JP5930858B2 - Method for determining particle mass concentration in a dispersion containing particles and liquid - Google Patents

Method for determining particle mass concentration in a dispersion containing particles and liquid Download PDF

Info

Publication number
JP5930858B2
JP5930858B2 JP2012131813A JP2012131813A JP5930858B2 JP 5930858 B2 JP5930858 B2 JP 5930858B2 JP 2012131813 A JP2012131813 A JP 2012131813A JP 2012131813 A JP2012131813 A JP 2012131813A JP 5930858 B2 JP5930858 B2 JP 5930858B2
Authority
JP
Japan
Prior art keywords
mass concentration
dispersion
particles
liquid
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012131813A
Other languages
Japanese (ja)
Other versions
JP2012255787A5 (en
JP2012255787A (en
Inventor
コップ クリスティアン
コップ クリスティアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Production Printing Germany GmbH and Co KG
Original Assignee
Oce Printing Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oce Printing Systems GmbH and Co KG filed Critical Oce Printing Systems GmbH and Co KG
Publication of JP2012255787A publication Critical patent/JP2012255787A/en
Publication of JP2012255787A5 publication Critical patent/JP2012255787A5/ja
Application granted granted Critical
Publication of JP5930858B2 publication Critical patent/JP5930858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/10Apparatus for electrographic processes using a charge pattern for developing using a liquid developer
    • G03G15/104Preparing, mixing, transporting or dispensing developer
    • G03G15/105Detection or control means for the toner concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02416Solids in liquids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Wet Developing In Electrophotography (AREA)

Description

本発明は、粒子および液体を含む分散液中の粒子質量濃度を求める方法に関する。   The present invention relates to a method for determining the mass concentration of particles in a dispersion containing particles and a liquid.

粒子および液体を含む分散液の例として、電気泳動を利用した印刷で用いられる現像液が挙げられる。現像液は、液体としての支持液中に分散された粒子としてトナー粒子を含む。以下、主として現像液に即して説明を行うが、本発明はこれに限定されるものではない。   Examples of the dispersion liquid containing particles and liquid include a developer used in printing using electrophoresis. The developer contains toner particles as particles dispersed in a liquid support. Hereinafter, the description will be made mainly with reference to the developer, but the present invention is not limited thereto.

印刷材料、例えば枚葉紙もしくは巻紙への単色印刷もしくは多色印刷のために、電荷画像担体(例えばフォトコンダクタ)上に、印刷すべき画像に相応に、色づけ領域および非色づけ領域から成る電荷画像を形成することが公知である。電荷画像の色づけ領域は、現像ステーションによって電荷画像担体上でトナー粒子によりトナー画像として可視化される。こうして形成されるトナー画像は第1転写ステーションによって印刷材料へ移動され、第2転写ステーションにおいて印刷材料へ転写される。続いて、トナー画像は固定ステーションで固定される。   A charge image consisting of colored and non-colored areas on a charge image carrier (for example photoconductor), corresponding to the image to be printed, for monochromatic or multicolor printing on printing materials such as sheets or rolls Is known to form. The colored area of the charge image is visualized as a toner image by toner particles on the charge image carrier by the development station. The toner image thus formed is transferred to the printing material by the first transfer station and transferred to the printing material at the second transfer station. Subsequently, the toner image is fixed at a fixed station.

電荷画像を色づけするために、少なくとも荷電トナー粒子および支持液を含む現像液を使用することができる。ディジタル印刷機での電気泳動を利用した印刷方法は、例えば、米国公開第2006/0150836号または米国公開第2008/279597号から公知である。印刷すべき画像の電荷画像が電荷画像担体上に形成された後、現像ステーションが当該電荷画像をトナー粒子によって色づけしてトナー画像とする。ここで、現像液として、シリコーン油を含み、内分にインク粒子(トナー粒子)を分散させた支持液が用いられる。電荷画像担体への現像液の供給は現像ローラによって行われ、この現像ローラへタンクから現像液が供給される。続いて、現像時に、支持液中に埋め込まれているトナー画像から電荷画像担体上に形成された画像フィルムが、第1転写ユニットによって電荷画像担体から引き取られ、第2転写ゾーンで印刷材料上へ転写される。   In order to color the charged image, a developer containing at least charged toner particles and a support liquid can be used. A printing method using electrophoresis in a digital printer is known from, for example, US Publication No. 2006/0150836 or US Publication No. 2008/279597. After the charge image of the image to be printed is formed on the charge image carrier, the development station colors the charge image with toner particles to form a toner image. Here, as the developer, a support liquid containing silicone oil and having ink particles (toner particles) dispersed therein is used. The developer is supplied to the charge image carrier by the developing roller, and the developer is supplied from the tank to the developing roller. Subsequently, during development, the image film formed on the charge image carrier from the toner image embedded in the support liquid is drawn off from the charge image carrier by the first transfer unit and onto the printing material in the second transfer zone. Transcribed.

