JP5939402B2 - 熱線遮蔽用合わせ構造体 - Google Patents
熱線遮蔽用合わせ構造体 Download PDFInfo
- Publication number
- JP5939402B2 JP5939402B2 JP2013070668A JP2013070668A JP5939402B2 JP 5939402 B2 JP5939402 B2 JP 5939402B2 JP 2013070668 A JP2013070668 A JP 2013070668A JP 2013070668 A JP2013070668 A JP 2013070668A JP 5939402 B2 JP5939402 B2 JP 5939402B2
- Authority
- JP
- Japan
- Prior art keywords
- heat ray
- ray shielding
- fine particles
- film
- laminated structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
Description
近年、熱線としての近赤外線を遮蔽し、保温及び断熱の性能を付与するために、ガラス、ポリカーボネート樹脂、アクリル樹脂等の透明基材に近赤外線吸収能を付与することが求められている。
また、特許文献2には、少なくとも2枚の対向する板ガラスの間に、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moという金属、当該金属の酸化物、当該金属の窒化物、当該金属の硫化物、当該金属へのSbやFのドープ物、または、これらの複合物を分散した中間層を挟んだ合わせガラスが開示されている。
また、特許文献3には、TiO2、ZrO2、SnO2、In2O3から成る微粒子と、有機ケイ素または有機ケイ素化合物から成るガラス成分とを、対向する透明板状部材の間に挟んだ自動車用窓ガラスが開示されている
さらに、特許文献4には、少なくとも2枚の対向する透明ガラス板状体の間に、3層から成る中間層を設け、当該中間層の第2層にSn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、当該金属の酸化物、当該金属の窒化物、当該金属の硫化物、当該金属へのSbやFのドープ物、または、これらの複合物を分散させ、第1層および第3層の中間層を樹脂層とした合わせガラスが開示されている。
しかし、特許文献1〜4に開示されている従来の合わせガラスは、いずれも高い可視光透過率が求められたときの熱線遮蔽機能が十分でない、という問題点が存在した。
特許文献5に記載したように、六ホウ化物微粒子単独、または、六ホウ化物微粒子とITO微粒子および/またはATO微粒子が、適用された熱線遮蔽用合わせガラスの光学特性は、可視光領域に透過率の極大を持つと共に、近赤外領域に強い吸収を発現して透過率の極小を持つ。この結果、当該熱線遮蔽用合わせガラスは、特許文献1〜4に記載された従来の合わせガラスに比べて、可視光透過率70%以上のときの日射透過率が50%台となる迄改善された。
即ち、特許文献1〜4に記載された従来の技術に係る合わせガラスでは、上述したように、いずれも高い可視光透過率が求められたときの熱線遮蔽機能が十分でない。さらに透明基材の曇り具合を示すヘイズ値は、車両用窓材で1%以下、建築用窓材で3%以下とする必要があるのに対し、例えば、特許文献5に記載された熱線遮蔽用合わせガラスにおいても、未だ改善の余地を有していた。また、従来の技術に係る熱線遮蔽用合わせガラス等は、いずれも長期使用した際の耐候性が不足していて、経時的に可視光透過率の低下(劣化)が知見されたものである。
板ガラス、プラスチック、熱線遮蔽機能を有する微粒子と金属の水酸化物とを含むプラスチックから選ばれた2枚の合わせ板間に、
熱線遮蔽機能を有する微粒子と金属の水酸化物とを含む中間層を、介在させてなる熱線遮蔽用合わせ構造体であって、
前記熱線遮蔽機能を有する微粒子が、一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちの1種類以上であり、且つ六方晶の結晶構造を持ち、粒子径が1nm以上、800nm以下である複合タングステン酸化物微粒子であり、
前記金属の水酸化物を、前記複合タングステン酸化物微粒子100重量部に対して1重量部以上、100重量部以下、含有することを特徴とする。
熱線遮蔽機能を有する微粒子と金属の水酸化物とを含むプラスチックの合わせ板と、
板ガラス、プラスチック、熱線遮蔽機能を有する微粒子と金属の水酸化物とを含むプラスチック、から選ばれた合わせ板との間に、中間層を介在させてなる熱線遮蔽用合わせ構造体であって、
前記熱線遮蔽機能を有する微粒子が、一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちの1種類以上であり、且つ六方晶の結晶構造を持ち、粒子径が1nm以上、800nm以下である複合タングステン酸化物微粒子であり、
前記金属の水酸化物を、前記複合タングステン酸化物微粒子100重量部に対して1重量部以上、100重量部以下、含有することを特徴とする。
前記金属の水酸化物を構成する金属が、ナトリウム、マグネシウム、マンガン、セシウム、リチウム、ルビジウム、から選択される少なくとも1種であることを特徴とする。
前記プラスチックが、ポリカーボネート樹脂またはアクリル樹脂またはポリエチレンテレフタレート樹脂の、シートまたはフィルムであることを特徴とする。
前記中間層は、中間膜を有し、当該中間膜中に前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれていることを特徴とする。
前記中間層は、2層以上の積層した中間膜を有し、当該中間膜の少なくとも1層に、前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれていることを特徴とする。
前記中間層は、前記板ガラス、プラスチックから選ばれた2枚の合わせ板の少なくとも一方の内側面に形成された前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜と、当該熱線遮蔽膜と重なり合う中間膜と、を有することを特徴とする。
前記中間層は、前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜が樹脂フィルム基板の片面または両面上に形成された熱線遮蔽フィルム基板、または、熱線遮蔽機能を有する微粒子と金属の水酸化物とを内部に含む熱線遮蔽フィルム基板が、
2層以上の積層した中間膜の間に積層されていることを特徴とする。
前記中間層は、中間膜の少なくとも一方の面に熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜が形成されていることを特徴とする。
前記中間層は、中間膜または2層以上の積層した中間膜と、接着剤層、前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜、剥離層の順に積層された積層体とを有し、
前記積層体の接着剤層は、前記板ガラス、プラスチックから選ばれた一方の合わせ板の内側面に接着し、
前記積層体の剥離層は、前記中間膜または2層以上の積層した前記中間膜と接着していることを特徴とする。
前記中間層は、中間膜、または、2層以上の積層した中間膜を、有していることを特徴とする。
前記中間膜を構成する樹脂は、ビニル系樹脂であることを特徴とする。
前記中間膜を構成するビニル系樹脂は、ポリビニルブチラールまたはエチレン−酢酸ビニル共重合体であることを特徴とする。
即ち、従来の技術に係る合わせガラス等の熱線遮蔽用合わせ構造体は、いずれも高い可視光透過率が求められたときの熱線遮蔽機能が十分でない。さらに透明基材の曇り具合を示すヘイズ値は、車両用窓材で1%以下、建築用窓材で3%以下であることが求められるのに対し、例えば、特許文献5に記載された熱線遮蔽用合わせガラスにおいても、未だ改善の余地を有していた。また、従来の技術に係る熱線遮蔽用合わせガラス等の熱線遮蔽用合わせ構造体は、いずれも長期使用した際の耐候性が不足していて、経時的に可視光透過率の低下(劣化)、近赤外線吸収機能の低下、色調の変化、ヘイズ値の増加が知見された。
即ち、各種窓材に用いられる熱線遮蔽用合わせガラス等には、光学的特性に加えて機械的特性も求められることである。具体的には、安全ガラス等の合わせガラス等には、貫通への耐性が求められる。従来、合わせガラス等に貫通耐性を付与する為、中間層には、ポリビニルアセタール樹脂等のビニル系樹脂が用いられてきた。ところが、ポリビニルアセタール樹脂等のビニル系樹脂へ複合タングステン酸化物微粒子を含有させると光学特性が低下することが知見された。そこで、次善の策として、例えば特許文献6に記載するように、ポリビニルアセタール樹脂を紫外線硬化樹脂に代替し、紫外線硬化樹脂に複合タングステン化合物と六ホウ化物とを含有させた熱線遮蔽膜を開示した。しかし、安全ガラス等の機械的強度充足の観点から、中間層用の樹脂としてポリビニルアセタール樹脂等のビニル系樹脂が好ましいと考えたことである。
さらに本発明が解決しようとする課題は、本発明の熱線遮蔽用合わせ構造体における中間膜の主成分として、ポリビニルアセタール樹脂等のビニル系樹脂を用いた場合においても、優れた光学的特性と優れた耐候性とを発揮する熱線遮蔽用合わせ構造体を提供することである。
以下、本発明に係る熱線遮蔽用合わせ構造体について、1.熱線遮蔽機能を有する微粒子、2.金属の水酸化物、3.金属の水酸化物が添加された熱線遮蔽機能を有する微粒子の製造方法、4.熱線遮蔽用合わせ構造体、熱線遮蔽用合わせ構造体の形態例、6.熱線遮蔽用合わせ構造体の製造方法、および、7.まとめ、の順で詳細に説明する。
一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmの太陽光線の領域周辺にある電磁波に反射吸収応答を示すことが知られている。このような物質の粉末を光の波長より小さい微粒子とすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて可視光領域の透明性が得られる。
上記一般式MYWOZ(0.01≦Y≦0.5、2.45≦Z≦3.0)で示され、且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子としては、例えばM元素が、Cs、Rb、K、Tlのうちの1種類以上を含むような複合タングステン酸化物微粒子が挙げられる。添加元素Mの添加量は、0.1以上0.5以下が好ましく、更に好ましくは0.33付近が好ましい。これは六方晶の結晶構造から理論的に算出される値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。典型的な例としてはCs0.33WO3、Rb0.33WO3、K0.33WO3、Tl0.33WO3などを挙げることができるが、Y, Zが上記の範囲に収まるものであれば、有用な熱線吸収特性を得ることができる。
本発明において、複合タングステン酸化物微粒子へ金属の水酸化物を添加するのは、熱線遮蔽用合わせ構造体の耐候性を向上させ、経時的な光学特性の変化を抑制する目的で添加するものである。
本発明者らの知見によれば、金属の水酸化物は、複合タングステン酸化物微粒子の経時劣化を抑制する効果を有する。その経時劣化抑制の具体的な機構については未だ解明されていないが、金属の水酸化物の添加による具体的な効果は、熱線遮蔽用合わせ構造体を所定期間使用した場合、熱線遮蔽用合わせ構造体の初期と所定期間使用後の可視光透過率の低下(劣化)を抑制出来ることである。一方、複合タングステン酸化物微粒子へ金属の水酸化物を添加しない場合、熱線遮蔽用合わせ構造体の所定期間使用後は、初期に比べて可視光透過率が低下(劣化)することが確認された。
リチウム、ナトリウム、カリウム、ルビジウム、セシウムといったアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウムといったアルカリ土類金属、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、セリウムといった遷移金属を用いることで、可視光透過率の劣化抑制の効果が確認されている。
なかでも、ナトリウム、マグネシウム、マンガン、セシウム、リチウム、ルビジウムを用いた場合は、可視光透過率の劣化抑制について顕著な効果が知見された。具体的には、初期の可視光透過率に対して、その変化率が半分以下に抑制されるという顕著な効果を知見した。
さらに、上述した金属、特に、ナトリウム、マグネシウム、マンガン、セシウム、リチウム、ルビジウムを用いた水酸化物を複合タングステン酸化物微粒子へ添加することで、これらを用いた熱線遮蔽用合わせ構造体における、ヘイズ値の増加が抑制されるという劣化抑制の効果も確認された。
所定量の熱線遮蔽機能を有する微粒子と、所定量の金属の水酸化物と、適宜な有機溶媒と、所定量の微粒子分散用分散剤とを混合し、媒体攪拌ミル、超音波ホモジナイザー等を用いて分散処理を行ない、金属の水酸化物が添加された熱線遮蔽機能を有する微粒子の分散液を製造することが出来る。
当該金属の水酸化物が添加された熱線遮蔽機能を有する微粒子の分散液から前記有機溶剤を除去し、金属の水酸化物が添加された熱線遮蔽機能を有する微粒子の分散粉を製造することも出来る。
本発明に係る熱線遮蔽用合わせ構造体は、中間層を、板ガラス、プラスチックから選ばれた2枚の合わせ板間に介在させ、且つ前記中間層またはプラスチックの少なくともいずれか1つが熱線遮蔽機能を有する微粒子を含んでなる構造体である。本発明に係る熱線遮蔽用合わせ構造体について、i.合わせ板、ii.合わせ板を構成するプラスチックに熱線遮蔽機能を有する微粒子を含有させる方法、iii.中間層、の順で説明する。
i.〈合わせ板〉
合わせ板は、中間層をその両側から挟み合わせる板であり、可視光領域において透明な、板ガラス、板状のプラスチックが用いられる。このとき、板ガラス、板状のプラスチックから選ばれる2枚の合わせ板とは、板ガラスと板ガラスの場合、板ガラスとプラスチックの場合、プラスチックとプラスチックの場合、の各構成を含むものである。
以下、形態Bにおいて、合わせ板を構成するプラスチックに熱線遮蔽機能を有する微粒子を含有させる方法について、説明する。
熱線遮蔽機能を有する微粒子をプラスチックに練り込むときは、前記プラスチックを融点付近の温度(200〜300℃前後)まで加熱して熱線遮蔽機能を有する微粒子を混合する。そして、プラスチックと熱線遮蔽機能を有する微粒子との混合物をペレット化し、所望の方式でフィルムやシート状等に形成することが可能である。例えば、押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法などにより形成可能である。この時のフィルムやボード等の厚さは、使用目的に応じて適宜選定すればよい。前記プラスチックに対する熱線遮蔽機能を有する微粒子の添加量は、フィルムやシート材の厚さや必要とされる光学特性、機械特性に応じて可変であるが、一般的に樹脂に対して50重量%以下が好ましい。
熱線遮蔽機能を有する中間層の形態例として、熱線遮蔽機能を有する微粒子を含ませる中間膜で構成する形態(本明細書においては便宜的に「形態1」と記載する。)がある。また、2層以上の中間膜からなり、少なくともその内の1層に熱線遮蔽機能を有する微粒子を含ませる形態(本明細書においては便宜的に「形態2」と記載する。)がある。また、少なくとも一方の板ガラスまたはプラスチックの内側の面に熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜を形成し、当該熱線遮蔽膜に熱線遮蔽機能を有する微粒子を含まない中間膜を重ねる形態(本明細書においては便宜的に「形態3」と記載する。)がある。また、熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜が樹脂フィルム基板の片面または両面上に形成された熱線遮蔽フィルム基板、もしくは熱線遮蔽機能を有する微粒子を内部に含む熱線遮蔽フィルム基板と、2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜とで構成される形態(本明細書においては便宜的に「形態4」と記載する。)がある。また、熱線遮蔽機能を有する微粒子を含まない中間膜の一方の面に熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜を形成する形態(本明細書においては便宜的に「形態5」と記載する。)がある。また、熱線遮蔽機能を有する微粒子を含まない中間層が、前記板ガラス、プラスチックから選ばれた2枚の合わせ板の一方の内側の面に、接着剤層、前記熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜、剥離層の順に積層された積層体の前記接着剤層を接着させ、さらに、前記積層体の前記剥離層側へ前記積層体と重なり合う熱線遮蔽機能を有する微粒子を含まない中間膜または2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜と、を有している形態(本明細書においては便宜的に「形態6」と記載する。)がある。さらに、中間層が熱線遮蔽機能を有する微粒子を含有しない形態(本明細書においては便宜的に「形態7」と記載する。)がある。
尚、上述した「形態3〜7」において、熱線遮蔽機能を有する微粒子を含まない中間膜を、熱誠遮蔽微機能を有する微粒子を含む中間膜へ、置き換えても良い。
以下、中間膜としてビニル系樹脂を用いた場合を例としながら、上述した、合わせ板の形態例A、Bと、熱線遮蔽機能を有する中間層の形態例1〜7の各形態例とを、組み合わせた熱線遮蔽用合わせ構造体の形態について、図1〜図7を参照しながら説明する。なお、図1〜図7は、本発明に係る熱線遮蔽用合わせ構造体の模式的な断面図である。
合わせ板として板ガラスや熱線遮蔽機能を有する微粒子を含有しないプラスチックを用い、中間層が、熱線遮蔽機能を有する微粒子を分散して含む中間膜で構成される熱線遮蔽用合わせ構造体は、例えば、以下のようにして製造される。
熱線遮蔽機能を有する微粒子が可塑剤に分散された添加液を、ビニル系樹脂に添加してビニル系樹脂組成物を調製し、このビニル系樹脂組成物をシート状に成形して中間膜のシートを得、この中間膜のシートを、板ガラス、プラスチックから選ばれた2枚の合わせ板の間に挟み込んで貼り合わせることにより熱線遮蔽用合わせ構造体とする方法が挙げられる。
なお、上記説明では、可塑剤中に熱線遮蔽機能を有する微粒子を分散させる例について説明したが、熱線遮蔽機能を有する微粒子を可塑剤でない適宜溶媒に分散した分散液をビニル系樹脂に添加し、可塑剤は別に添加する方法でビニル系樹脂組成物を調製してもよい。
図1に、当該(形態A−1)に係る熱線遮蔽用合わせ構造体の一例の断面図を示す。図1に示すように、当該熱線遮蔽用合わせ構造体は、2枚の合わせ板1にて中間層2を挟み込んでいる。当該中間層2は、熱線遮蔽機能を有する微粒子11を分散して含む中間膜12により構成されている。
少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、中間層が、熱線遮蔽機能を有する微粒子を分散して含む中間膜で構成される熱線遮蔽用合わせ構造体は、熱線遮蔽機能を有する微粒子を含有しない2枚の板ガラス、プラスチックの少なくとも1枚を、熱線遮蔽機能を有する微粒子を含有するプラスチックに代替する以外は、(形態A−1)と同様に製造することができる。
合わせ板として板ガラスや熱線遮蔽機能を有する微粒子を含有しないプラスチックを用い、中間層が、2層以上の中間膜を有し、少なくともその内の1層に熱線遮蔽機能を有する微粒子が分散して含有される中間膜により構成される熱線遮蔽用合わせ構造体は、例えば、以下のようにして製造される。
熱線遮蔽機能を有する微粒子が可塑剤に分散された添加液をビニル系樹脂に添加してビニル系樹脂組成物を調製し、このビニル系樹脂組成物をシート状に成形して中間膜のシートを得、この中間膜のシートを、熱線遮蔽機能を有する微粒子を含まない他の中間膜のシートと積層させるか、もしくは熱線遮蔽機能を有する微粒子を含まない2層の中間膜のシート間に介在させ、これを板ガラス、プラスチックから選ばれた2枚の合わせ板の間に挟み込んで貼り合わせることにより熱線遮蔽用合わせ構造体とする方法が挙げられる。
なお、(形態1)と同様に、熱線遮蔽機能を有する微粒子を可塑剤に分散させるのではなく、適宜溶媒に分散された分散液をビニル系樹脂に添加し、可塑剤を別に添加する方法でビニル系樹脂組成物を調製してもよい。これにより高い熱線遮蔽特性を有し、ヘイズ値は低い熱線遮蔽用合わせ構造体を、安価な生産コストで製造することができる。
図2に、(形態A−2)に係る熱線遮蔽用合わせ構造体の一例の断面図を示す。図2に示すように、当該熱線遮蔽用合わせ構造体は、2枚の合わせ板1にて中間層2を挟み込んでいる。当該中間層2は、熱線遮蔽機能を有する微粒子11が分散して含有される中間膜が、熱線遮蔽機能を有する微粒子を含有しない中間膜12に挟み込まれて構成されている。
少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、中間層が、2層以上の中間膜を有し、少なくともその内の1層に熱線遮蔽機能を有する微粒子が含有される中間膜により構成される熱線遮蔽用合わせ構造体である。当該熱線遮蔽用合わせ構造体は、熱線遮蔽機能を有する微粒子を含有しない2枚の板ガラス、プラスチックの少なくとも1枚を、熱線遮蔽機能を有する微粒子を含有するプラスチックに代替する以外は、(形態A−2)と同様に製造することができる。
合わせ板として板ガラスや熱線遮蔽機能を有する微粒子を含有しないプラスチックを用い、中間層が、少なくとも一方の板ガラスまたはプラスチックの内側の面に形成された熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜と、当該熱線遮蔽膜に重ねられた熱線遮蔽機能を有する微粒子を含まない中間膜とを有する熱線遮蔽用合わせ構造体は、例えば、以下のようにして製造される。
可塑剤若しくは適宜溶媒に熱線遮蔽機能を有する微粒子が分散された添加液へ、適宜なバインダー成分(シリケート等の無機バインダーあるいはアクリル系、ビニル系、ウレタン系の有機バインダー等)を配合して塗布液を調製する。この調製された塗布液を用いて、少なくとも一方の板ガラスまたはプラスチックの内側に位置する面へ熱線遮蔽膜を形成する。次に、熱線遮蔽機能を有する微粒子を含まない樹脂組成物をシート状に成形して中間膜のシートを得、この中間膜のシートを、前記熱線遮蔽膜が形成された少なくとも一方の板ガラスまたはプラスチックの内面側と、熱線遮蔽膜が形成されていないもう一方の板ガラスまたはプラスチック間に挟み込んで貼り合わせることにより熱線遮蔽用合わせ構造体とする方法が挙げられる。
さらに、熱線遮蔽機能を有する微粒子を含まない中間膜用シートに適宜な添加剤を添加することで、UVカット、色調調整、等の機能付加を行なうことができる。
少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、中間層が、少なくとも一方の板ガラスまたはプラスチックの内側の面に形成された熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜と、当該熱線遮蔽膜に重ねられた熱線遮蔽機能を有する微粒子を含まない中間膜とを有する熱線遮蔽用合わせ構造体は、熱線遮蔽機能を有する微粒子を含有しない2枚の板ガラス、プラスチックの少なくとも1枚を、熱線遮蔽機能を有する微粒子を含有するプラスチックに代替する以外は、(形態A−3)と同様に製造することができる。
さらに、熱線遮蔽機能を有する微粒子を含まない中間膜用シートに適宜な添加剤を添加することで、UVカット、色調調整、等の機能付加を行なうことができる。
合わせ板として板ガラスや熱線遮蔽機能を有する微粒子を含有しないプラスチックを用い、中間層が、樹脂フィルム基板の片面または両面上に形成された熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜が形成された熱線遮蔽フィルム基板、もしくは熱線遮蔽機能を有する微粒子を内部に含む熱線遮蔽フィルム基板と、2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜とを有する熱線遮蔽用合わせ構造体は、例えば、以下のようにして製造される。
(イ)中間層が、樹脂フィルム基板の片面上に形成された熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜が形成された熱線遮蔽フィルム基板と、2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜とを有する場合について説明する。
例えば、可塑剤若しくは適宜溶媒に熱線遮蔽機能を有する微粒子が分散された塗布液、もしくは前記添加液に適宜バインダー成分(シリケート等の無機バインダーあるいはアクリル系、ビニル系、ウレタン系の有機バインダー等)を配合して調製した塗布液を用いて、樹脂フィルムの片面に熱線遮蔽膜を形成する。ここで、用いる樹脂フィルムは透明であれば特に限定されない。例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエチレンナフタレート、ポリイミド、アラミド、ポリフェニレンサルファイド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォンなどが挙げられる。当該樹脂フィルム基板の片面上に熱線遮蔽膜を形成する際、樹脂フィルム表面に対し、樹脂バインダーとの結着性向上を目的として、予めコロナ処理、プラズマ処理、火炎処理、プライマー層コート処理などによる表面処理を施してもよい。次に、熱線遮蔽機能を有する微粒子を含まないビニル系樹脂組成物をシート状に成形して中間膜のシートを得る。この中間膜のシートを2枚用いて、前記片面に熱線遮蔽膜が形成された熱線遮蔽樹脂フィルム基板を、当該中間膜のシートの間に配置して中間層とすることが好ましい。当該構成を採ることで、前記片面に熱線遮蔽膜が形成された樹脂フィルム基板と、合わせ板との間で接着性に関する問題が起きるのを回避できるからである。ここで、2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜の内の1層に、熱線遮蔽機能を有する微粒子や、UVカット、色調調整、等の効果を有する適宜な添加剤を含有させても勿論よい。
フィルム基板の内部に熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽フィルム基板は、以下の方法で作製することができる。樹脂を、その融点付近の温度(200〜300℃前後)で加熱し、熱線遮蔽機能を有する微粒子と混合する。さらに、当該樹脂と熱線遮蔽機能を有する微粒子との混合物をペレット化し、所定の方式でフィルムやボード等を形成する。例えば、押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法などにより形成可能である。この時のフィルムやボード等の厚さは、使用目的に応じて適宜選定すればよい。当該樹脂に添加する熱線遮蔽機能を有する微粒子量は、基材の厚さや必要とされる光学特性、機械特性に応じて可変であるが、一般的に樹脂に対して50重量%以下が好ましい。次に、熱線遮蔽機能を有する微粒子を含まないビニル系樹脂組成物をシート状に成形して中間膜のシートを得る。前記熱線遮蔽機能を有する微粒子を含む樹脂フィルムを、当該2枚の中間膜のシートの間に配置し中間層とする。この中間層を、板ガラス、プラスチックから選ばれた2枚の合わせ板の間に挟み込んで貼り合わせることにより熱線遮蔽用合わせ構造体とする方法が挙げられる。ここで、2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜の内の1層に熱線遮蔽機能を有する微粒子を含有させても勿論よい。
さらに、所望により、当該熱線遮蔽機能を有する微粒子を含まない中間膜へ、UVカット、色調調整、等の効果を有する適宜な添加剤を自在且つ容易に添加することができ、多機能を有する熱線遮蔽用合わせ構造体を得ることができる。
さらに、熱線遮蔽機能を有する微粒子を含まない中間膜のシートに適宜な添加剤を添加することで、UVカット、色調調整、等の機能付加を行なうことができる。
図5に、当該(形態A−4(ロ))に係る熱線遮蔽用合わせ構造体の一例の断面図を示す。図5に示すように、当該熱線遮蔽用合わせ構造体は、2枚の合わせ板1にて中間層2を挟み込んでいる。当該中間層2は、熱線遮蔽機能を有する微粒子11を含む樹脂フィルム15が熱線遮蔽機能を有する微粒子を含有しない中間膜12に挟み込まれて構成されている。
少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、中間層が、樹脂フィルム基板の片面上に形成された熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜が形成された熱線遮蔽フィルム基板と、2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜とを有するか、または、中間層が、フィルム基板の内部に熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽フィルム基板と、2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜とを有する熱線遮蔽用合わせ構造体は、熱線遮蔽機能を有する微粒子を含有しない2枚の板ガラス、プラスチックの少なくとも1枚を、熱線遮蔽機能を有する微粒子を含有するプラスチックに代替する以外は、(形態A−4)と同様に製造することができる。
さらに、熱線遮蔽機能を有する微粒子を含まない中間膜のシートに適宜な添加剤を添加することで、UVカット、色調調整、等の機能付加を行なうことができる。
合わせ板として板ガラスや熱線遮蔽機能を有する微粒子を含有しないプラスチックを用い、中間層が、熱線遮蔽機能を有する微粒子を含まない中間膜の一方の面に熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜が形成されたものである熱線遮蔽用合わせ構造体は、例えば、以下のようにして製造される。
可塑剤若しくは適宜溶媒に熱線遮蔽機能を有する微粒子が分散された添加液に適宜バインダー成分(例えば、シリケート等の無機バインダー、または、アクリル系、ビニル系、ウレタン系の有機バインダー等。)を配合して塗布液を調製する。この塗布液を、熱線遮蔽機能を有する微粒子を含まない樹脂組成物をシート状に成形した中間膜シートの一方の面に塗布して熱線遮蔽膜を形成する。次に、この熱線遮蔽膜が形成された中間膜を、板ガラス、プラスチックから選ばれた2枚の合わせ板の間に挟み込んで貼り合わせることにより熱線遮蔽用合わせ構造体とする方法が挙げられる。
少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、中間層が、熱線遮蔽機能を有する微粒子を含まない中間膜の少なくとも一方の面に熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜が形成されたものである熱線遮蔽用合わせ構造体は、熱線遮蔽機能を有する微粒子を含有しない2枚の板ガラス、プラスチックの少なくとも1枚を、熱線遮蔽機能を有する微粒子を含有するプラスチックに代替する以外は、(形態A−5)と同様に製造することができる。
合わせ板として板ガラスや熱線遮蔽機能を有する微粒子を含有しないプラスチックを用い、中間層が、前記板ガラス、プラスチックから選ばれた2枚の合わせ板の一方の内側の面に、接着剤層、前記熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜、剥離層の順に積層された積層体の前記接着剤層を接着させ、さらに、前記積層体の前記剥離層側へ前記積層体と重なり合う熱線遮蔽機能を有する微粒子を含まない中間膜または2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜と、を有している熱線遮蔽用合わせ構造体(すなわち、当該熱線遮蔽用合わせ構造体は、「一方の合わせ板/接着剤層/熱線蔽機能を有する微粒子が含まれる熱線遮蔽膜/剥離層/中間膜または2層以上の積層した中間膜/他方の合わせ板」の構造を有している。)は、例えば、以下のようにして製造される。当該工程を図6(A)〜(C)を用いて説明する。図6(A)〜(C)は、(形態A−6)に係る熱線遮蔽用合わせ構造体の一例の、製造工程における断面図を示す。
まず図6(A)に示すように、フィルムシート17(例えば、ポリエステル、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、フッ素などの合成樹脂フィルム、紙、セロファンなどが挙げられる。)の一方の面に剥離層16(例えば、ワックス、アクリル系樹脂、ポリビニルブチラールに代表されるポリビニルアセタールなど)を形成し、この剥離層上に熱線遮蔽機能を有する微粒子11が含まれる熱線遮蔽膜13を形成し、この熱線遮蔽膜上に接着剤層18(例えば、ポリビニルブチラールに代表されるポリビニルアセタール、ポリ塩化ビニル、塩化ビニル−エチレン共重合体、塩化ビニル−エチレン−グリシジルメタクリレート共重合体、塩化ビニル−エチレン−グリシジルアクリレート共重合体、ポリ塩化ビニリデン、塩化ビニリデン−アクリロニトリル共重合体、ポリアミド、ポリメタクリル酸エステル、アクリル酸エステル共重合体などが挙げられる。)を形成して積層体とし転写フィルム19を得る。
この転写フィルム19の接着剤層18を、一方の板ガラスまたはプラスチックの合わせ板1の内側の面に加圧下で接着した後、前記転写フィルムからフィルムシート17を剥離する。すると、剥離層16の効果により積層体よりフィルムシート17のみが剥離される。この状態を図6(B)に示す。
このフィルムシート17の剥離の後、上述した熱線遮蔽機能を有する微粒子を含まない中間膜12または2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜を介して、もう一方の板ガラスまたはプラスチックの合わせ板1の内側の面と加圧下で接着させることにより、図6(C)に示す熱線遮蔽用合わせ構造体とする方法が挙げられる。
この結果、得られる(形態A−6)に係る熱線遮蔽用合わせ構造体の一例は、図6(C)に示すように当該2枚の合わせ板1にて中間層2を挟み込んでいる。そして、当該中間層2は、熱線遮蔽機能を有する微粒子を含まない中間膜12、剥離層16、熱線遮蔽機能を有する微粒子11を含む熱線遮蔽膜13、接着剤層18から構成される。
少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、中間層が、前記板ガラス、プラスチックから選ばれた2枚の合わせ板の一方の内側の面に、接着剤層、前記熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜、剥離層の順に積層された積層体の前記接着剤層を接着させ、さらに、前記積層体の前記剥離層側へ前記積層体と重なり合う熱線遮蔽機能を有する微粒子を含まない中間膜または2層以上の積層した熱線遮蔽機能を有する微粒子を含まない中間膜と、を有している熱線遮蔽用合わせ構造体(すなわち、当該熱線遮蔽用合わせ構造体は、「一方の合わせ板/接着剤層/熱線遮蔽機能を有する微粒子が含まれる熱線遮蔽膜/剥離層/中間膜または2層以上の積層した中間膜/他方の合わせ板」の構造を有している。)は、熱線遮蔽機能を有する微粒子を含有しない2枚の板ガラス、プラスチックの少なくとも1枚を、熱線遮蔽機能を有する微粒子を含有するプラスチックに代替する以外は、形態A−6と同様に製造することができる。
少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、中間層が、熱線遮蔽機能を有する微粒子を含まない、例えば、ビニル系樹脂を含む中間膜により構成された熱線遮蔽用合わせ構造体は、例えば、以下のようにして製造される。可塑剤をビニル系樹脂に添加してビニル系樹脂組成物を調製し、このビニル系樹脂組成物をシート状に成形して中間膜用シートを得る。当該中間膜シートの少なくとも一方の合わせ板として熱線遮蔽機能を有する微粒子を含有したプラスチックを用い、他方の合わせ板にガラス板、プラスチックを用いればよい。
さらに、熱線遮蔽機能を有する微粒子を含まない中間膜および/または他方の合わせ板のプラスチックへ適宜な添加剤を加えることで、UVカット、色調調整等の機能付加を行うことができる。
図7に、当該(形態B−7)に係る熱線遮蔽用合わせ構造体の一例の断面図を示す。図7に示すように、当該熱線遮蔽用合わせ構造体は、熱線遮蔽機能を有する微粒子11を含有する合わせ板20と、当該微粒子を含有しない合わせ板1とで、中間層2を挟み込んでいる。当該中間層2は、熱線遮蔽機能を有する微粒子を含まない中間膜12上により形成されている。
熱線遮蔽用合わせ構造体の製造方法について、i.熱線遮蔽用合わせ構造体の製造に適用される添加液あるいは塗布液、ii.熱線遮蔽用合わせ構造体に用いられる可塑剤、iii.熱線遮蔽用合わせ構造体に用いられる中間膜用シート、iv.中間膜用シートの形成方法、v.その他の添加剤、および、vi.熱線遮蔽用合わせ構造体の製造に適用される添加液あるいは塗布液の製造方法、の順で詳細に説明する。
熱線遮蔽機能を有する上記微粒子を可塑剤もしくは適宜溶媒に分散する方法は、微粒子が可塑剤もしくは適宜溶媒中に均一に分散できる方法であれば任意である。例えば、ビーズミル、ボールミル、サンドミル、超音波分散等の方法を挙げることができ、上記微粒子を可塑剤もしくは適宜溶媒に均一に分散することによって本発明の熱線遮蔽用合わせ構造体の製造に適用される上記添加液あるいは塗布液が調製される。
本発明に係るビニル系樹脂を主成分とした熱線遮蔽用合わせ構造体に用いられる可塑剤は、一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれも室温で液状であることが好ましい。特に、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ−2−エチルブチレート、トリエチレングリコールジ−オクタネート、トリエチレングリコールジ−2−エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステルが好適である。トリエチレングリコールの脂肪酸エステルは、ポリビニルアセタールとの相溶性や耐寒性など様々な性質をバランスよく備えており、加工性、経済性にも優れている。
可塑剤の選択にあたっては、加水分解性に留意する。当該観点からは、トリエチレングリコールジ−2−エチルヘキサネート、トリエチレングリコールジ−2−エチルブチレート、テトラエチレングリコールジ−2−エチルヘキサネートが好ましい。
本発明に係る熱線遮蔽用合わせ構造体に用いられる中間膜用シートに用いるビニル系樹脂としては、例えばポリビニルブチラールに代表されるポリビニルアセタール、ポリ塩化ビニル、塩化ビニル−エチレン共重合体、塩化ビニル−エチレン−グリシジルメタクリレート共重合体、塩化ビニル−エチレン−グリシジルアクリレート共重合体、塩化ビニル−グリシジルメタクリレート共重合体、塩化ビニル−グリシジルアクリレート共重合体、ポリ塩化ビニリデン、塩化ビニリデン−アクリロニトリル共重合体、ポリ酢酸ビニルエチレン−酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体、ポリビニルアセタール−ポリビニルブチラール混合物等が挙げられる。ガラスやプラスチックとの接着性、透明性、安全性などの観点から、ポリビニルブチラールに代表されるポリビニルアセタールやエチレン−酢酸ビニル共重合体が特に好ましい。
熱線遮蔽機能を有する微粒子が含まれる中間膜用シート、または、熱線遮蔽機能を有する微粒子を含まない中間膜用シートの形成方法には、公知の方法が用いられる。例えば、カレンダーロール法、押出法、キャスティング法、インフレーション法等を用いることができる。特に熱線遮蔽機能を有する微粒子とビニル系樹脂組成物が含まれる前者の中間膜用シートにおいて、上記ビニル系樹脂組成物は、例えば熱線遮蔽機能を有する微粒子が可塑剤に分散された添加液をビニル系樹脂に添加し、混練して上記微粒子が均一に分散して成るものであり、このように調製されたビニル系樹脂組成物をシート状に成形することができる。なお、ビニル系樹脂組成物をシート状に成形する際には、必要に応じて、熱安定剤、酸化防止剤、紫外線遮蔽材等を配合してもよい。
当該炭素数2〜16の有機酸のカルボン酸マグネシウム塩、カリウム塩としては、特に限定されないが、例えば、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2−エチルブタン酸マグネシウム、2−エチルブタン酸カリウム、2−エチルヘキサン酸マグネシウム、2−エチルヘキサン酸カリウム等が好適に用いられる。
これらの接着力調整剤は単独で用いてもよく、2種以上を併用してもよい。
なお、接着力調整剤として、ナトリウム、カリウム、マグネシウム、カルシウム、セリウムのカルボン酸塩を用いた場合は、本来の接着力調整剤としての作用と、複合タングステン酸化物微粒子の耐候性向上の作用を兼ね備えることができる。
また、本発明の合わせ構造体の製造方法は、上述した合わせ構造体の構成をとる方法であれば、限定されるものではない。
本発明に係る熱線遮蔽用合わせ構造体へは、さらに所望により、一般的な添加剤を配合することも可能である。例えば、所望により任意の色調を与えるための、アゾ系染料、シアニン系染料、キノリン系、ペリレン系染料、カーボンブラック等、一般的に熱可塑性樹脂の着色に利用されている染料、顔料を添加しても良い。
また、紫外線吸収剤としてヒンダードフェノール系、リン系等の安定剤、離型剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の有機紫外線、酸化亜鉛、酸化チタン、酸化セリウム等の無機紫外線吸収剤を添加しても良い。
さらに、添加剤としてカップリング剤、界面活性剤、帯電防止剤、安定剤、酸化防止剤等を使用することができる。
熱線遮蔽用合わせ構造体の製造に適用される添加液あるいは塗布液に用いる、熱線遮蔽体形成用分散液の製造方法について説明する。
本発明に係る熱線遮蔽体形成用分散液は、溶媒と熱線遮蔽機能を有する微粒子とを含有し、当該熱線遮蔽機能を有する微粒子が当該溶媒中に分散している熱線遮蔽体形成用分散液である。当該微粒子を溶媒へ分散させる方法は、均一に分散できる方法であれば特に限定されず、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどを用いた粉砕・分散処理方法が挙げられる。これらの器材を用いた分散処理によって、微粒子の溶媒中への分散と同時に微粒子同士の衝突等による微粒子化も進行し、粒子をより微粒子化して分散させることができる(すなわち、粉砕・分散処理される)。
当該溶媒としては、例えば、水やエタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル、エチルエーテル、プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチフケトン、ジエチルケトン、シクロヘキサノン、インブチルケトンなどのケトン類といった各種の有機溶媒が使用可能である。または必要に応じて酸やアルカリを添加してpH調整してもよい。さらに、分散液中の微粒子の分散安定性を一層向上させるためには、各種の界面活性剤、カップリング剤などの添加も勿論可能である。
また、微粒子を樹脂バインダー中に直接分散したものは、媒体表面にコーティングした後、溶媒を蒸発させる必要がないため、環境的にも工業的にも好ましい。
また、前記熱線遮蔽体形成用分散液中に無機バインダーとして、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシド及びその加水分解重合物を含む場合、分散液の塗布後の基材加熱温度を100℃以上とすることで、塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応を殆ど完結させることができる。重合反応を殆ど完結させることで、水や有機溶媒が膜中に残留して加熱後の膜の可視光透過率の低減の原因となることを回避できることから、前記加熱温度は100℃以上が好ましく、さらに好ましくは分散液中の溶媒の沸点以上である。
以上、詳細に説明したように、本発明に係る熱線遮蔽用合わせ構造体は、複合タングステン酸化物微粒子に金属の水酸化物を添加することで、太陽光における近赤外線の吸収能を有し、簡便な方法で低コストに製造できる。そして、一般式MYWOZで表記される複合タングステン酸化物と、その劣化防止剤である金属の水酸化物が含有されていることで、長時間使用した場合でも、経時的な可視光透過率の低下(劣化)、近赤外線吸収機能の低下、色調の変化、ヘイズ値の増加を抑制でき、優れた光学的特性と優れた耐候性とを発揮した。
さらに、本発明の熱線遮蔽用合わせ構造体における中間膜の主成分として、ポリビニルアセタール樹脂等のビニル系樹脂を用いた場合においても、優れた光学的特性と優れた耐候性とを発揮した。
この結果、本発明の熱線遮蔽用合わせ構造体は、自動車のはめ込みガラス、サイドガラスおよびリヤガラス、鉄道車両の扉ガラスや窓ガラスおよび室内ドアガラスといった車両用の窓材、ビル等の建物における窓ガラスおよび室内ドアガラス等、室内展示用ショーケースおよびショーウィンドー等といった建築用の窓材、種々の用途に使用することができる。
本実施例において、可視光透過率、日射透過率は、日立製作所製の分光光度計を用いて波長200〜2500nmの光の透過率により測定し、JIS R 3106に従って算出した。なお、当該日射透過率は、熱線遮蔽用合わせ構造体の熱線遮蔽特性を示す指標である。
膜のヘイズ値は、村上色彩技術研究所製のHM−150を用いて、JIS K 7105に基づいた測定を行なった。
熱線遮蔽用合わせ構造体を長時間使用した際における光学特性変化の評価は、紫外線照射装置(岩崎電気(株)製SUV−W131)にて、各実施例に係る熱線遮蔽用合わせ構造体へ100mW/cm2で紫外線を2時間照射して加速試験とし、当該加速試験前後の可視光透過率の変化率およびヘイズ値の変化を測定することにより行なった。
Cs0.33WO3微粒子(比表面積20m2/g)を20重量部、水酸化ルビジウムn水和物を2重量部、4−メチル−2−ペンタノンを58重量部、微粒子分散用分散剤20重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのCs0.33WO3微粒子と水酸化ルビジウムn水和物の分散液を作製した(A液)。
但し、当該水酸化ルビジウムn水和物は、水酸化ルビジウムを70質量%含有している。以下の実施例、比較例においても同様である。 このA液と熱硬化樹脂(固形分100%)と4−メチル−2−ペンタノンを十分混合し塗布液とした。この塗布液を、バーコーターを用いてポリエチレンテレフタレートフィルム(PET)上に塗布、成膜し、この膜を130℃/30分間加熱硬化させ、熱線遮蔽膜が形成された熱線遮蔽フィルム基板を得た。
当該熱線遮蔽膜が形成された熱線遮蔽フィルム基板を、2枚の熱線遮蔽機能を有する微粒子を含まない中間膜用エチレン−酢酸ビニル共重合体シート間に配置し、これを2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して(形態A−4)、実施例1に係る熱線遮蔽用合わせ構造体1を得た。作製された構造体1の光学特性を表1に示す。
作製された構造体1を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
Rb0.33WO3微粒子(比表面積20m2/g)を20重量部、水酸化ルビジウムn水和物を2重量部、4−メチル−2−ペンタノンを58重量部、微粒子分散用分散剤20重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのRb0.33WO3微粒子と水酸化ルビジウムn水和物の分散液を作製した(B液)。
このB液と熱硬化樹脂(固形分100%)と4−メチル−2−ペンタノンを十分混合し塗布液とした。この塗布液を、バーコーターを用いてポリエチレンテレフタレートフィルム(PET)上に塗布、成膜し、130℃/30分間加熱硬化させ、熱線遮蔽膜が形成された熱線遮蔽フィルム基板を得た。
当該熱線遮蔽膜が形成された熱線遮蔽フィルム基板を、2枚の熱線遮蔽機能を有する微粒子を含まない中間膜用エチレン−酢酸ビニル共重合体シート間に配置し、これを2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して(形態A−4)、実施例2に係る熱線遮蔽用合わせ構造体2を得た。作製された構造体2の光学特性を表1に示す。
作製された構造体2を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
K0.33WO3微粒子(比表面積20m2/g)を20重量部、水酸化ルビジウムn水和物を4重量部、4−メチル−2−ペンタノンを56重量部、微粒子分散用分散剤20重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのK0.33WO3微粒子と水酸化ルビジウムn水和物の分散液を作製した(C液)。
このC液と熱可塑性樹脂(固形分100%)と4−メチル−2−ペンタノンを十分混合し塗布液とした。この塗布液を、バーコーターを用いてポリエチレンテレフタレートフィルム(PET)上に塗布、成膜し、120℃/30分間焼成し、熱線遮蔽膜が形成された熱線遮蔽フィルム基板を得た。
当該熱線遮蔽膜が形成された熱線遮蔽フィルム基板を、2熱線遮蔽機能を有する微粒子を含まない枚の中間膜用エチレン−酢酸ビニル共重合体シート間に配置し、これを2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して(形態A−4)、実施例3に係る熱線遮蔽用合わせ構造体3を得た。作製された構造体3の光学特性を表1に示す。
作製された構造体3を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
Tl0.33WO3微粒子(比表面積20m2/g)を20重量部、水酸化ルビジウムn水和物を0.6重量部、4−メチル−2−ペンタノンを59.4重量部、微粒子分散用分散剤20重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのTl0.33WO3微粒子と水酸化ルビジウムn水和物の分散液を作製した(D液)。
このD液とハードコート用紫外線硬化樹脂(固形分100%)と4−メチル−2−ペンタノンを十分混合し塗布液とした。この塗布液を、バーコーターを用いてポリエチレンテレフタレートフィルム(PET)上に塗布、成膜し、この膜を70℃で2分間乾燥し溶媒を蒸発させた後、高圧水銀ランプで硬化させ、熱線遮蔽膜が形成された熱線遮蔽フィルム基板を得た。
当該熱線遮蔽膜が形成された熱線遮蔽フィルム基板を、2枚の前記熱線遮蔽機能を有する微粒子を含まない中間膜用エチレン−酢酸ビニル共重合体シート間に配置し、これを2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して(形態A−4)、実施例4に係る熱線遮蔽用合わせ構造体4を得た。作製された構造体4の光学特性を表1に示す。
作製された構造体4を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化マグネシウムへ代替した以外は実施例1と同様にして、実施例5に係る熱線遮蔽用合わせ構造体5を得た。作製された構造体5の光学特性を表1に示す。
作製された構造体5を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化セシウム一水和物へ代替した以外は実施例1と同様にして、実施例6に係る熱線遮蔽用合わせ構造体6を得た。作製された構造体6の光学特性を表1に示す。
作製された構造体6を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化ナトリウム一水和物へ代替した以外は実施例1と同様にして、実施例7に係る熱線遮蔽用合わせ構造体7を得た。作製された構造体7の光学特性を表1に示す。
作製された構造体7を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化リチウム二水和物へ代替した以外は実施例1と同様にして、実施例8に係る熱線遮蔽用合わせ構造体8を得た。作製された構造体8の光学特性を表1に示す。
作製された構造体8を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化マンガン(II)へ代替した以外は実施例1と同様にして、実施例9に係る熱線遮蔽用合わせ構造体9を得た。作製された構造体9の光学特性を表1に示す。
作製された構造体9を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表1に示す。
Cs0.33WO3微粒子(比表面積20m2/g)20重量部に対して、水酸化ルビジウムn水和物を1重量部添加した以外は実施例1と同様にして、実施例10に係る熱線遮蔽用合わせ構造体10を得た。作製された構造体10の光学特性を表2に示す。
作製された構造体10を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
Cs0.33WO3微粒子(比表面積20m2/g)20重量部に対して、水酸化ルビジウムn水和物を0.2重量部添加した以外は実施例1と同様にして、実施例11に係る熱線遮蔽用合わせ構造体11を得た。作製された構造体11の光学特性を表2に示す。
作製された構造体11を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
Cs0.33WO3微粒子(比表面積20m2/g)20重量部に対して、水酸化ルビジウムn水和物を10重量部添加した以外は実施例1と同様にして、実施例12に係る熱線遮蔽用合わせ構造体12を得た。作製された構造体12の光学特性を表2に示す。
作製された構造体12を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
Cs0.33WO3微粒子(比表面積20m2/g)20重量部に対して、水酸化ルビジウムn水和物を20重量部添加した以外は実施例1と同様にして、実施例13に係る熱線遮蔽用合わせ構造体13を得た。作製された構造体13の光学特性を表2に示す。
作製された構造体13を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
ビニル系樹脂として、中間膜用エチレン−酢酸ビニル共重合体シートを中間膜用ポリビニルブチラールシートへ代替した以外は実施例1と同様にして、実施例14に係る熱線遮蔽用合わせ構造体14を得た。作製された構造体14の光学特性を表2に示す。
作製された構造体14を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
Cs0.33WO3微粒子(比表面積20m2/g)を20重量部、水酸化ルビジウムn水和物を2重量部、トリエチレングリコールジ−2−エチルヘキサノエート(以下、可塑剤aと略称する)を58重量部、微粒子分散用分散剤20重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのCs0.33WO3微粒子と水酸化ルビジウムn水和物の分散液を作製した(E液)。
可塑剤aを30重量部と、ポリビニルブチラール樹脂を70重量部を混合した組成物へ、所定量のE液を添加し、当該組成物中におけるCs0.33WO3微粒子の濃度を0.15重量%とした。この組成物を、二軸押出機を用いて200℃で混練、Tダイより押出しカレンダーロール法により0.7mm厚のシートとして熱線遮蔽微粒子を含む中間膜を得た。
得られた熱線遮蔽微粒子を含む中間膜を2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して(形態A−1)、実施例15に係る熱線遮蔽用合わせ構造体15を得た。作製された構造体15の光学特性を表2に示す。
作製された構造体15を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
ビニル系樹脂として、ポリビニルブチラール樹脂をエチレン−酢酸ビニル共重合体へ代替した以外は実施例15と同様にして、実施例16に係る熱線遮蔽用合わせ構造体16を得た。作製された構造体16の光学特性を表2に示す。
作製された構造体16を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
2枚の無機ガラスの内1枚をポリカーボネート板に代替した以外は実施例16と同様にして、実施例17に係る熱線遮蔽用合わせ構造体17を得た。作製された構造体17の光学特性を表2に示す。
作製された構造体17を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
実施例1で作製したA液と熱硬化樹脂(固形分100%)と4−メチル−2−ペンタノンを十分混合し塗布液とした。この塗布液を、バーコーターを用いて無機ガラス上に塗布、成膜し、この膜を130℃/30分間加熱硬化させ、熱線遮蔽膜を得た。
次に、熱線遮蔽膜が形成されていない無機ガラスと熱線遮蔽膜が形成された前記無機ガラスとを上記熱線遮蔽膜が内側になるように対向させ、これら無機ガラス間に熱線遮蔽機能を有する微粒子を含まない中間膜用ポリビニルブチラールシートを配置し、公知の方法で張り合わせ一体化して(形態A−3)、実施例18に係る熱線遮蔽用合わせ構造体18を得た。作製された構造体18の光学特性を表2に示す。
作製された構造体18を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
熱線遮蔽機能を有する微粒子を含まない中間膜用エチレン−酢酸ビニル共重合体シートを、実施例18で作製した熱線遮蔽膜が形成された無機ガラスの熱線遮蔽膜側とポリエチレンテレフタレートフィルム(PET)との間に挟み込み、公知の方法で張り合わせ一体化して(形態A−3)、実施例19に係る熱線遮蔽用合わせ構造体19を得た。作製された構造体19の光学特性を表2に示す。
作製された構造体19を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
実施例15で作製した熱線遮蔽微粒子を含む中間膜を、熱線遮蔽微粒子を含まない2枚の中間膜用ポリビニルブチラールシートの間に挟み込み、さらに2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して(形態A−2)、実施例20に係る熱線遮蔽用合わせ構造体20を得た。作製された構造体20の光学特性を表2に示す。
作製された構造体20を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表2に示す。
実施例1で作製したA液を、Cs0.33WO3微粒子の濃度が0.07重量%となるようにポリカーボネート樹脂へ添加混合し、当該混合物を二軸押出機で混練、Tダイより押出し2mm厚のシートとして熱線遮蔽膜が形成された熱線遮蔽フィルム基板を得た。
当該熱線遮蔽膜が形成された熱線遮蔽フィルム基板を一方の合わせ板とし、もう一方の合わせ板である無機ガラスとの間に、熱線遮蔽機能を有する微粒子を含まない中間膜としてポリビニルブチラールシートを挟み込み、公知の方法で張り合わせ一体化して(形態B−7)、実施例21に係る熱線遮蔽用合わせ構造体21を得た。作製された構造体21の光学特性を表3に示す。
作製された構造体21を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
実施例1で作製したA液を、Cs0.33WO3微粒子の濃度が0.07重量%となるようにポリエチレンテレフタレート樹脂へ添加混合し、当該混合物を二軸押出機で混練し、Tダイより押出し2mm厚のシートとして熱線遮蔽膜が形成された熱線遮蔽フィルム基板を得た。
当該熱線遮蔽膜が形成された熱線遮蔽フィルム基板を一方の合わせ板とし、もう一方の合わせ板である無機ガラスとの間に、熱線遮蔽機能を有する微粒子を含まない中間膜としてエチレン−酢酸ビニル共重合体シートを挟み込み、公知の方法で張り合わせ一体化して(形態B−7)、実施例22に係る熱線遮蔽用合わせ構造体22を得た。作製された構造体22の光学特性を表3に示す。
作製された構造体22を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
実施例16で作製した熱線遮蔽微粒子を含む中間膜を、合わせ板として実施例21で作製した熱線遮蔽膜が形成された熱線遮蔽フィルム基板と、もう一方の合わせ板である無機ガラスとで挟み込み、公知の方法で張り合わせ一体化して(形態B−1)、実施例23に係る熱線遮蔽用合わせ構造体23を得た。作製された構造体23の光学特性を表3に示す。
作製された構造体23を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
実施例1で作製したA液と熱硬化樹脂(固形分100%)と4−メチル−2−ペンタノンを十分混合し塗布液とした。この塗布液を、バーコーターを用いて、熱線遮蔽微粒子を含有しない中間膜用エチレン−酢酸ビニル共重合体シート上に塗布、成膜した。この膜を130℃/30分間加熱硬化させ、熱線遮蔽膜が形成された熱線遮蔽機能を有する微粒子を含まない中間膜を得た。この熱線遮蔽膜が形成された中間膜の塗布膜側に熱線遮蔽微粒子を含有しない中間膜用エチレン−酢酸ビニル共重合体シートを配置し、さらに2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して(形態A−5)、実施例24に係る熱線遮蔽用合わせ構造体24を得た。作製された構造体24の光学特性を表3に示す。
作製された構造体24を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
実施例1で作製したA液と熱硬化樹脂(固形分100%)と4−メチル−2−ペンタノンを十分混合し塗布液とした。ポリエステルフィルムシートの一方の面に剥離層としてポリビニルブチラールシートを形成し、塗布液を、バーコーターを用いてこの剥離層上に塗布、成膜した。この膜を130℃/30分間加熱硬化させ、熱線遮蔽膜を得た。この熱線遮蔽膜上に接着剤層として熱線遮蔽機能を有する微粒子を含まない中間膜用ポリビニルブチラールシートを形成して積層体とし転写フィルム19を得た。
当該転写フィルム19の接着剤層を一方の無機ガラスの合わせ板の内側の面に公知の方法で接着し、前記転写フィルムからポリエステルフィルムシートを剥がす。シートを剥がした剥離層面に熱線遮蔽微粒子を含まない中間膜用ポリビニルブチラールシートを配置し、もう一方の無機ガラスの合わせ板の内側の面と公知の方法で張り合わせ一体化して(形態A−6)、実施例25に係る熱線遮蔽用合わせ構造体25を得た。作製された構造体25の光学特性を表3に示す。
作製された構造体25を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化カリウムへ代替した以外は実施例1と同様にして、実施例26に係る熱線遮蔽用合わせ構造体26を得た。作製された構造体26の光学特性を表3に示す。
作製された構造体26を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化カルシウムへ代替した以外は実施例1と同様にして、実施例27に係る熱線遮蔽用合わせ構造体27を得た。作製された構造体27光学特性を表3に示す。
作製された構造体27を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化ストロンチウム八水和物へ代替した以外は実施例1と同様にして、実施例28に係る熱線遮蔽用合わせ構造体28を得た。作製された構造体28の光学特性を表3に示す。
作製された構造体28を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化銅(II)へ代替した以外は実施例1と同様にして、実施例29に係る熱線遮蔽用合わせ構造体29を得た。作製された構造体29の光学特性を表3に示す。
作製された構造体29を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化ニッケル(II)へ代替した以外は実施例1と同様にして、実施例30に係る熱線遮蔽用合わせ構造体30を得た。作製された構造体30の光学特性を表3に示す。
作製された構造体30を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化バリウム八水和物へ代替した以外は実施例1と同様にして、実施例31に係る熱線遮蔽用合わせ構造体31を得た。作製された構造体31の光学特性を表3に示す。
作製された構造体31を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化亜鉛へ代替した以外は実施例1と同様にして、実施例32に係る熱線遮蔽用合わせ構造体32を得た。作製された構造体32の光学特性を表3に示す。
作製された構造体32を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化コバルトへ代替した以外は実施例1と同様にして、実施例33に係る熱線遮蔽用合わせ構造体33を得た。作製された構造体33の光学特性を表3に示す。
作製された構造体33を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を水酸化セリウム(IV)へ代替した以外は実施例1と同様にして、実施例34に係る熱線遮蔽用合わせ構造体34を得た。作製された構造体34の光学特性を表3に示す。
作製された構造体34を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
金属の水酸化物として、水酸化ルビジウムn水和物を酸化水酸化鉄(III)へ代替した以外は実施例35と同様にして、比較例13に係る熱線遮蔽用合わせ構造体35を得た。作製された構造体35の光学特性を表3に示す。
作製された構造体35を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
水酸化ルビジウムn水和物を添加しなかった以外は実施例1と同様にして、比較例1に係る熱線遮蔽分散液(以下、K液と略称する)を作製した。
A液をK液に代替した以外は実施例1と同様にして、比較例1に係る熱線遮蔽用合わせ構造体36を得た。作製された構造体36の光学特性を表3に示す。
作製された構造体36を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
Cs0.33WO3微粒子(比表面積20m2/g)20重量部に対して、水酸化ルビジウムn水和物を0.1重量部添加した以外は実施例1と同様にして、比較例2に係る熱線遮蔽用合わせ構造体37を得た。作製された構造体37の光学特性を表3に示す。
作製された構造体37を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
Cs0.33WO3微粒子(比表面積20m2/g)20重量部に対して、水酸化ルビジウムn水和物を40重量部添加した以外は実施例16と同様にして、比較例3に係る熱線遮蔽分散液(以下、L液と略称する)を作製した。
実施例16で用いた分散液をL液に代替した以外は実施例16と同様にして、比較例3に係る熱線遮蔽用合わせ構造体38を得た。作製された構造体38の光学特性を表3に示す。
しかし、金属の水酸化物の添加量が多すぎたため、構造体38は、無機ガラスと熱線遮蔽微粒子を含む中間膜との密着性が不十分であり、無機ガラスと熱線遮蔽微粒子を含む中間膜が簡単に剥がれてしまう問題が生じた。
よって、加速試験は実施しなかった。
水酸化ルビジウムn水和物を添加しなかった以外は実施例15と同様にして、比較例4に係る熱線遮蔽分散液(以下、M液と略称する)を作製した。
E液をM液に代替した以外は実施例15と同様にして、比較例4に係る熱線遮蔽用合わせ構造体39を得た。作製された構造体39の光学特性を表3に示す。
作製された構造体39を試験サンプルとし、紫外線照射装置を使用し、紫外線を2時間照射した後の可視光透過率の変化とヘイズ値の変化とを測定した。この結果を表3に示す。
表1〜3の結果より、実施例1〜35においては、複合タングステン酸化物微粒子へ、金属の水酸化物を適正量添加したことで、高い可視光透過性と、高い熱線遮蔽特性とを有し、ヘイズ値が低く透明性にも優れた熱線遮蔽用合わせ構造体1〜35が得られた。
なかでも、ナトリウム、マグネシウム、マンガン、セシウム、リチウム、ルビジウムの水酸化物を適正量添加した実施例1〜25に係る熱線遮蔽用合わせ構造体1〜25においては、紫外線を2時間照射した加速試験において、初期の可視光透過率に対して、その変化率が半分以下に抑制されるという顕著な効果を知見した。
また、当該実施例1〜25に係る熱線遮蔽用合わせ構造体1〜25では、紫外線を2時間照射した加速試験において、ヘイズ値の増加が0.3%以下に留まるという効果を知見した。
一方、比較例1、2、4は、金属の水酸化物を添加しなかった、または、添加量が少なすぎたため、加速試験において可視光透過率の変化が増大した。また、比較例3は、金属の水酸化物の添加量が多すぎたため、合わせ構造体として重要な物性である無機ガラスとの密着性が損なわれてしまった。
2.中間層
11.熱線遮蔽機能を有する微粒子
12.中間膜
13.熱線遮蔽膜
14.樹脂フィルム
15.熱線遮蔽機能を有する微粒子を含む樹脂フィルム
16.剥離層
17.フィルムシート
18.接着剤層
20.熱線遮蔽機能を有する微粒子を含有する合わせ板
Claims (13)
- 板ガラス、プラスチック、熱線遮蔽機能を有する微粒子と金属の水酸化物とを含むプラスチック、から選ばれた2枚の合わせ板間に
熱線遮蔽機能を有する微粒子と金属の水酸化物とを含む中間層を、介在させてなる熱線遮蔽用合わせ構造体であって、
前記熱線遮蔽機能を有する微粒子が、一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちの1種類以上であり、且つ六方晶の結晶構造を持ち、粒子径が1nm以上、800nm以下である複合タングステン酸化物微粒子であり、
前記金属の水酸化物を、前記複合タングステン酸化物微粒子100重量部に対して1重量部以上、100重量部以下、含有することを特徴とする熱線遮蔽用合わせ構造体。 - 熱線遮蔽機能を有する微粒子と金属の水酸化物とを含むプラスチックの合わせ板と、
板ガラス、プラスチック、熱線遮蔽機能を有する微粒子と金属の水酸化物とを含むプラスチック、から選ばれた合わせ板との間に、中間層を介在させてなる熱線遮蔽用合わせ構造体であって、
前記熱線遮蔽機能を有する微粒子が、一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちの1種類以上であり、且つ六方晶の結晶構造を持ち、粒子径が1nm以上、800nm以下である複合タングステン酸化物微粒子であり、
前記金属の水酸化物を、前記複合タングステン酸化物微粒子100重量部に対して1重量部以上、100重量部以下、含有することを特徴とする熱線遮蔽用合わせ構造体。 - 前記金属の水酸化物を構成する金属が、ナトリウム、マグネシウム、マンガン、セシウム、リチウム、ルビジウム、から選択される少なくとも1種であることを特徴とする請求項1または2記載の熱線遮蔽用合わせ構造体。
- 前記プラスチックが、ポリカーボネート樹脂またはアクリル樹脂またはポリエチレンテレフタレート樹脂の、シートまたはフィルムであることを特徴とする請求項1から3のいずれか記載の熱線遮蔽用合わせ構造体。
- 前記中間層は、中間膜を有し、当該中間膜中に前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれていることを特徴とする請求項1から4のいずれか記載の熱線遮蔽用合わせ構造体。
- 前記中間層は、2層以上の積層した中間膜を有し、当該中間膜の少なくとも1層に、前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれていることを特徴とする請求項1から4のいずれか記載の熱線遮蔽用合わせ構造体。
- 前記中間層は、前記板ガラス、プラスチックから選ばれた2枚の合わせ板の少なくとも一方の内側面に形成された前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜と、当該熱線遮蔽膜と重なり合う中間膜と、を有することを特徴とする請求項1から4のいずれか記載の熱線遮蔽用合わせ構造体。
- 前記中間層は、前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜が樹脂フィルム基板の片面または両面上に形成された熱線遮蔽フィルム基板、または、熱線遮蔽機能を有する微粒子と金属の水酸化物とを内部に含む熱線遮蔽フィルム基板が、
2層以上の積層した中間膜の間に積層されていることを特徴とする請求項1から4のいずれか記載の熱線遮蔽用合わせ構造体。 - 前記中間層は、中間膜の少なくとも一方の面に熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜が形成されていることを特徴とする請求項1から4のいずれか記載の熱線遮蔽用合わせ構造体。
- 前記中間層は、中間膜または2層以上の積層した中間膜と、接着剤層、前記熱線遮蔽機能を有する微粒子と金属の水酸化物とが含まれる熱線遮蔽膜、剥離層の順に積層された積層体とを有し、
前記積層体の接着剤層は、前記板ガラス、プラスチックから選ばれた一方の合わせ板の内側面に接着し、
前記積層体の剥離層は、前記中間膜または2層以上の積層した前記中間膜と接着していることを特徴とする請求項1から4のいずれか記載の熱線遮蔽用合わせ構造体。 - 前記中間層は、中間膜、または、2層以上の積層した中間膜を、有していることを特徴とする請求項1から4のいずれか記載の熱線遮蔽用合わせ構造体。
- 前記中間膜を構成する樹脂は、ビニル系樹脂であることを特徴とする請求項5から11のいずれか記載の熱線遮蔽用合わせ構造体。
- 前記中間膜を構成するビニル系樹脂は、ポリビニルブチラールまたはエチレン−酢酸ビニル共重合体であることを特徴とする請求項12記載の熱線遮蔽用合わせ構造体。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013070668A JP5939402B2 (ja) | 2013-03-28 | 2013-03-28 | 熱線遮蔽用合わせ構造体 |
EP13803907.8A EP2860163B1 (en) | 2012-06-11 | 2013-06-10 | Heat-shielding ply structure |
TW102120639A TWI576238B (zh) | 2012-06-11 | 2013-06-10 | 熱射線遮蔽用疊層構造體 |
CN201380030834.0A CN104487397B (zh) | 2012-06-11 | 2013-06-10 | 热线遮蔽用夹层结构体 |
US14/407,328 US10384423B2 (en) | 2012-06-11 | 2013-06-10 | Heat shielding lamination structure |
KR1020147036816A KR102109705B1 (ko) | 2012-06-11 | 2013-06-10 | 열선 차폐용 적층 구조체 |
PCT/JP2013/065932 WO2013187350A1 (ja) | 2012-06-11 | 2013-06-10 | 熱線遮蔽用合わせ構造体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013070668A JP5939402B2 (ja) | 2013-03-28 | 2013-03-28 | 熱線遮蔽用合わせ構造体 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016099520A Division JP6142945B2 (ja) | 2016-05-18 | 2016-05-18 | 中間層を構成する熱線遮蔽膜、および、中間層を構成する熱線遮蔽膜の製造に用いる熱線遮蔽微粒子分散液および熱線遮蔽微粒子分散粉 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014193787A JP2014193787A (ja) | 2014-10-09 |
JP5939402B2 true JP5939402B2 (ja) | 2016-06-22 |
Family
ID=51839353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013070668A Active JP5939402B2 (ja) | 2012-06-11 | 2013-03-28 | 熱線遮蔽用合わせ構造体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5939402B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6142945B2 (ja) * | 2016-05-18 | 2017-06-07 | 住友金属鉱山株式会社 | 中間層を構成する熱線遮蔽膜、および、中間層を構成する熱線遮蔽膜の製造に用いる熱線遮蔽微粒子分散液および熱線遮蔽微粒子分散粉 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000063158A (ja) * | 1998-08-10 | 2000-02-29 | Nippon Shokubai Co Ltd | 合わせガラスおよびこれに用いる中間膜 |
JP4551360B2 (ja) * | 2006-05-26 | 2010-09-29 | 株式会社ブリヂストン | 合わせガラス用中間膜形成用組成物、合わせガラス用中間膜、およびこれを用いた合わせガラス |
JP5449659B2 (ja) * | 2007-09-04 | 2014-03-19 | 株式会社ブリヂストン | 近赤外線遮蔽体、これを用いた積層体及びディスプレイ用光学フィルタ、並びにディスプレイ |
JP4942578B2 (ja) * | 2007-08-03 | 2012-05-30 | 株式会社ブリヂストン | 積層体 |
JP2011063493A (ja) * | 2009-09-18 | 2011-03-31 | Sumitomo Metal Mining Co Ltd | 近赤外線遮蔽材料微粒子分散体および近赤外線遮蔽体および近赤外線遮蔽材料分散体の製造方法 |
JP5344261B2 (ja) * | 2011-04-14 | 2013-11-20 | 住友金属鉱山株式会社 | 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材 |
-
2013
- 2013-03-28 JP JP2013070668A patent/JP5939402B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014193787A (ja) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013187350A1 (ja) | 熱線遮蔽用合わせ構造体 | |
JP3985193B2 (ja) | 日射遮蔽用合わせ構造体 | |
US10933613B2 (en) | Heat-ray shielding film and method for manufacturing the same, and heat-ray shielding laminated transparent base material | |
CN105307996B (zh) | 热线屏蔽膜、热线屏蔽夹层透明基材、热线屏蔽树脂片材、汽车及建筑物 | |
TWI698468B (zh) | 熱射線屏蔽膜、熱射線屏蔽層合透明基材、汽車、建物、分散體、混合組成物、及分散體之製造方法、分散液、分散液之製造方法 | |
JP5305050B2 (ja) | 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材 | |
JP2015003853A (ja) | 可塑化可能な断熱組成物、透明な断熱中間シート、および透明な断熱サンドイッチ構造パネル | |
JP6136819B2 (ja) | 熱線遮蔽用合わせ構造体 | |
JP6123991B2 (ja) | 熱線遮蔽用合わせ構造体 | |
JP2008290460A (ja) | 日射遮蔽用合わせ構造体 | |
JP6142945B2 (ja) | 中間層を構成する熱線遮蔽膜、および、中間層を構成する熱線遮蔽膜の製造に用いる熱線遮蔽微粒子分散液および熱線遮蔽微粒子分散粉 | |
JP6187634B2 (ja) | 耐候性を備えた熱線遮蔽膜、耐候性を備えた熱線遮蔽シートまたはフィルム、それらを製造する為の熱線遮蔽微粒子分散液、熱線遮蔽微粒子分散粉 | |
JP5939188B2 (ja) | 熱線遮蔽用合わせ構造体 | |
JP5939402B2 (ja) | 熱線遮蔽用合わせ構造体 | |
JP6201127B2 (ja) | 耐候性を備えた熱線遮蔽膜、耐候性を備えた熱線遮蔽シートまたはフィルム、熱線遮蔽微粒子分散液、および熱線遮蔽微粒子分散粉 | |
JP7532834B2 (ja) | 熱線遮蔽合わせ透明基材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160503 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5939402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |