WO2015119207A1 - 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 - Google Patents
画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 Download PDFInfo
- Publication number
- WO2015119207A1 WO2015119207A1 PCT/JP2015/053278 JP2015053278W WO2015119207A1 WO 2015119207 A1 WO2015119207 A1 WO 2015119207A1 JP 2015053278 W JP2015053278 W JP 2015053278W WO 2015119207 A1 WO2015119207 A1 WO 2015119207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame image
- pixel
- target
- image
- previous frame
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 140
- 238000003672 processing method Methods 0.000 title claims description 10
- 238000012937 correction Methods 0.000 claims abstract description 269
- 230000002123 temporal effect Effects 0.000 claims abstract description 73
- 238000003384 imaging method Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 134
- 230000008569 process Effects 0.000 claims description 131
- 230000006870 function Effects 0.000 claims description 18
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 18
- 230000008859 change Effects 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- 206010047571 Visual impairment Diseases 0.000 description 4
- 238000009499 grossing Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/911—Television signal processing therefor for the suppression of noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0127—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
- H04N7/0132—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter the field or frame frequency of the incoming video signal being multiplied by a positive integer, e.g. for flicker reduction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/681—Motion detection
- H04N23/6812—Motion detection based on additional sensors, e.g. acceleration sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/683—Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20201—Motion blur correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20224—Image subtraction
Definitions
- One aspect of the present invention relates to an image processing apparatus, an image processing method, an image processing program, and a recording medium.
- Patent Document 1 an apparatus for removing noise at the time of moving image capturing is known (for example, see Patent Document 1).
- the image processing apparatus described in Patent Document 1 controls the feedback coefficient of the cyclic noise reduction circuit according to the difference between the video signal one frame before and the current video signal. By applying the feedback coefficient to the movement of the subject, the afterimage of the moving subject is suppressed, and the noise of the non-moving subject is reduced.
- An image processing apparatus is an image processing apparatus that generates an output frame image by inputting and processing a frame image obtained by an imaging apparatus, and is more than a target frame image to be processed.
- a recording unit that records a previously input previous frame image or an output frame image of the previous frame image, a registration unit that aligns the previous frame image or the output frame image of the previous frame image, and the target frame image, and a recording
- a correction unit that performs temporal correction processing for correcting the pixel value of the target frame image using the pixel value of the previous frame image or the pixel value of the output frame image of the previous frame image aligned by the alignment unit
- a generation unit that generates an output frame image of the target frame image using the target frame image corrected by the correction unit.
- the output frame image of the previous frame image and the target frame image are aligned before the target frame image is corrected using the output frame image of the previous frame image.
- the correction unit further performs a spatial correction process for correcting the pixel value of the pixel of the target frame image using the pixel values of a plurality of pixels included in the region including the pixel in the target frame image. May be. Thereby, it is possible to obtain a further excellent noise removal effect by combining the temporal correction process and the spatial correction process.
- the correction unit includes the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the previous frame image aligned by the alignment unit or the pixel value of the corresponding pixel of the output frame of the previous frame image.
- a temporal correction process may be performed on the target pixel using a coefficient corresponding to the difference between the target pixel and the target pixel. With this configuration, for example, temporal correction processing can be performed on a moving subject with strength according to the difference.
- the generation unit may store the output frame image of the target frame image corrected by the correction unit in the recording unit. Therefore, since it is possible to perform a cyclic correction process, an excellent noise removal effect can be achieved efficiently.
- the generation unit determines an area to be cut out from the target frame image corrected by the correction unit based on the movement of the imaging device, and generates an output frame image of the target frame image by cutting out the determined area. May be.
- the correction unit does not have to set pixels included in at least a part of a region different from the region to be cut out of the target frame image as a processing target. With this configuration, the processing efficiency can be improved.
- the correction unit performs temporal correction processing on the target pixel using the pixel value of the target pixel of the target frame image and the weighted average value of the pixel values of the corresponding pixels of the plurality of previous frame images.
- the weight of the pixel value of the corresponding pixel of the previous frame image is set to be smaller as the previous previous frame image, and among the plurality of previous frame images, the corresponding pixel pixels of the previous frame image for a predetermined number of frames in the past from the target frame image
- the weight of the value is such that the difference between the pixel value weight of the corresponding pixel of the previous frame image one frame after the previous frame image or the pixel value weight of the target pixel is a predetermined number of frames before the target frame image.
- the weight of the previous frame image for a predetermined number of frames in the past from the target frame can be set to the same level as the weight of the target frame while suppressing the weight of the past input frame image to some extent.
- ghost (afterimage) can be reduced.
- the average effect can be obtained by setting the weight of the previous frame image for a predetermined number of frames from the target frame to the same level as the weight of the target frame. As a result, it is possible to remove noise having a large amplitude such as flicker without causing ghost.
- the correction unit calculates a weighted average value by directly weighting the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the previous frame image for a predetermined number of frames. Then, the temporal correction processing may be performed on the target pixel using the pixel value of the corresponding pixel in any one of the output frame images of the previous frame image for the predetermined number of frames. According to this configuration, only the previous frame image and output frame image for a predetermined number of frames need be stored. Therefore, by appropriately setting the number of previous frame images used for calculating the weighted average value, the number of previous frame images to be stored can be reduced, and the processing amount can be reduced. As a result, resource reduction and processing efficiency can be achieved.
- the correction unit may directly weight the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the plurality of previous frame images and perform temporal correction processing on the target pixel. Good. According to this configuration, it is possible to improve the degree of freedom of temporal correction processing, such as reducing the influence of the pixel value of a pixel including a moving subject.
- the correction unit performs a temporal correction process on the target pixel using the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the output frame image of the previous frame image.
- a second correction filter that performs temporal correction processing on the target pixel using the filter, the pixel value of the target pixel of the target frame image, and the weighted average value of the pixel values of the corresponding pixels of the plurality of previous frame images;
- the weight of the pixel value of the corresponding pixel of the previous frame image is set to be smaller for the previous previous frame image, and the target frame image is previously set among the plurality of previous frame images.
- the weight of the pixel value of the corresponding pixel of the previous frame image for the predetermined number of frames is the weight of the pixel value of the corresponding pixel of the previous frame image one frame after the previous frame image or the image of the target pixel.
- the difference between the value weight and the weight value of the corresponding pixel of the previous frame image a predetermined number of frames before the target frame image and the previous frame image one frame before the previous frame image by the predetermined number of frames It may be set to be smaller than the difference between the corresponding pixel value and the weight of the corresponding pixel value.
- the correction unit may perform a temporal correction process on the target pixel by switching between the first correction filter and the second correction filter according to the target pixel.
- the noise is removed by using the second correction filter
- the first Noise can be removed by using a correction filter. As described above, it is possible to select an appropriate correction filter in accordance with the target pixel.
- An image processing method is an image processing method for generating an output frame image by inputting and processing a frame image obtained by an imaging device, and from an object frame image to be processed
- a registration step for aligning the previous frame image or the output frame image of the previous frame image and the target frame image, and a recording unit for recording the previous frame image or the output frame image of the previous frame image
- a correction step for performing a temporal correction process for correcting the pixel value of the target frame image using the pixel value of the previous frame image or the pixel value of the output frame image of the previous frame image that is aligned by the alignment step;
- the output frame image of the target frame image is Comprising a generation step of forming, the.
- An image processing program is an image processing program for causing a computer to function so as to generate an output frame image by inputting and processing a frame image obtained by an imaging apparatus.
- a recording unit for recording a previous frame image or an output frame image of the previous frame image input before the target frame image to be processed, an output frame image of the previous frame image or the previous frame image, a target frame image,
- the pixel value of the target frame image is corrected using the pixel value of the previous frame image or the pixel value of the output frame image of the previous frame image that is aligned by the alignment unit with reference to the alignment unit and the recording unit Correction unit for performing temporal correction processing, and target frame image corrected by the correction unit Used to function as a generator for generating an output frame image of the target frame image.
- a recording medium is a computer-readable recording medium storing an image processing program that causes a computer to generate an output frame image by inputting and processing a frame image obtained by an imaging device.
- a recording unit for recording a previous frame image or an output frame image of a previous frame image input before a target frame image to be processed, and outputting a previous frame image or a previous frame image Referring to the registration unit and the recording unit for aligning the frame image and the target frame image, using the pixel value of the previous frame image or the pixel value of the output frame image of the previous frame image aligned by the alignment unit
- a correction unit that performs temporal correction processing for correcting the pixel value of the target frame image, and a correction unit Ri by using the corrected target frame image, and records the image processing program to function as a generator for generating an output frame image of the target frame image.
- an image processing device an image processing method, an image processing program, and a recording medium that have an excellent noise removal effect.