現像液を用いるこうした印刷方法では、電気泳動プロセスが支持液中のトナー粒子を印刷材料へ移動させることに利用されている。固定に荷電されたトナー粒子は、輸送剤としての支持液内を印刷材料へ向かって漂遊する。ここでの輸送は第1転写ローラと印刷材料とのあいだの電場によって制御される。その前提となるのは、トナー粒子の電荷および電場の形成に加え、トナー粒子が内部を漂遊できる充分な厚さを有する支持液層を形成し、さらに、支持液中のトナー粒子の充分な濃度を調えることである。   In such printing methods using a developer, an electrophoretic process is used to move toner particles in the support liquid to the printing material. The fixedly charged toner particles drift to the printing material in the support liquid as a transport agent. The transport here is controlled by the electric field between the first transfer roller and the printing material. The premise is that, in addition to the charge and electric field formation of the toner particles, a support liquid layer having a sufficient thickness that allows the toner particles to stray inside is formed, and a sufficient concentration of the toner particles in the support liquid is formed. It is to prepare.

印刷機において使用される現像液は、現像ステーション、例えば、混合ユニットにおいて、トナーを含むトナー原液と支持液とを混合することによって形成される。問題のない印刷画像を形成するには、現像液に充分なトナー粒子が含まれていること、すなわち、現像液中のトナー質量濃度が設定された値を有することが必要である。この場合、印刷動作において、現像液は混合ユニットから取り出され、部分的に印刷材料に被着される。   The developer used in the printing press is formed by mixing a toner stock solution containing toner and a support solution in a developing station, for example, a mixing unit. In order to form a print image without any problem, it is necessary that the developer contains sufficient toner particles, that is, the toner mass concentration in the developer has a set value. In this case, in the printing operation, the developer is removed from the mixing unit and partially applied to the printing material.

つまり、電荷画像の現像を障害なく有効に行うには、定義されたトナー質量濃度、および、定義された支持液中のトナー粒子の電気泳動度を達成しなければならない。   In other words, in order to effectively develop a charge image without hindrance, a defined toner mass concentration and a defined electrophoretic mobility of toner particles in the support liquid must be achieved.

支持液中のトナー粒子のトナー質量濃度および移動度を設定する際には、現像ステーションにおけるトナー質量濃度およびトナー粒子の移動度を求めることが要求される。現像液に対するトナー質量濃度が例えば2%から40%までの範囲にある場合、電気泳動度を求めるための電気音響プロセスが公知であるが、これには正確なトナー質量濃度の知識が前提となる。   When setting the toner mass concentration and mobility of toner particles in the support liquid, it is required to determine the toner mass concentration and toner particle mobility at the developing station. For example, when the toner mass concentration with respect to the developer is in the range of 2% to 40%, an electroacoustic process for obtaining the electrophoretic mobility is known, but this requires the knowledge of accurate toner mass concentration. .

米国公開第2011/58838号では、現像液でのトナー質量濃度を求める方法が公知である。ここでは現像液に少なくとも1つの超音波が印加される。その基礎となっているのは、所定の温度限界範囲内かつ一定の支持液のもとで現像液中を伝搬する音波の音速が主として支持液中のトナー粒子の成分に依存して定まるということである。したがって、現像液中の超音波の走行時間が設定された測定区間に沿って測定され、そこから、現像液中のトナー質量濃度の尺度となる音速が求められる。こうして、現像液中の音波の走行時間を測定することにより、現像液のトナー質量濃度を求めることができる。初期測定過程において、超音波の走行時間とトナー質量濃度との関数関係が、既知のトナー濃度を有する複数の現像液のもとで現像液温度を考慮して求められ、求められた値が走行時間およびトナー質量濃度に関して例えばテーブルとして格納される。このテーブルは、現像液を通る超音波の走行時間を測定することにより、トナー質量濃度を求めるために用いられる。場合により、テーブル内の各値のあいだを補間しなければならない。分散液中の質量濃度を求める同様の方法は、例えば、米国特許第6817229号、米国公開第5121629号、米国特許第7764891号から公知である。   US Publication No. 2011/58838 discloses a method for determining a toner mass concentration in a developer. Here, at least one ultrasonic wave is applied to the developer. The basis for this is that the sound velocity of sound waves propagating in the developing solution within a predetermined temperature limit range and within a certain supporting solution is determined mainly depending on the components of the toner particles in the supporting solution. It is. Therefore, the ultrasonic traveling time in the developer is measured along the set measurement section, and the sound speed that is a measure of the toner mass concentration in the developer is obtained therefrom. Thus, the toner mass concentration of the developer can be determined by measuring the traveling time of the sound wave in the developer. In the initial measurement process, the functional relationship between the ultrasonic travel time and the toner mass concentration is determined in consideration of the developer temperature under a plurality of developers having a known toner concentration, and the calculated value is calculated. The time and toner mass concentration are stored as a table, for example. This table is used to determine the toner mass concentration by measuring the travel time of ultrasonic waves through the developer. In some cases, it may be necessary to interpolate between each value in the table. Similar methods for determining the mass concentration in the dispersion are known, for example, from US Pat. No. 6,817,229, US Pat. No. 5,121,629, and US Pat. No. 7,768,891.

