl chloride / butyl acrylate copolymer prepared in Example 1. 22.3 g of butyl acrylate copolymer latex) was placed in a 0.5 liter beaker and aged for 30 minutes while stirring with a magnetic stirrer to prepare an RFL adhesive treatment solution having a solid concentration of 21% by weight.

<RFL接着剤処理液での処理(ナイロン繊維の調製)>
ナイロン布(敷島カンバス社製、N−856)をRFL接着剤処理液に10分間浸漬後、140℃のギヤーオーブンで乾燥し、引き続いて190℃の電熱プレス上で2分間無圧のベーキング処理を行い、RFL接着剤処理液による処理繊維とした。
<Treatment with RFL adhesive treatment solution (preparation of nylon fibers)>
Nylon cloth (Shikishima Canvas Co., Ltd., N-856) is immersed in the RFL adhesive treatment solution for 10 minutes, dried in a 140 ° C gear oven, and then subjected to a pressureless baking process on a 190 ° C electric heat press for 2 minutes. And treated with an RFL adhesive treatment solution.

<ゴム組成物−繊維複合体の調製>
ゴム組成物−繊維複合体の調製は、RFL接着剤処理繊維を各々天然ゴム組成物、SBR組成物、CR組成物、CSM組成物ではさみ、150℃で30分間プレス加硫して調製した。評価は実施例6と同様の方法で行った。その結果を表3に示す。表3から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(天然ゴム組成物−ナイロン繊維複合体、SBR組成物−ナイロン繊維複合体、CR組成物−ナイロン繊維複合体、CSM組成物−ナイロン繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
<Preparation of rubber composition-fiber composite>
The rubber composition-fiber composite was prepared by sandwiching RFL adhesive-treated fibers with a natural rubber composition, an SBR composition, a CR composition, and a CSM composition, respectively, and press vulcanizing at 150 ° C. for 30 minutes. Evaluation was performed in the same manner as in Example 6. The results are shown in Table 3. As is apparent from Table 3, the RFL adhesive treatment liquid is excellent in storage stability, and the resulting rubber composition-fiber composite (natural rubber composition-nylon fiber composite, SBR composition-nylon fiber composite, The initial adhesive strength of the CR composition-nylon fiber composite and the CSM composition-nylon fiber composite) and the adhesive strength after heat resistance deterioration were excellent.

実施例18〜21
<RFL液の調製>
固形分にして、RF23.3重量部とポリビニルピリジン・スチレン・ブタジエンゴム100.0重量部になるようにRF液366.0g及びポリビニルピリジン・スチレン・ブタジエンゴムラテックス(日本ゼオン社製、ニポール2518GL)250.0gを1リットルの攪拌機のついたビーカーに入れ、攪拌しながら約20時間熟成し、固形分濃度20重量%のRFL液616.0gを得た。
Examples 18-21
<Preparation of RFL solution>
Solid solution, RF solution 366.0g and polyvinyl pyridine styrene butadiene rubber latex (Nipol 2518GL, manufactured by Nippon Zeon Co., Ltd.) so that RF 23.3 parts by weight and polyvinyl pyridine styrene butadiene rubber 100.0 parts by weight 250.0 g was placed in a beaker equipped with a 1 liter stirrer and aged for about 20 hours with stirring to obtain 616.0 g of RFL solution having a solid content concentration of 20% by weight.

<RFL接着剤処理液の調製>
固形分にして、RFL樹脂100.0重量部と実施例1で調製した塩化ビニル/アクリル酸ブチル共重合体20.0重量部になるようにRFL液200.0g及び接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)22.3gを0.5リットルビーカーに入れ、マグネチックスターラーで攪拌しながら10分間熟成後、イソシアネート化合物として2.1重量部のバルカボンドMDX(アクロスケミカル社製)4.3gを加え20分間攪拌した後100メッシュの金網でろ過し、固形分濃度21重量%のRFL接着剤処理液を調製した。
<Preparation of RFL adhesive treatment liquid>
200.0 g of RFL solution and an adhesion assistant (vinyl chloride / vinyl chloride / sodium chloride) were used so that the solid content was 100.0 parts by weight of RFL resin and 20.0 parts by weight of the vinyl chloride / butyl acrylate copolymer prepared in Example 1. 22.3 g of butyl acrylate copolymer latex) was placed in a 0.5 liter beaker, aged for 10 minutes while stirring with a magnetic stirrer, and then 2.1 parts by weight of VALQUABOND MDX (manufactured by Across Chemical Co.) as an isocyanate compound. .3 g was added and stirred for 20 minutes, followed by filtration through a 100 mesh wire netting to prepare an RFL adhesive treatment solution having a solid content concentration of 21% by weight.

<RFL接着剤処理液での処理(ガラス繊維の調製)>
ガラス繊維布(カネボウ社製、KS4300UNT)をRFL接着剤処理液に10分間浸漬後、140℃のギヤーオーブンで乾燥し、RFL接着剤処理液による処理繊維とした。
<Treatment with RFL adhesive treatment solution (preparation of glass fiber)>
A glass fiber cloth (manufactured by Kanebo Co., Ltd., KS4300UNT) was immersed in an RFL adhesive treatment solution for 10 minutes and then dried in a gear oven at 140 ° C. to obtain a treated fiber using the RFL adhesive treatment solution.

<ゴム組成物−繊維複合体の調製>
ゴム組成物−繊維複合体は、RFL接着剤処理繊維を各々天然ゴム組成物、SBR組成物、CR組成物、CSM組成物ではさみ、150℃で30分間プレス加硫して調製した。評価は実施例6と同様の方法で行った。その結果を表4に示す。表4から明らかなように、RFL接着剤処理液は貯蔵安定性に優れ、得られたゴム組成物−繊維複合体(天然ゴム組成物−ガラス繊維複合体、SBR組成物−ガラス繊維複合体、CR組成物−ガラス繊維複合体、CSM組成物−ガラス繊維複合体)の初期接着力や耐熱劣化後の接着力が優れていた。
<Preparation of rubber composition-fiber composite>
The rubber composition-fiber composite was prepared by sandwiching RFL adhesive-treated fibers with a natural rubber composition, an SBR composition, a CR composition, and a CSM composition, respectively, and press vulcanizing at 150 ° C. for 30 minutes. Evaluation was performed in the same manner as in Example 6. The results are shown in Table 4. As is apparent from Table 4, the RFL adhesive treatment liquid is excellent in storage stability, and the resulting rubber composition-fiber composite (natural rubber composition-glass fiber composite, SBR composition-glass fiber composite, The initial adhesive strength of the CR composition-glass fiber composite and the CSM composition-glass fiber composite) and the adhesive strength after heat resistance deterioration were excellent.

Figure 0005942421
比較例1
1mオートクレーブ中に脱イオン水360.0kg、塩化ビニル単量体300.0kg、過酸化ラウロイル10.0kg、15重量%ドデシルベンゼンスルホン酸ナトリウム水溶液30.0kg及びドデシルメルカプタン1.5kgを仕込み、該重合液をホモジナイザーにより2時間循環し、均質化処理を行った後、温度を45℃に挙げて重合反応を開始した。圧力が低下した後、未反応塩ビ単量体を回収し、平均粒子径0.60μmのシードラテックスを得た。次いで1mオートクレーブ中に脱イオン水350.0kg、塩化ビニル単量体400.0kg、20重量%ドデシルベンゼンスルホン酸ナトリウム水溶液2.0kg、シードラテックスを塩化ビニル単量体に対して3.1重量%仕込み、この反応混合物の温度を64℃にあげて重合を開始した。重合開始してから重合終了までの間、塩化ビニル単量体に対してドデシルベンゼンスルホン酸ナトリウム0.7重量部を連続的に添加した。重合時間360分後、重合圧が64℃における塩化ビニル単量体の飽和蒸気圧から0.65MPa降下した時に重合を停止し、未反応の塩化ビニル単量体を回収し接着助剤(塩化ビニルホモポリマーラテックス)を得た(pH7.3、平均粒子径1.48μm)。
Figure 0005942421
Comparative Example 1
A 1 m 3 autoclave was charged with 360.0 kg of deionized water, 300.0 kg of vinyl chloride monomer, 10.0 kg of lauroyl peroxide, 30.0 kg of 15 wt% aqueous sodium dodecylbenzenesulfonate and 1.5 kg of dodecyl mercaptan, The polymerization solution was circulated for 2 hours with a homogenizer and homogenized, and then the temperature was raised to 45 ° C. to initiate the polymerization reaction. After the pressure decreased, unreacted vinyl chloride monomer was recovered to obtain a seed latex having an average particle size of 0.60 μm. Next, in a 1 m 3 autoclave, 350.0 kg of deionized water, 400.0 kg of vinyl chloride monomer, 2.0 kg of 20 wt% sodium dodecylbenzenesulfonate aqueous solution, and 3.1 weight of seed latex with respect to the vinyl chloride monomer Polymerization was started by raising the temperature of the reaction mixture to 64 ° C. From the start of polymerization to the end of polymerization, 0.7 parts by weight of sodium dodecylbenzenesulfonate was continuously added to the vinyl chloride monomer. After a polymerization time of 360 minutes, the polymerization was stopped when the polymerization pressure dropped from the saturated vapor pressure of the vinyl chloride monomer at 64 ° C. by 0.65 MPa, and the unreacted vinyl chloride monomer was recovered and an adhesion assistant (vinyl chloride) (Homopolymer latex) was obtained (pH 7.3, average particle size 1.48 μm).

比較例2
表5に示す通り、実施例1と同様の操作で2.5Lオートクレーブ中に脱イオン水、塩化ビニル単量体540.0g、アクリル酸単量体60.0gを仕込み、温度を66℃に上げて、乳化重合を開始した。温度を66℃に保ち、重合開始後60分後より、5重量%ドデシルベンゼンスルホン酸ナトリウム水溶液130.0gと5重量%ラウリン酸カリウム水溶液2.4gを290分間かけて連続添加した。66℃におけるオートクレーブ内の圧力が0.65MPaまで低下した後、未反応の塩化ビニル単量体およびアクリル酸単量体を回収し、接着助剤(塩化ビニル/アクリル酸共重合体ラテックス)を得た(pH2.2、平均粒子径0.10μm)。
Comparative Example 2
As shown in Table 5, deionized water, 540.0 g of vinyl chloride monomer, and 60.0 g of acrylic acid monomer were charged into a 2.5 L autoclave in the same manner as in Example 1, and the temperature was raised to 66 ° C. Then, emulsion polymerization was started. The temperature was kept at 66 ° C., and 60 minutes after the start of polymerization, 50.0% sodium dodecylbenzenesulfonate aqueous solution 130.0 g and 5 wt% potassium laurate aqueous solution 2.4 g were continuously added over 290 minutes. After the pressure in the autoclave at 66 ° C. dropped to 0.65 MPa, unreacted vinyl chloride monomer and acrylic acid monomer were recovered to obtain an adhesion assistant (vinyl chloride / acrylic acid copolymer latex). (PH 2.2, average particle size 0.10 μm).