- 4 is a flowchart for explaining the operation of the image processing apparatus according to the first embodiment. It is a schematic diagram explaining an alignment process. It is a schematic diagram explaining a spatial correction process. It is a schematic diagram explaining a time correction process. It is a schematic diagram explaining a time correction process. It is a schematic diagram explaining a time correction process. It is a schematic diagram explaining an output image frame and camera shake correction. It is a figure which shows an example of the weight of an input frame image.
- the image processing apparatus is an apparatus that outputs, for example, a frame image from which noise has been removed, and is preferably employed in the case of, for example, continuous shooting of a plurality of images or moving image shooting.
- the image processing apparatus according to the present embodiment is preferably mounted on a mobile terminal with limited resources such as a mobile phone, a digital camera, and a PDA (Personal Digital Assistant), but is not limited thereto. For example, it may be mounted on a normal computer system.
- a mobile terminal having a moving image capturing function will be described as an example in consideration of ease of understanding.
- FIG. 1 is a functional block diagram of a portable terminal 2 including an image processing device 1 according to the first embodiment.
- a mobile terminal 2 shown in FIG. 1 is a mobile terminal carried by a user, for example, and has a hardware configuration shown in FIG.
- FIG. 2 is a hardware configuration diagram of the mobile terminal 2.
- the portable terminal 2 physically includes a main storage device such as a CPU (Central Processing Unit) 100, a ROM (Read Only Memory) 101, and a RAM (Random Access Memory) 102, a camera, a keyboard, and the like.
- the input device 103, the output device 104 such as a display, the auxiliary storage device 105 such as a hard disk, and the like are configured as a normal computer system.
- Each function of the portable terminal 2 and the image processing apparatus 1 to be described later causes the input device 103 and the output device 104 to be controlled under the control of the CPU 100 by reading predetermined computer software on hardware such as the CPU 100, the ROM 101, and the RAM 102. This is realized by operating and reading and writing data in the main storage device and the auxiliary storage device 105.
- the image processing apparatus 1 normally includes a CPU 100, a main storage device such as the ROM 101 and the RAM 102, an input device 103, an output device 104, an auxiliary storage device 105, and the like. It may be configured as a computer system.
- the mobile terminal 2 may include a communication module or the like.
- the mobile terminal 2 includes a video camera (imaging device) 20, an image processing device 1, and a display unit 22.
- the moving image camera 20 has a function of capturing a moving image.
- the moving image includes frame images that are continuous in time series.
- the video camera 20 may have a continuous imaging function that repeatedly captures images at a predetermined interval from a timing specified by a user operation or the like.
- the moving image camera 20 outputs the frame image to the image processing apparatus 1.
- the image processing apparatus 1 generates an output frame image by inputting and processing a frame image obtained by the moving image camera 20.
- the image processing apparatus 1 has a function of removing noise from an input frame image and outputting an output frame image.
- the noise is a flicker that occurs on a captured image, for example.
- the noise is, for example, a pixel value that is randomly changed over time between frame images (temporal noise), or a pixel value that is extremely different from the pixel values of surrounding pixels in the same frame (spatial noise). Also good.
- the pixel value is information associated with the pixel, and includes, for example, a luminance value, a color difference value, saturation, and the like.
- the image processing apparatus 1 includes, for example, a frame image input unit 10, a positioning unit 11, a correction unit 12, a generation unit 13, and an output frame image recording unit 14.
- the frame image input unit 10 has a function of inputting a frame image captured by the video camera 20.
- the frame image input unit 10 outputs the input frame image to the alignment unit 11.
- the alignment unit 11 has a function of aligning positions between frame images.
- the alignment unit 11 associates coordinates between frame images, for example.
- the alignment unit 11 may calculate the difference between the frame images and associate the coordinates between the frame images, or calculate the position change of the origin between the frame images to correspond the coordinates between the frame images. May be attached.
- the image processing apparatus 1 may include a gyro sensor, and the alignment unit 11 may acquire a motion between the target frame image and the previous frame image using a detection result by the gyro sensor. When the detection result by the gyro sensor is used, noise removal with excellent robustness can be performed compared to the case of using only image data.
- the alignment unit 11 When using a difference between images, for example, the alignment unit 11 includes a target frame image to be processed and a previous frame from which noise is removed by being input to the image processing device 1 before the target frame image. Use the image to align.
- the target frame image is a frame image input this time, for example, and the previous frame image is a frame image one frame before the target frame image, for example.
- the output frame image recording unit 14 stores the previous frame image from which noise has been removed by the previous processing.
- the alignment unit 11 refers to the output frame image recording unit 14, for example, and acquires the previous frame image from which noise has been removed.
- the alignment unit 11 may align the target frame image to be processed with the previous frame image from which noise has not been removed.
- the frame image input unit 10 may store the previous frame image in a recording unit provided in the image processing apparatus 1, and the alignment unit 11 may acquire the previous frame image with reference to the recording unit.
- the image processing apparatus 1 may include a gyro sensor, and a motion between the target frame image and the previous frame image may be acquired based on a detection result by the gyro sensor.
- the alignment unit 11 outputs data related to alignment to the correction unit 12, for example.
- the data related to alignment is, for example, data that associates the origin positions of two frame images.
- the correction unit 12 performs correction processing using the aligned frame images.
- the correction unit 12 performs correction to remove noise from the target frame image.
- a pixel including noise has a pixel value that is randomly changed over time between frame images, or a pixel value (including color noise) that is extremely different from the pixel positions of surrounding pixels in the same frame. Pixel value). For this reason, the correction unit 12 combines two correction processes to remove noise.
- the first correction process performed by the correction unit 12 is a process of performing correction using only the information of the target frame image. That is, the first correction process can be executed even before the alignment process. Since the first correction process is performed using only the information of the target frame image, it can be executed if a two-dimensional coordinate position is acquired.
- the first correction process is referred to as a spatial correction process.
- Spatial correction processing is correction for removing noise (spatial noise) included in the target frame image.
- the noise includes color component and luminance component noise.
- the correction unit 12 averages the pixel values of pixels located around the target pixel using a smoothing filter or the like, and corrects the pixel value including color noise using the calculated average value.
- the merit of the spatial correction processing is that noise can be removed robustly even when a moving subject is present in an image frame.
- the average value may be significantly different from the actual pixel value.
- the smoothing process may be performed on a region where the change in pixel value is small to some extent, for example, a region where the change in pixel value is equal to or less than a predetermined value.
- the correction unit 12 may set a removal level according to the color noise, and may increase the number of corrections as the set level is larger.
- the correction unit 12 may thin out the target pixels to 1 ⁇ 4, and may complement the pixels by, for example, bilinear interpolation after the correction processing. Further, correction for enhancing the color may be additionally performed together with the spatial correction processing. In this case, the image quality of the faded image can be improved by the spatial correction process.
- the second correction process performed by the correction unit 12 is a process of performing correction using information of the aligned previous frame image. That is, the second correction process is executed after the alignment process.
- the second correction process is referred to as a temporal correction process.
- the correction unit 12 creates the target frame image after noise removal using the pixel value of the target frame image and the pixel value of the pixel of the output frame image of the corresponding previous frame image after alignment.
- the correction unit 12 generates the pixel value of the output frame image of the target frame image using the pixel value of the pixel of the corresponding previous frame image after alignment and the pixel value of the pixel of the target frame image.
- the correction unit 12 refers to not only the previous frame image one frame before but also the previous previous frame image from the previous frame image, acquires the pixel value of the previous previous frame image, and acquires the acquired pixel value. May be averaged.
- the correction unit 12 directly uses the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the plurality of previous frame images aligned by the alignment unit 11 in terms of time with respect to the target pixel. Correction processing may be performed.
- the correction filter is a so-called acyclic filter.
- the correction unit 12 may store the previous frame image from which noise has been removed, and correct the target frame image using the stored previous frame image.
- the correction unit 12 may perform temporal correction processing on the target pixel using the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the output frame image of the previous frame image.
- the correction filter is a so-called cyclic filter, and it is only necessary to store the previous frame image from which noise has been removed, so that resource reduction and processing efficiency can be achieved.
- the advantage of the temporal correction process is that, in the case of a landscape or the like, since the pixel values of the previous frame image can be almost adopted, noise (temporal noise) can be effectively removed while leaving the texture.
- the time for the target pixel is calculated using a coefficient corresponding to the difference between the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the output frame of the previous frame image aligned by the alignment unit.
- Correction processing may be performed. For example, if the difference is greater than or equal to a predetermined value, the coefficient is set so that the temporal correction process for the target pixel is weakened, or if the difference is greater than or equal to the predetermined value, the coefficient is not performed. May be set.
- the correction unit 12 performs noise removal by combining one or a combination of the spatial correction process and the temporal correction process described above.
- the correction unit 12 can perform more appropriate correction by making use of the merits of each other process by combining the spatial correction process and the temporal correction process.
- the correction unit 12 outputs the corrected target frame image to the generation unit 13.
- the generation unit 13 cuts out a part of the corrected target frame image to generate an output frame image.
- the generation unit 13 transmits and stores the output frame image to the output frame image recording unit 14 and causes the display unit 22 to display the output frame image.
- the display unit 22 is a device that can display an image or video, for example, a display device.
- FIG. 3 is a flowchart showing the operation of the image processing apparatus 1 according to the first embodiment.
- the control process shown in FIG. 3 is executed, for example, at the timing when the imaging function of the mobile terminal 2 is turned on, and is repeatedly executed at a predetermined cycle.
- the input frame image to be processed is the second and subsequent input frame images.
- the image processing apparatus 1 executes a frame image input process (S10).
- the frame image input unit 10 inputs the target frame image frame i _In from video camera 20.
- the process proceeds to an alignment process (S12: alignment step).
- the positioning unit 11 performs the alignment between the subject frame image frame i _In the previous frame image frame i-1 _In output frame image frame i-1 _Out.
- various methods can be used for alignment.
- FIG. 4 is a diagram illustrating alignment performed using two frame images.
- Figure 4 As shown in the output frame image frame i-1 _Out origin position of the (0 i-1, 0 i -1, 1), the origin position of the target frame image frame i _In (0 i, 0 i, 1 ) Or predetermined feature points, (x i ⁇ 1 , y i ⁇ 1 , 1) and points (x i , y i , 1) may be associated with each other.
- S12 ends, the process proceeds to a spatial correction process (S14: correction step).
- the correction unit 12 to remove noise by using only the image information of the target frame image frame i _In.
- Correcting unit 12 for example, applying a smoothing filter to the entire target frame image frame i _In.
- the pixel values of the pixels included in the area around the target pixel are averaged by the smoothing filter.
- the surrounding area is a predetermined range including the target pixel.
- the predetermined range for example, pixels near 8 of the pixel, pixels near 24, or pixels near 48 are used.
- FIG. 5 is a schematic diagram illustrating the spatial correction process. As shown in FIG. 5, the target pixel P1 is present in the target frame image frame i _In.
- the correcting unit 12 corrects the pixel value of the target pixel P1 using the pixel values of the pixels near the target pixel P1. For example, the correction unit 12 corrects the pixel value of the target pixel P1 so as to approach the average value of the pixel values of the eight neighboring pixels.
- S16 correction step
- step S16 the correction unit 12 by using the image information of the target frame image frame i _In, the image information of the output frame image frame i-1 _Out the previous frame image frame i-1 _In, to remove noise.
- FIG. 6 is a schematic diagram for explaining the temporal correction process. As shown in FIG.
- the previous frame image frame i-1 _In output frame image frame i-1 _Out is corrected with reference from the past previous frame image frame i-2 _In up to the previous frame image frame i-n _In
- the output frame image frame i-1 _Out information of the previous frame image frame i-1 _In by using the output frame image frame i-1 _Out information of the previous frame image frame i-1 _In, by correcting the target frame image frame i _In, previous frame image frame i-1 the previous frame image from _In Referring to frame i-n _In the same effect as when corrected. Therefore, since only the image information of the output frame image frame i-1 _Out of the previous frame image frame i-1 _In needs to be stored, the other previous previous frame images need not be retained. . Therefore, it is possible to provide an excellent noise reduction effect while reducing resources and increasing processing efficiency.
- FIG. 7 is an outline for explaining the temporal correction process.
- the correction unit 12 uses the pixel value of the target pixel P2 i of the target frame image frame i _In, the pixel value of the pixel P2 i-1 at the position corresponding to the target pixel P2 i to generate a subject frame image frame i _In free of noise.
- FIG. 8 is a schematic diagram for explaining temporal correction processing when a moving subject exists.
- pixel P2 i-1 and the moving subject overlap.
- the pixel value of the target pixel P2 i the difference between the pixel value of the target pixel P2 i-1 is increased.
- the difference between the pixel value of the target pixel P2 i-1 is a predetermined value or more, may not be performed temporal correction process.
- the correction unit 12 may weight and average the pixel value of the target pixel P2 i and the pixel value of the pixel P2 i ⁇ 1 .
- the weight of the pixel value of the previous frame is larger than the weight of the pixel value of the target frame image, the effect of noise removal is increased.
- the difference between the pixel values at the corresponding positions is large, that is, when there is a difference greater than or equal to a predetermined value, the temporal correction process may not be performed.
- S18 generation step
- the generation unit 13 In the processing of S18, the generation unit 13 generates an output frame image frame i _Out from the target frame image frame i _In free of noise obtained by the process of S16.
- Generator 13 without the particular process, may be a target frame image frame i _In output frame image frame i _Out the resulting noise has been removed in the process of S16, outputs the region extracted frame image frame i It may be _Out .
- generator 13 when the camera shake correction, the subject frame by determining the area to be cut out from the subject frame image frame i _In free of noise based on the movement of video camera 20, cut out determined area output frame image frame i _Out image frame i _In may be generated.
- Figure 9 is an explanatory diagram for explaining the generation of the output frame image frame i _Out by clipping region.
- the frame images are successively captured by the video camera 20 and frame i-1, frame i, to the center position and Cf i-1, Cf i.
- the image processing apparatus 1 sets a cutout area K i-1 having a size smaller than that of the frame image frame i-1 .
- the size of the cutout area K i-1 is 70 to 90% of the size of the frame image frame i-1 .
- This cutout area K i-1 is an output frame image.
- the moving image camera 20 has changed from the imaging position indicated by (A) to the imaging position indicated by (B) (shift to the upper right direction indicated by a solid line arrow in FIG. 9B).
- a frame image frame i shifted to the upper right with respect to the frame image frame i ⁇ 1 is obtained.
- the image processing apparatus 1 sets a clipping region K i at a position where the movement between the frame image frame i ⁇ 1 and the frame image frame i is canceled (indicated by a dotted arrow in FIG. 9B). Shift down to the left).
- the center positions Cf i-1 and Cf i of the cutout area K i-1 are approximately the same position, an output frame image as if it is still is generated and output to the display unit 22.
- the Note that the segmentation of the region may be performed not only by simple segmentation but also by segmentation combined with affine transformation or perspective transformation.
- the image processing program includes a main module, an input module, and an arithmetic processing module.
- the main module is a part that comprehensively controls image processing.
- the input module operates the mobile terminal 2 so as to acquire a frame image.
- the arithmetic processing module includes an alignment module, a correction module, and a generation module. Functions realized by executing the main module, the input module, and the arithmetic processing module are the same as the functions of the frame image input unit 10, the alignment unit 11, the correction unit 12, and the generation unit 13 of the image processing apparatus 1 described above. It is.
- the image processing program is provided by a recording medium such as a ROM or a semiconductor memory, for example.
- the image processing program may be provided as a data signal via a network.
- the output frame image of the previous frame image and the target frame image can be aligned before the correction of the target frame image. Therefore, the movement of the imaging device between the target frame image and the previous frame image can be canceled. Therefore, since it is possible to avoid weakening the noise removal effect in order to suppress movement, an excellent noise removal effect can be achieved.
- flicker may occur in the captured moving image.
- Flicker is flickering of a moving image caused by a difference in frequency when the blinking frequency of a subject is different from the sampling frequency of a moving image camera (imaging device). Since the flicker has a large amplitude, a ghost (afterimage) may be generated if it is forcibly removed.
- an image processing apparatus for removing noise including noise having a large amplitude such as flicker will be described. Further, flicker will be described as an example of noise having a large amplitude.
- the image processing apparatus 1 according to the second embodiment is configured in substantially the same manner as the image processing apparatus 1 according to the first embodiment, and a partial function of the correction unit 12 is different. Specifically, the correction unit 12 is different in that the correction unit 12 performs correction for removing noise having a larger amplitude from the target frame image. Below, it demonstrates centering on a different point from the image processing apparatus 1 which concerns on 1st Embodiment, and abbreviate
- the correction unit 12 performs correction to remove noise from the target frame image. Flicker can be regarded as time noise because it is flickering of a moving image. For this reason, the correction
- the target frame image and the previous frame image after the alignment and before the temporal correction process are referred to as an input frame image.
- the temporal correction process is a correction process for removing temporal noise including flicker.
- the correction unit 12 performs temporal correction processing on the target pixel using the pixel value of the target pixel of the target frame image and the weighted average value of the pixel values of the corresponding pixels of the plurality of previous frame images. Specifically, the correction unit 12 directly or indirectly weights the pixel values of the pixels of the plurality of input frame images, and calculates a weighted average value by calculating an average value of the weighted pixel values. To do. When the weights are set so that the sum of the pixel value weights of the pixels of the plurality of input frame images is 1, the correction unit 12 adds the weighted pixel values to obtain a weighted average value. Is calculated.
- FIG. 10 is a diagram illustrating an example of the weight of the input frame image.
- the frame number of the target frame image is i
- the frame numbers of the input frame images are i-1, i-2,.
- a large weight is set for the pixel value of the target frame image and the pixel value of the pixel of the previous previous frame image that is temporally close to the target frame image.
- a weight is set to such an extent that the ghost does not increase with respect to the pixel value of the pixel of the previous previous frame image that is distant from the frame image in time.
- the weight of the pixel value of the corresponding pixel of the input frame image is set to be smaller as the past input frame image, and among the plurality of input frame images, the previous frame image of a predetermined number of frames in the past from the target frame image.
- the pixel value weight of the corresponding pixel is such that the difference between the pixel value weight of the corresponding pixel of the previous frame image one frame after the previous frame image or the pixel value weight of the target pixel is a predetermined frame than the target frame image.
- the difference in the weight of the corresponding pixel) (the absolute value of the difference) is the weight of the pixel value of the corresponding pixel of the previous frame image a predetermined number of frames before the target frame image and the previous frame image of the predetermined number of frames. Furthermore, it is set to be smaller than the difference between the pixel value weight of the corresponding pixel of the previous frame image one frame before.
- the predetermined number of frames is, for example, about 1 to 2.
- the correction filter that performs weighted averaging of pixel values directly weights the pixel values of pixels of a plurality of input frame images, and corrects the previous frame image by a non-recursive filter that directly averages the weighted pixel values. After that, it can be configured as a recursive filter using the pixel value of the pixel of the output frame image.
- a temporal correction process using a recursive filter will be described in consideration of a built-in implementation.
- the correction unit 12 directly assigns a weight to the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the previous frame image for a predetermined number of frames in the past that is temporally close to the target frame image, and calculates the weighted average value.
- the target pixel is temporally corrected by the cyclic filter using the calculated average value and the pixel value of the corresponding pixel of the output frame image of the previous frame image for the predetermined number of frames.
- an output frame image used for this recursive filter an output frame image of a previous frame image one frame before the target frame image is preferable.
- the correction unit 12 calculates the weighted average of the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the previous frame image one frame before the target frame image, and the previous frame image one frame before the target frame image.
- the temporal correction process is performed by a recursive filter using the output frame image.
- the temporal correction process using this recursive filter includes the pixel value I j In of the pixel P j In of the jth input frame image frame j_In and the pixel P i Out after correcting the pixel P i In. the value I i Out, the pixel value I i-1 Out of the pixel P i-1 Out after correction of the pixel P i-1 in, the weight w j of each pixel value I j an in, coefficient of recursive filter It is shown by Formula (1) using ⁇ .
- the target frame image is the i-th input frame image.
- Equation (1) In the first term on the right side of Equation (1), n input frame images including the target frame image are used, and the pixel value of the target frame image and the pixels of the previous previous frame image that are temporally close to the target frame image A weighted average value I wave of the values is calculated. In this calculation, the weight w j is set large because it is not affected by the previous previous frame image that is far in time from the target frame image.
- the pixel after correcting the pixel of the previous frame image one frame before the target frame image is used, and the characteristics of the cyclic filter are incorporated.
- the pixel value of the pixel of the previous previous frame image that is temporally far from the target frame image is used for averaging the pixel values of the target pixel.
- the number n of input frame images used in the first term on the right side of Equation (1) is determined in consideration of the balance between the performance of the image processing apparatus 1 and the processing load. Increasing the number n increases the capacity of the buffer and the processing time, so the number n is about 2 to 3, for example.
- the weight w j may be a predetermined constant.
- the correction unit 12 includes a pixel value I i an In of the target pixel P i an In target frame image frame i _In, the subject frame image frame i _In the corresponding pixel of the temporally recent past of the previous frame image frame j _In a pixel value I j an in of P j an in, depending on the difference may dynamically calculate the weight w j.
- the correction unit 12 when the above-described difference (absolute value of the difference) is equal to or greater than a predetermined value, the correction unit 12 performs weighting to reduce the influence of the pixel value I j In of the corresponding pixel P j In on the temporal correction process. If w j is set small or the difference is greater than or equal to a predetermined value, the weight w j may be set so that the pixel value I j In of the corresponding pixel P j In is not used in the temporal correction process. Incidentally, in the calculation of the difference, the target frame image frame i _In temporally recent past of the previous frame image frame j _In is aligned with respect to the subject frame image frame i _In.
- the coefficient ⁇ is a value between 0 and 1.
- the coefficient ⁇ may be a predetermined constant. Similar to the weight w j , in the case of a frame image in which a moving subject is drawn, if the coefficient ⁇ is calculated as a constant, an unnatural image may be obtained. Therefore, the correction unit 12 sets the pixel value I i-1 Out of the corresponding pixel P i-1 Out of the output frame image frame i-1 _Out of the previous frame image frame i-1 _In one frame before the target frame image.
- the coefficient ⁇ may be dynamically calculated according to the difference from the weighted average value I wave .
- the correction unit 12 reduces the influence of the pixel value I i-1 Out of the corresponding pixel P i-1 Out on the temporal correction process. Therefore, when the coefficient ⁇ is set small or the difference is equal to or larger than a predetermined value, the coefficient ⁇ is set so that the pixel value I i-1 Out of the corresponding pixel P i-1 Out is not used for the temporal correction process. It may be set.
- the output frame image frame i-1 _Out is aligned with respect to the subject frame image frame i _In.
- a coefficient may be set so that the spatial correction processing becomes strong.
- the temporal correction process may be performed in units of blocks.
- predetermined pixels such as 8 pixels, 24 pixels, and 48 pixels in the vicinity of the target pixel can be used.
- FIG. 11 is a diagram illustrating another example of the weight of the input frame image.
- the weight distribution shown in FIG. 11 is obtained by setting the number n to 2, the coefficient ⁇ to 1/2, the weight w i to 2/3, and the weight w i ⁇ 1 to 1/3 in Equation (1). .
- the pixel value of the pixel of the target frame image and the pixel of the previous frame image one frame before the target frame image is set to 1/3, and the pixel of the pixel of the previous frame image two or more frames before the target frame image The value is set so that the weight becomes smaller as it goes back in the past.
- the correction unit 12 performs noise removal by combining the temporal correction process described above or the spatial correction process and temporal correction process described above.
- the correction unit 12 can perform more appropriate correction by making use of the merits of each other process by combining the spatial correction process and the temporal correction process.
- the correction unit 12 outputs the corrected target frame image to the generation unit 13.
- the operation of the image processing apparatus 1 is different from the operation of the image processing apparatus 1 according to the first embodiment (FIG. 3) in the temporal correction process S16.
- the temporal correction process S16 will be described.
- FIG. 12 is a flowchart showing details of the temporal correction process S16 of the image processing apparatus 1 according to the second embodiment.
- first correction section 12 is a weighted average I wave calculated target frame image frame i _In and the subject frame image frame i _In temporally recent past used the previous frame image frame j _In of The weight w j is determined (S20).
- processing step S20 for example, the pixel value I i an In of the target pixel P i an In the correction unit 12 subjects the frame image frame i _In, the subject frame image frame i _In temporally recent past of the previous frame image frame j _In
- the weight w j is dynamically calculated according to the difference between the corresponding pixel P j In and the pixel value I j In .
- the correction unit 12 calculates the first term of the above equation (1) using the weight w j determined in S20. That is, the correction unit 12, the target frame image frame i and the pixel value I i an In of the target pixel P i an In the _In, the subject frame image frame i _In temporally recent past of the previous frame image frame j _In the corresponding pixel P a pixel value I j an in of j an in, calculates the weighted mean value I wave of.
- the process of S22 ends, the process proceeds to the coefficient ⁇ determination process (S24).
- the correction unit 12 performs the weighted average value and the pixel value I i-1 Out of the corresponding pixel P i-1 Out of the output frame image frame i- 1_Out of the previous frame image frame i- 1_In.
- the coefficient ⁇ is dynamically calculated according to the difference from I wave .
- the correction unit 12 performs weighting on the pixel value I i-1 Out of the corresponding pixel P i-1 Out of the output frame image frame i- 1_Out of the aligned previous frame image frame i- 1_In.
- the above equation (1) is calculated using the average value I wave and the coefficient ⁇ determined in S24.
- the temporal correction process for one target pixel P i In is thus completed.
- the above-described series of processing is repeatedly performed on each target pixel P i In .
- the process proceeds to output frame image generation processing (S18).
- the image processing apparatus 1 according to the second embodiment performs temporal correction processing using, for example, a recursive filter represented by Expression (2).
- the image processing apparatus according to the comparative example uses the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the output frame image with respect to the previous frame image one frame before the target frame image. Perform temporal correction processing.
- FIG. 13 is a diagram illustrating an example of the weight of an input frame image when a recursive filter is used.
- graph R1 shows the weight of the input frame image when the coefficient ⁇ is set large
- graph R2 shows the weight of the input frame image when the coefficient ⁇ is set small.
- the average effect of the input frame image can be improved.
- the ghost also increases.
- the smaller the coefficient ⁇ the smaller the influence of the past input frame image, so that the ghost can be suppressed, but the average effect of the input frame image is weakened.
- the weight of the pixel value of the corresponding pixel of the input frame image is set to be smaller as the past input frame image, and a plurality of input frames Regarding the weight of the pixel value of the corresponding pixel of the previous frame image for a predetermined number of frames in the past from the target frame image, the weight of the pixel value of the corresponding pixel of the previous frame image one frame after the previous frame image
- the difference between the pixel value weight of the target pixel and the weight value of the corresponding pixel of the previous frame image that is a predetermined number of frames before the target frame image and one frame of the previous frame image that is a predetermined number of frames before the target frame image It is set to be smaller than the difference between the pixel value weight of the corresponding pixel of the previous previous frame image.
- the weight of the previous frame image for the predetermined number of frames in the past from the target frame can be set to be approximately the same as the weight of the target frame.
- ghosts can be reduced by reducing the weight of past input frame images to some extent.
- the average effect can be obtained by setting the weight of the previous frame image for a predetermined number of frames from the target frame to the same level as the weight of the target frame. As a result, it is possible to remove noise having a large amplitude such as flicker without causing ghost.
- the image processing apparatus 1 calculates a weighted average value by directly applying a weight to the pixel value of the corresponding pixel of the n input frame images including the target frame image, and calculates one frame from the weighted average value and the target frame image.
- Temporal correction processing is performed on the target pixel using the pixel value of the corresponding pixel in the output frame image with respect to the previous previous frame image. For this reason, only n input frame images and output frame images need be stored. Therefore, by appropriately setting the number of input frame images used for calculating the weighted average value, the number of input frame images to be stored can be reduced, and the processing amount can be reduced. As a result, resource reduction and processing efficiency can be achieved.
- the above-described embodiment shows an example of the image processing apparatus according to the present invention.
- the image processing apparatus according to the present invention is not limited to the image processing apparatus 1 according to the embodiment, and the image processing apparatus according to the embodiment may be modified or otherwise changed without changing the gist described in each claim. It may be applied to the above.
- the moving image camera 20 may continuously capture still images.
- the image input by the frame image input unit 10 may be an image transmitted from another device via a network.
- the size of the image captured by the video camera 20 is described as being the same. However, the size of the captured image may be different for each imaging.
- the correction unit 12 performs the two correction processes of the temporal correction process and the spatial correction process.
- the correction unit 12 performs the temporal correction process and the spatial correction process. It may be a case where either one is performed.
- a spatial correction process (S14) It may be performed before the alignment process (S12) or after the temporal correction process (S16).
- the generation unit 13 may determine a cut-out area after the alignment processing unit, and then the correction unit 12 may perform noise removal.
- the correction unit 12 may correct at least the pixels in the cutout region. That is, the correction unit 12 does not have to process pixels included in at least a part of an area different from the area of the target frame image. In this case, the processing efficiency can be improved.
- the correction in the spatial correction process of the above-described embodiment may be only the color difference component.
- the correction in the temporal correction process of the above-described embodiment may be only the color difference component.
- the correction degree may be adjusted by assigning weights to the temporal correction process and the spatial correction process.
- the correction unit 12 may perform temporal correction processing using a non-recursive filter.
- the correction unit 12 directly weights the pixel value of the corresponding pixel of the input frame image (the pixel value of the target pixel of the target frame image and the pixel value of the corresponding pixel of the plurality of previous frame images) to obtain the target pixel.
- temporal correction processing may be performed.
- the correction unit 12 performs the correction represented by equation (2).
- a filter (first correction filter) may be provided.
- the correction unit 12 may perform a temporal correction process on the target pixel by switching between the first correction filter and the second correction filter according to the target pixel. For example, when the image processing apparatus 1 has a flicker removal mode that can be set by the user of the portable terminal 2 and the flicker removal mode is not set, the correction unit 12 uses the first correction filter to set the time. When the flicker removal mode is set, the correction unit 12 may perform the temporal correction process using the second correction filter.
- the image processing apparatus 1 may further include a flicker determination unit that determines the presence or absence of flicker.
- the correction unit 12 uses the first correction filter to perform time If the flicker determination unit determines that there is flicker, the correction unit 12 may perform the temporal correction process using the second correction filter.
- the flicker determination unit determines the presence or absence of flicker using a known flicker determination method. For example, if the temporal change amount of the pixel value of the pixel is equal to or greater than a predetermined threshold, the flicker determination unit determines that the pixel has flicker, and the temporal change amount of the pixel value of the pixel is less than the predetermined threshold value. If so, it is determined that the pixel does not have flicker. According to this configuration, it is possible to select an appropriate correction filter according to the target pixel.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Image Processing (AREA)
Abstract
Description
図1は、第1実施形態に係る画像処理装置1を備える携帯端末2の機能ブロック図である。図1に示す携帯端末2は、例えばユーザにより携帯される移動端末であり、図2に示すハードウェア構成を有する。図2は、携帯端末2のハードウェア構成図である。図2に示すように、携帯端末2は、物理的には、CPU(Central Processing Unit)100、ROM(Read Only Memory)101及びRAM(Random Access Memory)102等の主記憶装置、カメラ又はキーボード等の入力デバイス103、ディスプレイ等の出力デバイス104、ハードディスク等の補助記憶装置105などを含む通常のコンピュータシステムとして構成される。後述する携帯端末2及び画像処理装置1の各機能は、CPU100、ROM101、RAM102等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPU100の制御の元で入力デバイス103及び出力デバイス104を動作させるとともに、主記憶装置や補助記憶装置105におけるデータの読み出し及び書き込みを行うことで実現される。なお、上記の説明は携帯端末2のハードウェア構成として説明したが、画像処理装置1がCPU100、ROM101及びRAM102等の主記憶装置、入力デバイス103、出力デバイス104、補助記憶装置105などを含む通常のコンピュータシステムとして構成されてもよい。また、携帯端末2は、通信モジュール等を備えてもよい。
ところで、撮像された動画には、フリッカが発生する場合がある。フリッカとは、被写体の明滅の周波数と、動画カメラ(撮像装置)のサンプリング周波数と、が異なる場合に、その周波数の差によって生じる動画の明滅である。このフリッカは振幅が大きいので、無理に除去しようとすると、ゴースト(残像)を生じることがある。以下では、このフリッカのような振幅が大きいノイズを含むノイズを除去するための画像処理装置を説明する。また、振幅が大きいノイズとしては、フリッカを例として説明する。
Claims (13)
- 撮像装置により得られたフレーム画像を入力して処理することによって出力フレーム画像を生成する画像処理装置であって、
処理対象となる対象フレーム画像よりも前に入力された前フレーム画像又は前記前フレーム画像の出力フレーム画像を記録する記録部と、
前記前フレーム画像又は前記前フレーム画像の出力フレーム画像と、前記対象フレーム画像とを位置合わせする位置合わせ部と、
前記記録部を参照し、前記位置合わせ部により位置合わせされた前記前フレーム画像の画素値又は前記前フレーム画像の出力フレーム画像の画素値を用いて前記対象フレーム画像の画素値を補正する時間的補正処理を行う補正部と、
前記補正部により補正された前記対象フレーム画像を用いて、前記対象フレーム画像の出力フレーム画像を生成する生成部と、
を備える画像処理装置。 - 前記補正部は、前記対象フレーム画像の画素の画素値を、当該対象フレーム画像における当該画素を含む領域に含まれる複数の画素の画素値を用いて補正する空間的補正処理をさらに行う請求項1に記載の画像処理装置。
- 前記補正部は、前記対象フレーム画像の対象画素の画素値と、前記位置合わせ部により位置合わせされた前記前フレーム画像の対応画素の画素値又は前記前フレーム画像の出力フレームの対応画素の画素値との差分に応じた係数を用いて、前記対象画素に対して前記時間的補正処理を行う請求項1又は2項に記載の画像処理装置。
- 前記生成部は、前記補正部により補正された前記対象フレーム画像の出力フレーム画像を前記記録部に格納する請求項1~3の何れか一項に記載の画像処理装置。
- 前記生成部は、前記撮像装置の動きに基づいて前記補正部により補正された前記対象フレーム画像から切り出す領域を決定し、決定された領域を切り出すことによって前記対象フレーム画像の出力フレーム画像を生成する請求項1~4の何れか一項に記載の画像処理装置。
- 前記補正部は、前記対象フレーム画像の前記領域とは異なる領域の少なくとも一部に含まれる画素については、処理の対象としない請求項5に記載の画像処理装置。
- 前記補正部は、前記対象フレーム画像の対象画素の画素値、及び、複数の前記前フレーム画像の対応画素の画素値の加重平均値を用いて、前記対象画素に対して前記時間的補正処理を行い、
前記前フレーム画像の対応画素の画素値の重みは、過去の前記前フレーム画像ほど小さく設定され、
前記複数の前記前フレーム画像のうち、前記対象フレーム画像から過去に所定フレーム数分の前記前フレーム画像の対応画素の画素値の重みは、当該前フレーム画像よりも1フレーム後の前記前フレーム画像の対応画素の画素値の重み又は前記対象画素の画素値の重みとの差分が、前記対象フレーム画像よりも前記所定フレーム数分前の前記前フレーム画像の対応画素の画素値の重みと、前記所定フレーム数分前の前記前フレーム画像よりも1フレーム前の前記前フレーム画像の対応画素の画素値の重みと、の差分よりも小さくなるように設定される、請求項1に記載の画像処理装置。 - 前記補正部は、前記対象画素の画素値及び前記所定フレーム数分の前記前フレーム画像の対応画素の画素値に直接重みを付与して加重平均値を算出し、前記加重平均値と、前記所定フレーム数分の前記前フレーム画像のいずれかの出力フレーム画像の対応画素の画素値と、を用いて、前記対象画素に対して前記時間的補正処理を行う、請求項7に記載の画像処理装置。
- 前記補正部は、前記対象画素の画素値及び前記複数の前記前フレーム画像の対応画素の画素値に直接重み付けをして、前記対象画素に対して前記時間的補正処理を行う請求項7に記載の画像処理装置。
- 前記補正部は、
前記対象フレーム画像の対象画素の画素値及び前記前フレーム画像の出力フレーム画像の対応画素の画素値を用いて、前記対象画素に対して前記時間的補正処理を行う第1補正フィルタと、
前記対象画素の画素値、及び、複数の前記前フレーム画像の対応画素の画素値の加重平均値を用いて、前記対象画素に対して前記時間的補正処理を行う第2補正フィルタと、
を備え、
前記第2補正フィルタでは、前記前フレーム画像の対応画素の画素値の重みは、過去の前記前フレーム画像ほど小さく設定され、前記複数の前記前フレーム画像のうち、前記対象フレーム画像から過去に所定フレーム数分の前記前フレーム画像の対応画素の画素値の重みは、当該前フレーム画像よりも1フレーム後の前記前フレーム画像の対応画素の画素値の重み又は前記対象画素の画素値の重みとの差分が、前記対象フレーム画像よりも前記所定フレーム数分前の前記前フレーム画像の対応画素の画素値の重みと、前記所定フレーム数分前の前記前フレーム画像よりも1フレーム前の前記前フレーム画像の対応画素の画素値の重みと、の差分よりも小さくなるように設定され、
前記補正部は、前記対象画素に応じて、前記第1補正フィルタと、前記第2補正フィルタと、を切り替えて、前記対象画素に対して前記時間的補正処理を行う請求項1に記載の画像処理装置。 - 撮像装置により得られたフレーム画像を入力して処理することによって出力フレーム画像を生成する画像処理方法であって、
処理対象となる対象フレーム画像よりも前に入力された前フレーム画像又は当該前フレーム画像の出力フレーム画像と、前記対象フレーム画像とを位置合わせする位置合わせステップと、
前記前フレーム画像又は前記前フレーム画像の出力フレーム画像を記録する記録部を参照し、前記位置合わせステップにより位置合わせされた前記前フレーム画像の画素値又は前記前フレーム画像の出力フレーム画像の画素値を用いて前記対象フレーム画像の画素値を補正する時間的補正処理を行う補正ステップと、
前記補正ステップにより補正された前記対象フレーム画像を用いて、前記対象フレーム画像の出力フレーム画像を生成する生成ステップと、
を備える画像処理方法。 - 撮像装置により得られたフレーム画像を入力して処理することによって出力フレーム画像を生成するようにコンピュータを機能させる画像処理プログラムであって、
前記コンピュータを、
処理対象となる対象フレーム画像よりも前に入力された前フレーム画像又は前記前フレーム画像の出力フレーム画像を記録する記録部、
前記前フレーム画像又は前記前フレーム画像の出力フレーム画像と、前記対象フレーム画像とを位置合わせする位置合わせ部、
前記記録部を参照し、前記位置合わせ部により位置合わせされた前記前フレーム画像の画素値又は前記前フレーム画像の出力フレーム画像の画素値を用いて前記対象フレーム画像の画素値を補正する時間的補正処理を行う補正部、及び、
前記補正部により補正された前記対象フレーム画像を用いて、前記対象フレーム画像の出力フレーム画像を生成する生成部
として機能させる画像処理プログラム。 - 撮像装置により得られたフレーム画像を入力して処理することによって出力フレーム画像を生成するようにコンピュータを機能させる画像処理プログラムを記録したコンピュータ読取可能な記録媒体であって、
前記コンピュータを、
処理対象となる対象フレーム画像よりも前に入力された前フレーム画像又は前記前フレーム画像の出力フレーム画像を記録する記録部、
前記前フレーム画像又は前記前フレーム画像の出力フレーム画像と、前記対象フレーム画像とを位置合わせする位置合わせ部、
前記記録部を参照し、前記位置合わせ部により位置合わせされた前記前フレーム画像の画素値又は前記前フレーム画像の出力フレーム画像の画素値を用いて前記対象フレーム画像の画素値を補正する時間的補正処理を行う補正部、及び、
前記補正部により補正された前記対象フレーム画像を用いて、前記対象フレーム画像の出力フレーム画像を生成する生成部
として機能させる前記画像処理プログラムを記録した記録媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015540959A JP5974250B2 (ja) | 2014-02-07 | 2015-02-05 | 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 |
KR1020157022802A KR101652658B1 (ko) | 2014-02-07 | 2015-02-05 | 화상 처리 장치, 화상 처리 방법, 화상 처리 프로그램 및 기록 매체 |
US14/768,934 US10200649B2 (en) | 2014-02-07 | 2015-02-05 | Image processing device, image processing method and recording medium for reducing noise in image |
CN201580000272.4A CN104995908B (zh) | 2014-02-07 | 2015-02-05 | 图像处理装置以及图像处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014022122 | 2014-02-07 | ||
JP2014-022122 | 2014-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015119207A1 true WO2015119207A1 (ja) | 2015-08-13 |
Family
ID=53778008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053278 WO2015119207A1 (ja) | 2014-02-07 | 2015-02-05 | 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10200649B2 (ja) |
JP (1) | JP5974250B2 (ja) |
KR (1) | KR101652658B1 (ja) |
CN (1) | CN104995908B (ja) |
TW (1) | TWI590661B (ja) |
WO (1) | WO2015119207A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017064829A1 (ja) * | 2015-10-15 | 2017-04-20 | ソニー株式会社 | 映像信号処理装置、映像信号処理方法およびプログラム |
JP2019500762A (ja) * | 2015-12-07 | 2019-01-10 | グーグル エルエルシー | マルチスコピック雑音削減およびハイ・ダイナミック・レンジのためのシステムおよび方法 |
JP2019062528A (ja) * | 2017-09-27 | 2019-04-18 | キヤノン株式会社 | 画像処理方法、画像処理装置、撮像装置、およびプログラム |
JP2020031422A (ja) * | 2018-08-22 | 2020-02-27 | アークソフト コーポレイション リミテッドArcSoft Corporation Limited | 画像処理方法及び装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6411768B2 (ja) * | 2014-04-11 | 2018-10-24 | Hoya株式会社 | 画像処理装置 |
WO2017122810A1 (ja) * | 2016-01-15 | 2017-07-20 | 株式会社モルフォ | 画像処理装置、画像処理方法、画像処理プログラム及び記憶媒体 |
TWI604731B (zh) * | 2016-08-05 | 2017-11-01 | 瑞昱半導體股份有限公司 | 影像濾波方法及其影像濾波裝置 |
US10504211B2 (en) * | 2017-03-10 | 2019-12-10 | Disney Enterprises, Inc. | Sample-based video denoising |
EP3462725A1 (en) * | 2017-09-27 | 2019-04-03 | Canon Kabushiki Kaisha | Image processing method, image processing apparatus, imaging apparatus, and program |
US10534837B2 (en) * | 2017-11-13 | 2020-01-14 | Samsung Electronics Co., Ltd | Apparatus and method of low complexity optimization solver for path smoothing with constraint variation |
CN109639931B (zh) * | 2018-12-25 | 2022-08-19 | 努比亚技术有限公司 | 一种拍照降噪的方法、移动终端以及计算机可读存储介质 |
CN110335219B (zh) * | 2019-07-17 | 2021-09-28 | 中国电子科技集团公司第十三研究所 | 一种像素畸变的校正方法、校正装置及终端 |
CN114679553A (zh) * | 2020-12-24 | 2022-06-28 | 华为技术有限公司 | 视频降噪方法及装置 |
CN115131222A (zh) * | 2021-03-29 | 2022-09-30 | 华为技术有限公司 | 一种图像处理方法以及相关设备 |
JP7253001B2 (ja) * | 2021-03-30 | 2023-04-05 | 本田技研工業株式会社 | 情報処理装置及び方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008118570A (ja) * | 2006-11-07 | 2008-05-22 | Canon Inc | ぶれ補正装置及び方法 |
JP2008294601A (ja) * | 2007-05-23 | 2008-12-04 | Sony Corp | 画像処理方法および画像処理装置 |
JP2009105533A (ja) * | 2007-10-22 | 2009-05-14 | Sony Corp | 画像処理装置、撮像装置、画像処理方法および撮像画像処理方法 |
JP2010183127A (ja) * | 2009-02-03 | 2010-08-19 | Sony Corp | 画像処理装置、画像処理方法および撮像装置 |
JP2011254262A (ja) * | 2010-06-01 | 2011-12-15 | Canon Inc | 画像処理装置、画像処理方法 |
JP2012034361A (ja) * | 2010-07-30 | 2012-02-16 | Fujitsu Ltd | 手ぶれ補正方法及び手ぶれ補正装置 |
JP2013003610A (ja) * | 2011-06-10 | 2013-01-07 | Sony Corp | 画像処理装置および方法、プログラム、並びに記録媒体 |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4090221A (en) * | 1972-03-13 | 1978-05-16 | Bell Telephone Laboratories, Incorporated | Apparatus for improving video signal-to-noise ratio |
GB1515551A (en) * | 1975-04-25 | 1978-06-28 | British Broadcasting Corp | Noise reduction in electrical signals |
US4339803A (en) * | 1976-10-14 | 1982-07-13 | Micro Consultants Limited | Video frame store and real time processing system |
US4240106A (en) * | 1976-10-14 | 1980-12-16 | Micro Consultants, Limited | Video noise reduction |
US4064530A (en) * | 1976-11-10 | 1977-12-20 | Cbs Inc. | Noise reduction system for color television |
JPS592227B2 (ja) * | 1978-08-21 | 1984-01-17 | 株式会社日立製作所 | 雑音除去方式 |
GB2033190B (en) * | 1978-09-21 | 1983-02-09 | Sony Corp | Video noise reduction system |
JP2508078B2 (ja) * | 1987-04-30 | 1996-06-19 | 株式会社島津製作所 | X線画像処理装置 |
JP3159465B2 (ja) * | 1991-05-17 | 2001-04-23 | 株式会社東芝 | 画像表示装置 |
US5384865A (en) * | 1992-06-01 | 1995-01-24 | Eastman Kodak Company | Adaptive, hybrid median filter for temporal noise suppression |
US5963675A (en) * | 1996-04-17 | 1999-10-05 | Sarnoff Corporation | Pipelined pyramid processor for image processing systems |
US6567564B1 (en) * | 1996-04-17 | 2003-05-20 | Sarnoff Corporation | Pipelined pyramid processor for image processing systems |
JP3773642B2 (ja) * | 1997-12-18 | 2006-05-10 | 株式会社東芝 | 画像処理装置および画像形成装置 |
JP2000209507A (ja) | 1999-01-12 | 2000-07-28 | Toshiba Corp | 固体撮像装置の低ノイズ化回路 |
US6681058B1 (en) * | 1999-04-15 | 2004-01-20 | Sarnoff Corporation | Method and apparatus for estimating feature values in a region of a sequence of images |
US7085318B2 (en) * | 2000-06-15 | 2006-08-01 | Sony Corporation | Image processing system, image processing method, program, and recording medium |
AU2003236261A1 (en) * | 2002-05-02 | 2003-11-17 | Honda Giken Kogyo Kabushiki Kaisha | Image sensor output correction device |
US7119837B2 (en) * | 2002-06-28 | 2006-10-10 | Microsoft Corporation | Video processing system and method for automatic enhancement of digital video |
US7433540B1 (en) * | 2002-10-25 | 2008-10-07 | Adobe Systems Incorporated | Decomposing natural image sequences |
JP3960258B2 (ja) * | 2003-04-28 | 2007-08-15 | ソニー株式会社 | 信号処理装置および信号処理方法 |
US20050028073A1 (en) * | 2003-07-28 | 2005-02-03 | Henry Steven G. | Method and system for automating workflows |
GB2407226B (en) * | 2003-10-18 | 2008-01-23 | Hewlett Packard Development Co | Image processing scheme |
US7710498B2 (en) * | 2004-02-13 | 2010-05-04 | Sony Corporation | Image processing apparatus, image processing method and program |
WO2005093654A2 (en) * | 2004-03-25 | 2005-10-06 | Fatih Ozluturk | Method and apparatus to correct digital image blur due to motion of subject or imaging device |
US7199838B2 (en) * | 2004-06-17 | 2007-04-03 | Samsung Electronics Co., Ltd. | Motion adaptive noise reduction apparatus and method for video signals |
US7535517B2 (en) * | 2005-04-14 | 2009-05-19 | Samsung Electronics Co., Ltd. | Method of motion compensated temporal noise reduction |
US7970170B2 (en) * | 2005-05-09 | 2011-06-28 | Lockheed Martin Corporation | Continuous extended range image processing |
US7548659B2 (en) * | 2005-05-13 | 2009-06-16 | Microsoft Corporation | Video enhancement |
US7728909B2 (en) * | 2005-06-13 | 2010-06-01 | Seiko Epson Corporation | Method and system for estimating motion and compensating for perceived motion blur in digital video |
KR101179887B1 (ko) * | 2006-02-09 | 2012-09-06 | 삼성전자주식회사 | 이동통신단말기의 화면설정 방법 및 그 장치 |
JP4178481B2 (ja) * | 2006-06-21 | 2008-11-12 | ソニー株式会社 | 画像処理装置、画像処理方法、撮像装置および撮像方法 |
JP4973031B2 (ja) * | 2006-07-03 | 2012-07-11 | ソニー株式会社 | ノイズ抑圧方法、ノイズ抑圧方法のプログラム、ノイズ抑圧方法のプログラムを記録した記録媒体及びノイズ抑圧装置 |
KR101008917B1 (ko) * | 2006-09-14 | 2011-01-17 | 후지쯔 가부시끼가이샤 | 화상 처리 방법 및 장치와 그 프로그램을 기록한 기록 매체 |
JP2008294696A (ja) * | 2007-05-24 | 2008-12-04 | Sony Corp | 映像信号処理方法、映像信号処理方法のプログラム、映像信号処理方法のプログラムを記録した記録媒体及び映像信号処理装置 |
KR101442153B1 (ko) * | 2008-01-15 | 2014-09-25 | 삼성전자 주식회사 | 저조도 영상 처리 방법 및 시스템 |
TWI381719B (zh) * | 2008-02-18 | 2013-01-01 | Univ Nat Taiwan | 穩定全幅式視訊之方法 |
CN101262559B (zh) * | 2008-03-28 | 2010-09-29 | 北京中星微电子有限公司 | 一种序列图像噪声消除的方法及装置 |
EP2184914A1 (en) * | 2008-07-16 | 2010-05-12 | Panasonic Corporation | Image processing device, image processing method, program, recording medium, and integrated circuit |
JP2010141755A (ja) * | 2008-12-15 | 2010-06-24 | Nippon Telegr & Teleph Corp <Ntt> | 道路監視システム、道路監視方法および道路監視プログラム |
US8903191B2 (en) * | 2008-12-30 | 2014-12-02 | Intel Corporation | Method and apparatus for noise reduction in video |
US8570386B2 (en) * | 2008-12-31 | 2013-10-29 | Stmicroelectronics S.R.L. | Method of merging images and relative method of generating an output image of enhanced quality |
JP2010200179A (ja) * | 2009-02-26 | 2010-09-09 | Olympus Corp | 画像処理装置、画像処理方法、画像処理プログラムおよび画像処理プログラムが格納されたプログラム記憶媒体 |
JP2010219807A (ja) * | 2009-03-16 | 2010-09-30 | Panasonic Corp | 画像処理装置および画像処理方法 |
JP5374217B2 (ja) * | 2009-04-22 | 2013-12-25 | キヤノン株式会社 | 画像処理装置およびその方法 |
US8350966B2 (en) * | 2009-06-08 | 2013-01-08 | Broadcom Corporation | Method and system for motion compensated noise level detection and measurement |
US8144253B2 (en) * | 2009-07-21 | 2012-03-27 | Sharp Laboratories Of America, Inc. | Multi-frame approach for image upscaling |
US8743287B2 (en) * | 2009-07-24 | 2014-06-03 | Broadcom Corporation | Method and system for mitigating motion trail artifacts and improving low contrast contours in temporal filtering based noise reduction |
US8610826B2 (en) * | 2009-08-27 | 2013-12-17 | Broadcom Corporation | Method and apparatus for integrated motion compensated noise reduction and frame rate conversion |
KR101616874B1 (ko) * | 2009-09-23 | 2016-05-02 | 삼성전자주식회사 | 다중 영상 합성 방법 및 그 장치 |
US8588551B2 (en) * | 2010-03-01 | 2013-11-19 | Microsoft Corp. | Multi-image sharpening and denoising using lucky imaging |
US8830360B1 (en) * | 2010-08-25 | 2014-09-09 | Sri International | Method and apparatus for optimizing image quality based on scene content |
JP2012142827A (ja) * | 2011-01-05 | 2012-07-26 | Sony Corp | 画像処理装置および画像処理方法 |
JP2012142829A (ja) * | 2011-01-05 | 2012-07-26 | Sony Corp | 画像処理装置および画像処理方法 |
JP5792990B2 (ja) | 2011-04-28 | 2015-10-14 | キヤノン株式会社 | 画像処理装置およびその制御方法 |
GB2497507B (en) * | 2011-10-14 | 2014-10-22 | Skype | Received video stabilisation |
US20130107064A1 (en) * | 2011-10-27 | 2013-05-02 | Qualcomm Incorporated | Sensor aided image stabilization |
TWI459810B (zh) * | 2011-11-22 | 2014-11-01 | Altek Corp | 影像處理裝置及其處理方法 |
JP5362878B2 (ja) * | 2012-05-09 | 2013-12-11 | 株式会社日立国際電気 | 画像処理装置及び画像処理方法 |
EP2680567A1 (en) * | 2012-06-25 | 2014-01-01 | Axis AB | Video noise reduction |
EP2680568B1 (en) * | 2012-06-25 | 2016-05-25 | ST-Ericsson SA | Video stabilisation with deblurring |
KR101910870B1 (ko) | 2012-06-29 | 2018-10-24 | 삼성전자 주식회사 | 잡음 제거 장치, 시스템 및 방법 |
JP2014036401A (ja) * | 2012-08-10 | 2014-02-24 | Sony Corp | 撮像装置、画像信号処理方法及びプログラム |
JP2014187610A (ja) * | 2013-03-25 | 2014-10-02 | Sony Corp | 画像処理装置、画像処理方法、プログラムおよび撮像装置 |
US9692975B2 (en) * | 2013-04-10 | 2017-06-27 | Microsoft Technology Licensing, Llc | Motion blur-free capture of low light high dynamic range images |
US10382674B2 (en) * | 2013-04-15 | 2019-08-13 | Qualcomm Incorporated | Reference image selection for motion ghost filtering |
-
2015
- 2015-02-05 KR KR1020157022802A patent/KR101652658B1/ko active IP Right Grant
- 2015-02-05 JP JP2015540959A patent/JP5974250B2/ja active Active
- 2015-02-05 WO PCT/JP2015/053278 patent/WO2015119207A1/ja active Application Filing
- 2015-02-05 US US14/768,934 patent/US10200649B2/en active Active
- 2015-02-05 CN CN201580000272.4A patent/CN104995908B/zh active Active
- 2015-02-06 TW TW104104148A patent/TWI590661B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008118570A (ja) * | 2006-11-07 | 2008-05-22 | Canon Inc | ぶれ補正装置及び方法 |
JP2008294601A (ja) * | 2007-05-23 | 2008-12-04 | Sony Corp | 画像処理方法および画像処理装置 |
JP2009105533A (ja) * | 2007-10-22 | 2009-05-14 | Sony Corp | 画像処理装置、撮像装置、画像処理方法および撮像画像処理方法 |
JP2010183127A (ja) * | 2009-02-03 | 2010-08-19 | Sony Corp | 画像処理装置、画像処理方法および撮像装置 |
JP2011254262A (ja) * | 2010-06-01 | 2011-12-15 | Canon Inc | 画像処理装置、画像処理方法 |
JP2012034361A (ja) * | 2010-07-30 | 2012-02-16 | Fujitsu Ltd | 手ぶれ補正方法及び手ぶれ補正装置 |
JP2013003610A (ja) * | 2011-06-10 | 2013-01-07 | Sony Corp | 画像処理装置および方法、プログラム、並びに記録媒体 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017064829A1 (ja) * | 2015-10-15 | 2017-04-20 | ソニー株式会社 | 映像信号処理装置、映像信号処理方法およびプログラム |
CN108141546A (zh) * | 2015-10-15 | 2018-06-08 | 索尼公司 | 视频信号处理装置、视频信号处理方法和程序 |
JPWO2017064829A1 (ja) * | 2015-10-15 | 2018-08-02 | ソニー株式会社 | 映像信号処理装置、映像信号処理方法およびプログラム |
US10412336B2 (en) | 2015-10-15 | 2019-09-10 | Sony Corporation | Video signal processing apparatus, video signal processing method, and program for video signal correction |
JP2019500762A (ja) * | 2015-12-07 | 2019-01-10 | グーグル エルエルシー | マルチスコピック雑音削減およびハイ・ダイナミック・レンジのためのシステムおよび方法 |
JP2019165506A (ja) * | 2015-12-07 | 2019-09-26 | グーグル エルエルシー | マルチスコピック雑音削減およびハイ・ダイナミック・レンジのためのシステムおよび方法 |
JP2019062528A (ja) * | 2017-09-27 | 2019-04-18 | キヤノン株式会社 | 画像処理方法、画像処理装置、撮像装置、およびプログラム |
JP7118818B2 (ja) | 2017-09-27 | 2022-08-16 | キヤノン株式会社 | 画像処理方法、画像処理装置、撮像装置、およびプログラム |
JP2020031422A (ja) * | 2018-08-22 | 2020-02-27 | アークソフト コーポレイション リミテッドArcSoft Corporation Limited | 画像処理方法及び装置 |
CN110858895A (zh) * | 2018-08-22 | 2020-03-03 | 虹软科技股份有限公司 | 一种图像处理方法和装置 |
US11373279B2 (en) | 2018-08-22 | 2022-06-28 | Arcsoft Corporation Limited | Image processing method and device |
Also Published As
Publication number | Publication date |
---|---|
TWI590661B (zh) | 2017-07-01 |
US10200649B2 (en) | 2019-02-05 |
US20160006978A1 (en) | 2016-01-07 |
JP5974250B2 (ja) | 2016-08-23 |
KR20150110722A (ko) | 2015-10-02 |
JPWO2015119207A1 (ja) | 2017-03-23 |
TW201537981A (zh) | 2015-10-01 |
CN104995908B (zh) | 2018-01-30 |
KR101652658B1 (ko) | 2016-08-30 |
CN104995908A (zh) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5974250B2 (ja) | 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 | |
US8274570B2 (en) | Image processing apparatus, image processing method, hand shake blur area estimation device, hand shake blur area estimation method, and program | |
JP4480760B2 (ja) | 画像データ処理方法および画像処理装置 | |
JP5052301B2 (ja) | 画像処理装置、画像処理方法 | |
JP4290193B2 (ja) | 画像処理装置 | |
US9191589B2 (en) | Image processing device | |
CN108463994B (zh) | 图像处理装置、图像处理方法和存储介质 | |
US20120269444A1 (en) | Image compositing apparatus, image compositing method and program recording device | |
US20080298714A1 (en) | Image edge correction apparatus and method | |
JP2010200179A (ja) | 画像処理装置、画像処理方法、画像処理プログラムおよび画像処理プログラムが格納されたプログラム記憶媒体 | |
US20100150465A1 (en) | Method and apparatus for removing image noise | |
US8644555B2 (en) | Device and method for detecting movement of object | |
JPWO2014054273A1 (ja) | 画像ノイズ除去装置、および画像ノイズ除去方法 | |
JP5927051B2 (ja) | 画像処理装置、画像処理方法及びプログラム | |
JP2011055259A (ja) | 画像処理装置、画像処理方法、画像処理プログラムおよび画像処理プログラムが格納されたプログラム記憶媒体 | |
JP2012068733A (ja) | 画像処理装置および画像処理プログラム | |
JP2005150903A (ja) | 画像処理装置、ノイズ除去方法及びノイズ除去プログラム | |
JP2016201037A (ja) | 画像処理装置、画像処理方法及びプログラム | |
JP2016184888A (ja) | 画像処理装置、撮像装置、画像処理方法及びコンピュータプログラム | |
JP6730423B2 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
JP5927053B2 (ja) | 画像処理装置、画像処理方法及びプログラム | |
US20160328858A1 (en) | Image processing system, image processing method, and image processing program | |
JP4015071B2 (ja) | 画像処理装置、方法およびプログラム | |
JP5659126B2 (ja) | 画像処理装置、画像処理プログラム及び画像処理方法 | |
US9262814B2 (en) | Image processing device and method for sharpening a blurred image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015540959 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14768934 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157022802 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15745855 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15745855 Country of ref document: EP Kind code of ref document: A1 |