米国公開第5245290号からは、液体中の荷電粒子の電気泳動度を求める測定装置が公知である。測定セルに荷電粒子を含む検査すべき分散液が封入されており、当該荷電粒子の電気泳動度が検出される。まず、測定セルに、液体中の粒子を振動させる交流電場が印加され、ついで、振動する粒子が形成する音波の速度が評価され、電場と液体中の粒子の平均速度とから、粒子の電気泳動度が結論される。分散液中の粒子のダイナミックな移動度を計算する式は、R.W.O'Brien et.al., "Colloids and Surfaces A", Physiochem. Eng. Aspects, 218 (2003)の89頁−101頁に記載されている。   US Pat. No. 5,245,290 discloses a measuring device for determining the electrophoretic mobility of charged particles in a liquid. A dispersion liquid to be inspected containing charged particles is sealed in the measurement cell, and the electrophoretic mobility of the charged particles is detected. First, an alternating electric field that vibrates particles in a liquid is applied to the measurement cell, and then the speed of sound waves formed by the vibrating particles is evaluated. From the electric field and the average velocity of the particles in the liquid, particle electrophoresis is performed. The degree is concluded. Formulas for calculating the dynamic mobility of particles in a dispersion are described on pages 89-101 of RWO'Brien et.al., "Colloids and Surfaces A", Physiochem. Eng. Aspects, 218 (2003). Has been.

公知の測定方法では、粒子の質量濃度もしくは電気泳動度がそれぞれ異なるプローブプローブボリュームを有する種々の測定セル中で測定されるので、濃度差および温度差により、測定精度が低下するという問題が生じる。   In the known measurement method, since the measurement is performed in various measurement cells having probe probe volumes with different mass concentrations or electrophoretic degrees of particles, there arises a problem that the measurement accuracy is lowered due to the concentration difference and the temperature difference.

米国公開第2006/015836号US Publication No. 2006/015836 米国公開第2008/279597号US Publication No. 2008/279597 米国公開第2011/58838号US Open 2011/58838 米国特許第6817229号US Pat. No. 6,817,229 米国特許第5121629号US Pat. No. 5,121,629 米国特許第7764891号U.S. Pat. No. 7,764,891 米国公開第5245290号US Open No. 5245290

R.W.O'Brien et.al., "Colloids and Surfaces A", Physiochem. Eng. Aspects, 218 (2003), 89頁−101頁R.W.O'Brien et.al., "Colloids and Surfaces A", Physiochem. Eng. Aspects, 218 (2003), pp. 89-101

よって、本発明の解決しようとする課題は、1回の測定過程で分散液中の粒子の質量濃度および電気泳動度の双方を測定できる方法を提供することである。分散液とは、粒子が液体中に分散した液のことである。   Therefore, the problem to be solved by the present invention is to provide a method capable of measuring both the mass concentration and the electrophoretic mobility of particles in a dispersion in one measurement process. A dispersion is a liquid in which particles are dispersed in a liquid.

この課題は、測定セル内の分散液に、可変の周波数を有する交流場、例えば、交流電場を印加し、交流場によって分散液中の粒子を振動させ、分散液中の粒子に音圧波を形成し、音圧波振幅(ESA信号)を周波数に基づいて測定し、音圧波の最大振幅を検出し、この最大振幅に対応する周波数を音圧波の共振周波数として求め、共振周波数から分散液中の粒子の質量濃度を求めることにより解決される。   The problem is that an AC field having a variable frequency, for example, an AC electric field, is applied to the dispersion in the measurement cell, and the particles in the dispersion are vibrated by the AC field to form sound pressure waves on the particles in the dispersion. Then, the sound pressure wave amplitude (ESA signal) is measured based on the frequency, the maximum amplitude of the sound pressure wave is detected, the frequency corresponding to the maximum amplitude is obtained as the resonance frequency of the sound pressure wave, and the particles in the dispersion liquid are obtained from the resonance frequency. This is solved by obtaining the mass concentration of

共振周波数と分散液中の粒子の質量濃度との関数関係は、あらかじめ、分散液中の粒子の質量濃度が既知となっている初期測定過程において求められ、例えばテーブルとして格納される。   The functional relationship between the resonance frequency and the mass concentration of the particles in the dispersion is obtained in advance in an initial measurement process in which the mass concentration of the particles in the dispersion is known, and is stored as a table, for example.

分散液中の粒子の質量濃度およびダイナミック移動度を測定する測定装置を示す図である。It is a figure which shows the measuring apparatus which measures the mass concentration and dynamic mobility of the particle | grains in a dispersion liquid. 測定装置で使用される測定セルの実施例を示す図である。It is a figure which shows the Example of the measurement cell used with a measuring apparatus. 音圧波振幅ESAと測定セルでの周波数との関数関係を示すグラフである。It is a graph which shows the functional relationship of the sound pressure wave amplitude ESA and the frequency in a measurement cell. 粒子の質量濃度と測定セルでの音圧波の共振周波数との関数関係を示すグラフである。It is a graph which shows the functional relationship between the mass concentration of particle | grains, and the resonant frequency of the sound pressure wave in a measurement cell.

本発明の種々の実施形態は従属請求項から得られる。   Various embodiments of the invention result from the dependent claims.

分散液中の粒子の電気泳動度は測定装置によって求められる。これは、ESA信号および電場強度から電気泳動度を結論することができるからである(上掲のR.W.O'Brien et.al., "Colloids and Surfaces A"を参照)。   The electrophoretic mobility of the particles in the dispersion is determined by a measuring device. This is because the electrophoretic mobility can be concluded from the ESA signal and the electric field strength (see R.W.O'Brien et.al., "Colloids and Surfaces A" above).

本発明の方法の利点は、1回の測定過程において分散液中の粒子の質量濃度と分散液中の移動度との双方を求められるということである。結果として、分散液中の粒子の質量濃度と分散液中の移動度という測定量に対する測定精度の改善が達成される。現像液について云えば、これはトナー質量濃度および電気泳動度を正確に測定できることを意味する。このことは、電荷担体を現像するための現像液を使用する印刷機の液体管理部におけるパラメータ制御にとって重要である。   The advantage of the method of the present invention is that both the mass concentration of particles in the dispersion and the mobility in the dispersion can be determined in a single measurement process. As a result, an improvement in measurement accuracy is achieved with respect to a measured quantity of mass concentration of particles in the dispersion and mobility in the dispersion. For the developer, this means that the toner mass concentration and electrophoretic mobility can be accurately measured. This is important for parameter control in the liquid management part of a printing press that uses a developer for developing charge carriers.

以下に、図示の実施例に則して、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail according to the illustrated embodiment.

本発明では、分散液中の音圧波の電気音響圧力振幅ESA(Electroacoustic Sonic Amplitude)を測定する既知の測定装置を基礎とする。   The present invention is based on a known measuring apparatus that measures electroacoustic pressure amplitude ESA (Electroacoustic Sonic Amplitude) of a sound pressure wave in a dispersion.

本発明を説明するに際して、以下では、液体中に粒子を含む分散液を扱い、当該分散液中の粒子の質量濃度および移動度を求めるものとする。有利な実施例では、当該分散液は電子写真印刷の現像液であり、当該現像液は粒子としてトナー粒子を含み、液体として例えば鉱物油もしくはシリコーン油を含む。当該液体は支持液もしくはキャリアとも称される。   In describing the present invention, hereinafter, a dispersion containing particles in a liquid is handled, and the mass concentration and mobility of the particles in the dispersion are determined. In an advantageous embodiment, the dispersion is an electrophotographic printing developer, which contains toner particles as particles and, for example, mineral oil or silicone oil as liquid. The liquid is also called a support liquid or carrier.

図1には、分散液中の荷電粒子の質量濃度TKとダイナミック移動度μとを同時に求めることのできる測定装置MAの実施例がブロック図で示されている。分散液は測定セルMZ内に充填されており、測定セルMZの詳細な構造は図2に示されている。測定セルMZ内の分散液には交流電場U(f)が印加され、ここでUは交流電場の電圧、fは交流電場の周波数である。当該交流電場によって粒子は振動させられ、これにより分散液中に音圧波が生じる。測定セルMZの出力側には、出力信号としての音圧波振幅ESA(f)と、測定セルMZの温度Tとが出力される。制御ユニットSTにより、ここでのフローが制御され、測定セルMZに交流電圧U(f)が供給され、ESA信号ESA(f)が受け取られる。制御ユニットSTはESA信号をプロセッサユニットPRへ伝送し、プロセッサユニットPRはESA信号から分散液中の粒子の質量濃度TKを求める。質量濃度TKはメモリユニットSPに記憶される。メモリユニットSPは、他の既知の分散パラメータとして、分散液の液体中の音速c、液体の粘度η、粒子と液体とのあいだの密度差Δρなどを含んでいてもよい。これらのパラメータが制御ユニットSTへ供給され、ESA,TK,c,η,Δρのパラメータから、以下に挙げる式(2)にしたがって、分散液中の粒子のダイナミック移動度μが求められる。このフローは、定義された温度Tのもとにある測定セルMZ内で行われる。測定セル温度Tが変化すると、粒子の移動度μおよび音圧波振幅ESAにも変化が生じる。 1, the embodiment of the measuring apparatus MA which can be obtained mass concentration TK and dynamic mobility of charged particles in the dispersion mu d and at the same time is shown in block diagram. The dispersion liquid is filled in the measurement cell MZ, and the detailed structure of the measurement cell MZ is shown in FIG. An AC electric field U (f) is applied to the dispersion in the measurement cell MZ, where U is the voltage of the AC electric field and f is the frequency of the AC electric field. The particles are vibrated by the alternating electric field, thereby generating a sound pressure wave in the dispersion. A sound pressure wave amplitude ESA (f) as an output signal and a temperature T of the measurement cell MZ are output to the output side of the measurement cell MZ. The flow here is controlled by the control unit ST, the alternating voltage U (f) is supplied to the measurement cell MZ, and the ESA signal ESA (f) is received. The control unit ST transmits the ESA signal to the processor unit PR, and the processor unit PR obtains the mass concentration TK of the particles in the dispersion from the ESA signal. The mass concentration TK is stored in the memory unit SP. The memory unit SP may include, as other known dispersion parameters, the speed of sound c in the liquid of the dispersion, the viscosity η of the liquid, the density difference Δρ between the particles and the liquid, and the like. These parameters are supplied to the control unit ST, and the dynamic mobility μ d of the particles in the dispersion is determined from the parameters of ESA, TK, c, η, Δρ according to the following formula (2). This flow takes place in the measuring cell MZ under a defined temperature T. When measuring the cell temperature T changes, changes occur in the mobility mu d and sound pressure amplitude ESA particles.