Figure 0005942421
比較例3〜4
表5に示す通り、実施例1と同様の操作で2.5Lオートクレーブ中に脱イオン水、塩化ビニル単量体540.0g、(メタ)アクリル酸アルキルエステル単量体としてアクリル酸単量体(比較例3)、アクリル酸ドデシル単量体(比較例4)60.0gを各々仕込み、接着助剤(塩化ビニル/アクリル酸共重合体ラテックス、塩化ビニル/アクリル酸ドデシル共重合体ラテックス)を各々得た(pH及び平均粒子径を表5に示す)。
Figure 0005942421
Comparative Examples 3-4
As shown in Table 5, in the same manner as in Example 1, deionized water, 540.0 g of vinyl chloride monomer, and acrylic acid monomer ((meth) acrylic acid alkyl ester monomer) in a 2.5 L autoclave. Comparative Example 3) and 60.0 g of dodecyl acrylate monomer (Comparative Example 4) were charged, respectively, and adhesion assistants (vinyl chloride / acrylic acid copolymer latex, vinyl chloride / dodecyl acrylate copolymer latex) Obtained (pH and average particle size are shown in Table 5).

比較例5〜6
表5に示す通り、実施例1と同様の操作で2.5Lオートクレーブ中に脱イオン水、塩化ビニル単量体540.0g、アクリル酸ブチル単量体60.0gを仕込み、5重量%ドデシルベンゼンスルホン酸ナトリウム水溶液量を変更し、接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)を各々得た(比較例5:pH6.5、平均粒子径0.03μm、比較例6:pH6.3、平均粒子径1.54μm)。
Comparative Examples 5-6
As shown in Table 5, deionized water, 540.0 g of vinyl chloride monomer, and 60.0 g of butyl acrylate monomer were charged into a 2.5 L autoclave in the same manner as in Example 1, and 5 wt% dodecylbenzene. The amount of sodium sulfonate aqueous solution was changed to obtain adhesion aids (vinyl chloride / butyl acrylate copolymer latex) (Comparative Example 5: pH 6.5, average particle size 0.03 μm, Comparative Example 6: pH 6. 3, average particle size 1.54 μm).

比較例7
固形分にして実施例6と同一組成のRFL樹脂100.0重量部に相当するRFL液200.0gに対し、接着助剤(塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックス)を入れないで、RFL液に対し2.1重量部に相当するバルカボンドMDX4.3gを0.5リットルビーカーに入れ、マグネチックスターラーで20分間攪拌後、100メッシュの金網でろ過したRFL接着剤処理液を調製した。この処理液に対し、テトロン繊維を10分間浸漬し140℃で水分を除去した後、240℃で2分間ベーキング処理を行い処理繊維を得た。この処理繊維と天然ゴム組成物を加硫接着し、ゴム組成物−繊維複合体を調製し、実施例6と同様の方法で評価を行った。その結果を表6に示す。表6から明らかなように、接着助剤(塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックス)を含有しないRFL接着剤処理液は、貯蔵安定性に優れるものの、実施例6に比べ、初期接着力や耐熱劣化後の接着力は劣っていた。
Comparative Example 7
Adhesive aid (vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex) is added to 200.0 g of RFL solution corresponding to 100.0 parts by weight of RFL resin having the same composition as in Example 6 in solid content. Without adding RFLC solution, 4.3 g of VALQUABOND MDX equivalent to 2.1 parts by weight was placed in a 0.5 liter beaker, stirred with a magnetic stirrer for 20 minutes, and filtered with a 100-mesh wire mesh. Prepared. Tetron fibers were immersed in this treatment solution for 10 minutes to remove moisture at 140 ° C., and then baked at 240 ° C. for 2 minutes to obtain treated fibers. This treated fiber and a natural rubber composition were vulcanized and bonded to prepare a rubber composition-fiber composite, which was evaluated in the same manner as in Example 6. The results are shown in Table 6. As is apparent from Table 6, the RFL adhesive treatment liquid containing no adhesion assistant (vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex) is excellent in storage stability, but compared with Example 6, The initial adhesive strength and the adhesive strength after heat resistance deterioration were inferior.

Figure 0005942421
比較例8
固形分にして、実施例6と同一組成のRFL樹脂100.0重量部と比較例1の塩化ビニルホモポリマー20.0重量部になるようにRFL液及び接着助剤(塩化ビニルホモポリマーラテックス)とバルカボンドMDX2.1重量部を加えたRFL接着剤処理液を調製し、テトロン繊維の処理を行い、この処理繊維と天然ゴム組成物を加硫接着し、ゴム組成物−繊維複合体を調製し、実施例6と同様の方法で評価を行った。その結果を表6に示す。表6から明らかなように、実施例6に比べ、比較例1を用いたRFL接着剤処理液の貯蔵安定性や、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力は劣っていた。
Figure 0005942421
Comparative Example 8
The RFL solution and the adhesion assistant (vinyl chloride homopolymer latex) were adjusted so that the solid content was 100.0 parts by weight of the RFL resin having the same composition as in Example 6 and 20.0 parts by weight of the vinyl chloride homopolymer of Comparative Example 1. An RFL adhesive treatment solution containing 2.1 parts by weight of VALQUABOND MDX is prepared, the tetron fiber is treated, the treated fiber and the natural rubber composition are vulcanized and bonded, and a rubber composition-fiber composite is prepared. Evaluation was performed in the same manner as in Example 6. The results are shown in Table 6. As is clear from Table 6, compared to Example 6, the storage stability of the RFL adhesive treatment solution using Comparative Example 1, the initial adhesive strength of the rubber composition-fiber composite, and the adhesive strength after heat deterioration are It was inferior.

比較例9
固形分にして、実施例6と同一組成のRFL樹脂100.0重量部と比較例2の塩化ビニル/アクリル酸共重合体が20.0重量部になるようにRFL液及び接着助剤(塩化ビニル/アクリル酸共重合体ラテックス)とバルカボンドMDX2.1重量部を加えたRFL接着剤処理液を調製し、テトロン繊維の処理を行い、この処理繊維と天然ゴム組成物を加硫接着し、ゴム組成物−繊維複合体を調製し、実施例6と同様の方法で評価を行った。その結果を表6に示す。表6から明らかなように、実施例6に比べ、比較例2を用いたRFL接着剤処理液の貯蔵安定性や、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力は劣っていた。
Comparative Example 9
The RFL solution and the adhesion assistant (salt chloride) were adjusted so that the solid content was 100.0 parts by weight of the RFL resin having the same composition as in Example 6 and 20.0 parts by weight of the vinyl chloride / acrylic acid copolymer of Comparative Example 2. Vinyl / acrylic acid copolymer latex) and 2.1 parts by weight of VALQUABOND MDX are prepared, a tetron fiber is treated, and the treated fiber and natural rubber composition are vulcanized and bonded to rubber. A composition-fiber composite was prepared and evaluated in the same manner as in Example 6. The results are shown in Table 6. As is clear from Table 6, the storage stability of the RFL adhesive treatment liquid using Comparative Example 2, the initial adhesive strength of the rubber composition-fiber composite, and the adhesive strength after heat deterioration compared to Example 6 are as follows. It was inferior.

比較例10〜11
固形分にして、実施例6と同一組成のRFL樹脂100.0重量部と、比較例3の塩化ビニル/アクリル酸共重合体、比較例4の塩化ビニル/アクリル酸ドデシル共重合体が20.0重量部になるようにRFL液及び接着助剤(塩化ビニル/アクリル酸共重合体ラテックス、塩化ビニル/アクリル酸ドデシル共重合体ラテックス)とバルカボンドMDX2.1重量部を加えた2種類のRFL接着剤処理液を調製しテトロン繊維の処理を行い、この処理繊維と天然ゴム組成物を加硫接着し、ゴム組成物−繊維複合体を調製し、実施例6と同様の方法で評価を行った。その結果を表6に示す。表6から明らかなように、比較例10は、RFL接着剤処理液の貯蔵安定性が良いが、実施例6〜8に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。また、比較例11は、ゴム組成物−繊維複合体の初期接着力は優れていたが、実施例6〜8に比べ、RFL接着処理液の貯蔵安定性や、ゴム組成物−繊維複合体の耐熱劣化後の接着力が劣っていた。
Comparative Examples 10-11
The solid content was 100.0 parts by weight of RFL resin having the same composition as in Example 6, the vinyl chloride / acrylic acid copolymer in Comparative Example 3 and the vinyl chloride / dodecyl acrylate copolymer in Comparative Example 4 at 20. Two types of RFL adhesion, adding RFL liquid and adhesion aid (vinyl chloride / acrylic acid copolymer latex, vinyl chloride / dodecyl acrylate copolymer latex) and 2.1 parts by weight of VALQUABOND MDX to 0 parts by weight An agent treatment solution was prepared and the tetron fiber was treated. The treated fiber and the natural rubber composition were vulcanized and bonded to prepare a rubber composition-fiber composite, which was evaluated in the same manner as in Example 6. . The results are shown in Table 6. As is clear from Table 6, Comparative Example 10 has good storage stability of the RFL adhesive treatment liquid, but compared with Examples 6 to 8, the initial adhesive strength of the rubber composition-fiber composite and after heat resistance deterioration Adhesion was poor. Comparative Example 11 was excellent in the initial adhesive strength of the rubber composition-fiber composite, but compared with Examples 6-8, the storage stability of the RFL adhesion treatment liquid and the rubber composition-fiber composite The adhesive strength after heat resistance deterioration was poor.

比較例12〜13
固形分にして、実施例6と同一組成のRFL樹脂100.0重量部と、比較例5及び比較例6の塩化ビニル/アクリル酸ブチル共重合体が20.0重量部になるようにRFL液及び接着助剤(塩化ビニル/アクリル酸ブチル共重合体ラテックス)とバルカボンドMDX2.1重量部を加えた2種類のRFL接着剤処理液を調製しテトロン繊維の処理を行い、この処理繊維と天然ゴム組成物を加硫接着し、ゴム組成物−繊維複合体を調製し、実施例6と同様の方法で評価を行った。その結果を表6に示す。表6から明らかなように、比較例12は、RFL接着剤処理液の貯蔵安定性が良いが、実施例9〜10に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。また比較例13は、実施例9〜10に比べ、RFL接着処理液の貯蔵安定性や、ゴム組成物−繊維複合体の耐熱劣化後の接着力が劣っており、実施例10に比べ、ゴム組成物−繊維複合体の初期接着力が劣っていた。
Comparative Examples 12-13
The RFL solution was adjusted so that the solid content was 100.0 parts by weight of RFL resin having the same composition as in Example 6 and the vinyl chloride / butyl acrylate copolymer of Comparative Examples 5 and 6 was 20.0 parts by weight. And two types of RFL adhesive treatment solutions containing adhesion aid (vinyl chloride / butyl acrylate copolymer latex) and Vulcabond MDX 2.1 parts by weight were prepared and treated with Tetron fiber. The composition was vulcanized and bonded to prepare a rubber composition-fiber composite and evaluated in the same manner as in Example 6. The results are shown in Table 6. As is clear from Table 6, Comparative Example 12 has good storage stability of the RFL adhesive treatment liquid, but compared with Examples 9 to 10, the initial adhesive strength of the rubber composition-fiber composite and after heat deterioration Adhesion was poor. Comparative Example 13 is inferior to Examples 9 to 10 in terms of storage stability of the RFL adhesion treatment liquid and adhesive strength after heat resistance deterioration of the rubber composition-fiber composite. The initial adhesive strength of the composition-fiber composite was poor.

比較例14
実施例6と同一組成のRFL樹脂100.0重量部に相当するRFL液にバルカボンドMDX2.1重量部を加えたRFL接着剤処理液を調製した。そしてこれを用いテトロン繊維の処理を行い、この処理繊維とSBR組成物を加硫接着してゴム組成物−繊維複合体を調製し、実施例6と同様の方法で評価を行った。その結果を表7に示す。表7から明らかなように、RFL接着剤処理液の貯蔵安定性は優れるが、実施例11に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。
Comparative Example 14
An RFL adhesive treatment liquid was prepared by adding 2.1 parts by weight of VALQUABOND MDX to an RFL liquid corresponding to 100.0 parts by weight of the RFL resin having the same composition as in Example 6. This was used to treat the tetron fiber, and the treated fiber and the SBR composition were vulcanized and bonded to prepare a rubber composition-fiber composite. Evaluation was performed in the same manner as in Example 6. The results are shown in Table 7. As is clear from Table 7, the storage stability of the RFL adhesive treatment solution was excellent, but compared with Example 11, the initial adhesive strength of the rubber composition-fiber composite and the adhesive strength after heat deterioration were inferior.

Figure 0005942421
比較例15
比較例14で用いたRFL接着剤処理液を用い、ゴムをSBRからCRに変更した以外は実施例6と同じ評価をテトロン繊維で行った。その結果を表7に示す。表7から明らかなように、RFL接着剤処理液の貯蔵安定性は優れるが、実施例12に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。
Figure 0005942421
Comparative Example 15
Using the RFL adhesive treatment solution used in Comparative Example 14, the same evaluation as in Example 6 was performed with Tetron fiber, except that the rubber was changed from SBR to CR. The results are shown in Table 7. As is clear from Table 7, the storage stability of the RFL adhesive treatment solution was excellent, but compared with Example 12, the initial adhesive strength of the rubber composition-fiber composite and the adhesive strength after heat degradation were inferior.

比較例16
固形分にして実施例6と同一組成のRFL樹脂100.0重量部に相当するRFL接着剤処理液を調製した。テトロン繊維はディスモジュールREで実施例13と同じように前処理し、CSM組成物−テトロン繊維複合体の評価を行った。その結果を表7に示す。表7から明らかなように、RFL接着剤処理液の貯蔵安定性は優れるが、実施例13に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。
Comparative Example 16
An RFL adhesive treatment liquid corresponding to 100.0 parts by weight of RFL resin having the same composition as in Example 6 in terms of solid content was prepared. Tetron fibers were pretreated with Dismodule RE in the same manner as in Example 13, and the CSM composition-Tetron fiber composites were evaluated. The results are shown in Table 7. As is clear from Table 7, the storage stability of the RFL adhesive treatment solution was excellent, but the initial adhesive strength of the rubber composition-fiber composite and the adhesive strength after heat resistance deterioration were inferior to those of Example 13.

比較例17
実施例14〜17と同一組成のRFL樹脂100.0重量部に相当するRFL接着剤処理液を調製した。そしてこれを用いナイロン繊維の処理を行い、この処理繊維と天然ゴム組成物を加硫接着し、実施例6と同様の方法で評価を行った。その結果を表8に示す。表8から明らかなように、RFL接着剤処理液の貯蔵安定性は優れるが、実施例14に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。
Comparative Example 17
RFL adhesive treatment solutions corresponding to 100.0 parts by weight of RFL resin having the same composition as in Examples 14 to 17 were prepared. Then, the nylon fiber was treated using this, and the treated fiber and the natural rubber composition were vulcanized and adhered, and evaluation was performed in the same manner as in Example 6. The results are shown in Table 8. As is clear from Table 8, the storage stability of the RFL adhesive treatment solution was excellent, but the initial adhesive strength of the rubber composition-fiber composite and the adhesive strength after heat degradation were inferior to those of Example 14.

Figure 0005942421
比較例18
比較例17で用いたRFL接着剤処理液を用い、ゴムを天然ゴムからSBRに変更した以外は実施例6と同じ評価をナイロン繊維で行った。その結果を表8に示す。表8から明らかなように、RFL接着剤処理液の貯蔵安定性は優れるが、実施例15に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。
Figure 0005942421
Comparative Example 18
The same evaluation as in Example 6 was performed with nylon fibers, except that the RFL adhesive treatment liquid used in Comparative Example 17 was used and the rubber was changed from natural rubber to SBR. The results are shown in Table 8. As is clear from Table 8, the storage stability of the RFL adhesive treatment solution was excellent, but the initial adhesive strength and the adhesive strength after heat deterioration of the rubber composition-fiber composite were inferior to those of Example 15.

比較例19
比較例17で用いたRFL接着剤処理液を用い、ゴムを天然ゴムからCRに変更した以外は実施例6と同じ評価をナイロン繊維で行った。その結果を表8に示す。表8から明らかなように、RFL接着剤処理液の貯蔵安定性は優れるが、実施例16に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。
Comparative Example 19
The same evaluation as in Example 6 was performed with nylon fibers except that the RFL adhesive treatment liquid used in Comparative Example 17 was used and the rubber was changed from natural rubber to CR. The results are shown in Table 8. As is clear from Table 8, the storage stability of the RFL adhesive treatment solution was excellent, but the initial adhesive strength and the adhesive strength after heat deterioration of the rubber composition-fiber composite were inferior to those of Example 16.

比較例20
比較例17で用いたRFL接着剤処理液を用い、ゴムを天然ゴムからCSMに変更した以外は実施例6と同じ評価をナイロン繊維で行った。その結果を表8に示す。表8から明らかなように、RFL接着剤処理液の貯蔵安定性は優れるが、実施例17に比べ、ゴム組成物−繊維複合体の初期接着力や耐熱劣化後の接着力が劣っていた。
Comparative Example 20
The same evaluation as in Example 6 was performed with nylon fibers except that the RFL adhesive treatment solution used in Comparative Example 17 was used and the rubber was changed from natural rubber to CSM. The results are shown in Table 8. As is clear from Table 8, the storage stability of the RFL adhesive treatment solution was excellent, but the initial adhesive strength of the rubber composition-fiber composite and the adhesive strength after heat resistance deterioration were inferior to those of Example 17.

比較例21
固形分にして、実施例6と同一組成のRFL樹脂100.0重量部に相当するRFL液200.0gに対し、接着助剤(塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックス)を入れないで、RFL液に対し2.1重量部に相当するバルカボンドMDX4.3gを0.5リットルビーカーに入れ、マグネチックスターラーで20分間攪拌後、100メッシュの金網でろ過したRFL接着剤処理液を調製した。この処理液に対し、ガラス繊維を10分間浸漬し140℃で水分を除去した処理繊維を得た。この処理繊維と天然ゴム組成物を加硫接着し、ゴム組成物−繊維複合体を調製し、実施例6と同様の方法で評価を行った。その結果を表9に示す。表9から明らかなように、接着助剤(塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックス)を含有しないRFL接着剤処理液は、貯蔵安定性に優れるものの、初期接着力や耐熱劣化後の接着力は劣っていた。
Comparative Example 21
With respect to 200.0 g of RFL solution corresponding to 100.0 parts by weight of RFL resin having the same composition as in Example 6 in terms of solid content, an adhesion assistant (vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex) was added. Without addition, 4.3 g of VALQUABOND MDX equivalent to 2.1 parts by weight with respect to the RFL solution was placed in a 0.5 liter beaker, stirred for 20 minutes with a magnetic stirrer, and then filtered through a 100-mesh wire mesh. Was prepared. In this treatment liquid, glass fibers were immersed for 10 minutes to obtain treated fibers from which moisture was removed at 140 ° C. This treated fiber and a natural rubber composition were vulcanized and bonded to prepare a rubber composition-fiber composite, which was evaluated in the same manner as in Example 6. The results are shown in Table 9. As is apparent from Table 9, the RFL adhesive treatment liquid containing no adhesion assistant (vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex) is excellent in storage stability but has an initial adhesive force and heat resistance deterioration. Later adhesion was poor.

Figure 0005942421
比較例22
ゴムを天然ゴムからSBRに変更した以外は比較例21と同じ評価をガラス繊維で行った。その結果を表9に示す。表9から明らかなように、接着助剤(塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックス)を含有しないRFL接着剤処理液は、貯蔵安定性に優れるものの、初期接着力や耐熱劣化後の接着力は劣っていた。
Figure 0005942421
Comparative Example 22
The same evaluation as Comparative Example 21 was performed with glass fiber except that the rubber was changed from natural rubber to SBR. The results are shown in Table 9. As is apparent from Table 9, the RFL adhesive treatment liquid containing no adhesion assistant (vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex) is excellent in storage stability but has an initial adhesive force and heat resistance deterioration. Later adhesion was poor.

比較例23
ゴムを天然ゴムからCRに変更した以外は比較例21と同じ評価をガラス繊維で行った。その結果を表9に示す。表9から明らかなように、接着助剤(塩化ビニル−(メタ)アクリル酸アルキルエステル)を含有しないRFL接着剤処理液は、貯蔵安定性に優れるものの、初期接着力や耐熱劣化後の接着力は劣っていた。
Comparative Example 23
The same evaluation as Comparative Example 21 was performed with glass fiber except that the rubber was changed from natural rubber to CR. The results are shown in Table 9. As is apparent from Table 9, the RFL adhesive treatment liquid that does not contain an adhesion assistant (vinyl chloride- (meth) acrylic acid alkyl ester) is excellent in storage stability but has an initial adhesive force and an adhesive force after heat deterioration. Was inferior.

比較例24
ゴムを天然ゴムからCSMに変更した以外は比較例21と同じ評価をガラス繊維で行った。その結果を表9に示す。表9から明らかなように、接着助剤(塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックス)を含有しないRFL接着剤処理液は、貯蔵安定性に優れるものの、初期接着力や耐熱劣化後の接着力は劣っていた。
Comparative Example 24
The same evaluation as Comparative Example 21 was performed with glass fiber except that the rubber was changed from natural rubber to CSM. The results are shown in Table 9. As is apparent from Table 9, the RFL adhesive treatment liquid containing no adhesion assistant (vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex) is excellent in storage stability but has an initial adhesive force and heat resistance deterioration. Later adhesion was poor.

本発明のゴム組成物−繊維複合体は、本発明の接着助剤を用いた本発明のRFL接着剤処理液を用いることにより、ゴム組成物と繊維間の初期接着力や耐熱劣化後の接着力に優れるため、本発明のゴム組成物−繊維複合体の成型体は、自動車用タイヤや自動二輪・自転車用タイヤ、産業車用ソリッドタイヤ等のタイヤ用途、Vベルト、歯付ベルト、コンベヤベルト、動力伝達用平ベルト等の自動車用ベルトや工業用ベルト等の各種ベルト、自動車用ゴムホース、工業用ゴムホース類、トラック・バス等空気羽根、自動車用空気羽根、鉄道車両用空気羽根、産業機械用空気羽根等の空気羽根用途、土木建築用シート、ゴム履物の日用品等の広範な用途に使用される。   The rubber composition-fiber composite of the present invention uses the RFL adhesive treatment liquid of the present invention using the adhesion aid of the present invention, so that the initial adhesive force between the rubber composition and the fiber and adhesion after heat deterioration Since the rubber composition-fiber composite molded product of the present invention is excellent in strength, it is used for tires such as automobile tires, motorcycle / bicycle tires, solid tires for industrial vehicles, V belts, toothed belts, conveyor belts. , Various belts such as automobile belts and industrial belts such as flat belts for power transmission, rubber hoses for automobiles, industrial rubber hoses, air vanes for trucks and buses, air vanes for automobiles, air vanes for railway vehicles, industrial machinery Used for a wide range of applications such as air blades such as air blades, civil engineering and construction sheets, and daily commodities for rubber footwear.

Claims (6)

塩化ビニルと下記一般式(1)で示される(メタ)アクリル酸アルキルエステルを含み、pH3〜8、平均粒子径0.05〜1.0μmである塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスを含有することを特徴とする接着助剤。
Figure 0005942421
(式中、Rは水素又はメチル基を表し、nは1〜10の整数を表す。)
A vinyl chloride- (meth) acrylic acid alkyl ester copolymer containing vinyl chloride and an alkyl (meth) acrylate represented by the following general formula (1), having a pH of 3 to 8 and an average particle size of 0.05 to 1.0 μm An adhesion aid comprising a combined latex.
Figure 0005942421
(In the formula, R 1 represents hydrogen or a methyl group, and n represents an integer of 1 to 10.)
塩化ビニル−(メタ)アクリル酸アルキルエステル共重合体ラテックスがスルホン酸塩又は硫酸エステル塩を有する有機化合物及び高級脂肪酸塩を含有することを特徴とする請求項1に記載の接着助剤。 The adhesion promoter according to claim 1, wherein the vinyl chloride- (meth) acrylic acid alkyl ester copolymer latex contains an organic compound having a sulfonate salt or a sulfate ester salt and a higher fatty acid salt. 請求項1又は請求項2に記載の接着助剤、及びレゾルシンとホルマリン縮合物の水溶液とゴムラテックスを含むRFL液を含有することを特徴とするRFL接着剤処理液。 3. An RFL adhesive treatment liquid comprising the adhesion assistant according to claim 1 or 2, and an RFL liquid containing an aqueous solution of resorcin and formalin condensate and a rubber latex. 請求項1又は請求項2に記載の接着助剤を、レゾルシンとホルマリン縮合物の水溶液とゴムラテックスを含むRFL液に混合・分散してなることを特徴とする請求項3に記載のRFL接着剤処理液。 The adhesion aid according to claim 1 or claim 2, resorcin and RFL adhesive according to claim 3, wherein the mixing and dispersing become possible in the RFL solution comprising an aqueous solution and a rubber latex formalin condensate Treatment liquid. 請求項3又は請求項4に記載のRFL接着剤処理液を繊維に含浸し、その後乾燥してなる処理繊維とゴム組成物を加硫してなることを特徴とするゴム組成物−繊維複合体。 The RFL adhesive treatment liquid according to claim 3 or claim 4 impregnated into the fiber, followed by drying and formed by processing fiber and the rubber composition The rubber composition is characterized by being obtained by vulcanizing the - fiber composites . 請求項3又は請求項4に記載のRFL接着剤処理液を繊維に含浸し、その後乾燥してなる処理繊維と、ゴム組成物を加硫してなるゴム組成物−繊維複合体を成型してなることを特徴とするゴム組成物−繊維複合体の成型体。 The RFL adhesive treatment liquid according to claim 3 or claim 4 impregnated into the fiber, and then dried to become processed fiber, a rubber composition obtained by vulcanizing the rubber composition - by molding fiber composite A molded article of a rubber composition-fiber composite characterized by comprising:
JP2011284244A 2011-08-30 2011-12-26 Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite Expired - Fee Related JP5942421B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011284244A JP5942421B2 (en) 2011-08-30 2011-12-26 Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite
KR1020147005355A KR20140057570A (en) 2011-08-30 2012-08-29 Adhesive agent, rfl adhesive treatment liquid, rubber compostion/fibre composite and moulded body
PCT/JP2012/071903 WO2013031862A1 (en) 2011-08-30 2012-08-29 Adhesive agent, rfl adhesive treatment liquid, rubber compostion/fibre composite and moulded body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011187425 2011-08-30
JP2011187425 2011-08-30
JP2011284244A JP5942421B2 (en) 2011-08-30 2011-12-26 Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite

Publications (2)

Publication Number Publication Date
JP2013064097A JP2013064097A (en) 2013-04-11
JP5942421B2 true JP5942421B2 (en) 2016-06-29

Family

ID=48187892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284244A Expired - Fee Related JP5942421B2 (en) 2011-08-30 2011-12-26 Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite

Country Status (1)

Country Link
JP (1) JP5942421B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213052B2 (en) * 2013-08-22 2017-10-18 東ソー株式会社 High degree-of-polymerization vinyl chloride polymer latex composition, method for producing the same, adhesion aid, rubber composition-adhesive treatment solution for fiber composite, and rubber composition-fiber composite
CN105440964B (en) * 2016-01-09 2018-03-30 厦门煜明光电有限公司 A kind of mirror sections guard method of COB mirror-surface aluminum base boards
CN116285773A (en) * 2023-02-27 2023-06-23 江苏国立化工科技有限公司 Porous and easily-dispersible composite rubber adhesive composition and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911708B2 (en) * 1994-11-04 2007-05-09 東ソー株式会社 Adhesive treatment agent, polyester-treated fiber, elastic body, and production method thereof
JP3430889B2 (en) * 1996-11-26 2003-07-28 住友化学工業株式会社 Adhesive composition
JP3765073B2 (en) * 1998-05-19 2006-04-12 東レ・デュポン株式会社 Aromatic polyamide fiber for rubber reinforcement, method for producing the same, and fiber-reinforced rubber composite material
JP2000234275A (en) * 1999-02-15 2000-08-29 Teijin Ltd Treatment of polyester fiber for rubber reinforcement
JP2010189492A (en) * 2009-02-17 2010-09-02 Bridgestone Corp Adhesive composition for organic fiber cord and rubber reinforcing material using the same, tire, and adhesion method

Also Published As

Publication number Publication date
JP2013064097A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5890950B2 (en) Chlorosulfonated polyethylene latex
JP5942421B2 (en) Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite
TW201816046A (en) Chloroprene rubber latex adhesive composition
JP5481225B2 (en) Copolymer latex for adhesive
CN101790608A (en) Rubber reinforcing member and rubber product utilizing the same
TWI758458B (en) Vulcanizable composition comprising hxnbr latex and polyfunctional epoxide, and process for producing the same and use thereof
JP5715109B2 (en) Method for producing copolymer latex for adhesive
JP5942382B2 (en) Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite
JP6040751B2 (en) Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite
JP6032039B2 (en) Adhesive aid, rubber composition-adhesive treatment solution for fiber composite and rubber composition-fiber composite
US4963613A (en) Adhesive composition
JP5998805B2 (en) Adhesive aid, RFL adhesive treatment liquid and rubber composition-fiber composite
CN101189291A (en) Composition and method for curing latex compounds
JP6213052B2 (en) High degree-of-polymerization vinyl chloride polymer latex composition, method for producing the same, adhesion aid, rubber composition-adhesive treatment solution for fiber composite, and rubber composition-fiber composite
JP5671188B1 (en) Copolymer latex for adhesive and adhesive composition
WO2013031862A1 (en) Adhesive agent, rfl adhesive treatment liquid, rubber compostion/fibre composite and moulded body
JP6520418B2 (en) Latex composition and RFL adhesive comprising the same
JP2014173002A (en) Vinyl chloride polymer latex composition and method for manufacturing the same as well as adhesion adjuvant, adhesive treatment liquid for a rubber composition-fiber composite, and rubber composition-fiber composite
JP5681169B2 (en) Copolymer latex for adhesive
KR20140057570A (en) Adhesive agent, rfl adhesive treatment liquid, rubber compostion/fibre composite and moulded body
JP2016150993A (en) Assistant for hardly curable adhesive, rfl adhesive and rubber composition-fiber composite
KR20210003763A (en) Water-based one-component adhesive composition
JP7304753B2 (en) Adhesive copolymer latex and adhesive composition
JP6113531B2 (en) Copolymer latex for adhesive and adhesive composition
CN111386308A (en) Anionic aqueous dispersion, process for producing the same, molded article, adhesive liquid, rubber-reinforcing fiber, and rubber-reinforcing fiber composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R151 Written notification of patent or utility model registration

Ref document number: 5942421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees