JP5937543B2 - Pulley structure of belt type continuously variable transmission - Google Patents
Pulley structure of belt type continuously variable transmission Download PDFInfo
- Publication number
- JP5937543B2 JP5937543B2 JP2013108186A JP2013108186A JP5937543B2 JP 5937543 B2 JP5937543 B2 JP 5937543B2 JP 2013108186 A JP2013108186 A JP 2013108186A JP 2013108186 A JP2013108186 A JP 2013108186A JP 5937543 B2 JP5937543 B2 JP 5937543B2
- Authority
- JP
- Japan
- Prior art keywords
- movable sheave
- fitting
- oil
- joint surface
- sheave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Transmissions By Endless Flexible Members (AREA)
Description
本発明は、例えば車両用のベルト式無段変速機において油圧アクチュエータで駆動されて固定シーブと可動シーブ間の溝幅が可変制御されるプーリ構造、とくにその可動シーブと油圧アクチュエータ部材の結合部構造に関する。 The present invention relates to a pulley structure in which a groove width between a fixed sheave and a movable sheave is variably controlled by a hydraulic actuator, for example, in a belt type continuously variable transmission for a vehicle, in particular, a connecting portion structure between the movable sheave and the hydraulic actuator member. About.
ベルト式無段変速機では、エンジンなど駆動源側のプライマリ軸に設けられたプライマリプーリと出力側のセカンダリ軸に設けられたセカンダリプーリとの間にベルトを掛け渡して、各プーリのプーリ溝幅を制御しベルトの有効巻き付け径の比率を変化させることにより無段階に変速する。プライマリプーリとセカンダリプーリはそれぞれ固定シーブと可動シーブからなり、それぞれ油圧アクチュエータで可動シーブを固定シーブに対して変位させることによりプーリ溝幅が制御される。 In a belt-type continuously variable transmission, a belt is stretched between a primary pulley provided on a primary shaft on the drive source side such as an engine and a secondary pulley provided on a secondary shaft on the output side, and the pulley groove width of each pulley By changing the ratio of the effective winding diameter of the belt, the speed is changed continuously. The primary pulley and the secondary pulley are each composed of a fixed sheave and a movable sheave, and the pulley groove width is controlled by displacing the movable sheave with respect to the fixed sheave by a hydraulic actuator.
可動シーブと油圧アクチュエータの結合にかかる従来のプーリ構造として、例えばプライマリプーリに適用された特開平11−280859号公報に開示されたようなものがある。
このプーリ構造では、油圧アクチュエータはプライマリプーリの可動シーブに取り付けられたシリンダと軸方向の固定側であるプライマリ軸に係止されたピストンとによって、両者の間に油圧室を形成しており、油圧室へのオイルの給廃により可動シーブを変位させる。
原理的には油圧室はオイルの給排口以外は密閉で、オイルは可動シーブとシリンダの取り付け部から漏れてはならず、このため、可動シーブにはプライマリ軸を中心とする環状で平面状の当接面とプーリ軸芯と同軸上で当接面から突出する嵌合部を設け、シリンダには当接面に対向して面接する接合面と位置決めのため可動シーブの嵌合部に嵌合する嵌合孔とを備えて、ボルトで両部材を結合することにより当接面と接合面を圧接状態とすることにより油密を図っている。
As a conventional pulley structure related to the coupling of the movable sheave and the hydraulic actuator, for example, there is one disclosed in Japanese Patent Laid-Open No. 11-280859 applied to a primary pulley.
In this pulley structure, the hydraulic actuator forms a hydraulic chamber between the cylinder attached to the movable sheave of the primary pulley and the piston locked to the primary shaft on the fixed side in the axial direction. The movable sheave is displaced by supplying / discharging oil to the chamber.