図2には測定セルMZの構造の実施例が示されている。測定セルMZは分散液1を充填したプローブチャンバ2を有している。プローブチャンバ2は例えば円筒形の音響レゾネータから成り、その上面および下面に対して平行な平面に複数の電極3が設けられており、この電極間に交流電場4がかかる。電極3間にかかる交流電場4により、分散液中の荷電粒子に周期運動が励振されるが、その振幅は、電場4の周波数を調整することによってプローブチャンバ2内の共振周波数まで最大化される。このとき振動する粒子によってプローブチャンバ2内に音圧波が生じる。この音圧波は、音響レゾネータによって増幅され、交流電場4の周波数に依存して種々に異なる音圧波振幅を有する。交流電場4によって形成される分散液1中の音圧波は音響伝導ロッド5を介して音圧変換器6へ供給され、そこで電気信号へ変換される。この信号の振幅はESA信号として交流電場4の周波数fに依存して求められる。また、温度センサ7によってプローブチャンバ2の温度が測定される。例えば、プローブチャンバ2は3mmまでの電極距離を有し、電極3には1MHzまでの領域の可変の周波数を有する交流電圧80Vが印加される。   FIG. 2 shows an example of the structure of the measuring cell MZ. The measuring cell MZ has a probe chamber 2 filled with the dispersion liquid 1. The probe chamber 2 is composed of, for example, a cylindrical acoustic resonator, and a plurality of electrodes 3 are provided on a plane parallel to the upper surface and the lower surface, and an AC electric field 4 is applied between the electrodes. An alternating electric field 4 applied between the electrodes 3 excites periodic motion in the charged particles in the dispersion, but the amplitude is maximized to the resonance frequency in the probe chamber 2 by adjusting the frequency of the electric field 4. . At this time, sound pressure waves are generated in the probe chamber 2 by the vibrating particles. This sound pressure wave is amplified by an acoustic resonator and has different sound pressure wave amplitudes depending on the frequency of the AC electric field 4. The sound pressure wave in the dispersion 1 formed by the alternating electric field 4 is supplied to the sound pressure converter 6 through the acoustic conducting rod 5 and converted into an electric signal there. The amplitude of this signal is obtained as an ESA signal depending on the frequency f of the AC electric field 4. In addition, the temperature of the probe chamber 2 is measured by the temperature sensor 7. For example, the probe chamber 2 has an electrode distance of up to 3 mm, and an AC voltage 80 V having a variable frequency in a region up to 1 MHz is applied to the electrode 3.

音圧波振幅(ESA信号)は設定された周波数に依存して測定され、例として、音圧波振幅と周波数fとの関数関係を示す図3の曲線が得られる。この図3の曲線から、周波数分解での評価により、共振周波数が求められる。この共振周波数はプローブチャンバ2の幾何学的形状と分散液の音響特性とによって定められる。図3からは、例えば、音圧波振幅ESAの最大値が共振周波数891kHzに位置することがわかる。なお、図3では、トナー粒子を含む現像液について、音圧波振幅と周波数との関数関係が示されている。   The sound pressure wave amplitude (ESA signal) is measured depending on the set frequency, and as an example, the curve of FIG. 3 showing the functional relationship between the sound pressure wave amplitude and the frequency f is obtained. From the curve in FIG. 3, the resonance frequency is obtained by evaluation with frequency decomposition. This resonant frequency is determined by the geometry of the probe chamber 2 and the acoustic properties of the dispersion. FIG. 3 shows that the maximum value of the sound pressure wave amplitude ESA is located at the resonance frequency 891 kHz, for example. FIG. 3 shows the functional relationship between the sound pressure wave amplitude and the frequency for the developer containing toner particles.

分散液中の粒子の質量濃度TKが種々に異なる場合、種々の共振周波数が得られる。ここで、測定によって求められた分散液の共振周波数から、分散液中の粒子の質量濃度TKが推定される。既知の質量濃度TKを有する分散液を用いた先行する初期測定過程において共振周波数と粒子質量濃度との関数関係が求められていれば、測定された共振周波数から粒子質量濃度TKを求めることができる。図4には、現像液でのグラフが示されている。ここでは、温度および支持液は一定で、共振周波数がトナー質量濃度TKに依存して既知の5つのトナー質量濃度TKにおいて測定されている。現像液の共振周波数が図1の測定装置によって測定され、そのトナー質量濃度が未知である場合、図4のグラフからトナー質量濃度TKを読み出すことができる。図4の曲線はテーブルとしてプロセッサユニットPR内に記憶されている。よって、まず音速を検出して次に初期測定過程で求められたテーブルを用いて音速からトナー質量濃度を推定しなければならない従来技術とは異なり、直接に共振周波数からトナー質量濃度TKを推定することができる。従来のプローブチャンバ内での音波の走行時間を用いた音速の測定は、本発明での共振周波数の算出に比べて不正確である。   When the mass concentration TK of the particles in the dispersion is different, various resonance frequencies are obtained. Here, the mass concentration TK of the particles in the dispersion is estimated from the resonance frequency of the dispersion obtained by the measurement. If the functional relationship between the resonance frequency and the particle mass concentration is obtained in the preceding initial measurement process using the dispersion having the known mass concentration TK, the particle mass concentration TK can be obtained from the measured resonance frequency. . FIG. 4 shows a graph of the developer. Here, the temperature and the supporting liquid are constant, and the resonance frequency is measured at five known toner mass concentrations TK depending on the toner mass concentration TK. When the resonance frequency of the developer is measured by the measuring device of FIG. 1 and the toner mass concentration is unknown, the toner mass concentration TK can be read from the graph of FIG. The curves in FIG. 4 are stored in the processor unit PR as a table. Therefore, unlike the prior art where the sound velocity is first detected and then the toner mass concentration is estimated from the sound velocity using the table obtained in the initial measurement process, the toner mass concentration TK is directly estimated from the resonance frequency. be able to. The measurement of the speed of sound using the traveling time of the sound wave in the conventional probe chamber is inaccurate compared with the calculation of the resonance frequency in the present invention.

