JP5932855B2 - 画像処理システム、画像処理方法及び画像処理プログラム - Google Patents

画像処理システム、画像処理方法及び画像処理プログラム Download PDF

Info

Publication number
JP5932855B2
JP5932855B2 JP2014011624A JP2014011624A JP5932855B2 JP 5932855 B2 JP5932855 B2 JP 5932855B2 JP 2014011624 A JP2014011624 A JP 2014011624A JP 2014011624 A JP2014011624 A JP 2014011624A JP 5932855 B2 JP5932855 B2 JP 5932855B2
Authority
JP
Japan
Prior art keywords
unit
image
scaling
detection
quality improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014011624A
Other languages
English (en)
Other versions
JP2015138519A (ja
Inventor
健二 君山
健二 君山
佐藤 俊雄
俊雄 佐藤
横井 謙太朗
謙太朗 横井
鈴木 美彦
美彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014011624A priority Critical patent/JP5932855B2/ja
Priority to PCT/JP2014/064727 priority patent/WO2015111237A1/ja
Publication of JP2015138519A publication Critical patent/JP2015138519A/ja
Application granted granted Critical
Publication of JP5932855B2 publication Critical patent/JP5932855B2/ja
Priority to US15/216,306 priority patent/US20160328858A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Studio Devices (AREA)

Description

本発明の実施形態は、画像処理システム、画像処理方法及び画像処理プログラムに関する。
画像処理システムにおいて劣化した映像の画質改善を行う場合、一般に映像品質の劣化状況はさまざまであり、画質改善手法をソース映像の状況に合わせて複数選択する必要がある。劣化の種類は、ぼやけ(鮮鋭度の低下)、ランダムノイズ、手ぶれ、カラーバランス異常、パルス状ノイズ、ライン状ノイズなどがある。元の撮影がフィルムの場合は、フィルムグレインノイズ、スクラッチノイズ(引っかき傷)、ダストノイズ(ゴミの影)、褪色もある。このような様々な劣化に対応した画質改善手法が個別に開発されてきた。ぼやけには鮮鋭化、ランダムノイズとグレインノイズにはノイズ除去フィルタ、手ぶれには手ぶれ補正、カラーバランス異常と退色にはカラーバランス補正が有効である。パルス状ノイズ、ライン状ノイズ、スクラッチノイズ、ダストノイズにはそれぞれに特化したノイズ検出とノイズ隠蔽処理が有効である。複合的に発生した劣化には、これらの高画質化処理を複数組み合わせて処理することになる。また、オペレーターは例えば劣化の状況を確認し必要な画質改善処理を選択して、処理順序を決めて、処理パラメータ(劣化を検出する閾値や処理精度)実行させる。そのため、画質処理システムでは、複数の処理を組み合わせる場合のハードウェア資源の有効活用、処理時間の短縮、処理順序の柔軟な変更への対応等、構成の効率化が課題となる。
特許第4499317号公報 特許第4742068号公報 特許第5076755号公報 特許第5203159号公報
株式会社東芝、"業界が注目! 超解像技術について"、[平成25年12月12日検索]、インターネット〈URL:http://www.toshiba.co.jp/regza/detail/superresolution/resolution.html〉
本発明が解決しようとする課題は、複数の画像処理を組み合わせて行う場合の構成を効率化することができる画像処理システム、画像処理方法及び画像処理プログラムを提供することである。
実施形態の画像処理システムは、画像解析部と、複数の画質改善処理部とを持つ。画像解析部は、入力される画像データに含まれる所定の特徴を検出検出し、検出した特徴を示す検出結果を出力する複数の検出部を有する。複数の画質改善処理部は、画像解析部の検出部が検出する特徴に応じて画質改善処理を行う。各画質改善処理部は、スケーリング部と、調整部と、画像処理部とを持つ。スケーリング部は、他の画質改善処理部による画質改善処理の結果に応じて検出部の検出結果をスケーリングして出力する。調整部は、スケーリング部がスケーリングした検出結果を1又は複数入力し、入力した少なくとも1のスケーリングされた検出結果に対して、自己の画質改善処理に応じた所定の調整処理を行い、該処理結果を出力する。画像処理部は、所定の画像データを入力し、調整部が出力した処理結果に応じて画質改善処理を行い、処理した画像データを出力する。
第1の実施形態の画像処理システムを示すブロック図。 第2の実施形態の画像処理システムを示すブロック図。 第3の実施形態の画像処理システムを示すブロック図。 画像処理システムの参考構成を示すブロック図。 画像処理システムの他の参考構成を示すブロック図。 第1及び第2の実施形態の変形例等を説明するための説明図。 第1及び第2の実施形態の変形例等を説明するための他の説明図。 第1及び第2の実施形態の変形例等を説明するための他の説明図。
以下、実施形態の画像処理システムを、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態の画像処理システム1の構成例を示したブロック図である。図1に示した画像処理システム1は、解析ブロック100と、鮮鋭化ブロック200と、ぶれ補正ブロック300と、ノイズ除去ブロック400と、全体制御部500とを備えている。画像処理システム1は、例えば、画像処理用のDSP(digital signal processor)、汎用のCPU(central processing unit)等のプロセッサ及びそのプロセッサが実行するプログラムや、画像処理用ASIC(aplication specific integrated circuit)、FPGA(fied programable gate array)及び画像処理用IPコア(intellectual properity core)等を用いて構成することができる。図1に示した各ブロックは、例えば1つのモジュールとして構成することができる。解析ブロック100は、動き検出部101と、エッジ検出部102と、ノイズ検出部103とを備えている。鮮鋭化ブロック200と、ぶれ補正ブロック300と、ノイズ除去ブロック400とは、入力映像に対して所定の画質改善処理である画像処理をそれぞれ行い、処理した映像を出力する。鮮鋭化ブロック200は、スケーリング部201、202及び203と、調整部204と、鮮鋭化・拡大部205とを備えている。ぶれ補正ブロック300は、スケーリング部301、302及び303と、調整部304と、ぶれ補正部305とを備えている。ノイズ除去ブロック400は、スケーリング部401、402及び403と、調整部404と、ノイズ除去部405とを備えている。
動き検出部101は、ソース映像である画像データ10を入力し、例えば複数フレーム分の画像データ10に基づいて動き検出を行い、検出した結果を表す動きベクトル22を出力する。動き検出部101は、動きベクトル22を、スケーリング部201と調整部204とへ出力する。ここで、動きベクトル22は、画像データ10に対する解析結果の1種であり、複数の動きベクトルを表すための数値情報を含むデータである。
エッジ検出部102は、ソース映像である画像データ10を入力し、画像データ10からエッジ検出を行い、検出した結果を画素値で表すエッジ画像23を出力する。エッジ検出部102は、エッジ画像23を、スケーリング部202と調整部204とへ出力する。
また、ノイズ検出部103は、ソース映像である画像データ10を入力し、画像データ10からノイズを検出し、検出した結果を表すノイズ検出結果24を出力する。ノイズ検出部103は、ノイズ検出結果24を、スケーリング部203と調整部204とへ出力する。ノイズ検出結果24は、例えば、ノイズレベル、位置、タイプ等を表す情報で表される。ノイズ検出結果24がどのようにしてノイズを情報化するのかは、目的とされる画質改善処理に依存する。ランダムノイズとグレインノイズの場合はノイズ検出結果24がノイズレベルを表す情報を含む。スクラッチとラインノイズの場合はノイズ検出結果24が線分の開始座標と終了座標を表す情報を含む。パルスノイズとダストノイズの場合はノイズ検出結果24が位置とサイズの情報を含む。
なお、図1では、解析ブロック100が3種類の解析機能を備えているが、解析ブロック100内の構成はこの組み合わせに制限されるものではない。
鮮鋭化ブロック200では、鮮鋭化・拡大部205が、ソース映像である画像データ10を入力し、動き検出部101が出力した動きベクトル22を調整部204を介して動きベクトル25として入力する。また、鮮鋭化・拡大部205は、エッジ検出部102が出力したエッジ画像23を調整部204を介してエッジ画像26として入力する。鮮鋭化・拡大部205は、動きベクトル25とエッジ画像26とに応じて画像データ10の詳細部分を復元して拡大する画像処理を行う。鮮鋭化・拡大部205は、入力した画像データ10の詳細部分を復元して拡大した画像を表す画像データ20を出力する。出力された画像データ20は、拡大処理によって画像データ10の解像度とは異なる解像度を有している。
鮮鋭化・拡大部205では、たとえば超解像アルゴリズムが使われる。鮮鋭化・拡大部205は、鮮鋭化・拡大処理の際、動きベクトル25によって位置合わせされた前後フレームの情報を用いる。本実施形態における鮮鋭化・拡大の処理は、非特許文献1における超解像アルゴリズムの技術を用いている。鮮鋭化・拡大部205は、エッジ画像26を、処理対象から鮮鋭化の必要のない平坦部分を除くために使用する。鮮鋭化・拡大部205は、全体制御部500が出力した制御信号27によって制御される。
調整部204は、動きベクトル22と、エッジ画像23と、ノイズ検出結果24とを入力し、鮮鋭化・拡大部205が行う画像処理に応じた所定の調整処理を行って、動きベクトル25と、エッジ画像26として出力する。鮮鋭化ブロック200は、最初の画質処理ブロックなので、解析ブロック100から出力された解析結果である動きベクトル22、エッジ画像23及びノイズ検出結果24が、そのまま調整部204へ入力される。調整部204は、例えば、ノイズ検出結果24を用いて鮮鋭化・拡大部205による画像処理においてそのまま利用するには信頼性が低い動きベクトル22やエッジ画像23の一部分を使わないようにする調整処理を行うことができる。調整部204は、ノイズ検出結果24を用いて、動きベクトル22とエッジ画像23とから一部を無効化した動きベクトル25とエッジ画像26とを生成して鮮鋭化・拡大部205に対して出力する。すなわち、この場合、調整部204の出力は例えばノイズの影響を排除した動きベクトル25と、エッジ画像26である。なお、調整部204は、撮影時に分かっている情報を全体制御部500から受け取り、鮮鋭化・拡大部205による画像処理に応じるように、解析結果すなわち動きベクトル22とエッジ画像23とを調整をすることもできる。撮影時に分かっている情報とは、例えば撮像装置におけるレンズや撮像素子の仕様、撮影条件を表す情報等である。調整部204は、全体制御部500が出力した制御信号21によって制御される。
スケーリング部201は、鮮鋭化・拡大部205が行った画像処理の結果に応じて動きベクトル22をスケーリングして、動きベクトル32として出力する。スケーリング部201は、動きベクトル32をスケーリング部301と調整部304とへ出力する。スケーリング部202は、鮮鋭化・拡大部205が行った画像処理の結果に応じてエッジ画像23をスケーリングして、エッジ画像33として出力する。スケーリング部202は、エッジ画像33をスケーリング部302へ出力する。そして、スケーリング部203は、鮮鋭化・拡大部205が行った画像処理の結果に応じて動きノイズ検出結果24をスケーリングして、ノイズ検出結果34として出力する。スケーリング部203は、ノイズ検出結果34をスケーリング部303と調整部304とへ出力する。スケーリング部201、202及び203は、鮮鋭化・拡大部205が行った拡大処理によって画像データ20の解像度が変更となった分に対応させて動きベクトル32、エッジ画像33及びノイズ検出結果34をスケーリングする。スケーリング部201、202及び203は、全体制御部500が出力した制御信号28によって制御される。
なお、鮮鋭化・拡大部205は、出力映像である画像データ20の映像信号レベルのダイナミックレンジに余裕がある場合に、画像データ20をレベル増幅することができる。鮮鋭化・拡大部205がレベル増幅を行った場合、スケーリング部201、202及び203は、各解析結果へのそのレベル変更を反映、すなわちレベル増幅に対応して各解析結果のレベルを変更する。鮮鋭化・拡大部205は、また、逆に出力映像である画像データ20の映像信号レベルのダイナミックレンジに余裕がない場合は、レベル飽和を防ぐために画像データ20を減衰させることができる。鮮鋭化・拡大部205がレベル減衰を行った場合、スケーリング部201、202及び203は、各解析結果へのそのレベル変更を反映、すなわちレベル減衰に対応して各解析結果のレベルを変更する。
また、鮮鋭化ブロック200により、出力映像である画像データ20から検出される動きベクトル、エッジ又はノイズが、入力映像である画像データ10に基づく解析結果から大きく変化することが予想される場合は、スケーリング部201、202又は203で変化した後の解析結果を予測して、スケーリング部201、202又は203が出力する解析結果を変更することもできる。あるいは、スケーリング部201、202又は203ではなく調整部304又は404で同様の解析結果の変更処理を行ってもよい。
また、鮮鋭化ブロック200によりエッジ部のノイズが強調された場合は、スケーリング部203は、ノイズ検出結果34にノイズを示すデータを追加する。あるいは、鮮鋭化ブロック200によりエッジ部のノイズが強調された場合、すなわち、映像の劣化が強調された場合には、後段のノイズ除去ブロック400による劣化除去の補正量を増加させることもできる。この補正量の増加の指示は、ノイズ除去ブロック400において調整部404からノイズ除去部405に対して行うこともできるし、全体制御部500からからノイズ除去部405に対して行うこともできる。
ぶれ補正ブロック300では、ぶれ補正部305が、入力映像である画像データ20に含まれる手ぶれや機械的なぶれを除去する画像処理を行って、出力映像である画像データ30を出力する。ぶれ補正部305は、入力映像である画像データ20を入力するとともに、スケーリング部201が出力した動きベクトル32を調整部304を介して動きベクトル35として入力する。ぶれ補正部305は、動きベクトル35に応じて、急激な画角の動きを抑制するようにぶれ補正を行う。ぶれ補正部305は、全体制御部500が出力した制御信号37によって制御される。
調整部304は、スケーリング部201でスケーリングされた動きベクトル32と、スケーリング部203でスケーリングされたノイズ検出結果34とを入力する。調整部304は、ぶれ補正部305が行うぶれ補正の結果がより良くなるように、ノイズ検出結果34を基に動きベクトル32の精度を向上させ、動きベクトル35に変換する。調整部304は、例えばノイズ検出結果34に基づいて動きベクトル32が含む複数の動きベクトルのなかでノイズのレベルが比較的高い領域内の動きベクトルを無効とすることで動きベクトル35を生成する。また、調整部304は、前の鮮鋭化ブロック200での画像処理によって解析ブロック100から出力された動きベクトル、ノイズ検出結果等の解析結果への変更が大きいと判定される場合には、その変更量を予測して動きベクトル35に所定の補正を行うこともできる。調整部304は、全体制御部500が出力した制御信号31によって制御される。
ぶれ補正部305は、調整後の動きベクトル35を用いてぶれ補正を行う。ぶれ補正アルゴリズムについては一般的なものを用いる。ぶれ補正部305によるぶれ補正を行うと、画像中の動きベクトルは、オフセット、大きさや向が異なることになる。また、ぶれ補正部305は、画面全体の動きを打ち消すように画面全体を逆方向に動かす。そうすると、副作用として画像がない外縁部が入ってきてしまうことがある。それを防ぐためにぶれ補正部305は、あらかじめ入力映像を1.1倍程度に拡大して外縁部の入り込を抑制する対策を行うことができる。これは画像の解像度を増やす事と同じ意味を持つ。したがって、ぶれ補正部305がぶれ補正を行った場合、スケーリング部301は、入力した動きベクトル32を、ぶれ補正部305によるぶれ補正量と拡大分だけスケーリングして、動きベクトル42として出力する。また、スケーリング部302は、ぶれ補正部305によるぶれ補正量と拡大分だけ入力したエッジ画像33をスケーリングして、エッジ画像43として出力する。また、スケーリング部303は、ぶれ補正部305によるぶれ補正量と拡大分だけ入力したノイズ検出結果34をスケーリングして、ノイズ検出結果44として出力する。スケーリング部301、302及び303は、全体制御部500が出力した制御信号38によって制御される。
スケーリング部301が出力した動きベクトル42はスケーリング部401と調整部404とへ入力される。スケーリング部302が出力したエッジ画像43はスケーリング部402と調整部404とへ入力される。スケーリング部303が出力したノイズ検出結果44はスケーリング部403と調整部404とへ入力される。
なお、スケーリング部301、302及び303は、スケーリング部201、202及び203と同様に、レベル補正を行うこともできる。
ノイズ除去ブロック400では、ノイズ除去部405が、入力映像である画像データ30に含まれるノイズを除去する画像処理を行って、出力映像である画像データ40を出力する。ノイズ除去部405は、入力映像である画像データ30を入力するとともに、スケーリング部301が出力した動きベクトル42を調整部404を介して動きベクトル45として入力する。ノイズ除去部405は、また、スケーリング部302が出力したエッジ画像43を調整部404を介してエッジ画像46として入力する。ノイズ除去部405は、さらに、スケーリング部303が出力したノイズ検出結果44を調整部404を介してノイズ検出結果49として入力する。ノイズ除去部405は、動きベクトル45とエッジ画像46とノイズ検出結果49とに応じて所定のフィルタリング処理によってノイズ除去を行い、画質改善を行う。
その際、ノイズ除去部405は、時間軸フィルタリングを行うために動きベクトルを使うことができる。また、ノイズ除去部405は、フィルタリングによってエッジ部分がぼやけてしまうのを抑制するためにエッジ画像を使うことができる。また、ノイズ除去部405は、ノイズ検出結果49を用いてフィルタリング強度や、ノイズの隠蔽が必要な領域を決定することができる。ノイズ除去部405は、全体制御部500が出力した制御信号47によって制御される。
調整部404は、スケーリング部301でスケーリングされた動きベクトル42と、スケーリング部302でスケーリングされたエッジ画像43と、スケーリング部303でスケーリングされたノイズ検出結果44とを入力する。調整部404は、ノイズ除去部405が行うノイズ除去の結果がより良くなるように、他の解析結果に基づいて他の解析結果を補正したり、所定の画像処理結果が予測される場合に各解析結果を補正したりする。調整部404は、全体制御部500が出力した制御信号41によって制御される。
スケーリング部401、402及び403は、スケーリング部301から303と同様の構成である。スケーリング部401、402及び403は、全体制御部500が出力した制御信号48によって制御される。ただし、図3に示した構成例では、ノイズ除去ブロック400が出力する画像データ40に対するさらなる画像処理を予定していない。したがって、スケーリング部401、402及び403は、処理を行わないこととすることができる。ただし、ノイズ除去ブロック400の後段に、さらに所定の画像処理を行う処理ブロックを追加することも可能である。あるいは、例えばぶれ補正ブロック300とノイズ除去ブロック400とを入れ替えるなどの変更も可能である。そのような場合には、スケーリング部401、402及び403は、スケーリング部301から303と同様に、ノイズ除去部405の画像処理結果に応じて、各解析結果をスケーリングして出力するようにする。
全体制御部500は、全体の動作を管理する制御を行う。全体制御部500は、各画質改善ブロックの並び替えおよび処理の順序に応じたスケーリングを行うようスケーリング部201、202、203、301、…を制御する。
なお、上記の説明では、鮮鋭化、ぶれ補正、ノイズ除去の処理の例を用いたが、この3処理に限定されるものではなく、他にも色補正、コントラスト補正、幾何変換などへの応用も可能である。解析処理ブロックでは人物検知、背景の空の検出など行うことができる。また、各画像処理では、例えば、人物検知、背景の空の検出などの解析結果に基づいて特定の領域のみ処理する構成とすることもできる。
ここで、第1の実施形態が奏する効果を、図4を参考図として説明する。図4は、入力映像に対して、鮮鋭化と、ぶれ補正と、ノイズ除去の各画質改善処理を行う画像処理装置の一例を示している。図4に示した画像処理装置4は、鮮鋭化ブロック1200と、ぶれ補正ブロック1300と、ノイズ除去ブロック1400とを備えている。鮮鋭化ブロック1200は、動き検出部1201と、鮮鋭化・拡大部1202と、エッジ検出部1203とを備えている。ぶれ補正ブロック1300は、動き検出部1301と、ぶれ補正部1302とを備えている。ノイズ除去ブロック1400は、ノイズ除去部1402と、エッジ検出部1403と、ノイズ検出部1404とを備えている。
鮮鋭化ブロック1200、ぶれ補正ブロック1300及びノイズ除去ブロック1400では、まず入力映像である画像データ10の特性が解析される。すなわち、最初の鮮鋭化ブロック1200では動き検出部1201による動き検出と、エッジ検出部1203によるエッジ検出とが行われる。次に、鮮鋭化・拡大部1202は、動き検出部1201が検出した解析結果、すなわち前後のフレームで同じ部分がどれだけ動いたかを示す動きベクトルを利用して、鮮鋭化・拡大処理を行う。その際、鮮鋭化・拡大部1202は、エッジ検出部1203によるエッジ検出結果を用いて不自然なエッジの強調を防ぐことができる。
2段目のぶれ補正ブロック1300では、画像データ1020に対する動き検出部1301による動き検出の結果に応じて、ぶれ補正部1302が、急激な画角の動きを抑制するようにぶれ補正を行う。3段目のノイズ除去ブロック1400では、画像データ1030に対するノイズ検出部1404によるノイズ検出結果に基づいてノイズ除去部1402がノイズ除去を行う。その際、ノイズ除去部1402は、エッジ検出部1403によるエッジ検出結果に基づき、エッジ部分がノイズ除去のフィルタリングでぼやけないようにする。
図4に示した画像処理装置4では、処理ブロック間で処理負荷が高い解析処理(各検出部1201、1203、1301、1403及び1404の処理を指す)を重複して複数回行う(動き検出部1201と動き検出部1301との重複及びエッジ検出部1203とエッジ検出部1403との重複)。そのため、システムのスループットが低下することがあるという課題がある。また、画像処理装置4では、前の処理ブロックでデータの特徴が失われると解析処理の精度が低下する場合があるという課題がある。例えば、ぶれ補正ブロック1300の画像データ1030で映像のエッジがなまると、ノイズ除去ブロック1400のエッジ検出部1403によるエッジ検出の精度が低下する。
一方、図1を参照して説明した第1の実施形態の画像処理装置2では、解析ブロック100においてソース映像に対して1回だけ解析処理を行うこととしたので、上記の課題を解決することができる。すなわち、第1の実施形態によれば、システムのスループットが低下するという課題と、前の処理ブロックでデータの特徴が失われることで解析処理の精度が低下するという課題を解決することができる。
さらに、第1の実施形態によれば、スケーリングを各処理ごとに行う事により、各画質改善ブロックの入出力I/F(インターフェース)を容易に統一化することができる。そして、入出力I/Fを統一化することで、画質改善処理の追加、削除、並べ替えが容易となる。
さらに、第1の実施形態によれば、調整部304又は404(あるいは204)を設けたので次の効果を得ることができる。すなわち、鮮鋭化・拡大部205又はぶれ補正部305が行った画像処理によって、調整部304又は調整部404へ入力される解析結果(解析結果32若しくは解析結果34又は42〜44)が入力画像データ(入力画像データ20又は30)の動き、エッジ又はノイズを必ずしも適切には表さなくなってしまうという場合がある。このような場合に、調整部304又は調整部404は、スケーリングされた解析結果(解析結果32若しくは34又は解析結果42〜44)に対して予め用意した所定の調整処理を行うことができる。この調整処理は、例えば、調整部304又は404が出力する解析結果(解析結果35又は解析結果45、46若しくは解析結果49)を次のようなものに近づける処理とすることができる。すなわち、解析結果(解析結果35又は解析結果45、46若しくは解析結果49)を、入力画像データ(入力画像データ20又は30)に対して解析処理を行った場合に得られるであろうと推定される解析結果に近づけるような調整処理によって生成することができる。このような調整処理を行うことで、調整処理を行わない場合と比較して、調整部304又は404が出力する解析結果(解析結果35又は45、解析結果46若しくは49)を用いた画像処理の精度を向上させることが期待できる。
また、複数の画質改善処理を連続して行うと処理の過程でレベル飽和が起きるが、調整部(あるいはスケーリング部)によってレベル飽和を起きにくくすることができる。また、調整部(あるいはスケーリング部)によって、解析結果がノイズにより精度低下する課題を解決することができる。
(第2の実施形態)
図2は、第2の実施形態の画像処理システム2の構成例を示したブロック図である。図2に示した画像処理システム2は、解析ブロック100と、鮮鋭化ブロック600と、ぶれ補正ブロック700と、ノイズ除去ブロック800と、全体制御部900とを備えている。なお、図2において、図1に示したものと同一の構成には同一の符号を用いている。
解析ブロック100は、図1に示した解析ブロック100と同一の構成であり、動き検出部101と、エッジ検出部102と、ノイズ検出部103とを備えている。鮮鋭化ブロック600と、ぶれ補正ブロック700と、ノイズ除去ブロック800とは、入力映像に対して所定の画質改善処理である画像処理を行って、処理した映像を出力する。鮮鋭化ブロック600は、スケーリング部601、602及び603と、調整部604と、鮮鋭化・拡大部605と、スケーリング情報生成部606とを備えている。ぶれ補正ブロック700は、スケーリング部701、702及び703と、調整部704と、ぶれ補正部705と、スケーリング情報更新部706とを備えている。ノイズ除去ブロック800は、スケーリング部801、802及び803と、調整部804と、ノイズ除去部805と、スケーリング情報更新部806とを備えている。
なお、図1を参照して説明した第1の実施形態では、スケーリング部201から203、スケーリング部301から303及びスケーリング部401から403が、他のスケーリング部がスケーリングした解析結果をさらにスケーリングする構成である。一方、図2に示した第2の実施形態では、スケーリング部601から603、スケーリング部701から703及びスケーリング部801から803が、他のスケーリング部がスケーリングした内容を表すスケーリング情報に基づいて解析ブロック100から出力された解析結果をスケーリングする構成である。
図2に示した構成では、動き検出部101が、ソース映像である画像データ10を入力し、例えば複数フレーム分の画像データ10に基づいて動き検出を行い、検出した結果を表す動きベクトル62を出力する。動き検出部101は、動きベクトル62を、スケーリング部601と、スケーリング部701と、スケーリング部801とへ出力する。
エッジ検出部102は、ソース映像である画像データ10を入力し、画像データ10からエッジ検出を行い、検出した結果を画素値で表すエッジ画像63を出力する。エッジ検出部102は、エッジ画像63を、スケーリング部602と、スケーリング部702と、スケーリング部802とへ出力する。
また、ノイズ検出部103は、ソース映像である画像データ10を入力し、画像データ10からノイズを検出し、検出した結果を表すノイズ検出結果64を出力する。ノイズ検出部103は、ノイズ検出結果64を、スケーリング部603と、スケーリング部703と、スケーリング部803とへ出力する。
なお、図2では、解析ブロック100が3種類の解析機能を備えているが、解析ブロック100内の構成はこの組み合わせに制限されるものではない。
図2に示した構成では、鮮鋭化ブロック600において、スケーリング部601が、入力した動きベクトル62をそのまま動きベクトル607として出力し、調整部604へ入力する。スケーリング部602が、入力したエッジ画像63をそのままエッジ画像608として出力し、調整部604へ入力する。そして、スケーリング部603が、入力したノイズ検出結果64をそのままノイズ検出結果609として出力し、調整部604へ入力する。調整部604は、入力した動きベクトル607に対して鮮鋭化・拡大部605が行う画像処理に応じた所定の調整処理を行い、動きベクトル65として鮮鋭化・拡大部605に対して出力する。また、調整部604は、入力したエッジ画像608に対して鮮鋭化・拡大部605が行う画像処理に応じた所定の調整処理を行い、エッジ画像66として鮮鋭化・拡大部605に対して出力する。
スケーリング情報生成部606は、鮮鋭化・拡大部605が行った画像処理の内容に応じて、スケーリング情報711を生成して出力する。スケーリング情報711は、解析ブロック100から出力された各解析結果を鮮鋭化・拡大部605が出力する画像データ60に対して利用する際に、各解析結果に対してどのようなスケーリングが必要となるかを示す情報である。スケーリング情報生成部606は、生成したスケーリング情報711を、スケーリング部701から703と、スケーリング情報更新部706とへ出力する。調整部604は、全体制御部900が出力した制御信号61によって制御される。鮮鋭化・拡大部605は、全体制御部900が出力した制御信号67によって制御される。スケーリング部601から603は、全体制御部900が出力した制御信号621によって制御される。そして、スケーリング情報生成部606は、全体制御部900が出力した制御信号610によって制御される。
ぶれ補正ブロック700では、スケーリング部701が、スケーリング情報生成部606が出力したスケーリング情報711に応じて動きベクトル62をスケーリングして、動きベクトル707として調整部704へ出力する。スケーリング部702が、スケーリング情報生成部606が出力したスケーリング情報711に応じてエッジ画像63をスケーリングして、エッジ画像708として調整部704へ出力する。スケーリング部703が、スケーリング情報生成部606が出力したスケーリング情報711に応じてノイズ検出結果64をスケーリングして、ノイズ検出結果709として調整部704へ出力する。
調整部704は、入力した動きベクトル707に対してぶれ補正部705が行う画像処理に応じた所定の調整処理を行い、動きベクトル75としてぶれ補正部705に対して出力する。スケーリング情報更新部706は、ぶれ補正部705が行った画像処理の内容に応じて、入力したスケーリング情報711を更新して、スケーリング情報811として出力する。スケーリング情報更新部706が出力するスケーリング情報811は、解析ブロック100から出力された各解析結果をぶれ補正部705が出力する画像データ70に対して利用する際に、各解析結果に対してどのようなスケーリングが必要となるかを示す情報である。スケーリング情報更新部706が出力するスケーリング情報811は、鮮鋭化・拡大部605の処理に応じたスケーリングと、ぶれ補正部705による処理に応じたスケーリングとの2つの処理に応じたスケーリングの内容を含む情報となる。
スケーリング情報生成部606は、更新したスケーリング情報811を、スケーリング部801から803と、スケーリング情報更新部806とへ出力する。調整部704は、全体制御部900が出力した制御信号71によって制御される。ぶれ補正部705は、全体制御部900が出力した制御信号77によって制御される。スケーリング部701から703は、全体制御部900が出力した制御信号721によって制御される。そして、スケーリング情報更新部706は、全体制御部900が出力した制御信号710によって制御される。
ノイズ除去ブロック800では、スケーリング部801が、スケーリング情報更新部706が出力したスケーリング情報811に応じて動きベクトル62をスケーリングして、動きベクトル807として調整部804へ出力する。スケーリング部802が、スケーリング情報更新部706が出力したスケーリング情報811に応じてエッジ画像63をスケーリングして、エッジ画像808として調整部804へ出力する。スケーリング部803が、スケーリング情報更新部706が出力したスケーリング情報811に応じてノイズ検出結果64をスケーリングして、ノイズ検出結果809として調整部804へ出力する。
調整部804は、入力した動きベクトル807に対してノイズ除去部805が行う画像処理に応じた所定の調整処理を行い、動きベクトル85としてノイズ除去部805に対して出力する。調整部804は、入力したエッジ画像808に対してノイズ除去部805が行う画像処理に応じた所定の調整処理を行い、エッジ画像86としてノイズ除去部805に対して出力する。調整部804は、入力したノイズ検出結果809に対してノイズ除去部805が行う画像処理に応じた所定の調整処理を行い、ノイズ検出結果89としてノイズ除去部805に対して出力する。
スケーリング情報更新部806は、ノイズ除去部805が行った画像処理の内容に応じて、入力したスケーリング情報811を更新して、スケーリング情報911として出力する。スケーリング情報更新部806が出力するスケーリング情報911は、解析ブロック100から出力された各解析結果をノイズ除去部805が出力する画像データ80に対して利用する際に、各解析結果に対してどのようなスケーリングが必要となるかを示す情報である。スケーリング情報更新部806が出力するスケーリング情報811は、鮮鋭化・拡大部605の処理に応じたスケーリングと、ぶれ補正部705による処理に応じたスケーリングと、ノイズ除去部805による処理に応じたスケーリングとの3つの処理の内容に応じたスケーリングを含む情報となる。ただし、ノイズ除去ブロック800に続く処理ブロックを用いない場合、スケーリング情報更新部806によるスケーリング情報911の更新処理は省略することができる。
調整部804は、全体制御部900が出力した制御信号81によって制御される。ノイズ除去部805は、全体制御部900が出力した制御信号87によって制御される。スケーリング部801から803は、全体制御部900が出力した制御信号821によって制御される。そして、スケーリング情報更新部806は、全体制御部900が出力した制御信号810によって制御される。
なお、第2の実施形態における鮮鋭化・拡大部605、ぶれ補正部705及びノイズ除去部805は、第1の実施形態における鮮鋭化・拡大部205、ぶれ補正部305及びノイズ除去部405と同様の処理を行う構成とすることができる。また、第2の実施形態における調整部604、704及び804は、第1の実施形態における調整部204、204及び204と同様の処理を行う構成とすることができる。
第2の実施形態では、各鮮鋭化ブロック600からノイズ除去ブロック800の各々の画質改善ブロックではスケーリングを行わずにスケーリング情報を生成して、処理を行うごとにスケーリング情報の更新を行っていく。解析ブロック100の動作は図1の解析ブロック100と同様である。
鮮鋭化ブロック200では、スケーリングの動作のみが第1の実施形態と異なる。このブロックが最初の処理であるので、スケーリング情報生成部606が、スケーリング情報711を生成する。鮮鋭化・拡大部605による鮮鋭化・拡大によって解像度が変更となるために、スケーリング情報生成部606では、解像度倍率のスケーリング情報711が生成される。このスケーリング情報711は、解析ブロック100から出力された各解析結果(62、63及び64)をどのようにスケーリングするのかを示す情報であり、スケーリング情報生成部606では、実際の解析結果は変更されない。
なお、スケーリング情報生成部606をスケーリング情報更新部とすることもできる。すなわち、画質改善ブロックのI/F共通化のために、例えば解析ブロック100で無変更(スケーリングを行わないという内容)のスケーリング情報を生成して、鮮鋭化ブロック200に入力する構成としても良い。
なお、鮮鋭化・拡大部605の出力映像である画像データ60の映像信号レベルのダイナミックレンジに余裕がある場合、鮮鋭化・拡大部605は映像信号のレベルを増幅することができる。この場合、スケーリング情報生成部606は、スケーリング情報711に対してその映像信号レベル変更を反映する。逆に画像データ60のダイナミックレンジに余裕がない場合は、鮮鋭化・拡大部605はレベル飽和を防ぐために映像信号のレベルを減衰させることができる。この場合、スケーリング情報生成部606は、スケーリング情報711に対してその映像信号レベル変更を反映する。
ぶれ補正ブロック300では、スケーリング情報711がスケーリング部701から703へ入力される。例えばスケーリング部701は、スケーリング情報711によって動きベクトル62をスケーリングして動きベクトル707として出力する。またスケーリング部703は、スケーリング情報711によってノイズ検出結果64をスケーリングしてノイズ検出結果709として出力する。次に、調整部704は、ノイズ検出結果709を基に動きベクトル707の精度を向上させて、動きベクトル75として出力する。そして、ぶれ補正部705は、調整部704で調整された動きベクトル75を利用して、ぶれ補正処理を行う。なお、ぶれ補正部705によるぶれ補正時に解像度を1.1倍に拡大した場合には、スケーリング情報更新部706によって解像度倍率のスケーリング情報が更新される。レベル飽和を防ぐ処理も鮮鋭化ブロック200と同様に動作する。
ノイズ除去ブロック800では、動きベクトル62とエッジ画像63とノイズ検出結果64との各解析結果を用いて画質改善を行う。ランダムノイズやグレインノイズ除去の結果、ノイズレベルが下がった場合は、スケーリング情報更新部806が、そのノイズレベルの変更に対応するようにスケーリング情報を更新する。すなわち、スケーリング情報更新部806は、ノイズ除去部805の処理によってノイズ検出結果64が示すノイズレベルが変更されたことを示すようスケーリング情報を更新し、スケーリング情報911として出力する。あるいは、ノイズ除去部805の処理によって、スクラッチ、ライン、パルス、ダストなど局所的なノイズが隠蔽された場合は、該当位置のノイズ検出結果を無効にするスケーリング情報がスケーリング情報更新部806によって生成される。
ここで、第2の実施形態が奏する効果を、図5を参考図として説明する。図5は、入力映像に対して、鮮鋭化と、ぶれ補正と、ノイズ除去の各画質改善処理を行う画像処理装置の一例を示している。図5に示した画像処理装置5は、解析ブロック100と、鮮鋭化ブロック2200と、ぶれ補正ブロック2300と、ノイズ除去ブロック2400とを備えている。解析ブロック100は図2に示した解析ブロック100と同じ構成である。鮮鋭化ブロック2200は、鮮鋭化・拡大部2201を備えている。ぶれ補正ブロック2300は、動ぶれ補正部2301と、スケーリング部2302とを備えている。ノイズ除去ブロック2400は、ノイズ除去部2401と、スケーリング部2403と、スケーリング部2404とを備えている。画像処理装置5は、ソース映像である画像データ10を入力し、鮮鋭化、ぶれ補正及びノイズ除去の画像処理を行って、処理した結果の映像である画像データ2040を出力する。
図5に示した画像処理装置5では、解析ブロック100で、動き検出部101による動き検出と、エッジ検出部102によるエッジ検出と、ノイズ検出部103によるノイズ検出は、ソース映像である画像データ10に対して1回だけ行われる。鮮鋭化ブロック2200の動作は図4を参照して説明した鮮鋭化ブロック1200と同じである。ぶれ補正ブロック300では、スケーリング部2302が、鮮鋭化・拡大部2201の処理内容に応じて動き検出部101が出力した解析結果をスケーリングする。たとえば画像データ10の映像が鮮鋭化ブロック2200で拡大されて解像度が変更となった場合は、スケーリング部2302が、動き検出部101が出力した動きベクトルをそれに合わせてスケーリングする。
また、ノイズ除去ブロック400も同様に、エッジ検出部102が出力したエッジ検出結果をスケーリング部2403でスケーリングしてから、ノイズ除去部2401によるノイズ除去に利用する。また、ノイズ検出部103が出力したノイズ検出結果をスケーリング部2404でスケーリングしてから、ノイズ除去部2401によるノイズ除去に利用する。
図5に示した画像処理装置5では、必要に応じてスケーリング部を各処理ブロックに設けている。そのため、処理順序の入れ替えが困難(前の処理に応じたスケーリング処理が必要なため)である事と、処理ブロックの入力映像(2020、2030等)を解析した方がよいケースへの対応ができない事である。
これに対して、図2を参照して説明した第2の実施形態の画像処理システム2では、スケーリングを各処理ごとに行う事により、各画質改善ブロックの入出力I/F(インターフェース)を容易に統一化することができる。そして、入出力I/Fを統一化することで、画質改善処理の追加、削除、並べ替えが容易となる。
さらに、第2の実施形態によれば、調整部704又は804(あるいは604)を設けたので次の効果を得ることができる。すなわち、調整部704又は804は、調整部704又は804が出力する解析結果(解析結果75又は解析結果85、86若しくは解析結果89)を、各処理ブロックの入力映像(画像データ60又は70)を解析した場合に得られるであろうと推定される解析結果に近づけるような調整処理によって生成することができる。この調整処理によれば、調整処理を行わない場合と比較して、画像処理結果がより良好なものとなることが期待できる。
また、複数の画質改善処理を連続して行うと処理の過程でレベル飽和が起きるが、調整部(あるいはスケーリング部)によってレベル飽和を起きにくくすることができる。また、調整部(あるいはスケーリング部)によって、解析結果がノイズにより精度低下する課題を解決することができる。
(第3の実施形態)
図3は、第3の実施形態の画像処理システム3を示すブロック図である。図3に示した画像処理システム3は、解析部11と、解析部12と、画像処理部13と、画像処理部14と、スケーリング部15と、スケーリング部16と、調整部17とを備える。画像処理システム3は、例えば、画像処理用のDSP、汎用のCPU等のプロセッサ及びそのプロセッサが実行するプログラムや、画像処理用ASIC、FPGA及び画像処理用IPコア等を用いて構成することができる。図3に示した各ブロックは、例えば1つのモジュールとして構成することができる。
図3に示した第3の実施形態は、上述した第1の実施形態及び第2の実施形態において同一の概念に分類される各構成要素をそれぞれ包括する上位の概念の構成要素を有して構成されている。すなわち、図3に示した解析部11又は12は、図1に示した動き検出部101、エッジ検出部102及びノイズ検出部103に対応する。図3に示した画像処理部13は、図1に示した鮮鋭化・拡大部205に対応する。図3に示した画像処理部14は、図1に示したぶれ補正部305に対応する。図3に示したスケーリング部15又は16は、図1に示したスケーリング部201、202及び203に対応する。そして、図3に示した調整部17は、図1に示した調整部304に対応する。また、図3に示した画像処理部13は、図1に示したぶれ補正部305に対応する構成とすることもできる。この場合、図3に示した画像処理部14が、図1に示したノイズ除去部405に対応する構成となる。また、図3に示したスケーリング部15又は16が、図1に示したスケーリング部301、302及び303に対応する構成となる。そして、図3に示した調整部17が、図1に示した調整部404に対応する構成となる。
また、図2に示した各構成において、動き検出部101、エッジ検出部102及びノイズ検出部103が、図3に示した解析部11又は12に対応する構成である。鮮鋭化・拡大部605が、図3に示した画像処理部13に対応する構成である。ぶれ補正部705が、図3に示した画像処理部14に対応する構成である。スケーリング部701、702及び703が、図3に示したスケーリング部15又は16に対応する構成である。そして、調整部704が、図3に示した調整部17に対応する構成である。また、ぶれ補正部305は、図3に示した画像処理部13に対応する構成とすることもできる。この場合、ノイズ除去部805が、図3に示した画像処理部14に対応する構成となる。また、スケーリング部801、802及び803が、図3に示したスケーリング部15又は16に対応する構成となる。そして、調整部804が、図3に示した調整部17に対応する構成となる。
複数の解析部11及び12は、それぞれが、入力した画像データを解析し、所定の解析結果を出力する。所定の解析結果とは、画像データに含まれる所定の特徴を検出した結果であり、例えば、動き検出、エッジ検出、ノイズ検出等の結果とすることができる。解析結果は、例えば、検出した特徴を、大きさ、変化の向きや大きさ、画素値の変化の大きさ、検出した位置等を示す値で表すことができる。
画像処理部13は、入力した画像データに対して、解析部11又は/及び解析部12が出力した解析結果に応じて、所定の画像処理を行い、処理した画像データを出力する。画像処理部14は、入力した画像データに対して、解析部11又は/及び12が出力した解析結果に応じて、所定の画像処理を行い、処理した画像データを出力する。画像処理部13及び画像処理部14が行う画像処理は、例えば、鮮鋭化及び拡大、ぶれ補正、ノイズ除去等、劣化した映像の画質改善を行うための処理とすることができる。ただし、画像処理の内容は限定されない。
なお、図3に示した例では、画像処理部14が、解析部11及び12が出力した解析結果を、スケーリング部15及び16を介して入力する。また、画像処理部14は、画像処理部13を前段の画像処理部とした場合に後段の画像処理部として、前段の画像処理部13が出力した(すなわち前段の画像処理部13が処理した)画像データを入力する。
スケーリング部15及び16は、後段の画像処理部14が利用する解析結果を、前段の画像処理部13が行った画像処理の結果に応じてスケーリングする。本実施形態においてスケーリングとは、入力する解析結果に対して所定の変更処理を行って、処理した解析結果を出力することをいう。所定の変更処理とは、所定の場合に解析結果を変更する処理を意味する。所定の場合とは、前段の画像処理部13が行った画像処理によって解析部11及び12が出力した解析結果を後段の画像処理部14が入力する画像データに対してそのままの値では利用することが適切ではない場合である。そして、解析結果を変更する処理とは、後段の画像処理部14が入力する画像データに対して適切な値に、解析結果の値を変更する処理を意味する。スケーリング部15及び16は、解析結果に所定の変更処理を行った解析結果を出力してもよいし、変更前の解析結果に対して所定の変更処理を行うための情報を出力してもよい。なお、スケーリング部15及び16は、画像処理部13から直接あるいは図示していない所定の制御部を介して、画像処理部13が行った画像処理の結果を示す情報を受け取ることができる。
スケーリング部15及び16が変更する解析結果の属性は、例えば、解像度、映像信号レベル、動きベクトルオフセット、ノイズ位置若しくは大きさ等とすることができる。例えば、解析結果が所定の特徴の位置や方向、大きさを画素の座標値や画素数を用いて表す場合、前段の画像処理部13が画像データに対してその解像度を変更する画像処理を行ったとき、スケーリング部15及び16は、解析結果が含む座標値や画素数に対してその解像度の変更に応じた変更処理を行う。あるいは、スケーリング部15及び16は、例えば画像処理部が、画素値のダイナミックレンジを変更するような画像処理を行った場合、解析結果が含む画素値に対してそのダイナミックレンジの変更に応じた変更処理を行う。あるいは、スケーリング部15及び16は、例えば、解析結果がノイズの検出結果である場合にノイズを除去するような画像処理を行ったときに、解析結果が表すノイズのレベルを低下させるような変更処理を解析結果に対して行うことができる。あるいは、スケーリング部15及び16は、解析結果がノイズの検出結果である場合にノイズを除去するような画像処理を行ったときに、ノイズの検出情報を削除する変更処理を解析結果に対して行うこともできる。あるいは、スケーリング部15及び16は、例えば、解析結果が動きベクトルの検出結果である場合にぶれを補正するような画像処理を行ったとき、解析結果が表す動きベクトルの大きさを低下させるような変更処理を解析結果に対して行うこともできる。あるいは、スケーリング部15及び16は、解析結果が動きベクトルの検出結果である場合にぶれを補正するような画像処理を行ったとき、動きベクトルの検出情報を削除するような変更処理を解析結果に対して行うこともできる。
調整部17は、スケーリング部15がスケーリングした解析結果とスケーリング部16がスケーリングした解析結果とを入力する。ただし、調整部17は、スケーリング部15がスケーリングした解析結果とスケーリング部16がスケーリングした解析結果とのいずれか一方を入力するものであってもよい。そして、調整部17は、入力した少なくとも1つの解析結果に対して、画像処理部14が行う画像処理に応じた所定の調整処理を行い、画像処理部14に対して出力する。
調整部17は、例えば、前段の画像処理部13による画像処理によって、解析部11又は12では検出されなかった新たな画質変化が生じ、解析結果がその変化を反映しないものとなった場合には例えば次のように解析結果を変更することができる。すなわち、例えば、前段の画像処理部13による画像処理の後、解析結果を変更しなければ後段の画像処理部14による画像処理に影響が生じると予測される場合に、予測される影響を抑えるための変更を解析結果に対して行うことができる。すなわち、調整部17は、前段の画像処理部13による画像処理によって後段の画像処理部14による画像処理に影響が生じると予測される場合には、その予測内容を解析結果に反映させる調整処理を行うことができる。言い換えれば、調整部17は、後段の画像処理部14が利用する解析結果に対して、前段の画像処理部13が行った画像処理の結果に基づいて予測される後段の画像処理部14が入力する画像データへの変化に応じた補正を行うことができる。
なお、調整部17は、例えば、スケーリング部15及び16から出力された解析結果をそのまま画像処理部14に入力し、画像処理部14がその解析結果に基づいて所定の画像処理を行うと処理結果が適切ではなくなると予測される場合の一例としては、次の場合があげられる。すなわち、解析結果を変更しないと、画像処理部14の画像処理によって画像データにレベル飽和が発生すると予測されるときには、レベル飽和が発生しなくなるように解析結果を変更する調整処理を行うことができる。すなわち、調整部17は、解析結果に対して映像レベルの飽和を予防するための調整を行うことができる。
また、調整部17は、例えば、入力した1つの解析結果に基づいて入力した他の解析結果の内容を調整したり、画像データの撮像時に得られた情報に基づいて解析結果の内容を調整したりすることができる。この調整によって後段の画像処理部14による画像処理の精度を高めることができる。例えば、調整部17は、解析結果の1つに基づいて例えば画像データ中の一部の領域のノイズが強いと検出された場合、その領域にあるエッジ検出の結果や動きベクトルの検出結果を無効としたり、信頼性が低い解析結果であるとの付加情報を設定したりする調整処理を行うことができる。すなわち、解析部11又は12の少なくとも1つが画像データから所定のノイズを検出するための解析処理を行うものである場合、調整部17は、ノイズ検出の情報を基に、他の解析結果に対するノイズによる影響を補正する調整処理を行うことができる。
画像処理部14は、上記のようにしてスケーリング部15及び16によってスケーリングされ、さらに調整部17によって調整処理された解析結果に応じて、前段の画像処理部13から出力された画像データに対して所定の画像処理を行って処理した画像データを出力する。
図3を参照して説明した第3の実施形態の画像処理システム3によれば、スケーリング部15及び16を設けているので、画像処理部13と画像処理部14との間で、同一の解析部11と解析部12とを共用することができる。よって解析処理の共通化によるスループットの向上を図ることができる。また、解析部11及び解析部12は、ソース映像(すなわち画像処理が行われる前の映像)に対して解析処理を行うことができるので、解析精度の向上を図ることができる。
また、例えば、画像処理部14が出力した画像データに対してさらに所定の画像処理を行う場合には、スケーリング部15及び16と、調整部17と、画像処理部14とからなる1組の構成と同様な構成を追加して用いることができる。すなわち、画像処理部14の出力に対して、さらに、スケーリング部15及び16と、調整部17と、画像処理部14と同様な構成を追加することで、解析部を追加することなく、新たな画像処理を追加することができる。この場合、画像データや解析結果の入出力インタフェースを容易に共通化することができる。したがって、複数の画像処理の追加、削除、組み替えを柔軟かつ容易に行うことができる。
上述した第1の実施形態から第3の実施形態は、例えば、アナログビデオテープやフィルムなど経年変化で劣化した映像や、撮影条件の悪い監視カメラ映像、放送のポストプロダクション、ノイズを大量に含んだ医療現場の検査映像、放射線によりノイズが混入した映像など広範囲に利用することができる。
また、第1の実施形態から第3の実施形態を構築する場合の処理プラットフォームは、次のようにすることができる。すなわち、近年、複数の演算処理を持つハードウェアが増えてきたことから、画質改善ブロックを複数の演算部を割り当ててソース映像に対して1回だけ解析処理を行い、以降の複数画質改善ブロックをパイプライン動作させる構成とすることが容易にできる。ネットワークで演算ノードが結合されたクラウド構成のプラットフォーム上でも、解析情報を共有化と、画質改善ブロックごとにモジュール化することで、高スループット化と柔軟な構成への対応が可能となる。また、第1の実施形態から第3の実施形態は、上述したように、画像処理用のDSP、汎用のCPU等のプロセッサ及びそのプロセッサが実行するプログラムとを用いて構成することができるほか、画像処理用ASIC、FPGA及び画像処理用IPコア等からなるLSI(Large Scale Integration)の専用回路、あるいはそれらを組み合わせた構成を用いて実現することができる。
なお、上記各実施形態の変形例について、図6から図8を参照して説明を行う。図6は、各処理が解析結果に与える影響とその影響が予測可能かどうかを示す図である。図6に示したように、鮮鋭化処理は、エッジ検出の結果に大きな影響を与える。ただし、この影響は予測可能である。一方、動き検出の結果には影響は与えない。そして、ノイズ検出の結果には、大きな影響を与え、かつ予測不可能である。なお、予測可能とは、各処理において(すなわち各画像処理部が)意図的に変更する場合を意味する。他方、予測可能とは、処理に付随して意図せず変化してしまう場合を意味する。
また、ぶれ補正処理は、エッジ検出の結果に小さな影響を与える。この影響は予測不可能である。一方、動き検出の結果には大きな影響を与え、かつ、予測不可能である。そして、ノイズ検出の結果には、影響を与えない。また、ノイズ除去処理は、エッジ検出の結果に大きな影響を与え、かつ、この影響は予測不可能である。一方、動き検出の結果には影響を与えない。そして、ノイズ検出の結果には、大きな影響を与えるが、予測可能である。
次に、図7を参照して、各処理が一般的に使用する解析結果について説明する。図7は、各処理が一般的に使用する解析結果をまとめて示す図である。図7に示したように、鮮鋭化処理は、エッジ検出の結果と動き検出の結果とを使用する。ぶれ補正処理は、動き検出の結果を使用する。そして、ノイズ除去処理は、エッジ検出の結果と、ノイズ検出の結果とを使用する。
次に、図8を参照して、各処理が影響を受ける前段の処理について説明する。図8は、各処理が影響を受ける前段の処理を、影響度と予測可能かどうかという点を示してまとめた図である。例えば、鮮鋭化処理は、図7に示したように、エッジ検出結果と動き検出結果とを使用するが、鮮鋭化処理の前にノイズ除去処理が行われた場合、エッジ検出結果はノイズ除去処理によって大きな影響を受け、かつ予測不可能である((1)の場合)。また、鮮鋭化処理は、鮮鋭化処理の前にぶれ補正処理が行われた場合、エッジ検出結果はぶれ補正処理によって小さな影響を受け、かつ予測不可能である((2)の場合)。また、鮮鋭化処理は、鮮鋭化処理の前にぶれ補正処理が行われた場合、動き検出結果はぶれ補正処理によって大きな影響を受けるが、予測可能である((3)の場合)。
一方、ノイズ除去処理は、エッジ検出結果とノイズ検出結果とを使用するが、ノイズ除去処理の前に鮮鋭化処理が行われた場合、エッジ検出結果は鮮鋭化処理によって大きな影響を受けるが、予測可能である((4)の場合)。また、ノイズ除去処理は、ノイズ除去処理の前にぶれ補正処理が行われた場合、エッジ検出結果はぶれ補正処理によって小さな影響を受け、かつ予測不可能である((5)の場合)。また、ノイズ除去処理は、ノイズ除去処理の前に鮮鋭化処理が行われた場合、ノイズ出結果は鮮鋭化処理によって大きな影響を受け、かつ予測不可能である((6)の場合)。
図8に示した図において、解析結果への影響が予測可能なものについては、スケーリング部を用いて解析結果を変更することで、前段の処理による影響を排除することができる。一方、解析結果への影響が予測不可能なものについては、スケーリング部では補正することが困難である。この場合、調整部に次の機能を設けることで、前段(ここで前段とは、1つ前に限らず、2以上前の段も含む)の処理による予測不可能な解析結果への影響を除くことができる。ここでは、予測不可能で影響が大きい(1)と、(6)とに対応する構成について説明する。(1)は、鮮鋭化処理の前にノイズ除去処理がある場合のエッジ検出処理の場合である。すなわち、ノイズ除去処理が行われた場合のエッジは、ソース映像で検出されたエッジと大きく異なっていることがある。したがって、この場合には、ソース映像に対するエッジ検出の結果を使用するよりも、鮮鋭化処理すなわち鮮鋭化ブロックに入力される映像に対してエッジ検出を再度行った結果を使用した方がよい処理結果を得られることがある。そこで、上記実施形態の変形例として、まず鮮鋭化ブロック内あるいは全体制御部内に、以前の処理でノイズ除去処理が行われたのか否かを判定する判定部を設ける。そして、その判定部が以前の処理でノイズ除去処理が行われたと判定した場合には、鮮鋭化ブロックの入力映像に対してエッジ検出を行う処理を実行する。この入力映像に対するエッジ検出結果を使用して、鮮鋭化・拡大部で鮮鋭化処理を追加して実行する。同様に、(6)の場合、すなわち、ノイズ除去処理の前に鮮鋭化処理がある場合のノイズ検出処理の場合も、次のようにノイズ除去ブロックを変形することができる。つまり、まずノイズ除去ブロック内あるいは全体制御部内に、以前の処理で鮮鋭化処理が行われたのか否かを判定する判定部を設ける。そして、その判定部が以前の処理で鮮鋭化処理が行われたと判定した場合には、ノイズ除去ブロックの入力映像に対してノイズ検出を行う処理を追加して実行する。この入力映像に対するノイズ検出結果を使用して、ノイズ除去部でノイズ除去処理を実行する。このような処理を追加することで解析結果への予測不可能な大きな影響を除くことができる。
なお、上記の第1の実施形態の説明において、前処理で映像の劣化が強調された場合は、後段の画像処理で劣化除去の補正量を増加させることが可能である旨の説明を行ったが、その具体例としては、影響が大きく予測が可能な図8の(4)の場合があげられる。すなわち、ノイズ除去処理の前に鮮鋭化処理がある場合のノイズ補正量を増加させることが可能である。この場合、鮮鋭化で強調されすぎたエッジをノイズ除去でなめらかに補正することができる。なお、図8の(3)の場合は、劣化には該当しないのでスケーリングにて対応可能である。
以上説明した少なくともひとつの実施形態によれば、画像処理部毎にスケーリング部を持つことにより、鮮鋭化、ぶれ補正、ノイズ除去等の画像処理を行う後段の画像処理部が利用する解析結果を前段の画像処理部が行った画像処理の結果に応じてスケーリングする。また、調整部がスケーリング部がスケーリングした解析結果を1又は複数入力して入力して少なくとも1の解析結果に対して後段の画像処理部が行う画像処理に応じた所定の調整処理を行い、画像処理部に対して出力する。したがって、解析部を容易に共用化でき、あるいは画像処理の組み合わせ順序を容易に変更すことができる。よって複数の画像処理を組み合わせて行う場合に構成を効率化することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1、2、3…画像処理装置
11、12…解析部
13、14…画像処理部
15、16、201〜203、301〜303、401〜403、601〜603、701〜703、801〜803…スケーリング部
17、204、304、404、604、704、804…調整部
100…解析ブロック
101…動き検出部
102…エッジ検出部
103…ノイズ検出部
200、600…鮮鋭化ブロック
300、700…ぶれ補正ブロック
400、800…ノイズ除去ブロック
205、605…鮮鋭化・拡大部
305、705…ぶれ補正部
405、805…ノイズ除去部
606…スケーリング情報生成部
706、806…スケーリング情報更新部

Claims (11)

  1. 入力される画像データに含まれる所定の特徴を検出し、検出した特徴を示す検出結果を出力する複数の検出部を有する画像解析部と、
    前記画像解析部の検出部が検出する特徴に応じて画質改善処理を行う複数の画質改善処理部であって、
    それぞれが、
    他の前記画質改善処理部による前記画質改善処理の結果に応じて前記検出部の検出結果をスケーリングして出力するスケーリング部と、
    前記スケーリング部がスケーリングした前記検出結果を1又は複数入力し、入力した少なくとも1の前記スケーリングされた検出結果に対して、自己の前記画質改善処理に応じた所定の調整処理を行い、該処理結果を出力する調整部と、
    所定の画像データを入力し、前記調整部が出力した前記処理結果に応じて前記画質改善処理を行い、処理した画像データを出力する画像処理部と
    を有する複数の前記画質改善処理部と
    を備える画像処理システム。
  2. 前記スケーリング部がスケーリングする前記検出結果の属性が、解像度、映像信号レベル、動きベクトルオフセット、又は、ノイズの位置や性質の少なくとも1つである
    請求項1に記載の画像処理システム。
  3. 前記スケーリング部は、他の前記画質改善処理部が有する前記スケーリング部がスケーリングした前記検出結果をさらにスケーリングする
    請求項1又は2に記載の画像処理システム。
  4. 前記スケーリング部は、他の前記画質改善処理部が有する前記スケーリング部がスケーリングした内容を表すスケーリング情報に基づいて前記検出部が出力した前記検出結果をスケーリングする
    請求項1又は2に記載の画像処理システム。
  5. 前記調整部が、前記検出結果に対して映像レベルの飽和を予防するための調整を行う
    請求項1から4のいずれか1項に記載の画像処理システム。
  6. 前記検出部の少なくとも1つが前記画像データから所定のノイズを検出するための検出処理を行うものであり、
    前記調整部が、前記検出部が行った前記ノイズを検出するための検出処理の結果を基に、前記ノイズを検出するための検出処理を行った前記検出部とは異なる前記検出部による前記検出結果のノイズによる影響を補正する
    請求項1から5のいずれか1項に記載の画像処理システム。
  7. 前記調整部が、自己の前記画質改善処理部が有する前記画像処理部が利用する前記検出結果に対して、他の前記画質改善処理部の前記画像処理部が行った前記画質改善処理の結果に基づいて予測される自己の前記画質改善処理部が有する前記画像処理部が入力する前記画像データへの変化に応じた補正を行う
    請求項1から6のいずれか1項に記載の画像処理システム。
  8. 前記調整部が、前記画像データの撮影時に得られた情報を基に、前記検出結果を補正する
    請求項1から7のいずれか1項に記載の画像処理システム。
  9. 前記調整部が、
    他の前記画質改善処理部の前記画像処理部が行った前記画質改善処理で映像の劣化が強調された場合に、自己の前記画質改善処理部が有する前記画像処理部による劣化除去の補正量を増加させる
    請求項1から8のいずれか1項に記載の画像処理システム。
  10. 入力される画像データに含まれる所定の特徴を検出し、検出した特徴を示す検出結果を出力する複数の検出過程を含む画像解析過程と、
    前記画像解析過程において検出される特徴に応じて画質改善処理を行う複数の画質改善処理過程であって、
    それぞれが、
    他の前記画質改善処理過程による前記画質改善処理の結果に応じて前記検出過程の検出結果をスケーリングして出力するスケーリング過程と、
    前記スケーリング過程でスケーリングされた前記検出結果を1又は複数入力し、入力した少なくとも1の前記スケーリングされた検出結果に対して、自己の前記画質改善処理に応じた所定の調整処理を行い、該処理結果を出力する調整過程と、
    所定の画像データを入力し、前記調整過程で出力された前記処理結果に応じて前記画質改善処理を行い、処理した画像データを出力する画像処理過程と
    を含む複数の前記画質改善処理過程と
    を含む画像処理方法。
  11. 入力される画像データに含まれる所定の特徴を検出し、検出した特徴を示す検出結果を出力する複数の検出過程を含む画像解析過程と、
    前記画像解析過程において検出される特徴に応じて画質改善処理を行う複数の画質改善処理過程であって、
    それぞれが、
    他の前記画質改善処理過程による前記画質改善処理の結果に応じて前記検出過程の検出結果をスケーリングして出力するスケーリング過程と、
    前記スケーリング過程でスケーリングされた前記検出結果を1又は複数入力し、入力した少なくとも1の前記スケーリングされた検出結果に対して、自己の前記画質改善処理に応じた所定の調整処理を行い、該処理結果を出力する調整過程と、
    所定の画像データを入力し、前記調整過程で出力された前記処理結果に応じて前記画質改善処理を行い、処理した画像データを出力する画像処理過程と
    を含む複数の前記画質改善処理過程と
    をコンピュータに実行させる画像処理プログラム。
JP2014011624A 2014-01-24 2014-01-24 画像処理システム、画像処理方法及び画像処理プログラム Active JP5932855B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014011624A JP5932855B2 (ja) 2014-01-24 2014-01-24 画像処理システム、画像処理方法及び画像処理プログラム
PCT/JP2014/064727 WO2015111237A1 (ja) 2014-01-24 2014-06-03 画像処理システム、画像処理方法及び画像処理プログラム
US15/216,306 US20160328858A1 (en) 2014-01-24 2016-07-21 Image processing system, image processing method, and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011624A JP5932855B2 (ja) 2014-01-24 2014-01-24 画像処理システム、画像処理方法及び画像処理プログラム

Publications (2)

Publication Number Publication Date
JP2015138519A JP2015138519A (ja) 2015-07-30
JP5932855B2 true JP5932855B2 (ja) 2016-06-08

Family

ID=53681060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011624A Active JP5932855B2 (ja) 2014-01-24 2014-01-24 画像処理システム、画像処理方法及び画像処理プログラム

Country Status (3)

Country Link
US (1) US20160328858A1 (ja)
JP (1) JP5932855B2 (ja)
WO (1) WO2015111237A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767910A (zh) * 2015-04-27 2015-07-08 京东方科技集团股份有限公司 视频图像拼接系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001014119A (ja) * 1999-07-02 2001-01-19 Hitachi Ltd 画像信号処理装置
JP4618956B2 (ja) * 2001-12-10 2011-01-26 ソニー株式会社 信号処理装置、信号処理方法、信号処理システム、プログラム及び媒体
KR100772373B1 (ko) * 2005-02-07 2007-11-01 삼성전자주식회사 복수개의 데이터 처리 장치를 이용한 데이터 처리 장치 및그 방법과, 이를 구현하기 위한 프로그램이 기록된 기록매체
EP2457196A4 (en) * 2009-07-21 2013-02-06 Qualcomm Inc METHOD AND SYSTEM FOR DETECTION AND ENHANCEMENT OF VIDEO IMAGES
CA2854280A1 (en) * 2012-02-09 2013-08-15 Sony Corporation Image processing apparatus and image processing method

Also Published As

Publication number Publication date
JP2015138519A (ja) 2015-07-30
US20160328858A1 (en) 2016-11-10
WO2015111237A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
US9898803B2 (en) Image processing apparatus, image processing method, and recording medium storing image processing program
US9413951B2 (en) Dynamic motion estimation and compensation for temporal filtering
JP6682559B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム及び記憶媒体
WO2015119207A1 (ja) 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体
JP2006129236A (ja) リンギング除去装置およびリンギング除去プログラムを記録したコンピュータ読み取り可能な記録媒体
JP5890547B2 (ja) 画像処理装置
JP4856293B2 (ja) 撮像装置及び画像復元方法
JP6254938B2 (ja) 画像ノイズ除去装置、および画像ノイズ除去方法
JP5388072B2 (ja) モーションブラー制御装置、方法、及びプログラム
JP6985450B2 (ja) 信号対雑音比調整回路、信号対雑音比調整方法および信号対雑音比調整プログラム
US7916970B2 (en) Image processing apparatus, method of same, and program for same
JP5932855B2 (ja) 画像処理システム、画像処理方法及び画像処理プログラム
JP2006285655A (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JPWO2013011797A1 (ja) 劣化復元システム、劣化復元方法およびプログラム
JP7039215B2 (ja) 画像処理装置、画像処理方法、およびプログラム
JP5511403B2 (ja) 画像処理装置およびその制御方法
JP5575048B2 (ja) 画像処理装置および画像形成装置
US9917972B2 (en) Image processor, image-processing method and program
JP7118818B2 (ja) 画像処理方法、画像処理装置、撮像装置、およびプログラム
JP7175702B2 (ja) 像ブレ補正装置およびその制御方法、撮像装置
US9262814B2 (en) Image processing device and method for sharpening a blurred image
JP2018023054A (ja) データ処理装置、データ処理方法、プログラム
JP2015179951A (ja) 画像処理装置、撮像装置、画像処理方法、プログラム、および、記憶媒体
JP5455560B2 (ja) 画像処理装置
JP2010079640A (ja) 画像処理装置及びその方法並びに画像処理プログラム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R151 Written notification of patent or utility model registration

Ref document number: 5932855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151