In principle, the hydraulic chamber is sealed except for the oil supply / discharge port, and oil should not leak from the mounting part of the movable sheave and the cylinder. For this reason, the movable sheave has an annular, flat shape centered on the primary shaft. A fitting part that protrudes from the abutting surface is provided coaxially with the abutting surface of the pulley and the pulley shaft core, and the cylinder is fitted to the mating part of the movable sheave for positioning with the joining surface facing the abutting surface. A fitting hole is provided, and both members are joined with bolts to bring the contact surface and the joint surface into a pressure contact state, thereby achieving oil tightness.
しかしながら、上記従来例のように可動シーブの当接面とシリンダの接合面を互いに当接させたものにおいて、当該当接面と接合面に摩耗が生じることが見出された。
これは、ボルト結合によって可動シーブの当接面とシリンダの接合面の圧接状態は得られるとしても、圧接による摩擦力だけでは滑りを抑えきれず、シリンダー内の油圧の高低に従った変速比の変化や、プーリーの正転/逆転の切替えによって可動シーブとシリンダの間に相対回転が生じることによるものと考えられる。この相対回転はボルトとシリンダのボルト孔との公差による間隙に規制されたわずかな回転方向の位置ずれとして現れるが、当接面と接合面の対向面における摩耗は耐久性を低下させることになる。
However, it has been found that in the case where the contact surface of the movable sheave and the joint surface of the cylinder are in contact with each other as in the conventional example, wear occurs on the contact surface and the joint surface.
This is because even if the contact state of the movable sheave and the joint surface of the cylinder can be obtained by the bolt connection, slippage cannot be suppressed only by the frictional force due to the pressure contact, and the gear ratio according to the hydraulic pressure in the cylinder This is considered to be due to the relative rotation between the movable sheave and the cylinder caused by the change or the forward / reverse switching of the pulley. This relative rotation appears as a slight misalignment in the rotational direction restricted by the clearance between the bolt and the bolt hole of the cylinder, but wear on the opposing surface of the contact surface and the joint surface reduces durability. .
この対策として、微小適量のオイルを積極的に上記の当接面と接合面の間に供給すれば位置ずれが生じても両面の摩耗が防止できる。この点において、当接面と接合面の面接領域の内径側まで嵌合部と嵌合孔の間隙を通ってオイルが来ているので、これによって当接面と接合面間は潤滑されるのではないかとも考えられる。
しかしながら、実際には嵌合部と嵌合孔の嵌め合い精度は低いため、その間隙が小さい場合には、潤滑に必要なオイル量が通過できず、また間隙が大き過ぎる場合には、潤滑は実現されるが油圧室のオイルがその間隙を容易に通過して漏れ出ていくことになり、油圧室の油密が毀損される結果となる。
それぞれが公差をもつ2部材間の間隙の精度を高めることは困難であり、上述の構造のままでは油圧室の油密を実質的に確保しながら、当接面と接合面の摩耗を確実に防止することができない。
As a countermeasure against this, if a minute appropriate amount of oil is positively supplied between the contact surface and the joint surface, it is possible to prevent wear on both surfaces even if misalignment occurs. In this respect, since oil has come through the gap between the fitting portion and the fitting hole to the inner diameter side of the contact area between the contact surface and the joint surface, the gap between the contact surface and the joint surface is thereby lubricated. It may be possible.
However, since the fitting accuracy between the fitting portion and the fitting hole is actually low, if the gap is small, the amount of oil necessary for lubrication cannot pass, and if the gap is too large, the lubrication is not performed. Although realized, the oil in the hydraulic chamber easily passes through the gap and leaks, resulting in damage to the oil tightness of the hydraulic chamber.
It is difficult to increase the accuracy of the gap between two members each having tolerances. With the above structure, the oil tightness of the hydraulic chamber is substantially ensured, and the wear of the contact surface and the joint surface is ensured. It cannot be prevented.
このような問題は可動シーブに取り付けられる油圧アクチュエータの部材がピストンで、このピストンと固定側に係止されたシリンダとによって、両者の間に油圧室を形成する構成においても同様に生じる。
上述の従来例はプライマリプーリを例としているが、セカンダリプーリではトルク負荷が大きい分だけ可動シーブとシリンダ間の位置ずれとそれによる磨耗がより大きく、同様に対策が重要となる。
Such a problem similarly occurs in a configuration in which a hydraulic actuator member attached to the movable sheave is a piston and a hydraulic chamber is formed between the piston and a cylinder locked to the fixed side.
The above-described conventional example uses the primary pulley as an example. However, in the secondary pulley, the positional deviation between the movable sheave and the cylinder and the wear due to the torque load are larger, and countermeasures are also important.
したがって本発明は、上記従来の問題点に鑑み、可動シーブの当接面と油圧アクチュエータ部材に設けた接合面を面接状態としながら、その互いの対向面に摩耗が生じないようにしたベルト式無段変速機のプーリ構造を提供することを目的とする。 Therefore, in view of the above-described conventional problems, the present invention is a belt type non-contact belt in which the abutment surface of the movable sheave and the joint surface provided on the hydraulic actuator member are brought into contact with each other, and the opposing surfaces thereof are not worn. An object of the present invention is to provide a pulley structure for a step transmission.
このため、本発明は、固定シーブと可動シーブを有し、油圧アクチュエータで可動シーブを駆動して固定シーブと可動シーブ間の溝幅を変化させるベルト式無段変速機のプーリ構造において、
油圧アクチュエータの油圧室を形成するとともに可動シーブに油密に結合されたアクチュエータ部材が可動シーブの裏面に対向して全周に延びる接合面を有し、
可動シーブは接合面に面接して全周に延びる当接面を有し、
可動シーブとアクチュエータ部材の間には、接合面と当接面の面接領域の内側に隣接するリング空間が形成され、
アクチュエータ部材には油圧室からリング空間につながる油通路が設けられ、該油通路は接合面と当接面の面接領域の潤滑に必要な流量に絞る所定径の油孔を備えているものとした。
For this reason, the present invention has a pulley structure for a belt-type continuously variable transmission that has a fixed sheave and a movable sheave and drives the movable sheave with a hydraulic actuator to change the groove width between the fixed sheave and the movable sheave.
An actuator member that forms a hydraulic chamber of the hydraulic actuator and is oil-tightly coupled to the movable sheave has a joint surface that extends to the entire circumference facing the back surface of the movable sheave,
The movable sheave has an abutment surface that is in contact with the joint surface and extends all around
Between the movable sheave and the actuator member, a ring space adjacent to the inside of the contact area between the joint surface and the contact surface is formed,
The actuator member is provided with an oil passage that leads from the hydraulic chamber to the ring space, and the oil passage is provided with an oil hole having a predetermined diameter that restricts the flow rate necessary for lubrication of the contact area between the joint surface and the contact surface. .
本発明によれば、可動シーブとアクチュエータ部材の間を油密に結合する一方、アクチュエータ部材に設けた油通路により面接領域に隣接するリング空間に高精度で適量のオイルが供給されるから、高品質に安定した潤滑が行われ、接合面と当接面の摩耗が防止される。 According to the present invention, since the movable sheave and the actuator member are oil-tightly coupled, an appropriate amount of oil is supplied with high accuracy to the ring space adjacent to the interview area by the oil passage provided in the actuator member. Lubrication with stable quality is performed, and wear of the joint surface and the contact surface is prevented.
以下、本発明をセカンダリプーリに適用した実施の形態について説明する。
図1は実施の形態を示す断面図である。
セカンダリプーリ1は、背景技術で述べたように、セカンダリ軸2と一体の固定シーブ3と、セカンダリ軸2に支持されて軸方向に移動可能な可動シーブ10と、この可動シーブ10を駆動する油圧アクチュエータ25を有している。
セカンダリ軸2は固定シーブ3側から順に大径部4、中径部5および小径部6を有し、大径部4に可動シーブ10を支持している。
固定シーブ3と可動シーブ10の対向面はベルト45を挟むV溝を形成するようにそれぞれ傾斜した錐面をなしている。
セカンダリ軸2は固定シーブ3と可動シーブ10を間に挟んだ2つのベアリング22、23で支持され、一端は可動シーブ10側のベアリング23を貫通して延び、回転トルクを不図示の車輪側へ出力するようになっている。
Hereinafter, an embodiment in which the present invention is applied to a secondary pulley will be described.
FIG. 1 is a cross-sectional view showing an embodiment.
As described in the background art, the
The
The opposed surfaces of the
The
油圧アクチュエータ25は可動シーブ10に取り付けられたシリンダ30とセカンダリ軸2に係止されたピストン40とからなり、両者の間に油圧室Rを形成している。可動シーブ10とピストン40の間にはスプリング43が配置され、可動シーブ10を固定シーブ3側へ接近方向に付勢している。
油圧室Rへはセカンダリ軸2に形成された油路9からオイルが給排され、これにより可動シーブ10が固定シーブ3に対して接離させられる。
The
Oil is supplied to and discharged from the oil passage 9 formed in the
可動シーブ10は外形としてシーブ本体部11の裏面から突出する基部12を経てセカンダリ軸2に沿って延びる筒部13を有し、軸心にはシーブ本体部11側から順にセカンダリ軸2の大径部4に対応する支持孔15と、セカンダリ軸2の中径部5を貫通させる小径孔16を備えている。
セカンダリ軸2の中径部5と可動シーブ10の小径孔16には互いに対向してそれぞれ周方向所定間隔で軸方向溝が形成され、各軸方向溝にローラ7が配置されており、これにより可動シーブ10とセカンダリ軸2がローラ7を介して一体に回転するようになっている。
The
The
シリンダ30はディスク部31とその外周縁から延びる外筒部32とからなるドラム状を呈している。ディスク部31は中心に圧入嵌合孔33を有して、圧入嵌合孔33を可動シーブ10の後述する嵌合部14に圧入することによりシリンダ30がシーブ本体部11の裏面側(固定シーブ3に対向する側と反対側)に結合される。
シリンダ30は、圧入嵌合孔33を内縁とする径方向所定範囲をその外周領域よりもわずかにシーブ本体部11側へ突出させた接合面35としている。接合面35はセカンダリ軸2に対して垂直である。圧入嵌合孔33と接合面35との角部には面取り34(後掲の図2参照)が施されている。
ピストン40はセカンダリ軸2が貫通する筒ボス部41をセカンダリ軸2の中径部5と小径部6間の段差部と小径部6を支持するベアリング23の間に挟まれて軸方向が位置決めされ、オイルシール42を備える外周縁がシリンダ30の外筒部32の内壁面を軸方向に摺動可能となっている。
The
The
The piston 40 is sandwiched between a
可動シーブ10は、基部12の外周面をシリンダ30の圧入嵌合孔33が圧入される嵌合部14としている。嵌合部14の径は筒部13の外径よりも大きい。そして、可動シーブ10裏面における嵌合部14を囲む所定領域をセカンダリ軸2に対して垂直な当接面19としている。これにより、嵌合部14にシリンダ30の圧入嵌合孔33を圧入したときその接合面35が当接面19と面接するようになっている。
嵌合部14と当接面19との接続角部には全周にわたるリング溝20が設けられ、このリング溝20は当接面19と可動シーブ10の接合面35との面接領域の内側(内径側)に隣接することになる。
In the
A
本実施の形態では、シリンダ30のディスク部31に油圧室Rとリング溝20をつなぐ油通路36を設けてある。
図2は油通路36の詳細を示し、(a)は図1におけるA部の拡大断面図、(b)は(a)におけるB矢視によるディスク部31を示す図である。
(a)に示すように、油通路36は、油圧室に開口してセカンダリ軸の軸心と平行に延びる微小径の油孔37と、これに続いて同方向にシーブ本体側へ向かって延びる拡径部38と、接合面35に沿って拡径部38とリング溝20を結ぶ連通部39とからなっている。
油孔37および拡径部38の径方向位置は、接合面35と当接面19との面接領域S内に設定されている。
In the present embodiment, an
FIG. 2 shows details of the
As shown in (a), the
The radial positions of the
ここで、油孔37は油圧室のオイルを当接面19と接合面35間の潤滑に必要な適量に絞るものである。乗用車用のプーリにおいて、シリンダ30のディスク部31の板厚を略4mmとすると、油孔37の直径が例えば0.5mmのとき、その長さは加工限度から2mmとして、その先の拡径部38は接合面35側からの座ぐり加工により形成可能な例えば直径2mmとすることができる。
連通部39は拡径部38の直径より大きな通路幅の溝状で、その幅内に拡径部38を開口させるとともに、シリンダ30の軸心方向に延びて面取り34に開口している。連通部39の外方端も面接領域S内にとどまる。
連通部39も接合面35側からの座ぐり加工により形成可能で、例えば6mm幅で深さを例えば0.4mmとすることができる。
なお、リング溝20はその溝底20aが嵌合部14よりも内径側かつ当接面19よりもくぼみ側(固定シーブ3側)に及んでいる。
Here, the
The communicating
The
The
上記の構成になる可動シーブ10とシリンダ30は、嵌合部14と圧入嵌合孔33の圧入により結合されて油圧室Rの実質的な油密が確保されるとともに、当接面19と接合面35の互いの面接により油圧室Rの油圧に基づいて可動シーブ10がシリンダ30から押され、セカンダリ軸2に沿って変位駆動される。
したがって、まず可動シーブ10とシリンダ30は圧入によって結合されるから、従来のような多数のボルトやネジ穴加工が不要でコストと部品点数が削減される。
そして、従来のようなボルトとボルト孔との間隙がないので回転方向の位置ずれの余地がないと言えるが、圧入結合にもかかわらず万一可動シーブ10とシリンダ30間に回転の位置ずれが発生したとしても、シリンダ30に設けた油通路36によって当接面19と接合面35間が潤滑されるので、両面に摩耗が生じることがない。
The
Therefore, since the
And since there is no gap between the bolt and the bolt hole as in the prior art, there can be no room for positional displacement in the rotational direction, but in the unlikely event that there is rotational displacement between the
すなわち、油通路36の微小な油孔37で絞られて油圧室Rの高圧から減圧されたオイルが、図2の(b)に矢示で示すように、通路断面が大きくなった拡径部38、連通部39を抵抗なく流れて、圧入嵌合孔33の面取り34とリング溝20とで形成された空間(以下、リング溝20で代表)へ流れる。リング溝20は当接面19と接合面35との面接領域Sの内径縁に位置しているので、全周にわたって、破線矢示で示すように当接面19と接合面35間に供給されて、互いの対向面を潤滑する。
オイルは偏在することなく当接面19と接合面35の面接領域S全般に供給されるから、油通路36はシリンダ30の周方向1箇所に設ければ十分である。潤滑したオイルは両面間の微小な間隙を経て外部へ排出される。
これにより、従来の嵌め合い精度の低い嵌合部と嵌合孔の間隙経由と異なり、微小な所定経の油孔37により高精度で適量のオイルが当接面19と接合面35間の潤滑に供給される。
That is, the oil that has been squeezed by the
Since the oil is supplied to the entire contact area S of the
Thus, unlike a conventional fitting portion having a low fitting accuracy and a gap between the fitting holes, an appropriate amount of oil is lubricated between the
なお、可動シーブの当接面19と圧入嵌合部33との角部の面取り34のみによる隙間空間によってオイルを全周に導くことも考えられるが、嵌合部14と圧入嵌合孔33の圧入の程度によっては隙間空間が潰れる場合もあるので、積極的な加工溝としてリング溝20を形成するのが好ましい。
In addition, it is conceivable that oil is guided to the entire circumference by a gap space formed only by the
本実施の形態では、シリンダ30が発明におけるアクチュエータ部材に該当し、リング溝20がリング空間に該当する。
In the present embodiment, the
実施の形態は以上のように構成され、固定シーブ3と可動シーブ10を有し、油圧アクチュエータ25で可動シーブ10を駆動して固定シーブ3と可動シーブ10間の溝幅を変化させるベルト式無段変速機のプーリにおいて、油圧アクチュエータ25の油圧室Rを形成するとともに可動シーブ10に油密に結合されたシリンダ30が可動シーブ10の裏面に対向して全周に延びる接合面35を有し、可動シーブ10は接合面35に面接して全周に延びる当接面19を有し、可動シーブ10とシリンダ30の間には、接合面35と当接面19の面接領域Sの内側に隣接するリング溝20が形成され、シリンダ30には油圧室Rからリング溝20につながる油通路36が設けられ、油通路36は接合面35と当接面19の面接領域Sの潤滑に必要な流量に絞る油孔37を備えているものとしたので、高精度で適量のオイルがリング溝20を介して当接面19と接合面35間の潤滑に全周にわたって供給され、摩耗が防止される。(請求項1に対応する効果)
The embodiment is configured as described above, has the fixed
油孔37が油圧室Rに開口し接合面35と当接面19との面接領域Sに向かって形成され、油通路36は、油孔37に接続して同方向に延びるとともに該油孔37よりも大経の拡径部38を有するとともに、接合面35に形成されて拡径部38をリング溝20に接続する連通部39を有しているので、油孔37で減圧されたオイルが当接面19で塞き止められるおそれなく流れやすくなる。(請求項2に対応する効果)
An
可動シーブ10が裏面から軸線に沿って突出する嵌合部14を有し、シリンダ30は嵌合部14に対応する圧入嵌合孔33を有して、該圧入嵌合孔33と嵌合部14の圧入によりシリンダ30と可動シーブ10が結合されているので、可動シーブ10とシリンダ30間の位置ずれが抑制されるとともに、当該結合部分から流量の制御されないオイルが接合面35と当接面19との面接領域Sへ流れることが阻止される。(請求項3に対応する効果)
The
リング溝20は可動シーブ10の裏面と嵌合部14との角部において、当該裏面および嵌合部14の少なくとも一方を凹部にして形成されているので、通常加工される逃げ溝を利用することができる。(請求項4に対応する効果)
また、シリンダ30の圧入嵌合孔33における可動シーブ10側の孔縁が面取りされているのでリング溝20と協同して余裕のあるオイル供給空間が確保され、油通路36は面取り34部に開口することにより障害なくリング溝20につながる。(請求項5に対応する効果)
Since the
Further, since the hole edge on the
なお、上記実施の形態では、連通部39をB矢視でリング溝20まで一定幅としたが、これに限定されず、例えば末広がりとしてリング溝20へのオイル流れ込みを滑らかにするなど適宜の形状を採用してよい。
油通路36における油孔37の孔径を始めとする諸数値はいずれも例示であって、機種やサイズごとに実験等により求められる。
油孔37がその孔径のままで連通部39と接続するまで加工可能の場合には拡径部は省略してもよい。
油通路36は油孔37からまず接合面35と面接する当接面19に向かって開口し、それから連通部39でリング溝20へ導かれるものとしたが、これに限定されず、油圧室R側から直接面取り34部に開口してリング溝20に至るものとしてもよい。この場合も微小径の油孔37のあとは必要に応じて面取り34部における開口側を拡径させることができる。
In the above embodiment, the
The numerical values including the hole diameter of the
In the case where the
The
また、油通路36における連通部39はシリンダ30の接合面35に形成したが、可動シーブ10の当接面19に形成することもできる。
さらに、実施の形態は圧入部を避けた油通路36によってオイルをリング溝20に導くものとしたが、このほか、圧入部すなわち可動シーブ10の嵌合部14およびシリンダ30の圧入嵌合孔33の少なくとも一方に軸方向の溝を形成して油圧室R側からリング溝20へ適量のオイルを導くようにすることもできる。
Further, although the
Further, in the embodiment, the oil is guided to the
リング溝20はシーブ本体部11の裏面および基部12の双方を削り込んで形成され、その溝底20aが嵌合部14よりも内径側かつ当接面19よりもくぼみ側(固定シーブ3側)に及ぶようになっているが、いずれか一方の切削によるものでもよい。
さらには、リング溝としては可動シーブ10の嵌合部14と当接面19との角部の代わりに、シリンダ30における圧入嵌合孔33と接合面35との角部に、圧入用の面取り34にとどまらない積極的な溝を形成してもよい。
The
Further, as a ring groove, a chamfer for press-fitting is provided at a corner portion between the press-fitting
実施の形態では油圧アクチュエータ25が可動シーブ10に取り付けられたシリンダ30と固定側のセカンダリ軸2に係止されたピストン40で油圧室Rを形成し、可動シーブ10に取り付けられるアクチュエータ部材をシリンダ30としたが、これに限定されず、可動シーブ10に取り付けられるアクチュエータ部材をピストンとし、固定側に係止されたシリンダとによって油圧室を形成する構成においては、ピストンに油通路36を設ければよい。