さらに、上掲のR.W.O'Brien et.al., "Colloids and Surfaces A"によれば、図1の測定装置を用いて、ESA信号と所定の温度Tのもとでの共振周波数によって得られた質量濃度TKとを評価して、プローブボリューム内の移動度を求めることができる。前提となるのは、以下の式(2)につき、音圧波振幅ESA,質量濃度TK,液体中の音速c,液体の粘度η,粒子と液体とのあいだの密度差Δρの各パラメータが既知となっていることである。音圧波振幅ESAは測定セルMZによって測定される。質量濃度TKはプロセッサユニットPRにおいて共振周波数から求められる。また、液体中の音速cおよび粒子と液体とのあいだの密度差Δρの各パラメータは検査すべき分散液(例えば現像液)ごとに既知である。現像液の液体は支持液もしくはキャリアとも称される。   Furthermore, according to the above-mentioned RWO'Brien et.al., “Colloids and Surfaces A”, it can be obtained by using the measuring device of FIG. 1 by the ESA signal and the resonance frequency under a predetermined temperature T. The mobility in the probe volume can be obtained by evaluating the mass concentration TK. It is assumed that the following parameters are known for the following equation (2): sound pressure wave amplitude ESA, mass concentration TK, sound velocity c in liquid, liquid viscosity η, and density difference Δρ between particles and liquid. It is that. The sound pressure wave amplitude ESA is measured by the measurement cell MZ. The mass concentration TK is obtained from the resonance frequency in the processor unit PR. Further, the parameters of the sound velocity c in the liquid and the density difference Δρ between the particles and the liquid are known for each dispersion (for example, developer) to be examined. The developer liquid is also called a support liquid or carrier.

音圧波振幅(ESA)に影響するパラメータは、R.W.O'Brien et.al., "Colloids and Surfaces A"によれば、
ESA=c*Δρ*TK*μ*G (1)
であり、ここで、
c:分散液の液体中の音速
Δ:粒子と液体とのあいだの密度差
TK:粒子質量濃度
μ:粒子のダイナミック移動度
G:較正係数(例えば測定セルMZの特性を含む)
である。
Parameters affecting sound pressure wave amplitude (ESA) are according to RWO'Brien et.al., "Colloids and Surfaces A"
ESA = c * Δρ * TK * μ d * G (1)
And where
c: sound velocity in liquid of dispersion Δ: density difference between particles and liquid TK: particle mass concentration μ d : dynamic mobility of particles G: calibration coefficient (for example, including characteristics of measurement cell MZ)
It is.

ESA値から、粒子のダイナミック移動度μの値を
μ=ESA/c*Δρ*TK*G (2)
として計算することができる。Gは移動度測定の較正の際に求められる。
From the ESA value, the value of the dynamic mobility μ d of the particle is expressed as μ d = ESA / c * Δρ * TK * G (2)
Can be calculated as G is determined during mobility measurement calibration.

粒子の質量濃度TKを求める場合には、測定セルMZでの音波の励振を、光音響プロセスによって行うことができる。例えば、分散液が光ビームを充分に吸収できる適切な波長の光ビーム(レーザー光)を用いて、励振が行われる。   When obtaining the particle mass concentration TK, excitation of sound waves in the measurement cell MZ can be performed by a photoacoustic process. For example, excitation is performed using a light beam (laser light) having an appropriate wavelength that allows the dispersion to sufficiently absorb the light beam.

MA 測定装置、 MZ 測定セル、 ST 制御ユニット、 PR プロセッサユニット、 SP メモリユニット、 1 分散液、 2 プローブチャンバ、 3 電極、 4 交流電圧源、 5 音響伝導ロッド、 6 音圧変換器、 7 温度センサ、 ESA 音圧波振幅、 c 分散液の液体中の音速、 Δρ 粒子と液体とのあいだの密度差、 TK 粒子質量濃度、 μ ダイナミック移動度、 G 較正係数、 U(f) 周波数fを有する励起電圧、 f 周波数 MA measuring device, MZ measuring cell, ST control unit, PR processor unit, SP memory unit, 1 dispersion, 2 probe chamber, 3 electrode, 4 AC voltage source, 5 acoustic conducting rod, 6 sound pressure transducer, 7 temperature sensor , ESA sound pressure wave amplitude, speed of sound in the liquid in c dispersion, the density difference between the Δρ particles and liquid, TK particle mass concentration, mu d dynamic mobility, excited with G calibration coefficient, U (f) frequency f Voltage, f frequency

Claims (9)

粒子および液体を含む分散液中の粒子質量濃度を求める方法であって、
測定セル(MZ)内の分散液に、可変の周波数を有する交流場を印加し、該交流場によって前記分散液中の前記粒子を振動させ、前記分散液中の前記粒子に音圧波を形成し、
音圧波振幅(ESA)を前記周波数に基づいて測定し、前記音圧波の最大振幅を検出し、該最大振幅に対応する周波数を前記音圧波の共振周波数として求め、
初期測定過程において決定される、共振周波数と質量濃度(TK)との関数関係により、求められた前記共振周波数から、前記分散液中の前記粒子の質量濃度(TK)を求める
ことを特徴とする分散液中の粒子質量濃度を求める方法。
A method for determining a particle mass concentration in a dispersion containing particles and a liquid,
An alternating current field having a variable frequency is applied to the dispersion liquid in the measurement cell (MZ), the particles in the dispersion liquid are vibrated by the alternating current field, and sound pressure waves are formed in the particles in the dispersion liquid. ,
Sound pressure wave amplitude (ESA) is measured based on the frequency, the maximum amplitude of the sound pressure wave is detected, the frequency corresponding to the maximum amplitude is determined as the resonance frequency of the sound pressure wave,
The mass concentration (TK) of the particles in the dispersion is obtained from the obtained resonance frequency by the functional relationship between the resonance frequency and the mass concentration (TK) determined in the initial measurement process. A method for determining the mass concentration of particles in a dispersion.
前記交流場を、設定可能な周波数を有する交流電圧によって形成する、
請求項1記載の分散液中の粒子質量濃度を求める方法。
Forming the alternating field with an alternating voltage having a configurable frequency;
A method for determining the mass concentration of particles in the dispersion according to claim 1.
前記交流場を、光音響効果を用いて形成する、
請求項1記載の分散液中の粒子質量濃度を求める方法。
Forming the AC field using a photoacoustic effect;
A method for determining the mass concentration of particles in the dispersion according to claim 1.
前記共振周波数と前記質量濃度(TK)との前記関数関係を、前記初期測定過程において、所定の温度(T)のもとで前記測定セル(MZ)に既知の質量濃度(TK)を有する分散液充填し、かつ、該充填された分散液の共振周波数検出て、該共振周波数と質量濃度(TK)との関数関係テーブルに記述することにより、決定し、
別の分散液で測定された共振周波数により、前記テーブルから、前記別の分散液中の粒子の質量濃度(TK)を読み出す、
請求項1または2記載の分散液中の粒子質量濃度を求める方法。
In the initial measurement process, the functional relationship between the resonance frequency and the mass concentration (TK) is a dispersion having a known mass concentration (TK) in the measurement cell (MZ) under a predetermined temperature (T). liquid filling the, and detects the resonance frequency of the filled dispersion, by describing the functional relationship between the resonant frequency and the mass concentration (TK) in the table, determined,
Read the mass concentration (TK) of the particles in the other dispersion from the table according to the resonance frequency measured in the other dispersion.
A method for determining the mass concentration of particles in the dispersion according to claim 1.
前記分散液は、トナー粒子と支持液とを含み、かつ、電子写真式印刷機での電荷画像の現像に用いられる現像液である、
請求項1から4までのいずれか1項記載の分散液中の粒子質量濃度を求める方法。
The dispersion is a developer containing toner particles and a support liquid, and used for developing a charge image in an electrophotographic printer.
A method for determining a particle mass concentration in a dispersion according to any one of claims 1 to 4.
前記測定セル(MZ)内で、前記音圧波振幅(ESA)を前記周波数に依存して測定し、測定値を制御ユニット(ST)へ供給し、
該制御ユニット(ST)から前記測定値をプロセッサユニット(PR)へ供給し、該プロセッサユニットにより前記測定値から前記共振周波数を求め、前記共振周波数に基づいて質量濃度(TK)を求めて出力側へ出力する、
請求項1から5までのいずれか1項記載の分散液中の粒子質量濃度を求める方法。
In the measurement cell (MZ), the sound pressure wave amplitude (ESA) is measured depending on the frequency, and the measured value is supplied to the control unit (ST).
The measurement value is supplied from the control unit (ST) to the processor unit (PR), the resonance frequency is obtained from the measurement value by the processor unit, and the mass concentration (TK) is obtained based on the resonance frequency. Output to
A method for determining a particle mass concentration in a dispersion according to any one of claims 1 to 5.
前記制御ユニット(ST)により、前記質量濃度(TK)と、前記音圧波振幅(ESA)と、分散液の液体中の音速の既知の分散パラメータ(c)と、分散液中の粒子と液体とのあいだの密度差(Δρ)とから、分散液中の粒子のダイナミック電気泳動度(μ)を求める、
請求項6記載の分散液中の粒子質量濃度を求める方法。
By the control unit (ST), the mass concentration (TK), the sound pressure wave amplitude (ESA), the known dispersion parameter (c) of the sound velocity in the liquid of the dispersion liquid, the particles and the liquid in the dispersion liquid, The dynamic electrophoretic mobility (μ d ) of the particles in the dispersion is obtained from the density difference (Δρ) between
A method for determining the mass concentration of particles in the dispersion according to claim 6.
前記ダイナミック電気泳動度μを、式
μ=ESA/c*Δρ*TK*G
によって求め、ここで、cは音速であり、Δρは粒子と液体とのあいだの密度差であり、TKは質量濃度であり、Gは周波数に依存する較正係数である、
請求項7記載の分散液中の粒子質量濃度を求める方法。
The dynamic electrophoretic mobility μ d is expressed by the formula μ d = ESA / c * Δρ * TK * G
Where c is the speed of sound, Δρ is the density difference between the particle and the liquid, TK is the mass concentration, and G is a frequency dependent calibration factor,
A method for determining a particle mass concentration in the dispersion according to claim 7.
前記質量濃度(TK)および前記ダイナミック電気泳動度(μ)を1回の測定過程で同時に求める、
請求項8記載の分散液中の粒子質量濃度を求める方法。
The mass concentration (TK) and the dynamic electrophoretic mobility (μ d ) are simultaneously determined in one measurement process.
A method for determining the mass concentration of particles in the dispersion according to claim 8.
JP2012131813A 2011-06-09 2012-06-11 Method for determining particle mass concentration in a dispersion containing particles and liquid Expired - Fee Related JP5930858B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110050957 DE102011050957A1 (en) 2011-06-09 2011-06-09 Method for determining the mass concentration of particles in a particle and liquid dispersion
DE102011050957.7 2011-06-09

Publications (3)

Publication Number Publication Date
JP2012255787A JP2012255787A (en) 2012-12-27
JP2012255787A5 JP2012255787A5 (en) 2015-04-30
JP5930858B2 true JP5930858B2 (en) 2016-06-08

Family

ID=47220273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131813A Expired - Fee Related JP5930858B2 (en) 2011-06-09 2012-06-11 Method for determining particle mass concentration in a dispersion containing particles and liquid

Country Status (2)

Country Link
JP (1) JP5930858B2 (en)
DE (1) DE102011050957A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059909A (en) * 1986-09-30 1991-10-22 Colloidal Dynamics Pty. Ltd. Determination of particle size and electrical charge
US5245290A (en) 1989-02-27 1993-09-14 Matec Applied Sciences, Inc. Device for determining the size and charge of colloidal particles by measuring electroacoustic effect
US5121629A (en) 1989-11-13 1992-06-16 E. I. Du Pont De Nemours And Company Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics
US6672163B2 (en) 2000-03-14 2004-01-06 Halliburton Energy Services, Inc. Acoustic sensor for fluid characterization
US20060150836A1 (en) 2003-07-29 2006-07-13 Oce Printing Systems Gmbh Device and method for electrophoretic liquid development
DE102005055156B3 (en) 2005-11-18 2007-05-31 OCé PRINTING SYSTEMS GMBH Apparatus and method for developing potential images formed on an intermediate image carrier in an electrographic printing or copying device
JP2008014930A (en) 2006-06-07 2008-01-24 Pfu Ltd Device and method for measuring solid component concentration, and solid component concentration adjusting device
JP5400483B2 (en) * 2009-06-05 2014-01-29 日本電信電話株式会社 Component concentration analyzer and component concentration analysis method

Also Published As

Publication number Publication date
DE102011050957A1 (en) 2012-12-13
JP2012255787A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
RU2659584C2 (en) Methods for measuring properties of multiphase oil-water-gas mixtures
AU673752B2 (en) Particle size and charge measurement in multi-component colloids
JPS6015554A (en) Method and device for measuring electrochemical characteristic of solution
EP0223347A2 (en) Method and apparatus for determining the zeta potential of colloidal particles
JP2016071299A (en) Developer container, cartridge, and image forming apparatus
JP2006201316A (en) Abnormality determining device and image forming apparatus
US5074149A (en) Acoustic wave measurement of the properties of porous materials filled with air and granules
JP5930858B2 (en) Method for determining particle mass concentration in a dispersion containing particles and liquid
Fernández et al. A fast method for monitoring the shifts in resonance frequency and dissipation of the QCM sensors of a Monolithic array in biosensing applications
EP2021877B1 (en) Apparatus and method for monitoring marking liquid
US8307711B2 (en) Apparatus for inspection of a fluid and method
US9097641B2 (en) Method to determine the mass concentration of particles in a dispersion including particles and fluid
CN101806590B (en) Method for using higher standing wave resonance for quantitatively detecting thickness of elastic plates
Meng et al. A liquid density sensor based on longitudinal wave effect of a piezoelectric quartz crystal in liquid phase
RU2573446C1 (en) Method of determining amplitude-frequency and phase-frequency characteristics of field sensitivity of hydroacoustic receiver
JP5836694B2 (en) Image forming apparatus
JP2004012149A (en) Liquid physical property measuring apparatus
JP4045242B2 (en) Method and apparatus for measuring zeta potential using AC electric field and T channel
JP3914702B2 (en) Cell for measuring the moving amount / charge amount and mobility of charged particles in liquid and liquid developer
RU2735315C1 (en) Liquid surface parameters gage
JP4653624B2 (en) Crystal grain size measuring device, crystal grain size measuring method, program, and computer-readable storage medium
JP2012255787A5 (en)
RU167761U1 (en) DIFFERENT GENERATOR
JP2001142306A (en) Wet type electrophotographic device
JP6717440B2 (en) Image forming device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5930858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees