JP5941073B2 - クロマトグラフィーシステムでのデータを処理するためのシステム及び方法 - Google Patents

クロマトグラフィーシステムでのデータを処理するためのシステム及び方法 Download PDF

Info

Publication number
JP5941073B2
JP5941073B2 JP2013557939A JP2013557939A JP5941073B2 JP 5941073 B2 JP5941073 B2 JP 5941073B2 JP 2013557939 A JP2013557939 A JP 2013557939A JP 2013557939 A JP2013557939 A JP 2013557939A JP 5941073 B2 JP5941073 B2 JP 5941073B2
Authority
JP
Japan
Prior art keywords
data
factor
peak
correlation
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013557939A
Other languages
English (en)
Other versions
JP2014507672A (ja
Inventor
ワーン,ジホン
ウィリス,ピーター・マーケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leco Corp
Original Assignee
Leco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leco Corp filed Critical Leco Corp
Publication of JP2014507672A publication Critical patent/JP2014507672A/ja
Application granted granted Critical
Publication of JP5941073B2 publication Critical patent/JP5941073B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8644Data segmentation, e.g. time windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8696Details of Software
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • G06F2218/14Classification; Matching by matching peak patterns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Library & Information Science (AREA)
  • Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

[0001]本開示は、クロマトグラフフィー質量分析法システムでの取得されたデータのためのデータ処理技法に関する。
[0002]クロマトグラフィー質量分析計は大量のデータを発生させること、またそれらデータの多くがノイズ又は不要な情報から成ることは知られている。関連情報をノイズから効率的に精度よく区別し、同情報を効率的且つ高分解能な方式で処理するシステム及び方法が所望されている。
米国特許第7,501,621号 米国特許第7,825,373号 米国特許第7,884,319号 米国仮特許出願第61/445,674号
[0003]クロマトグラフィーシステムでのデータを処理するためのシステム及び方法が記載されている。或る実施形では、本システム及び方法は、クロマトグラフィーシステムによって生成されたデータを処理して処理されたデータを生成する段階と、処理されたデータを分析する段階と、処理されたデータに基づく結果を用意し提供する段階と、を含んでいる。
本願発明の実施形態は、例えば、以下の通りである。
[形態1]
クロマトグラフィー質量分析法システムのためのデータ捕捉システムでの質量スペクトルに関係しているデータを処理する方法において、
前記データを処理して処理されたデータを生成する段階と、
前記処理されたデータを分析して、そこからノイズを抽出し、1つ又はそれ以上の溶出化合物について前記質量スペクトルの1つ又はそれ以上の構成要素であって同位体及び付加体及びフラグメントである構成要素をひとまとめにグループ化して、その様な化合物のそれぞれの解明に役立てる段階と、
前記処理されたデータに関係している結果を用意し提供する段階と、を備えている方法。
[形態2]
ノイズとして抽出されてしまっているかもしれない前記同位体及び前記付加体の少なくとも一方と関連付けられている情報を組み入れ直す段階、を更に備えている、形態1の方法。
[形態3]
前記データは、長いクラスタと短いクラスタを含んでおり、前記処理する段階は、
前記長いクラスタを前記短いクラスタから分離する段階と、
前記データをフィルタ処理して当該データを平滑化し、それにより、フィルタ処理されたクラスタをもたらす段階と、
前記フィルタ処理されたクラスタをサブクラスタへ分ける段階と、
前記サブクラスタの適性認定を行って、そこから望ましからざるサブクラスタを抽出する段階と、を備えている、形態1の方法。
[形態4]
前記分離する段階は、
前記データをブロックへ分離する段階と、
それぞれのブロックの中心のベースラインの強度を推定する段階と、
それぞれのブロックの等距離四分位点間を線形補間してベースライン推定を出す段階と、
前記ベースラインレベルより上のデータをクリップし、当該ベースラインより下のデータを温存する段階と、
前記クリップされたデータを平滑化して前記ベースラインの改善版を出す段階と、を更に備えている、形態3の方法。
[形態5]
それぞれのブロックの長さは、前記データの期待半値全幅(full-width half height)の倍数である、形態4の方法。
[形態6]
それぞれのブロックの長さは、前記データの期待半値全幅の5倍と推定されている、形態4の方法。
[形態7]
前記平滑化する段階は、Savitzky−Golay平滑化アルゴリズムの適用を伴っている、形態4の方法。
[形態8]
ブロックの中心のベースラインの前記強度の推定は、前記ブロックの下四分位の前記ベースラインの強度に基づいている、形態4の方法。
[形態9]
前記適性認定段階は、
閾値信号対ノイズ比より大きい信号対ノイズ比を有するサブクラスタを選択する段階と、
閾値品質より大きいピーク形状を有するサブクラスタを選択する段階と、
最小クラスタ長さを有するサブクラスタを選択する段階と、のうちの少なくとも1つを備えている、形態3の方法。
[形態10]
前記閾値信号対ノイズ比は10である、形態9の方法。
[形態11]
前記ノイズは、四分の一(1/4)イオン面積の事前に定義されている捕捉ノイズである、形態9の方法。
[形態12]
前記ノイズは、前記元のクラスタデータと前記平滑化されたクラスタデータの間の残差の標準偏差である、形態9の方法。
[形態13]
前記閾値信号対ノイズ比より大きい信号対ノイズ比を有するサブクラスタは、それらが同位体又は付加体である場合には、なお前記因子分析で使用される、形態9の方法。
[形態14]
サブクラスタの前記ベースラインをピークの左右の側からトリミングする段階、を更に備えている、形態9の方法。
[形態15]
前記トリミングする段階は、
前記サブクラスタ内の生データを両端から中心へ向かって走査する段階と、
各端での前記強度が閾値より上に立ち上がっている場所を新しい端点として識別する段階と、
前記新しい端点の外側の前記データを捨てる段階と、を更に備えている、形態14の方法。
[形態16]
前記閾値は、前記サブクラスタの標準偏差の4倍である、形態15の方法。
[形態17]
前記閾値品質は、前記サブクラスタのフィッティングと事前に定義されている曲線の間の相関に基づいている、形態9の方法。
[形態18]
前記事前に定義されている曲線は、二重ガウス(bi-Gaussian)曲線である、形態17の方法。
[形態19]
前記閾値相関は0.6である、形態17の方法。
[形態20]
前記閾値相関は0.8である、形態18の方法。
[形態21]
前記フィルタ処理する段階は、有限インパルス応答フィルタを利用している、形態3の方法。
[形態22]
前記フィルタ処理する段階は、
前記データ内に最も大きいピークを識別する段階と、
前記識別されたピークの前記半値全幅を推定する段階と、
前記推定された半値全幅をルックアップ表と突き合わせて1つ又はそれ以上の最適化されているフィルタ係数を識別する段階と、
前記最適化されているフィルタ係数に基づいて前記データを平滑化する段階と、
それぞれのクラスタについてノイズ指数を識別する段階と、を備えている、形態3の方法。
[形態23]
前記最適化されているフィルタ係数は、順逆二次有限インパルス応答フィルタ係数のセットである、形態22の方法。
[形態24]
前記ノイズ指数は、前記平滑データと前記生データの間の残差の標準偏差である、形態23の方法。
[形態25]
前記ノイズ指数は、或るクラスタから導出されている前記サブクラスタのそれぞれへ割り当てられる、形態24の方法。
[形態26]
前記最適化されている係数は、次の段階、即ち、
ガウスピークをそれぞれの期待半値全幅で形成する段階と、
前記ガウスピークへノイズを加え、それにより、ノイズのあるガウスピークをもたらす段階と、
前記フィルタ係数を調整するべく、前記ガウスピークを、前記ノイズのあるガウスピークと前記ガウスピークの間の残差を実質的に最小化する方式で最適化する段階と、に従って計算される、形態23の方法。
[形態27]
前記最適化する段階は、非線形Levenburg−Marquardt処理を利用している、形態26の方法。
[形態28]
前記クラスタはピークと谷を有しており、前記分ける段階は、
フィルタ処理されたクラスタ内に、2つのピークの間に位置する谷が前記2つのピークの定義されている強度より小さい最小点を有しているそれぞれのインスタンスを識別する段階と、
仮にあれば、それぞれの識別されたインスタンスに基づいて、前記クラスタをサブクラスタへ分離する段階と、を更に備えている、形態3の方法。
[形態29]
前記定義されている強度は、前記2つのピークの一方又は両方の前記強度の二分の一又は約二分の一である、形態28に記載の方法。
[形態30]
前記分析する段階は、
因子分析にとって有意な因子を求める段階と、
それらの因子の初期シード推定を提供する段階と、を更に備えている、形態3に記載の方法。
[形態31]
下四分位ピークを除外する段階、を更に備えている、形態30に記載の方法。
[形態32]
前記分析する段階は、
前記データの間でベースピークを選択する段階と、
全ての局所データを評価して、それらを前記ベースピークと相関付ける段階と、
既定の最小相関値を有する局所データを前記ベースピークと組み合わせて因子を作成する段階と、
前記因子について前記スペクトルを推定する段階と、を更に備えている、形態3に記載の方法。
[形態33]
前記ベースピークは手動で選択されている、形態32に記載の方法。
[形態34]
前記データセットの中で最も強度の高いサブクラスタピークが前記ベースピークとして選択されている、形態32に記載の方法。
[形態35]
前記最小相関値は0.6である、形態32に記載の方法。
[形態36]
A)ひとたび前記ベースピークが識別されたら、残っているデータの中で次に最も強度の高いピークを次の因子として選択する段階と、
B)前記(A)段階が完了し次第、残っているデータの中で次に最も強度の高いピークを次の因子として選択する段階と、
C)前記(B)段階を、全てのサブクラスタが因子を割り当てられるまで繰り返す段階と、を更に備えている、形態34に記載の方法。
[形態37]
相関閾値と関係している信頼区間の一方又は両方を比較して、前記組み合わせる段階で組み合わされた前記局所データで組み合わされるべきではなかった局所データを、別々の因子へ分離する段階を、更に備えている、形態32に記載の方法。
[形態38]
前記比較する段階は、
前記因子の中で最も強度の高いサブクラスタを選択する段階と、
前記ベースサブクラスタと前記因子の中のその他のサブクラスタのうちの少なくとも1つの間の相関を求める段階と、
前記サブクラスタの少なくとも1つについて頂点位置信頼区間を求める段階と、
(i)重なり合うベースピークと、(ii)前記ベースピークへの相関で定義されている相関閾値より大きい相関と、を有するサブクラスタをひとまとめにグループ化する段階であって、前記グループ化のそれぞれは因子である、グループ化する段階と、を更に備えている、形態37に記載の方法。
[形態39]
それぞれの因子についての平均濃度プロファイルを計算する段階を、更に備えている、形態37に記載の方法。
[形態40]
前記計算する段階は、それぞれの因子についての前記平均濃度プロファイルを求めるのに多変量曲線分解法を利用している、形態39に記載の方法。
[形態41]
計算された前記平均濃度プロファイルは、それぞれの因子についての推定されたピーク形状として使用される、形態40に記載に方法。
[形態42]
前記平均濃度プロファイルのピーク品質を測定する段階と、
閾値ピーク品質より小さいピーク品質を有するデータを除去する段階と、を更に備えている、形態39に記載の方法。
[形態43]
前記測定する段階は、それぞれの濃度プロファイルのフィットの残差の偏差を求めることによって計算されている、形態42に記載の方法。
[形態44]
前記偏差は、二重ガウス系での標準偏差である、形態43に記載の方法。
[形態45]
前記閾値ピーク品質は0.5である、形態42に記載の方法。
[形態46]
前記ベースピークは手動入力されている、形態45に記載の方法。
[形態47]
前記推定されたピーク形状を、少なくとも1つの事前に選択されている曲線と比較する段階を、更に備えている、形態41に記載の方法。
[形態48]
前記推定されたピーク形状を、前記比較する段階に先立って正規化して、正規化された推定ピーク形状を定義する段階を、更に備えている、形態47に記載の方法。
[形態49]
前記正規化する段階は、前記推定されたピーク形状を、再サンプリング手続きを通して引き伸すか又は縮めるかのうち少なくとも一方を行い、次いで中心合わせして、前記少なくとも1つの事前に選択されている曲線の幅と中心に整合させる段階、を含んでいる、形態48に記載の方法。
[形態50]
前記正規化されたピーク形状と前記少なくとも1つの事前に選択されている曲線の間の相関を計算する段階を、更に備えている、形態48に記載の方法。
[形態51]
前記最適整合についての歪度値及び尖度値が前記最適化のためのシードとして選択されている、形態50に記載の方法。
[形態52]
前記少なくとも1つの事前に選択されている曲線は、ピアソンIV関数から生成されている、形態47に記載の方法。
[形態53]
前記少なくとも1つの事前に選択されている曲線は前記歪度と前記尖度の少なくとも一方の順列であり、一方、残りのパラメータは一定に維持されており、その後、前記ピーク形状が記録され、それぞれの順列について保存される、形態52に記載の方法。
[形態54]
同位体と付加体の一方又は両方と関連付けられている情報を求めて前記データを調べ直す段階と、
前記関連付けられているデータを選択する段階と、
前記関連付けられているデータの適性認定を行う段階と、
前記関連付けられているデータが適性を認定された場合、それを因子へ割り当てる段階と、を更に備えている、形態1の方法。
[形態55]
前記適性認定を行う段階は、
因子に対して前記データの相関を計算する段階と、
前記相関が前記最小相関より大きい場合は、それを因子へ割り当てる段階と、を備えている、形態54の方法。
[形態56]
前記最小相関は0.9である、形態55の方法。
[形態57]
因子を誤ってグループ化されている同位体/付加体を識別する段階と、
その様な識別された同位体/付加体を正しい因子へ割り当て直す段階と、を
更に備えている、形態37の方法。
[形態58]
前記識別する段階は、
因子の濃度プロファイルを近隣の因子の濃度プロファイルに比較して相関を識別する段階と、
第1の因子の前記濃度プロファイルと近隣の因子のそれとの間の前記相関が閾値相関より大きい場合は、前記第1の因子からの同位体/付加体突き止めに対し前記近隣の因子を調べ直す段階と、
前記調べ直す段階に基づいて、前記同位体/付加体を前記第1の因子へ割り当て直す段階と、を備えている、形態57の方法。
[形態59]
前記閾値相関は0.9である、形態58の方法。
[形態60]
前記相関パラメータは、ユーザーによって定義されている、形態37の方法。
[形態61]
因子分割を防止する段階を、更に備えている、形態37の方法。
[形態62]
前記防止する段階は、
或る因子内のベース同位体/付加体サブクラスタと前記因子内のその他のサブクラスタの間の平均相関に基づく局所相関閾値を求める段階と、
前記因子と近接の因子の前記濃度プロファイルを相関付ける段階と、
前記相関が局所相関閾値より大きい場合は、前記因子と前記近接の因子を併合する段階と、を更に備えている、形態61の方法。
[形態63]
因子が併合される場合、前記因子と次に近接している因子との前記濃度プロファイルの相関付け段階、を更に備えている、形態62の方法。
[形態64]
前記閾値相関は0.9である、形態62の方法。
[形態65]
前記最小クラスタ長さは5スティックである、形態9の方法。
[0004]本開示に記載されている或る実施形による、クロマトグラフピークを識別しデコンボリューションするための因子分析技法に関する全般的な処理を描いている。 [0005]ガスクロマトグラフィー質量分析法システムの全体的なブロック図である。 [0006]或る実施形による、本技法の或る特徴を示している。 [0007]或る実施形による、データ捕捉システムからのデータを前処理するための或る例示としての方法を表している。 [0008]或る実施形による、ベースライン補正の或る例示としての方法を表している。 [0009]フィルタリング処理の或る例示としての実施形を識別している。 [0010]本開示で論じられている原理による、実質的に最適化された係数を識別するための代表的な処理を描いている。 [0011]或る実施形態による、サブクラスタのピーク形状の適性認定を行うのに使用することのできる代表的な処理を示している。 [0012]或る実施形による、概ね無関係なデータをサブクラスタから除去してデータを精錬させることのできる方法を述べている。 [0013]ここに記載の実施形の態様によるシーディング法を描いている。 [0014]記載の実施形態に従った因子識別のための処理を示している。 [0015]或る例示としてのシステムでのM対ピーク相関閾値の比較を描いている。 [0016]或る実施形でのM対ピーク相関閾値をグラフに実例的に示している。 [0017]因子分割を防ぐ方法を提供している。
[0018]様々な図面中の同様の符号は同様の要素を指し示している。
[0019]図1を参照すると、クロマトグラフィー質量分析法システムからのクロマトグラフピークを識別しデコンボリューションする因子分析方法としての或る例示としての方法が開示されている。本方法は、液体及び気体を含むクロマトグラフィーシステムの全型式で使用することができるものと理解されたい。例示されている或る実施形態では、本方法は、(i)分析システムによって受信されたデータを前処理する段階(S200)と、(ii)前処理されたデータを分析する段階(S300)と、(iii)データ中に表されていることが確信される何らかの同位体又は付加体と関連付けられるデータを処理する段階(S400)と、(v)関連付けられる結果を用意し提供する段階(S500)と、を含んでいる。
[0020]或る実施形では、データは、質量分析計と関連付けられているデータ捕捉システムによる分析のために供給される。本開示の解釈上、データ捕捉とは、米国特許第7,501,621号、米国特許第7,825,373号、米国特許第7,884,319号に示されているシステムとされていることを了解されたい。
[0021]更に、その様な分析を施されるのに先立ち、データ捕捉システムからのデータは、米国仮特許出願第61/445,674号に示されている様に調整されてもよい。上記及び他の全ての参照されている特許及び出願をここに参考文献としてそっくりそのまま援用する。援用されている参考文献中の用語の定義又は使用が、ここに提供されている当該用語の定義と矛盾しているか又は相容れない場合には、ここに提供されている当該用語の定義が適用され、参考文献中の当該用語の定義は適用されない。
[0022]かいつまめば、上記データ捕捉システムは、概して、質量分析法システムからの生データを、それぞれがイオンピークを表していて強度と正確な質量値と質量分解能値から成っている「スティック」(sticks)と呼ばれる質量中心質量スペクトル(centroided mass spectral)へ変換する。スティックの構築時、アナログ対デジタル変換器からの生データは、約10又は10:1の圧縮を施され、捕捉ノイズと冗長情報の大半は除去されてしまう。しかしながら、このデータ捕捉システムの目的は全イオン情報を以降の処理工程へ回送することなので、結果は、非常に疎な二次元データであり、化学背景ノイズは依然として残っている可能性がある。次に、スティックはドリフト補正され、隣接保持時間の走査で統計的に似通った質量のクラスタへまとめられる。
[0023]或る実施形では、似通った強度プロファィルを有するクラスタ同士は、クロマトグラフカラムから溶離する分子化合物由来の様々な同位体、付加体、及びフラグメントイオンを表していると考えられる。加えて、カラムブリード、移動相汚染物質、雰囲気汚染物質、及び同種のもの、の様な多様な発生源に由来する、クロマトグラフ構造を全く持たない背景イオンのクラスタがある。クラスタフィルタを適用して、所望の最小信号対ノイズレベルより小さいレベルを有するクラスタを除去し、次いで、残っているクラスタを処理システムへ送って、分析を続行させるようにすることができよう。
[0024]本開示の内容に基づいて理解されるべきこととして、データ処理のそれぞれの工程で、優良情報の保持は、図3によって表されている様に幾らかの残留ノイズ保持を代償としていることが典型的に好適である。概して、記載のシステムは、データの完全性を保全するために保持されるノイズの量を最適化した。
[0025]図4は、処理システムによってデータ捕捉システムから受信されるデータを前処理するための或る例示としての方法を表している。或る実施形では、処理(S200)は、長いクラスタを短いクラスタから分離し、長いクラスタをベースライン補正する段階(S210)と、データをフィルタ処理して平滑化する段階(S220)と、フィルタ処理されたクラスタをサブクラスタへ分ける段階(S230)と、サブクラスタの適性認定を行う段階(S240)と、を含んでいる。或る実施形態では、サブクラスタの適性認定は、ピーク形状の適性認定を行うことと信号対ノイズの適性認定を行うことのうち少なくとも一方を含んでおり、それぞれは以下に更に詳細に論じられている。
[0026]長いクラスタは全分析の長さに近い持続時間を有しているかもしれないこと、及びこれらの長いクラスタの殆どは正しく取り扱われなかったなら事実上バイアスを掛けてしまう背景イオンであること、が見出されている。更に、長いクラスタは、多くの場合、相対的に強度が高く、典型的にはそれらと関連付けられる高いノイズを有している。また一方で、このデータの一部が、溶離化合物の共有質量による寄与のせいで望ましいクロマトグラフデータを保有しているということもあるため、長いクラスタを一括りに抽出するのではなくむしろ長いクラスタへの更なる分析を提供するのが好適である。その様な長いクラスタは、それらの強度上昇のせいで、或る実施形では、最初にベースライン補正を施されることになる。
[0027]その様なベースライン補正の或る方法をこれより開示してゆく。図5に示されている或る実施形では、データへベースライン補正を遂行するための段階は、以下の手続き、即ち、データをブロックへ分離する段階であって、それぞれのブロックの長さは、クロマトグラフデータの期待半値全幅(full-width half-height)の倍数として求められている、分離する段階(S211)と、ブロックの中心のベースラインの強度を、当該ブロックの下四分位のベースラインの強度に基づいて推定する段階(S212)と、上記の等距離四分位点間を線形補間してベースライン推定を出す段階(S213)と、ベースラインレベルに対しベースラインより上のデータをクリップし、ベースラインより下のデータを温存する段階(S214)と、クリップされたデータ上で曲線を平滑化してベースラインの改善版を出す段階(S215)と、段階(S214)及び段階(S215)を、全て又は実質的に全てのデータが平滑化されたベースラインより上に最小許容誤差内で納まるまで、繰り返す段階と、を備えていてもよい。上記ベースライン補正は、それぞれの所望の分離されたブロックに遂行されてもよく、或る実施形では、分離されたブロック全て又は実質的に全てが含まれている。同様に、補正は、それぞれの長いクラスタに適用されてもよく、或る実施形では、長いクラスタ全て又は実質的に全てが含まれている。
[0028]或る実施形では、段階(S211)中のブロックの長さは、クロマトグラフデータの期待半値全幅の5倍と推定されるが、本開示に基づき、長さは5倍より大きいこともあれば小さいこともあるものと理解されたい。
[0029]論じられている様に、データをクリップする段階(S214)は、クリップされたデータ上で曲線を平滑化することを伴う。或る実施形では、平滑化する段階を提供するのにSavitzky−Golay平滑化アルゴリズムが実装されている。他の平滑化アルゴリズムを採用することもでき、本発明はそれによってその様に限定されるものではない。
[0030]引き続き図4を参照して、データは次にフィルタ処理されてノイズが除去されることになる(S220)。その様なフィルタリング処理の実施形が図6に示されている。論じられている或る実施形態では、この段階を遂行する場合に無限インパルス応答フィルタが使用されているが、但し、本明細書の内容に基づき、有限インパルス応答フィルタの様な他の型式のフィルタがそれに置き換えられてもよいものと理解されたい。引き続き図6を参照すると、データ内で最も大きいピークが識別され、当該ピークの半値全幅が推定される(S221)。この推定値は、次に、事前に定義されているルックアップ表と突き合わされて、順逆二次無限インパルス応答フィルタ係数のセットであって、クロマトグラフピークをそれらの半値全幅に基づいて平滑化するために最適化されている係数のセットを識別する(S222)。(S222)で導出されている識別された最適化済みの係数を使用して、データが平滑化される(S223)。次に、平滑化されたデータが生データと比較されて、それぞれのクラスタについてのノイズ指数が識別される(S224)。或る実施形では、それぞれのクラスタについてのノイズ指数は、平滑データと生データの間の残差の標準偏差として計算されている。本開示に基づいて明らかになってくる目的のために、ノイズ指数は、(S230)に従って或るクラスタから導出されているサブクラスタのそれぞれへ割り当てられるものとして保持される。この方法は、高強度データによって不当に影響されない分析を促し低強度データが十分に表されるようにする最尤最小二乗法推定を提供する。
[0031]論じられている様に、或る実施形態では、最適化された係数は、(S222)のルックアップ表の使用を通して識別される。或る実施形では、最適化された係数は、何れかの処理が起こる前に、幾つかの期待半値全幅値について事前に計算されシステムに保存される。図7は、係数を事前に計算することのできる1つのやり方を示している。
[0032](S225)で、幾つかの純粋なガウスピークがそれぞれの期待半値全幅で形成される。或る実施形では、これらのピークの幅は、実質的に目的の半値全幅の約三分の一(1/3)乃至当該半値全幅の3倍を範囲としており、それらは基準ピークとして格納される。次に、(S226)で、ノイズが、基準ピークの全て又は選択されたものに加えられる。或る実施形では、ノイズはホワイトノイズであり、ガウス分布に従ってピークのそれぞれに加えられている。次いで、(S227)で、フィルタ係数を調整するべく、ピークのそれぞれ又は選択されたものが、平滑化されたノイズのあるピークと基準ピークの間の残差を実質的に最小化する方式で最適化される。最適化(S227)は、非線形Levenburg−Marquardt法を使用して提供されてもよい。最適化中、係数は、安定したインパルス応答を発生させるように制約を付けられる。この処理がそれぞれの又は選択された基準半値全幅について繰り返され(S228)、最適化された係数値がルックアップ表に格納される(S229)。或る実施形では、例示としての得られた平滑化フィルタのインパルス応答は、フィルタの主ローブの幅が目的の半値全幅の大凡二分の一である正弦フィルタのインパルス応答と似ていた。この実施形を使用すれば、ピークの形状と構造は実質的に保全され、検知される偽の正ピーク数は実質的に最小限になることであろう。
[0033]図4に戻って、フィルタ処理されたクラスタは、サブクラスタへ分けられることになる(S230)。或る実施形では、フィルタ処理されたクラスタのデータが調べられて、(2つのピーク又は頂点の間に位置する)谷の最少点が近接のピークの定義されている強度未満であるそれぞれのインスタンスが識別される。一例として、ピーク強度は、近接しているピークの一方又は両方のピークの強度又はその二分の一(1/2)であるとして選択されていてもよい。識別されたら、谷はクラスタ切断点として認識され、それによってクラスタを1つ又はそれ以上のサブクラスタへ分離させる。理解されてゆく様に、分けられるサブクラスタの数は、所与のクラスタのクラスタ切断点の量に依存することになる。
[0034]図8は、サブクラスタのピーク形状の適性認定を行うのに使用することのできる代表的な処理を示している(S240)。この処理は、確実に、関連のサブクラスタがクロマトグラフ情報を保有するようにさせるのに役立つ。実際には、サブクラスタの幾つかは、クロマトグラフ情報を保有しないデータを含んでいることがあり、その様なデータを、これ以後、外れ値と呼称する。それら外れ値のうち関連データを除去することなく実践できる限り多くの外れ値をデータから抽出し省くのが好適である。或る実施形では、所望のサブクラスタを外れ値から分離するのに、次の技法、即ち、(i)最小信号対ノイズ比より大きい信号対ノイズ比を有するサブクラスタを選択する(S242)、(ii)最小品質より大きいピーク形状を有するサブクラスタを選択する(S244)、及び(iii)最小クラスタ長さを有するサブクラスタを選択する(S246)、のうちの1つ又はそれ以上が使用されている。或る実施形では、最小クラスタ長さは、3乃至8スティック、4乃至7スティック、3乃至7スティック、4乃至8スティック、4乃至6スティック、又は5スティック、の長さが選択されている。他の最小クラスタ長さが使用されていてもよい。或る実施形では、前記分離処理のそれぞれが使用されている。開示を分かり易くするために、本開示は、図8に描かれている様に、処理のどれもが使用されている実施形態を論じてゆく。また、どの分離処理が使用されようと、本開示はそれらが処理される順序に限定されるものではない。
[0035]最小又は閾値信号対ノイズ比より大きい信号対ノイズ比を有するサブクラスタを選択するための或る例示としての処理(S241)が提供されている。或る実施形では、閾値比は、ハードコードされた値とユーザーが定義した値のうちより小さい方として選択されていてもよい。一例として、閾値は10又は約10とすることができよう。他にも技法はあるが中でも特に、ノイズは四分の一(1/4)イオン面積の事前に定義されている捕捉ノイズとして、又は元のクラスタデータと平滑化されたクラスタデータの間の残差の標準偏差として、測定されていてもよい。とはいえ、閾値未満の比を有するサブクラスタでも、それらが適性条件を満たすピークの同位体又は付加体であるなら、因子分析でなお使用されることもあるものと理解されたい。
[0036]閾値より大きい信号対ノイズ比を有するサブクラスタは、冗長データ又はノイズをなおも保有しているかもしれないことから、それらサブクラスタを更にトリミングすることが望ましいであろう。1つのトリミング方法は、その様なサブクラスタのベースラインをピークの左右両側からトリミングすることを伴う。或る実施形では、サブクラスタ内の生データが一方の端又は両方の端から中心へ向かって走査され―強度(左/右)が閾値より上に立ち上がっている場所が、サブクラスタの新しい端となり、ベースラインデータは捨てられる。或る実施形では、閾値強度は、サブクラスタノイズの標準偏差の4倍である。
[0037]前に説明されている様に、所望のサブクラスタを識別し外れ値を除外する別の手法は、最小又は閾値品質より大きいピーク形状を有するサブクラスタを選択すること(S244)である。或る実施形では、閾値品質は、クロマトグラフピークが合理的にモデル化され得る全体形状を有しているとの仮定に基づいていてもよく、モデル化は、二重ガウス(bi-Gaussian)曲線を使用するのが好ましいが、本発明はそれによってその様に限定されるものではない。二重ガウス曲線は、フィッティングの速さと安定性について、ピアソンIVの様な他のピーク形状に勝って好適である。従って、図9に描かれている或る実施形態では、それぞれのサブクラスタは、まず、二重ガウスピークにフィットされる(S247)。サブクラスタとフィットさせたピークの間の相関が識別される(S248)。閾値相関より大きいか又は実質的に閾値相関にある相関を有するピークが選択され、閾値より小さい相関を有するピークは外れ値として識別される(S249)。或る実施形では、閾値相関は0.6、好適には0.8とされている。
[0038]本開示に基づいて、理解されるべきこととして、それぞれのサブクラスタは、単一のクロマトグラフピークを保有しているものと見なされるものであり、たとえその様なピークは、2つ又はそれ以上の共溶出化合物からの情報が組み合わさったことに起因する共有質量複合ピークであるかもしれないという可能性、即ち以下に更に詳しく論じられている様にデコンボリューションされることになる現象であり得ることが考えられるにせよ、その様に見なされている。
[0039]図1に戻って、上記に従って前処理されたデータは次に(S300)で分析を施される。方法は、この段階で、因子分析のための有意因子の数を求め、それらの因子の初期シード推定を提供するものとして開示されている。ここに論じられている因子シーディングの適用により、方法は、因子分析が不当に局所的最小値に集中することを防止されたものとなる。結果として、より高い精度と分解能で素早く結果を得ることができるようになる。
[0040]図10に示されている或る実施形態では、開示されているシーディング法は、(S310)で、1つ又はそれ以上の値を充当して、有意因子の数を処理する又は他のやり方で求め、デコンボリューションを制御することを伴う。或る実施形態では、使用することのできる値には、中でもとりわけ、クロマトグラフ分解能の度数、ピーク重なり又はピーク相関閾値、及び得られる因子の最小品質が含まれる。値は、ユーザーが選択したものであってもよいし、事前に定義されていてもよいし、前シーディング処理中に分析結果に基づいて動的に生成されてもよい。
[0041]或る実施形態では、マルチパス処理が因子確定を容易にすることであろう。これより2パス処理を論じてゆくが、本開示に基づいて、様々なパス処理が使用されてもよく、本発明はその幅一杯まで権利が及ぶものと理解されたい。更に、2パス処理は、随意であり、単一パスからもたらされる結果が十分であると判断されれば単一パスが使用されてもよい。かいつまめば、本処理は、因子をその様なピークとしてを求めるときに、結果をぼやけさせるか又はそれ以外に処理を遅行させたりしないとも限らない低品質ピークの除外をやり易くする。とはいえ、後段で論じられている様に、除外されたピークの幾つか又は全ては、その様なピークが同位体又は付加体に関係していると判定された場合には、後刻、処理に加えられることになる。
[0042]或る実施形では、第1パスは、求められる因子の第1推定値を提供する(S320)のに使用される。図11に示されている様に、このパスは、因子についてのベースピーク又は濃度プロファイルの選択(S321)で始まる。ベースピークは、手動で選択されてもよいし、又は自動的に、例えばアルゴリズム関数又は同種のものの実装を通すなどして、選択されてもよい。或る実施形では、データセットの中で最も強度の高いサブクラスタピークがベースピークとして選択されており、というのも、その様なピークは、比較上強度の低いサブクラスタピークと比較して、純粋な化学物質を最もよく表している可能性が高いと想定できるからである。或る実施形では、選択されたサブクラスタピークは、因子についてのベースピーク又は濃度プロファイルとして選択される。
[0043]ベースピークの選択に続いて、全ての局所データ(例えば、このベースピークを横切るサブクラスタ)が評価され、ベースピークと相関付けられて、ベースピークとの相関値Cを充当させる(S322)。既知の相関方法が使用されてもよい。或る実施形態では、既定の最小相関値を有する局所データがベースピークと組み合わされて因子を作成する(S323)。次いで、識別された因子について、スペクトルの初期推定値Sが指定される(S324)。
[0044]次に、残っているデータの中で次に最も強度の高いピークが次の因子として選択され、この場合も同様に、相関データが上述の処理に従って組み合わされる(S325)。この処理は、サブクラスタの全てが因子へ初期割り当てされるまで続く。
[0045]次に、第2パス(S330)が採用され、それによって、第1パスからの因子は更に分析され、第1パスで識別された単一の因子を更に個別化された因子に分離できるか又は分離するべきかについて判定が下されることになる。このステップ中、相関パラメータ及び関係のある信頼区間を使用して、第1パスで間違って併合されたかもしれないデータを分離するようにしてもよい。或る実施形では、相関パラメータは、ユーザーが識別したものであってもよいし、事前に定義されたものであってもよい。
[0046]図12は、その様な第2パス(S330)で使用することのできる実施形を例示している。描かれている様に、因子の中で最も強度の高いサブクラスタが選択され(S331)、当該サブクラスタのことを、他の用語を使用することもできるであろうがベースピークと識別することにする。当該ベースピークと因子中の他のサブクラスタの1つ又は全ての間で相関が計算される(S332)。更に、ベースピークを含め、サブクラスタのそれぞれについて、頂点位置信頼区間が計算される(S333)。或る例示としての信頼区間の求め方は、
Figure 0005941073
とされている。
[0047]上記方程式では、(i)Mは、シグマ乗数を指し、所望の標準偏差の数と関係していて、以下で論じられている様にピーク相関閾値と関係付けられる場合もあり、(ii)PeakWidthは、その信頼区間が所望されているサブクラスタピークの半値全幅であり、(iii)S/Nは、サブクラスタのピーク高さ対ピーク・ツー・ピークノイズの比として計算されているサブクラスタについての信号対ノイズ比であり、ApexLocationは、ピークの頂点の時間位置である。或る例示としての信頼区間の求め方が開示されているが、他の計算が使用されてもよく、特に否定されていない限り、本発明は開示されている例に限定されるものではない。
[0048]好適な場合、前に述べられている様に、或る実施形では、Mは図13に描かれている様に関数的にピーク相関閾値に関係付けることができる。図13は、可変量で時間推移する2つのガウス分布の相関及び信頼区間の重なりの測定値に基づくM対ピーク相関閾値をグラフに実例的に示している。プロットされている関係を使用すると、ピーク相関閾値かMのどちらかが識別されているとき、他方の値はこの実例的に示されている関係に基づいて自動的に導出されることになる。代わりに、或る実施形態では、独立しているピーク相関閾値とMを提供するのが望ましいこともある。
[0049]或る実施形では、高信頼は、大きいM(2乃至4或いは3又は約3)と広い信頼区間を有する傾向があろう。また、非常に強度の高いピーク(例えば、信号対ノイズ比が上昇している傾向のあるもの)については、信頼区間は狭くなる傾向があり、というのは、頂点位置の不確定さが非常に小さくなるだけの十分な数のイオンがあるからである。例えば、その頂点が時間20に在るベース(又はサブクラスタ)についてシグマ乗数3を使用した場合、ピークは、幅が2、高さが2560、ピーク・ツー・ピークノイズが10であり、そのとき信頼区間はベースピークの頂点位置について20±0.375である。自身の信頼区間がベースピークの信頼区間と重なり合うサブクラスタ及び自身の基準ピークへの相関がユーザー指定によるピーク相関閾値より大きいサブクラスタは皆ひとまとめに因子へグループ化される(S334)。所望に応じ、何らかの残っているサブクラスタがある場合に残っているサブクラスタのうち最も強度の高いものが新しい因子についてのベースピークとして選択され、残っているサブクラスタがなくなるまで当該処理が繰り返される(S335)。この処理を通して作成される新しい因子の量は、共溶出化合物の量に関係している。第2パスは、実質的に等しい頂点位置を有してはいるが異なった形状を有する2つのピークがデコンボリューションされる方法を提供している。
[0050]上記と同時発生に、又は前に示されている因子識別の1つ、幾つか、又は全てが完了し次第、平均濃度プロファイルがそれぞれの因子について計算されており(S340)、図10を参照されたし。それぞれの因子について平均濃度プロファイルを求めるのに、一例として、多変量曲線分解(MCR)法が採用されてもよい。或る実施形では、因子の1つ又は全てについて、計算された平均濃度プロファイルがそれぞれの因子についての推定ピーク形状として使用される。随意的には、ベースピーク形状が、所望に応じ、因子の1つ又は全てについての推定ピーク形状として識別されてもよい。更に、2つの推定ピーク形状を使用し、計算された平均濃度プロファイルとベースピーク形状が因子の1つ又は全てに使用されるようにしてもよい。
[0051]平均濃度プロファイルの使用を通し、追加の望ましからざる因子を、平均濃度プロファイルのピーク品質(PQ)の測定(S350)によって、更なる計算から抜かすことができる。或る実施形では、PQは、それぞれの濃度プロファイルのフィットの残差の偏差を求めることによって計算することができる。異なった偏差方法が採用されてもよく、例えば、好適には二重ガウス系での標準偏差を使用することができる。或る実施形では、閾値ピーク品質(例えば、0.5)より小さいピーク品質は、データ及び引き続く計算から除去される(S360)。但し、PQ閾値の選択及び偏差計算並びにそのための方法は、所望の結果に依存して変えられてもよく、本発明はそれによってその様に限定されるものではないと理解されたい。
[0052]図1に戻って、データを同位体及び付加体に関係している因子へ加え戻すことが望ましいであろう(S400)。或る実施形では、生データは調べ直され、同位体及び付加体に関係していることが確信されるデータが選択され、次いで因子の全て又は選択されたものに対しての適性認定が行われる。因子に対する適性認定は、データが、閾値誤差率より小さい誤差率を有する最小相関より大きい相関を指し示している場合に起こるものとされていてもよい。或る実施形では、最小相関は0.9であり、誤差率は20%である。データは、適性が認定されたなら、当該因子へ割り当てられる。
[0053]或る実施形では、同位体/付加体は、生データに対し典型的な同位体m/zスペーシング及び付加体m/zスペーシングを調べ直し、調べ直しに基づいて同位体/付加体を指し示すデータを抽出することによって、生データ中に識別できる。例えば、一価炭素含有化合物は、n=1,2,3,…として、大凡n*1.003質量単位だけ間隔の空いた同位体を有しており、塩素化合物では、同位体は、典型的には、1.997質量単位だけ間隔が空いている。付加体については、分子が単一ナトリウムイオンを使用してイオン化された場合、それは、単一水素イオンによってイオン化された同じ分子から21.982質量単位の質量シフトを有しているはずである。
[0054]更に、化合物の同位体/付加体は、近隣の共溶出因子と共に誤ってグループ化されてしまっているかもしれない(例えば、ノイズが原因で、同位体/付加体のピークは、その真のベースピークに対する相関よりも近隣のピークに対する相関の方が高くなっていることがある)。その様な同位体/付加体は、識別されたら、割り当て直されることが望ましいであろう。その様な誤ったグループ化を割り出して割り当て直す1つの方法は、或る因子をその近隣の(単数又は複数の)因子と比較することである。或る実施形では、近隣の因子を構成しているものの身元は、第1因子の濃度プロファイルと近接の因子のそれとの間の相関に基づいている。相関が最小相関より大きい場合には、当該因子は、近隣因子であって、潜在的に第1因子からの同位体又は付加体を含んでいる可能性があると識別される。或る実施形では、最小相関は0.9である。次に、近隣の因子が走査され、同位体/付加体が第1因子に属するとして適性認定された場合には、それらは第1因子へ割り当て直される。或る実施形では、この処理は、次に近接している因子について、相関が最小相関より小さくなるまで繰り返されることになる。因子と同位体/付加体の間の適性認定は、データが、閾値誤り率より小さい誤り率を有する最小相関より大きい相関を指し示している場合に起こるものとされていてもよい。或る実施形では、最小相関は0.9であり、誤り率は20%である。この処理で、因子がその全ての構成要素を空にされたら、当該因子は除外される。この処理は、データの全て又は選択された部分に対し繰り返すことができる。
[0055]処理中は時として相関閾値が高すぎることが気付かれることもあろう。例えば、その様なことは、密接な共溶出化合物をデコンボリューションしようとしたせいで起こり得る。しかしながら、同位体及び付加体がこれほど高く相関していない場合には、不当に高い相関閾値のせいで因子分割が引き起こされることがある(即ち、単一の溶出化合物が1つより多い因子よってモデル化される事態となる)。因子がこの様に分割するのを防ぐのに役立つ1つの方法が図14に示されている。或る因子内のベース同位体/付加体サブクラスタ(即ち、最も強度の高いもの)と当該因子内のその他のサブクラスタの間の相関の平均が計算され、「局所相関閾値」とされる(S610)。次に、或る因子の濃度プロファイルとこの因子の近隣の因子の間の相関が求められる(S620)。因子同士の間の相関が局所相関閾値より大きい場合には、当該2つの因子は併合される(S630)。この処理は、因子全てに亘って、それぞれの識別されたベース同位体/付加体サブクラスタについて繰り返されることになる。
[0056]ひとたび因子が識別され、因子について適切な推定濃度プロファイルが選択されたら、推定されたピーク形状が既知のパラメータを有する選択された曲線と比較される(S370)。或る実施形では、推定濃度プロファイルは、正規化され、次いで1つ又はそれ以上の事前に求められ事前に計算された曲線と比較される。正規化は、再サンプリング手続きを通して引き伸ばすこと又は縮めることによって提供することができる。
[0057]新しいデータと定義済みの曲線のセットの間の相関が次いで計算され(S380)、最適整合についての歪度値及び尖度値が、最適化のためのシードとして選択される(S390)。
[0058]或る実施形では、ピアソン関数を使用して、事前に計算されている曲線、好適にはピアソンIV曲線が割り当てられている。ピアソンIV曲線とは、5つのパラメータ、即ち、(i)高さ、(ii)中心、(iii)幅、(iv)歪度(3次モーメント)(v)尖度(4次モーメント)、を有しているものをいう。或る実施形では、事前に計算されている曲線は、歪度と尖度の少なくとも一方の順列であり、一方で、残りのパラメータは一定に保持されており、その後、ピーク形状が記録され、それぞれの順列について保存される。他の順列が利用されてもよく、だからといって特許請求の範囲はここに開示されている例示としての実施形に限定されるものではないと理解されたい。例えば、中でもとりわけ、中心、幅、及び尖度、並びに一定の値を保持する一方で、高さと歪度は変えられてもよい。
[0059]ここに記載されているシステム及び技法の様々な実施形は、デジタル電子回路構成、集積回路構成、特定設計ASIC(特定用途向け集積回路)、コンピュータハードウェア、ファームウェア、ソフトウェア、及び/又はそれらの組合せ、に実現することができる。これらの様々な実施形は、特殊目的又は汎用のプロセッサであって、データ及び命令を受信するように、またデータ及び命令を送信するように、連結されている少なくとも1つのプログラム可能なプロセッサと、ストレージシステムと、少なくとも1つの入力デバイスと、少なくとも1つの出力デバイスと、を含んでいるプログラム可能なシステム上で実行可能及び/又は翻訳可能な1つ又はそれ以上のコンピュータプログラムでの実施形を含む。
[0060]これらのコンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、又はコードとしても知られている)は、プログラム可能なプロセッサのための機械命令を含んでおり、高級手続き型及び/又はオブジェクト指向型プログラミング言語に、及び/又はアセンブリ/機械言語に、実装されてもよい。ここでの使用に際し、「機械可読媒体」、「コンピュータ可読媒体」という用語は、機械命令を機械可読信号として受信する機械可読媒体を含め、機械命令及び/又はデータをプログラム可能なプロセッサへ提供するのに使用される何れのコンピュータプログラム製品、装置、及び/又はデバイス(例えば、磁気ディスク、光ディスク、メモリ、プログラム可能論理デバイス(PLD))をも指す。「機械可読信号」という用語は、機械命令及び/又はデータをプログラム可能なプロセッサへ提供するのに使用される何れの信号をも指す。
[0061]ユーザーとの対話を提供するために、ここに記載のシステム及び技法は、情報をユーザーへ表示するためのディスプレイデバイス(例えば、CRT(ブラウン管)又はLCD(液晶ディスプレイ)モニタ)と、ユーザーが入力をコンピュータへ提供できるようにするキーボード及びポインティングデバイス(例えば、マウス又はトラックボール)と、を有するコンピュータ上に実装することができる。ユーザーとの対話を提供するのに他の種類のデバイスを使用することもでき、例えば、ユーザーに提供されるフィードバックは、何らかの形態の感覚フィードバック(例えば、視覚フィードバック、聴覚フィードバック、又は触覚フィードバック)であってもよいし、またユーザーからの入力は、音響入力、発話入力、又は触覚入力を含む何れの形態で受信されてもよい。
[0062]ここに記載のシステム及び技法は、バックエンド構成要素(例えば、データサーバとして)を含んでいるコンピューティングシステム、又はミドルウェア構成要素(例えば、アプリケーションサーバ)を含んでいるコンピューティングシステム、又はフロントエンド構成要素(例えば、グラフィックユーザーインターフェースを有するクライアントコンピュータ、又はユーザーがここに記載のシステム及び技法の実施形と対話できるようにするウェブブラウザ)を含んでいるコンピューティングシステム、又はその様なバックエンド、ミドルウェア、又はフロントエンドの構成要素の何らかの組合せを含んでいるコンピューティングシステム、に実装することができる。システムの構成要素は、何らかの形態又は何らかの媒体のデジタルデータ通信(例えば、通信ネットワーク)によって相互接続されていてもよい。通信ネットワークの例には、局所エリアネットワーク(「LAN」)、ワイドエリアネットワーク(「WAN」)、及びインターネットが含まれる。
[0063]コンピューティングシステムは、クライアントとサーバを含んでいよう。クライアントとサーバは、概して互いから遠隔にあり、典型的には通信ネットワークを通じて対話している。クライアントとサーバの関係は、各々のコンピュータ上で実行していて互いにクライアント−サーバ関係を有しているコンピュータプログラムに基づいて発生する。
[0064]本明細書に記載の主題及び機能的動作の実施形は、デジタル電子回路構成に、又は本明細書に開示されている構造並びにそれらの構造的等価物を含むコンピュータソフトウェア、ファームウェア、又はハードウェアに、又はそれらの1つ又はそれ以上から成る組合せに、実装することができる。本明細書に記載されている主題の実施形は、1つ又はそれ以上のコンピュータプログラム製品として、即ち、データ処理装置による実行のために又はデータ処理装置の動作を制御するようにコンピュータ可読媒体上にエンコードされているコンピュータプログラム命令の1つ又はそれ以上のモジュールとして、実装することができる。コンピュータ可読媒体は、機械可読ストレージデバイス、機械可読ストレージ基板、メモリデバイス、機械可読伝搬信号を実効化する組成物、又はそれらの1つ又はそれ以上から成る組合せであってもよい。「データ処理装置」という用語は、一例としてプログラム可能なプロセッサ、コンピュータ、又は複数のプロセッサ又はコンピュータを含め、データを処理するためのあらゆる装置、デバイス、及び機械を網羅する。装置は、ハードウェアに加え、問題のコンピュータプログラムのための実行環境を作り出すコード、例えば、プロセッサファームウェア、プロトコルスタック、データベース管理システム、オペレーティングシステム、又はそれらの1つ又はそれ以上から成る組合せ、を構成しているコードを含んでいてもよい。伝播信号は、適した受信側装置への送信に向けて情報をエンコードするために生成されている人工的に生成された信号、例えば、機械生成の電気信号、光信号、又は電磁信号である。
[0065]コンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、又はコードとしても知られている)は、コンパイル又は翻訳された言語を含む何れの形態のプログラミング言語で書かれていてもよく、また、独立型プログラムとしての形態、又はモジュール、構成要素、サブルーチン、又はコンピューティング環境での使用に適した他のユニットとしての形態、を含む何れの形態に配備されていてもよい。コンピュータプログラムは、必ずしも、ファイルシステム中のファイルに対応しているわけではない。プログラムは、ファイルの他のプログラム又はデータを保持している部分に格納されていてもよいし(例えば、マークアップ言語文書に格納されている1つ又はそれ以上のスクリプト)、又は問題のプログラム専用の単一ファイルに格納されていてもよいし、又は複数の連係ファイルに格納されていてもよい(例えば、1つ又はそれ以上のモジュール、サブプログラム、又はコードの部分、を格納している複数ファイル)。コンピュータプログラムは、1つのコンピュータ上で実行されるように配備されていてもよいし、又は1つの現場に設置されているか又は複数の現場をまたいで分散されていて通信ネットワークによって相互接続されている複数のコンピュータ上で実行されるように配備されていてもよい。
[0066]本明細書に記載のプロセス及び論理フローは、1つ又はそれ以上のコンピュータプログラムを実行して入力データに対する動作及び出力の生成によって機能を遂行させる1つ又はそれ以上のプログラム可能なプロセッサによって遂行されてもよい。プロセス及び論理フローは、同様に、特殊目的論理回路構成、例えば、FPGA(フィールドプログラマブルゲートアレイ)又はASIC(特定用途向け集積回路)によって遂行されてもよく、装置は、その様な論理回路構成として実装されてもよい。
[0067]コンピュータプログラムの実行に適したプロセッサには、一例として、汎用と特殊目的の両方のマイクロプロセッサ、及び何らかの種類のデジタルコンピュータの何れか1つ又はそれ以上のプロセッサが含まれる。概して、プロセッサは、読み出し専用メモリ又はランダムアクセスメモリ又はその両方から命令及びデータを受信することになろう。コンピュータの必須要素は、命令を遂行するためのプロセッサと、命令及びデータを格納するための1つ又はそれ以上のメモリデバイスである。概して、コンピュータは、更に、データを格納するための1つ又はそれ以上のマスストレージデバイス、例えば、磁気ディスク、光磁気ディスク、光ディスク、を含んでいるか、又はその様なマスストレージデバイスからデータを受信する又は当該デバイスへデータを送信する又はその両方を行うように動作可能に連結されることになろう。とはいえ、コンピュータはその様なデバイスを有していなくてもよい。また、コンピュータは、別のデバイス、例えば、ほんの数例を挙げるなら、移動体電話、パーソナルデジタルアシスタント(PDA)、移動体オーディオプレーヤー、全地球測位システム(GPS)受信機、に内蔵されていてもよい。コンピュータプログラム命令及びデータを格納するのに適したコンピュータ可読媒体には、あらゆる形態の不揮発性メモリ、媒体、及びメモリデバイスが含まれ、一例として、半導体メモリデバイス、例えば、EPROM、EEPROM、及びフラッシュメモリデバイス;磁気ディスク、例えば、内部ハードディスク又はリムーバブルディスク;光磁気ディスク;及びCD ROM及びDVD−ROMディスク、が挙げられる。プロセッサ及びメモリは、特殊目的論理回路構成によって補完されていてもよいし、当該論理回路構成に組み込まれていてもよい。
[0068]ユーザーとの対話を提供するために、本明細書に記載されている主題の実施形は、情報をユーザーへ表示するためのディスプレイデバイス(例えば、CRT(ブラウン管)又はLCD(液晶ディスプレイ)モニタ)と、ユーザーが入力をコンピュータへ提供できるようにするキーボード及びポインティングデバイス、例えば、マウス又はトラックボールと、を有するコンピュータ上に実装することができる。ユーザーとの対話を提供するのに他の種類のデバイスを使用することもでき、例えば、ユーザーに提供されるフィードバックは、何らかの形態の感覚フィードバック、例えば、視覚フィードバック、聴覚フィードバック、又は触覚フィードバック、であってもよいし、またユーザーからの入力は、音響入力、発話入力、又は触覚入力を含む何れの形態で受信されてもよい。
[0069]本明細書は多くの詳細を含んでいるが、これらは本発明の範囲又は特許請求されるものの範囲への限定としてではなく、むしろ本発明の特定の実施形に固有の特徴の記述として解釈されたい。本明細書中に別々の実施形に照らして記載されている一部の特定の特徴は、更に、組み合わせて単一の実施形に実装することもできる。逆に、単一の実施形に照らして記載されている様々な特徴は、同様に、複数の実施形に別々に又は何らかの適した部分的組合せで実装することもできる。また、特徴は特定の組合せで作用するものとして以上に記載されているかもしれないし、更にはそういうものとして冒頭に特許請求されているかもしれないが、特許請求されている組合せからの1つ又はそれ以上の特徴は、場合によっては、当該組合せから削除されることもあり得るし、また特許請求されている組合せは、部分的組合せ又は部分的組合せの変型へ向けられてもよい。
[0070]同様に、動作は図面では特定の順序に描かれているが、このことは、その様な動作が示されている特定の順序で又は連続した順序で遂行されること、又は所望の結果を実現するのに例示されている動作全てが遂行されること、を要求しているものと理解されてはならない。一部の特定の状況では、マルチタスク処理及び並列処理が有利であるかもしれない。また、上述の実施形の様々なシステム構成要素の分離は、その様な分離が全ての実施形で要求されているものと理解されてはならず、また、記載のプログラム構成要素及びシステムは、概して、一体に単一のソフトウェア製品に統合することもできるし、又は複数のソフトウェア製品へパッケージ化することもできるものと理解されたい。
[0071]以上、数多くの実施形を説明してきた。とはいえ、本開示の精神及び範囲から逸脱することなく様々な修正がなされる余地のあることが理解されるであろう。例えば、以上に示されているフローの様々な形態は、諸段階を順序換えしたり、追加したり、或いは除去して使用されてもよい。また、本システム及び方法の幾つかの適用を説明してきたが、数々の他の適用が企図されるものと認識されたい。従って、他の実施形は、付随の特許請求の範囲による範囲内にある。

Claims (64)

  1. クロマトグラフィー質量分析法システムのためのデータ捕捉システムでの質量スペクトルに関係しているデータを処理する方法において、
    前記データを処理して処理されたデータを生成する段階であって、前記データは、長いクラスタと短いクラスタを含んでおり、当該処理する段階は、(i)前記長いクラスタを前記短いクラスタから分離する段階と、(ii)前記長いクラスタと前記短いクラスタをフィルタ処理して前記長いクラスタと前記短いクラスタを平滑化し、それにより、フィルタ処理されたクラスタをもたらす段階と、(iii)前記フィルタ処理されたクラスタをサブクラスタへ分ける段階と、(iv)前記サブクラスタの適性認定を行って、そこから望ましからざるサブクラスタを抽出する段階と、を備えている、前記データを処理して処理されたデータを生成する段階と、
    前記処理されたデータを分析して、そこからノイズを抽出し、1つ又はそれ以上の溶出化合物について前記質量スペクトルの1つ又はそれ以上の構成要素であって同位体及び付加体及びフラグメントである構成要素をひとまとめにグループ化して、その様な化合物のそれぞれの解明に役立てる段階と、
    前記処理されたデータに関係している結果を用意し提供する段階と、を備えている方法。
  2. ノイズとして抽出されてしまっているかもしれない前記同位体及び前記付加体の少なくとも一方と関連付けられている情報を組み入れ直す段階、を更に備えている、請求項1の方法。
  3. 前記分離する段階は、
    前記データをブロックへ分離する段階と、
    それぞれのブロックの中心のベースラインの強度を推定する段階と、
    それぞれのブロックの等距離四分位点間を線形補間してベースライン推定を出す段階と、
    前記ベースラインレベルより上のデータをクリップし、当該ベースラインより下のデータを温存する段階と、
    前記クリップされたデータを平滑化して前記ベースラインの改善版を出す段階と、を更に備えている、請求項1の方法。
  4. それぞれのブロックの長さは、前記データの期待半値全幅(full-width half height)の倍数である、請求項3の方法。
  5. それぞれのブロックの長さは、前記データの期待半値全幅の5倍と推定されている、請求項3の方法。
  6. 前記平滑化する段階は、Savitzky−Golay平滑化アルゴリズムの適用を伴っている、請求項3の方法。
  7. ブロックの中心のベースラインの前記強度の推定は、前記ブロックの下四分位の前記ベースラインの強度に基づいている、請求項3の方法。
  8. 前記適性認定段階は、
    閾値信号対ノイズ比より大きい信号対ノイズ比を有するサブクラスタを選択する段階と、
    閾値品質より大きいピーク形状を有するサブクラスタを選択する段階と、
    最小クラスタ長さを有するサブクラスタを選択する段階と、のうちの少なくとも1つを備えている、請求項1の方法。
  9. 前記閾値信号対ノイズ比は10である、請求項8の方法。
  10. 前記ノイズは、四分の一(1/4)イオン面積の事前に定義されている捕捉ノイズである、請求項8の方法。
  11. 前記ノイズは、前記元のクラスタデータと前記平滑化されたクラスタデータの間の残差の標準偏差である、請求項8の方法。
  12. 前記閾値信号対ノイズ比より大きい信号対ノイズ比を有するサブクラスタは、それらが同位体又は付加体である場合には、なお前記因子分析で使用される、請求項8の方法。
  13. サブクラスタの前記ベースラインをピークの左右の側からトリミングする段階、を更に備えている、請求項8の方法。
  14. 前記トリミングする段階は、
    前記サブクラスタ内の生データを両端から中心へ向かって走査する段階と、
    各端での前記強度が閾値より上に立ち上がっている場所を新しい端点として識別する段階と、
    前記新しい端点の外側の前記データを捨てる段階と、を更に備えている、請求項13の方法。
  15. 前記閾値は、前記サブクラスタの標準偏差の4倍である、請求項14の方法。
  16. 前記閾値品質は、前記サブクラスタのフィッティングと事前に定義されている曲線の間の相関に基づいている、請求項8の方法。
  17. 前記事前に定義されている曲線は、二重ガウス(bi-Gaussian)曲線である、請求項16の方法。
  18. 前記閾値相関は0.6である、請求項16の方法。
  19. 前記閾値相関は0.8である、請求項17の方法。
  20. 前記フィルタ処理する段階は、有限インパルス応答フィルタを利用している、請求項1の方法。
  21. 前記フィルタ処理する段階は、
    前記データ内に最も大きいピークを識別する段階と、
    前記識別されたピークの前記半値全幅を推定する段階と、
    前記推定された半値全幅をルックアップ表と突き合わせて1つ又はそれ以上の最適化されているフィルタ係数を識別する段階と、
    前記最適化されているフィルタ係数に基づいて前記データを平滑化する段階と、
    それぞれのクラスタについてノイズ指数を識別する段階と、を備えている、請求項1の方法。
  22. 前記最適化されているフィルタ係数は、順逆二次有限インパルス応答フィルタ係数のセットである、請求項21の方法。
  23. 前記ノイズ指数は、前記平滑データと前記生データの間の残差の標準偏差である、請求項22の方法。
  24. 前記ノイズ指数は、或るクラスタから導出されている前記サブクラスタのそれぞれへ割り当てられる、請求項23の方法。
  25. 前記最適化されている係数は、次の段階、即ち、
    ガウスピークをそれぞれの期待半値全幅で形成する段階と、
    前記ガウスピークへノイズを加え、それにより、ノイズのあるガウスピークをもたらす段階と、
    前記フィルタ係数を調整するべく、前記ガウスピークを、前記ノイズのあるガウスピークと前記ガウスピークの間の残差を実質的に最小化する方式で最適化する段階と、に従って計算される、請求項22の方法。
  26. 前記最適化する段階は、非線形Levenburg−Marquardt処理を利用している、請求項25の方法。
  27. 前記クラスタはピークと谷を有しており、前記分ける段階は、
    フィルタ処理されたクラスタ内に、2つのピークの間に位置する谷が前記2つのピークの定義されている強度より小さい最小点を有しているそれぞれのインスタンスを識別する段階と、
    仮にあれば、それぞれの識別されたインスタンスに基づいて、前記クラスタをサブクラスタへ分離する段階と、を更に備えている、請求項1の方法。
  28. 前記定義されている強度は、前記2つのピークの一方又は両方の前記強度の二分の一又は約二分の一である、請求項27に記載の方法。
  29. 前記分析する段階は、
    因子分析にとって有意な因子を求める段階と、
    それらの因子の初期シード推定を提供する段階と、を更に備えている、請求項1に記載の方法。
  30. 下四分位ピークを除外する段階、を更に備えている、請求項29に記載の方法。
  31. 前記分析する段階は、
    前記データの間でベースピークを選択する段階と、
    全ての局所データを評価して、それらを前記ベースピークと相関付ける段階と、
    既定の最小相関値を有する局所データを前記ベースピークと組み合わせて因子を作成する段階と、
    前記因子について前記スペクトルを推定する段階と、を更に備えている、請求項1に記載の方法。
  32. 前記ベースピークは手動で選択されている、請求項31に記載の方法。
  33. 前記データセットの中で最も強度の高いサブクラスタピークが前記ベースピークとして選択されている、請求項31に記載の方法。
  34. 前記最小相関値は0.6である、請求項31に記載の方法。
  35. A)ひとたび前記ベースピークが識別されたら、残っているデータの中で次に最も強度の高いピークを次の因子として選択する段階と、
    B)前記(A)段階が完了し次第、残っているデータの中で次に最も強度の高いピークを次の因子として選択する段階と、
    C)前記(B)段階を、全てのサブクラスタが因子を割り当てられるまで繰り返す段階と、を更に備えている、請求項33に記載の方法。
  36. 相関閾値と関係している信頼区間の一方又は両方を比較して、前記組み合わせる段階で組み合わされた前記局所データで組み合わされるべきではなかった局所データを、別々の因子へ分離する段階を、更に備えている、請求項31に記載の方法。
  37. 前記比較する段階は、
    前記因子の中で最も強度の高いサブクラスタを選択する段階と、
    前記ベースサブクラスタと前記因子の中のその他のサブクラスタのうちの少なくとも1つの間の相関を求める段階と、
    前記サブクラスタの少なくとも1つについて頂点位置信頼区間を求める段階と、
    (i)重なり合うベースピークと、(ii)前記ベースピークへの相関で定義されている相関閾値より大きい相関と、を有するサブクラスタをひとまとめにグループ化する段階であって、前記グループ化のそれぞれは因子である、グループ化する段階と、を更に備えている、請求項36に記載の方法。
  38. それぞれの因子についての平均濃度プロファイルを計算する段階を、更に備えている、請求項36に記載の方法。
  39. 前記計算する段階は、それぞれの因子についての前記平均濃度プロファイルを求めるのに多変量曲線分解法を利用している、請求項38に記載の方法。
  40. 計算された前記平均濃度プロファイルは、それぞれの因子についての推定されたピーク形状として使用される、請求項39に記載に方法。
  41. 前記平均濃度プロファイルの前記ピーク品質を測定する段階と、
    閾値ピーク品質より小さいピーク品質を有するデータを除去する段階と、を更に備えている、請求項38に記載の方法。
  42. 前記測定する段階は、それぞれの濃度プロファイルのフィットの残差の偏差を求めることによって計算されている、請求項41に記載の方法。
  43. 前記偏差は、二重ガウス系での標準偏差である、請求項42に記載の方法。
  44. 前記閾値ピーク品質は0.5である、請求項41に記載の方法。
  45. 前記ベースピークは手動入力されている、請求項44に記載の方法。
  46. 前記推定されたピーク形状を、少なくとも1つの事前に選択されている曲線と比較する段階を、更に備えている、請求項40に記載の方法。
  47. 前記推定されたピーク形状を、前記比較する段階に先立って正規化して、正規化された推定ピーク形状を定義する段階を、更に備えている、請求項46に記載の方法。
  48. 前記正規化する段階は、前記推定されたピーク形状を、再サンプリング手続きを通して引き伸すか又は縮めるかのうち少なくとも一方を行い、次いで中心合わせして、前記少なくとも1つの事前に選択されている曲線の幅と中心に整合させる段階、を含んでいる、請求項47に記載の方法。
  49. 前記正規化されたピーク形状と前記少なくとも1つの事前に選択されている曲線の間の相関を計算する段階を、更に備えている、請求項47に記載の方法。
  50. 前記最適整合についての歪度値及び尖度値が前記最適化のためのシードとして選択されている、請求項49に記載の方法。
  51. 前記少なくとも1つの事前に選択されている曲線は、ピアソンIV関数から生成されている、請求項46に記載の方法。
  52. 前記少なくとも1つの事前に選択されている曲線は前記歪度と前記尖度の少なくとも一方の順列であり、一方、残りのパラメータは一定に維持されており、その後、前記ピーク形状が記録され、それぞれの順列について保存される、請求項51に記載の方法。
  53. 同位体と付加体の一方又は両方と関連付けられている情報を求めて前記データを調べ直す段階と、
    前記関連付けられているデータを選択する段階と、
    前記関連付けられているデータの適性認定を行う段階と、
    前記関連付けられているデータが適性を認定された場合、それを因子へ割り当てる段階と、を更に備えている、請求項1の方法。
  54. 前記適性認定を行う段階は、
    因子に対して前記データの相関を計算する段階と、
    前記相関が前記最小相関より大きい場合は、それを因子へ割り当てる段階と、を備えている、請求項53の方法。
  55. 前記最小相関は0.9である、請求項54の方法。
  56. 因子を誤ってグループ化されている同位体/付加体を識別する段階と、
    その様な識別された同位体/付加体を正しい因子へ割り当て直す段階と、を
    更に備えている、請求項36の方法。
  57. 前記識別する段階は、
    因子の濃度プロファイルを近隣の因子の濃度プロファイルに比較して相関を識別する段階と、
    第1の因子の前記濃度プロファイルと近隣の因子のそれとの間の前記相関が閾値相関より大きい場合は、前記第1の因子からの同位体/付加体突き止めに対し前記近隣の因子を調べ直す段階と、
    前記調べ直す段階に基づいて、前記同位体/付加体を前記第1の因子へ割り当て直す段階と、を備えている、請求項56の方法。
  58. 前記閾値相関は0.9である、請求項57の方法。
  59. 前記相関パラメータは、ユーザーによって定義されている、請求項36の方法。
  60. 因子分割を防止する段階を、更に備えている、請求項36の方法。
  61. 前記防止する段階は、
    或る因子内のベース同位体/付加体サブクラスタと前記因子内のその他のサブクラスタの間の平均相関に基づく局所相関閾値を求める段階と、
    前記因子と近接の因子の前記濃度プロファイルを相関付ける段階と、
    前記相関が局所相関閾値より大きい場合は、前記因子と前記近接の因子を併合する段階と、を更に備えている、請求項60の方法。
  62. 因子が併合される場合、前記因子と次に近接している因子との前記濃度プロファイルの相関付け段階、を更に備えている、請求項61の方法。
  63. 前記閾値相関は0.9である、請求項61の方法。
  64. 前記最小クラスタ長さは5スティックである、請求項8の方法。
JP2013557939A 2011-03-11 2012-03-12 クロマトグラフィーシステムでのデータを処理するためのシステム及び方法 Active JP5941073B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161451952P 2011-03-11 2011-03-11
US61/451,952 2011-03-11
PCT/US2012/028754 WO2012125548A2 (en) 2011-03-11 2012-03-12 Systems and methods to process data in chromatographic systems

Publications (2)

Publication Number Publication Date
JP2014507672A JP2014507672A (ja) 2014-03-27
JP5941073B2 true JP5941073B2 (ja) 2016-06-29

Family

ID=45856043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013557939A Active JP5941073B2 (ja) 2011-03-11 2012-03-12 クロマトグラフィーシステムでのデータを処理するためのシステム及び方法

Country Status (5)

Country Link
US (1) US10488377B2 (ja)
JP (1) JP5941073B2 (ja)
CN (1) CN103718036B (ja)
DE (1) DE112012001185B4 (ja)
WO (1) WO2012125548A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104126119B (zh) * 2012-01-16 2017-05-24 莱克公司 处理色谱系统中数据的系统及方法
JP5933032B2 (ja) * 2012-01-16 2016-06-08 レコ コーポレイションLeco Corporation クロマトグラフィーピークを処理しグループ化するシステム及び方法
US10802000B2 (en) 2013-03-15 2020-10-13 Dionex Corporation Method of calibrating a chromatography system
JP6079511B2 (ja) * 2013-09-02 2017-02-15 株式会社島津製作所 ピーク抽出方法及びプログラム
US9754774B2 (en) 2014-02-14 2017-09-05 Perkinelmer Health Sciences, Inc. Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets
AU2014382594B2 (en) * 2014-02-14 2019-07-04 Perkinelmer U.S. Llc Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets
WO2016002047A1 (ja) * 2014-07-03 2016-01-07 株式会社島津製作所 質量分析データ処理装置
CN105334279B (zh) * 2014-08-14 2017-08-04 大连达硕信息技术有限公司 一种高分辨质谱数据的处理方法
US9804136B2 (en) * 2014-09-18 2017-10-31 Dionex Corporation Automated method of calibrating a chromatography system and analysis of a sample
WO2016125060A1 (en) * 2015-02-05 2016-08-11 Dh Technologies Development Pte. Ltd. Detecting mass spectrometry based similarity via curve subtraction
CN109507347B (zh) * 2017-09-14 2021-01-29 湖南中烟工业有限责任公司 一种色谱峰选择方法
US11244818B2 (en) 2018-02-19 2022-02-08 Agilent Technologies, Inc. Method for finding species peaks in mass spectrometry
CN108614064B (zh) * 2018-04-10 2019-07-16 华南理工大学 一种二维色谱峰的检测方法及其应用
CN108614284B (zh) * 2018-04-24 2022-04-05 北京邮电大学 一种定位信号处理方法、装置及设备
CN109001354B (zh) * 2018-05-30 2020-09-04 迈克医疗电子有限公司 波峰识别方法和装置、色谱分析仪及存储介质
US10784093B1 (en) 2019-04-04 2020-09-22 Thermo Finnigan Llc Chunking algorithm for processing long scan data from a sequence of mass spectrometry ion images
GB201907792D0 (en) * 2019-05-31 2019-07-17 Thermo Fisher Scient Bremen Gmbh Deconvolution of mass spectromerty data
DE102021103389A1 (de) 2021-02-12 2022-08-18 Dionex Softron Gmbh Verfahren und Systeme zum Bestimmen einer Charakteristik eines von einer Pumpe zugeführten Fluids
US20230152286A1 (en) * 2021-02-25 2023-05-18 Acchrom Tech (Dalian) Technology Co., Ltd Chromatographic analysis system, chromatogram detection and analysis method and electronic device
CN113567603B (zh) * 2021-07-22 2022-09-30 华谱科仪(大连)科技有限公司 色谱谱图的检测分析方法及电子设备
CN116242954A (zh) * 2023-05-06 2023-06-09 精智未来(广州)智能科技有限公司 一种呼气分子分析气相色谱数据的自动化分析方法与系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488518A (en) 1965-12-13 1970-01-06 Ibm Peak voltage storage and noise eliminating circuit
WO2002021099A2 (en) * 2000-09-08 2002-03-14 Waters Investments Limited Method and apparatus for determining the boundaries of a detector response profile and for controlling processes
US6787761B2 (en) * 2000-11-27 2004-09-07 Surromed, Inc. Median filter for liquid chromatography-mass spectrometry data
AU2003262188A1 (en) * 2002-04-12 2003-10-27 Northeastern University Matched filtration with experimental noise determination for denoising, peak picking and quantitation in lc-ms
US6983213B2 (en) * 2003-10-20 2006-01-03 Cerno Bioscience Llc Methods for operating mass spectrometry (MS) instrument systems
GB2404194A (en) * 2003-07-21 2005-01-26 Amersham Biosciences Ab Automated chromatography/mass spectrometry analysis
CA2501003C (en) * 2004-04-23 2009-05-19 F. Hoffmann-La Roche Ag Sample analysis to provide characterization data
FI20055252A (fi) * 2005-05-26 2006-11-27 Valtion Teknillinen Analyysitekniikoita nestekromatografiaa/massaspektrometriaa varten
US7781729B2 (en) * 2006-05-26 2010-08-24 Cerno Bioscience Llc Analyzing mass spectral data
US7653496B2 (en) * 2006-02-02 2010-01-26 Agilent Technologies, Inc. Feature selection in mass spectral data
CN101534933B (zh) * 2006-05-26 2013-03-27 沃特世科技公司 关于n维数据的离子检测和参数估计
US7501621B2 (en) * 2006-07-12 2009-03-10 Leco Corporation Data acquisition system for a spectrometer using an adaptive threshold
WO2008128111A1 (en) * 2007-04-13 2008-10-23 Sequenom, Inc. Comparative sequence analysis processes and systems
JP2009008582A (ja) * 2007-06-29 2009-01-15 Shimadzu Corp クロマトグラムデータ処理装置
US8139833B2 (en) * 2008-04-09 2012-03-20 Boris Fain Analyzing large data sets using a computer system
US8631057B2 (en) * 2009-08-25 2014-01-14 International Business Machines Corporation Alignment of multiple liquid chromatography-mass spectrometry runs
EP2322922B1 (en) * 2009-08-26 2015-02-25 Thermo Fisher Scientific (Bremen) GmbH Method of improving the resolution of compounds eluted from a chromatography device

Also Published As

Publication number Publication date
DE112012001185B4 (de) 2014-08-28
CN103718036A (zh) 2014-04-09
US20140088923A1 (en) 2014-03-27
WO2012125548A3 (en) 2012-12-20
US10488377B2 (en) 2019-11-26
CN103718036B (zh) 2016-06-01
WO2012125548A2 (en) 2012-09-20
DE112012001185T5 (de) 2014-01-02
JP2014507672A (ja) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5941073B2 (ja) クロマトグラフィーシステムでのデータを処理するためのシステム及び方法
JP6077568B2 (ja) クロマトグラフィーシステムでのデータを処理するためのシステム及び方法
JP2015503763A5 (ja)
US7571056B2 (en) Analyzing information gathered using multiple analytical techniques
EP2850637B1 (en) Methods and apparatus for obtaining enhanced mass spectrometric data
US7488935B2 (en) Apparatus and method for processing of mass spectrometry data
US8604421B2 (en) Method and system of identifying a sample by analyising a mass spectrum by the use of a bayesian inference technique
US20100283785A1 (en) Detecting peaks in two-dimensional signals
JP2009516172A5 (ja)
CN104990895A (zh) 一种基于局部区域的近红外光谱信号标准正态校正方法
US8725469B2 (en) Optimization of data processing parameters
EP3550565B1 (en) Audio source separation with source direction determination based on iterative weighting
Kumar Discrete wavelet assisted correlation optimised warping of chromatograms: optimizing the computational time for correcting the drifts in peak positions
Wijetunge et al. A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model
CN113748339A (zh) 实时峰检测
JP4950029B2 (ja) 質量分析計
TWI428581B (zh) 辨識光譜的方法
WO2012050581A1 (en) Dataset compression
US8682946B1 (en) Robust peak finder for sampled data
US11913919B2 (en) Techniques for acquisition-stage peak width determination and baseline offset estimation
JP6929645B2 (ja) マルチトレース定量化
TWI720388B (zh) 用以處理分段平滑信號之設備、方法及電腦程式
Vidal et al. Contribution to second-order calibration based on multivariate curve resolution with and without previous chromatographic synchronization
US20180122626A1 (en) Systems and Methods to Process and Group Chromatographic Peaks
JP7249980B2 (ja) マススペクトル処理装置及び方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160519

R150 Certificate of patent or registration of utility model

Ref document number: 5941073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250