さらに、実施の形態はセカンダリプーリを例として示したが、本発明はプライマリプーリにも適用できることは言うまでもない。
In the embodiment, the hydraulic chamber R is formed by the
Furthermore, although the embodiment has been described by taking a secondary pulley as an example, it goes without saying that the present invention can also be applied to a primary pulley.
1 セカンダリプーリ
2 セカンダリ軸
3 固定シーブ
4 大径部
5 中径部
6 小径部
7 ローラ
9 油路
10 可動シーブ
11 シーブ本体部
12 基部
13 筒部
14 嵌合部
15 支持孔
16 小径孔
19 当接面
20 リング溝
20a 溝底
22、23 ベアリング
25 油圧アクチュエータ
30 シリンダ
31 ディスク部
32 外筒部
33 圧入嵌合孔
34 面取り
35 接合面
36 油通路
37 油孔
38 拡径部
39 連通部
40 ピストン
41 筒ボス部
42 オイルシール
43 スプリング
45 ベルト
R 油圧室
S 面接領域
DESCRIPTION OF
Claims (5)
前記油圧アクチュエータの油圧室を形成するとともに前記可動シーブに油密に結合されたアクチュエータ部材が前記可動シーブの裏面に対向して全周に延びる接合面を有し、
前記可動シーブは前記接合面に面接して全周に延びる当接面を有し、
前記可動シーブとアクチュエータ部材の間には、前記接合面と当接面の面接領域の内側に隣接するリング空間が形成され、
前記アクチュエータ部材には前記油圧室から前記リング空間につながる油通路が設けられ、該油通路は前記接合面と当接面の面接領域の潤滑に必要な流量に絞る所定径の油孔を備えていることを特徴とするベルト式無段変速機のプーリ構造。 In a pulley structure of a belt-type continuously variable transmission having a fixed sheave and a movable sheave, and driving the movable sheave with a hydraulic actuator to change the groove width between the fixed sheave and the movable sheave.
An actuator member that forms a hydraulic chamber of the hydraulic actuator and is oil-tightly coupled to the movable sheave has a joint surface that extends around the entire circumference facing the back surface of the movable sheave;
The movable sheave has a contact surface that is in contact with the joint surface and extends around the entire circumference,
Between the movable sheave and the actuator member, a ring space adjacent to the inside of the contact area of the joint surface and the contact surface is formed,
The actuator member is provided with an oil passage that leads from the hydraulic chamber to the ring space, and the oil passage includes an oil hole having a predetermined diameter that restricts the flow rate required for lubrication of the contact area between the joint surface and the contact surface. A pulley structure for a belt type continuously variable transmission.
前記油通路は、前記油孔に接続して同方向に延びるとともに該油孔より大径の拡径部を有するとともに、前記接合面に形成されて前記拡径部を前記リング空間に接続する連通部を有していることを特徴とする請求項1に記載のベルト式無段変速機のプーリ構造。 The oil hole is opened in the hydraulic chamber and is formed toward a contact area between the joint surface and the contact surface;
The oil passage is connected to the oil hole and extends in the same direction and has an enlarged diameter portion larger in diameter than the oil hole, and is formed in the joint surface to connect the enlarged diameter portion to the ring space. The pulley structure of the belt-type continuously variable transmission according to claim 1, further comprising a portion.
前記油通路の前記リング空間側は前記面取り部に開口していることを特徴とする請求項3または4に記載のベルト式無段変速機のプーリ構造。 The edge of the movable sheave side of the press fitting hole of the actuator member is chamfered,
The pulley structure of the belt-type continuously variable transmission according to claim 3 or 4, wherein the ring space side of the oil passage is open to the chamfered portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013108186A JP5937543B2 (en) | 2013-05-22 | 2013-05-22 | Pulley structure of belt type continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013108186A JP5937543B2 (en) | 2013-05-22 | 2013-05-22 | Pulley structure of belt type continuously variable transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014228062A JP2014228062A (en) | 2014-12-08 |
JP5937543B2 true JP5937543B2 (en) | 2016-06-22 |
Family
ID=52128104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013108186A Active JP5937543B2 (en) | 2013-05-22 | 2013-05-22 | Pulley structure of belt type continuously variable transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5937543B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4048453B2 (en) * | 1998-03-30 | 2008-02-20 | 富士重工業株式会社 | Pulley structure of belt type continuously variable transmission |
JP2006105245A (en) * | 2004-10-04 | 2006-04-20 | Toyota Motor Corp | Belt type continuously variable transmission |
JP2011149481A (en) * | 2010-01-21 | 2011-08-04 | Nsk Ltd | Toroidal type continuously variable transmission |
JP5817416B2 (en) * | 2011-10-13 | 2015-11-18 | トヨタ自動車株式会社 | Bearing lubricator |
-
2013
- 2013-05-22 JP JP2013108186A patent/JP5937543B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014228062A (en) | 2014-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5968331B2 (en) | Driving force transmission device | |
US9874282B2 (en) | Slide valve | |
EP1992838A2 (en) | Oil-free chain | |
KR101714144B1 (en) | Lubrication structure in friction fastening elemet of automatic transmission for vehicle | |
CN112639329A (en) | Continuously variable transmission | |
WO2012014069A1 (en) | Roller bearing with seal integral with cage and camshaft apparatus having such a roller bearing | |
WO2015146616A1 (en) | Vehicular stepless transmission equipped with seal mechanism | |
US20090239690A1 (en) | In-series two chain continuously variable transmission | |
US10359102B2 (en) | Friction roller-type reduction gear | |
US20080283338A1 (en) | Cross shaft joint | |
CN107642591B (en) | Support portion lubricating structure for gear member and differential device | |
JP5937543B2 (en) | Pulley structure of belt type continuously variable transmission | |
EP1582773A2 (en) | Pulley structure | |
WO2002002973A1 (en) | A sealing device with a flanged bush | |
EP2707582A1 (en) | Thrust plate for an internal combustion engine and method of operating same | |
US20140011616A1 (en) | Belt-driven continuously variable transmission | |
JP6366645B2 (en) | Lubrication structure of bearing | |
JP2010116969A5 (en) | ||
JP2006307773A (en) | Speed increaser | |
JP5768710B2 (en) | Dry belt type continuously variable transmission | |
US11060578B2 (en) | Conical spring washer, transmission system, and method of assembly thereof | |
JP2018084281A (en) | Toroidal type non-stage transmission | |
WO2012131965A1 (en) | Continuously variable transmission | |
JPH0138332Y2 (en) | ||
JP6618959B2 (en) | Oil supply structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160512 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5937543 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |