JP2001142306A - Wet type electrophotographic device - Google Patents

Wet type electrophotographic device

Info

Publication number
JP2001142306A
JP2001142306A JP2000186560A JP2000186560A JP2001142306A JP 2001142306 A JP2001142306 A JP 2001142306A JP 2000186560 A JP2000186560 A JP 2000186560A JP 2000186560 A JP2000186560 A JP 2000186560A JP 2001142306 A JP2001142306 A JP 2001142306A
Authority
JP
Japan
Prior art keywords
developer
piezoelectric vibrator
liquid developer
concentration
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000186560A
Other languages
Japanese (ja)
Other versions
JP3585812B2 (en
Inventor
Noriko Yamamoto
紀子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000186560A priority Critical patent/JP3585812B2/en
Publication of JP2001142306A publication Critical patent/JP2001142306A/en
Application granted granted Critical
Publication of JP3585812B2 publication Critical patent/JP3585812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wet Developing In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wet type electrophotographic device in which an image density is stable by precisely performing density detection of the liquid developer. SOLUTION: In the wet type electrophotographic device provided with a latent image holding body 1, and a developer container 21 containing the liquid developer consisting of carrier liquid and toner particles being dispersed in the carrier liquid, for performing the development by feeding it to the electrostatic latent image formed on the latent image holding body, the toner particles density detection of the liquid developer is accurately performed by measuring the toner particle density of the liquid developer in the developer container 21 by means of a piezoelectric vibrator 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、湿式電子写真装置
に関わる。
[0001] The present invention relates to a wet electrophotographic apparatus.

【従来の技術】液体現像剤を用いた湿式電子写真装置
は、乾式電子写真装置では実現できない利点を有してお
り、近年その価値が見直されつつある。例えば、サブミ
クロンサイズの極めて微細なトナー粒子を用いることが
できるので高画質を実現できること、少量のトナーで十
分な画像濃度が得られるため経済的である上にオフセッ
ト印刷並みの質感を実現できること、比較的低温でトナ
ーを用紙に定着できるため省エネルギー化が実現できる
こと、などが乾式に対する湿式電子写真の主な利点であ
る。湿式電子写真装置においては、静電潜像を現像する
ために高抵抗ないし絶縁性の石油系溶媒をキャリア液と
する液体現像剤を用いなければならない。キャリア液中
のトナー粒子の比率は、高画質保持のために常に一定範
囲にする必要がある。そのため、液体現像剤のトナー粒
子濃度を検知する手段を設け、液体現像剤の濃度調整を
行うことが肝要である。液体現像剤の濃度検知は、例え
ばCdSカプラとランプとを組み合わせて成る光学セン
サ、或いは現像液内に対向させた電極間へ超低周波数の
正弦波を印加し、現像液の導電率を測定する装置などが
知られている。しかしながら、前記光学センサを用いた
方式では、CdSカプラとランプとを近接させる必要が
あり、そのため両者間のギャップに異物が混入すると、
その除去が非常に困難でセンシングに支障を来すことが
あった。また、両者間のギャップが狭いために、このギ
ャップの部分にトナー粒子が残留しやすい。その結果、
トナー粒子濃度が変化した際のセンシングの信頼性の欠
如、ひいてはトナー濃度制御に誤動作が生じ易くなると
いう問題がある。また、一対の電極を現像液中に配置
し,超低周波数の正弦波を印加して導電率を測定する方
式では、電極に超低周波数の正弦波を印加しているので
導電率(抵抗)以外に電荷移動及び物質移動に伴う情報
もノイズとして検出してしまい、正確な導電率を測定す
ることはできない。
2. Description of the Related Art A wet type electrophotographic apparatus using a liquid developer has advantages which cannot be realized by a dry type electrophotographic apparatus, and its value is being reviewed in recent years. For example, extremely fine toner particles of submicron size can be used, so that high image quality can be realized, sufficient image density can be obtained with a small amount of toner, and it is economical. The main advantage of wet electrophotography over the dry process is that energy can be saved because toner can be fixed on paper at a relatively low temperature. In a wet electrophotographic apparatus, a liquid developer using a high-resistance or insulating petroleum-based solvent as a carrier liquid must be used to develop an electrostatic latent image. The ratio of the toner particles in the carrier liquid must always be within a certain range in order to maintain high image quality. Therefore, it is important to provide a means for detecting the toner particle concentration of the liquid developer and adjust the concentration of the liquid developer. For detecting the concentration of the liquid developer, for example, an optical sensor formed by combining a CdS coupler and a lamp, or an ultra-low frequency sine wave is applied between electrodes opposed to each other in the developer to measure the conductivity of the developer. Devices and the like are known. However, in the method using the optical sensor, it is necessary to bring the CdS coupler and the lamp close to each other.
It was very difficult to remove it, which sometimes hindered sensing. Further, since the gap between the two is narrow, toner particles tend to remain in the gap. as a result,
There is a problem that the reliability of sensing when the toner particle concentration changes is lacking, and that a malfunction easily occurs in the toner concentration control. In a method in which a pair of electrodes are arranged in a developer and a conductivity is measured by applying a very low frequency sine wave to the electrode, a very low frequency sine wave is applied to the electrode. In addition, information relating to charge transfer and mass transfer is also detected as noise, making it impossible to accurately measure conductivity.

【発明が解決しようとする課題】前述したように、液体
現像剤のトナー粒子濃度の検出に、従来光学センサを用
いたり、導電率による濃度検出が知られているが、これ
らの検出方法では正確な濃度検出が行えないという問題
があった。本発明はこのような問題に鑑みてなされたも
のであり、精度の高い液体現像剤のトナー粒子濃度検出
を行うことで、画像濃度の安定した湿式電子写真装置を
提供することを目的とする。
As described above, conventionally, an optical sensor is used to detect the concentration of toner particles in a liquid developer, or concentration detection based on conductivity is known. However, there is a problem that it is not possible to detect an accurate concentration. The present invention has been made in view of such a problem, and an object of the present invention is to provide a wet electrophotographic apparatus having a stable image density by detecting a toner particle concentration of a liquid developer with high accuracy.

【課題を解決するための手段】本発明の湿式電子写真装
置は、表面に静電潜像が形成される潜像保持体と、前記
静電潜像を現像するキャリア液およびトナー粒子とを含
む液体現像剤を収納する現像剤容器と、前記現像剤容器
内の液体現像剤中に超音波を発振し前記液体現像剤を伝
わる超音波の強度を測定して前記液体現像剤中のトナー
粒子濃度を測定する濃度測定手段とを有することを特徴
とする。すなわち、圧電振動子などから発生される超音
波を用いて現像剤容器内に収納される液体現像剤のトナ
ー粒子濃度を検出するために、光学センサに比べ検出空
間を広く取ることが可能になるため、正確にその濃度を
測定することが可能となる。また、電荷移動及び物質移
動に伴うノイズはほとんど検出されることもないため
に、導伝率による濃度検出に比べその濃度を正確に測定
することが可能となる。また、濃度測定手段は2つの圧
電振動子と、一方の圧電振動子に駆動信号を送る送信回
路と、前記一方の圧電振動子から発生した超音波を受信
する他方の圧電振動子と接続され、前記超音波の強度を
検出する検波回路とを有するものを使用することができ
る。また、圧電振動子と、この圧電振動子の主面と対向
配置された反射板を設けた濃度測定手段を用いることが
できる。また、濃度測定手段は、現像剤容器の外に設け
た圧電振動子を用いることができる。このようにするこ
とで、圧電振動子とその送信回路との接続を簡便に行う
ことができる。また、圧電振動子は、現像剤容器内に配
設することも可能である。さらに、また、前記濃度測定
手段による濃度測定結果に基づき、高濃度液体現像剤を
供給して前記現像剤容器内の液体現像剤の濃度を所定の
値に調整する濃度制御手段を設けることができる。前記
2つの圧電振動子は、前記送信回路および前記検波回路
のいずれにも接続可能にすることが好ましい。さらに、
この場合2つの圧電振動子は、実質的に同一構造の圧電
振動子とすることが好ましい。また、本発明の湿式電子
写真装置は、表面に静電潜像が形成される潜像保持体
と、この静電潜像を現像するキャリア液およびトナー粒
子を含む液体現像剤を収納する現像剤容器と、この現像
剤容器内、または前記現像剤容器外に配置された圧電振
動子とを備えることを特徴とする。また、前記圧電振動
子に駆動信号を送信する送信回路、及び前記圧電振動子
に接続された検波回路とを備えるものを含む。前記圧電
振動子を複数個備えていてもよい。前記複数の圧電振動
子の一つに駆動信号を送信する送信回路と、前記複数の
圧電振動子の他方に接続された検波回路とを備えるもの
も含む。
SUMMARY OF THE INVENTION A wet electrophotographic apparatus according to the present invention includes a latent image holding member having a surface on which an electrostatic latent image is formed, and a carrier liquid and toner particles for developing the electrostatic latent image. A developer container for storing the liquid developer, and a method of oscillating ultrasonic waves in the liquid developer in the developer container and measuring the intensity of the ultrasonic wave transmitted through the liquid developer to measure the toner particle concentration in the liquid developer. And a concentration measuring means for measuring the concentration. That is, in order to detect the toner particle concentration of the liquid developer contained in the developer container using the ultrasonic waves generated from the piezoelectric vibrator or the like, the detection space can be made wider than that of the optical sensor. Therefore, the concentration can be accurately measured. In addition, since noise due to charge transfer and mass transfer is hardly detected, the density can be measured more accurately than the density detection based on conductivity. Further, the concentration measuring means is connected to the two piezoelectric vibrators, a transmission circuit that sends a drive signal to one of the piezoelectric vibrators, and the other piezoelectric vibrator that receives the ultrasonic waves generated from the one piezoelectric vibrator, One having a detection circuit for detecting the intensity of the ultrasonic wave can be used. Further, it is possible to use a density measuring means provided with a piezoelectric vibrator and a reflection plate disposed so as to face the main surface of the piezoelectric vibrator. Further, a piezoelectric vibrator provided outside the developer container can be used as the concentration measuring means. By doing so, the connection between the piezoelectric vibrator and its transmission circuit can be easily performed. Further, the piezoelectric vibrator can be provided in the developer container. Furthermore, a density control means for supplying a high-concentration liquid developer and adjusting the concentration of the liquid developer in the developer container to a predetermined value based on the result of the density measurement by the density measurement means can be provided. . It is preferable that the two piezoelectric vibrators can be connected to both the transmission circuit and the detection circuit. further,
In this case, it is preferable that the two piezoelectric vibrators have substantially the same structure. Further, a wet electrophotographic apparatus according to the present invention includes a latent image holding member having an electrostatic latent image formed on a surface thereof, and a developer containing a liquid developer including a carrier liquid and toner particles for developing the electrostatic latent image. It is characterized by comprising a container and a piezoelectric vibrator disposed inside the developer container or outside the developer container. The present invention also includes a device including a transmission circuit for transmitting a drive signal to the piezoelectric vibrator, and a detection circuit connected to the piezoelectric vibrator. A plurality of the piezoelectric vibrators may be provided. Also included is one including a transmission circuit for transmitting a drive signal to one of the plurality of piezoelectric vibrators, and a detection circuit connected to the other of the plurality of piezoelectric vibrators.

【発明の実施の形態】図1に、本発明の湿式電子写真装
置の概略図を示す。潜像保持体1は、導電性基体の上
に、有機系あるいはアモルファスSiなどの無機系の感
光層を設けたものであり、ここでは回転可能な感光体ド
ラムを用いている。この潜像保持体1は周知の帯電器
(コロトロン帯電器あるいはスコロトロン帯電器など)
2によって均一に帯電された後、光源3から照射される
画像変調されたレーザーあるいはLEDなどの光ビーム
を受け、表面に静電潜像が形成される。しかる後に、現
像装置4によって、静電潜像が可視像化されトナー像が
形成される。静電潜像にトナーが付着したことによって
得られるトナー像は、図1に示すように中間転写媒体5
に一度転写された後、中間転写媒体5から紙などの記録
媒体6へ転写される。なお、静電潜像に付着したトナー
像を直接最終転写媒体である記録媒体6に直接転写させ
てもよい。図2は、現像装置4の拡大図であり、この図
を用いて現像装置4の構成と、現像工程について説明す
る。現像器を兼ねる現像剤容器21中には、液体現像剤
22が収納されている。この液体現像剤22は、非極性
のキャリア液と、このキャリア液中に分散されたトナー
粒子とからなる。なお、本発明における液体現像剤22
の濃度は、キャリア液に対するトナー粒子の含有率を指
し、用いる液体現像剤の諸特性によって異なるが、通常
液体現像在中のトナー粒子成分の比率が0.1〜5wt
%の範囲内で使用する。さらに、現像剤容器21中に
は、液体現像剤22にその一部が接触する、回転可能な
現像ローラ23が配置されており、この現像ローラ23
が矢印方向に回転することで、現像剤容器21内の液体
現像剤22を攪拌すると共に、現像ローラ23表面に液
体現像剤22を担持して潜像保持体1に液体現像剤22
を接触して供給する。また、現像ローラ23には、所定
の現像バイアスが印加されており、現像バイアスと、潜
像保持体1との電位差によって、潜像保持体1の所定の
部位のみにトナー粒子が付着することでトナー像が得ら
れる。また、図2においては、現像剤容器21中に一対
の圧電振動子24−1、24−2から成る濃度測定手段
が超音波送受信面(主面)を対向するように配置されて
おり、圧電振動子24−1から発振された超音波を圧電
振動子24−2で受信し、受信した超音波の減衰量変化
を測定することで、現像剤容器21中の液体現像剤22
の濃度を調べる。前記圧電振動子24−1は、圧電材料
と、圧電材料の対向する面に形成された一対の電極とか
らなり、前記圧電材料としては圧電セラミック、圧電単
結晶、高分子圧電体など、電極としてはAl,Au,A
gといった金属膜など、通常使用するものを用いればよ
い。図2に示すように圧電振動子24−1を現像剤容器
21中に配置する場合には、高分子圧電体はキャリア液
によって膨潤する恐れがあるため、圧電セラミックや圧
電単結晶を使用することが好ましい。また、一対の圧電
振動子24−1,24−2間の距離は、圧電振動子の周
波数により適当な範囲があり、特に限定されないが、
0.5mm〜30cm程度に設定することが望ましい。
圧電振動子間の距離が近すぎると、挟持される領域の現
像剤のトナー粒子濃度が、その他の領域の現像剤の濃度
よりも高くなり、正確な濃度測定が行えなくなる恐れが
ある。また超音波の伝搬距離が長いと、減衰が大きくな
るため測定誤差が生じやすく、それを防止するために圧
電振動子に印加する駆動電圧を大きくしなければならな
い。次に、液体現像剤のトナー粒子濃度測定原理を説明
する。液体現像剤中で、圧電振動子を発振させ超音波を
発生させると、その音波の波高値は現像液中のトナー濃
度により変化する。一般に音波は媒質中を伝搬すると、
媒質によりエネルギーが吸収され媒質が音響的に不均一
な場合には波の反射や散乱が生じて進行方向の波動エネ
ルギーは減少する。媒質中に懸濁粒子が浮遊している場
合、液と粒子の相対運動による摩擦でエネルギーの損失
が発生する。また、音響的に見てその特性に差のある物
質が混在しているので、音波は粒子に衝突して散乱・反
射する。これらの結果、音波は媒質中で減衰する。即
ち、媒質中の懸濁粒子の増減により音波の減衰は変化す
る。従って、媒質中の懸濁粒子の量を検知するには、伝
搬距離を一定に保ち受信する音波の振幅の変化を見れば
よい。本発明のように、液体現像剤の濃度を測定する場
合、前記媒質がキャリア液で、トナー粒子が懸濁粒子と
して考えられる。したがって、キャリア液中のトナー粒
子の増減により、圧電振動子で受信した超音波の強度が
変化するため、その強度を測定することで液体現像剤の
トナー粒子濃度を測定することが可能となる。図3に、
本発明に係る濃度測定手段と、この現像剤容器中に収納
された液体現像剤の濃度調整機構を示す。図3中、濃度
調整工程は矢印で示されている。超音波発振器として用
いる圧電振動子34−1と、超音波受信器として用いる
圧電振動子34−2の一対の圧電振動子が対向配置され
た濃度測定手段34の一部が現像剤容器31中に配置さ
れている。圧電振動子34−1の電極間には送信回路3
5から供給されたパルス電圧が印加され超音波が発振さ
れる。この超音波を受信する圧電振動子34−2で電気
信号に変換し、検波回路36によって、受信した超音波
の強度を検出する。あらかじめ設定された所定の強度範
囲から外れていれば、液体現像剤32のトナー粒子濃度
が適正値から外れたと判断し、濃度調整装置37によっ
て液体現像剤のトナー粒子濃度調整を行うことで、常に
液体現像剤32を適正な濃度に保持することが可能とな
り、ひいては潜像保持体表面に形成された静電潜像を所
望の濃度で現像することが可能になる。濃度の調整加減
は特に制限されないが、例えば予め液体現像剤のトナー
粒子の最適な濃度を調べ、最適値を挟んで最大濃度値が
最小濃度値の3倍程度の範囲内になるように調整すれば
よい。具体的には、例えば液体現像剤の最適トナー粒子
濃度がx%とした時、初期濃度(最大濃度)を1.5x
%とし、現像によって液体現像剤の濃度が0.5x%程
度になった時に濃度調整装置により液体現像剤トナー粒
子濃度が初期濃度となるように調整すればよい。さらに
図3においては圧電振動子34−1および圧電振動子3
4−2は、それぞれ切替え装置33を介して送信回路3
5および検波回路36に接続されている。一般に発信用
の圧電振動子は、受信用の圧電振動子よりも圧電特性の
劣化が激しい。そのため検波回路36に接続された圧電
振動子34−2が十分に使用できる状態であっても、送
信回路に接続された圧電振動子34−1の劣化によって
濃度測定手段の測定精度が低下してしまう。図3に示す
ように圧電振動子34−1および圧電振動子34−2
を、切替え装置33を介して送信回路35および検波回
路36に接続し、圧電振動子34−1および圧電振動子
34−2とを、送信回路35あるいは検波回路36のい
ずれにも接続可能にすることで、それぞれの圧電振動子
を、発信用あるいは受信用に適宜切り換えることで、濃
度測定手段をより長寿命化することができる。このよう
に、2つの圧電振動子を、送信用あるいは受信用に切り
替え可能にする場合、両圧電振動子は実質的に同一なも
のを用いることが好ましい。両圧電振動子を同じ物にす
れば、同じ条件で現像剤の濃度を測定する時、圧電振動
子の切換前後において検波回路で受ける信号の値は変化
しない。また、液体現像剤中のトナー粒子は、使用条件
によっては凝集してしまう恐れがあり、その結果正確な
濃度を検出できなくなる可能性がある。そのため、濃度
検出前に、液体現像剤中に微量の金属石鹸を添加し、凝
集をほぐした後に濃度検出を行うことが望ましい。或い
は凝集しにくい範囲の金属石鹸を予め添加しても良い。
図4は、濃度測定手段に、1つの圧電振動子を送信と受
信を兼ねる超音波送受信器として使用した変形例であ
る。図4においては、圧電振動子34は、圧電振動子3
4の対向電極に所定の駆動信号を印加するための送信回
路と、圧電振動子34の主面に伝わる超音波に起因して
得られる電気信号を検出する検波回路とに接続されてい
る。この濃度測定手段においては、送信回路35からの
駆動信号によって圧電振動子34から発生した超音波
は、液体現像剤32中を伝わり、圧電振動子34、と対
向配置された反射板41によって圧電振動子34へ反射
される。前述したように、この反射波の強度は、液体現
像剤のトナー粒子濃度によって減衰量が変化する。この
減衰した反射波を圧電振動子34により受信し、検波回
路36によりその強度を検出することで、液体現像剤の
トナー粒子濃度を測定することが可能となる。また、現
像剤容器の内壁を前記反射板41として用いることもで
き、このようにすることで、部品の削減が可能となる。
図5は、濃度測定手段を、現像剤容器31の外壁にその
主面を接触させて配置した変形例である。この変形例に
おいては、圧電振動子34から発生した超音波は、現像
剤容器31を介して液体現像剤32に伝わった後に反射
板41に到達し、反射板41で反射した超音波は、再び
現像剤容器を介して圧電振動子34によって受信され
る。この場合、現像剤容器31の材質によっては圧電振
動子34との界面で超音波の反射が大きくなることがあ
り、液体現像剤32中に超音波を効率的に放射できなく
なる。そのため、油性や水性のカップラントを圧電振動
子34の主面に塗布することが望ましい。このように、
濃度測定手段を現像剤容器31の外側に配置すること
で、振動子と、送信回路や検波回路との接続などを簡素
化することが可能となる。本発明に係る現像剤容器の変
形例を図6に示す。なお、図中の図2と同一符号につい
ては説明を省く。図6においては、現像装置と現像剤容
器21とが別途設けられている。現像装置は、現像ロー
ラ23と現像器62とから構成されている。液体現像剤
22は現像剤容器21に貯蔵されており、現像剤容器2
1から所定の濃度に調整された液体現像剤を現像器62
に供給すると共に、液体現像剤は現像ローラ23によっ
て現像に供された後に現像剤容器に回収される。すなわ
ち、現像剤容器21中において所定濃度に調整した液体
現像剤を現像装置に供給する構成を採っている。本発明
においては、このような現像装置とは別途設けられた現
像容器22中に、図3乃至図5に示すような濃度測定手
段を設けても良い。本発明者らは、図4に示す濃度測定
手段を用いて液体現像剤のトナー粒子濃度検知を行っ
た。圧電振動子34は、周波数50MHzのニオブ酸リ
チウム圧電振動子を用い、この圧電振動子34に、送信
・検波回路としてパナメトリクス社製のパルサ・レシー
バModel5900PRを接続した。現像容器31中
に、所定濃度のマゼンタの液体現像剤を満たした。この
液体現像剤中に、前記圧電振動子34を浸漬し、この圧
電振動子34から5mmの位置に、その主面と対向配置
するように、ステンレス製反射板を配置した。このよう
な条件で、送信・検波回路を駆動させて、トナー濃度と
受信波の強度の関係を測定した。前記マゼンタ(Mag
enta)現像剤で異なる濃度の液体現像剤を用いた時
の、前記超音波振動子で得られた受信波の強度を図7に
示す。また、同様にして、イエロー(Yellow)、
シアン(Cyan)の濃度検出も行った。その結果を図
7に併記する。図7から明らかなように、液体現像剤の
種類を問わず、液体現像剤と受信波の強度とは線形関係
にあり、いずれの液体現像剤においても液体現像剤トナ
ー粒子濃度の0.2wt%の変化を明確に検知できた。
この結果を基に、液体現像剤のトナー粒子濃度が0.8
〜1wt%の範囲内に入るように濃度調整を行いなが
ら、電子写真装置による出力を行ったところ、均質な濃
度の画像を繰り返す出力することができた。なお、この
実験においては、液体現像剤に用いたトナー粒子種類、
添加物、キャリア液あるいは圧電振動子の特性などによ
り、液体現像剤濃度と受信波の強度との関係には線形性
があったが、構成材料や、圧電振動子の周波数、測定長
などが異なる場合、必ずしも線形になるとは限らない。
しかしながら、これらの諸条件にかかわらず、液体現像
剤の濃度の減少に対する受信波の強度は単調増加する傾
向にあり、受信波の強度に対して濃度は一義的に決まる
ため、高精度の液体現像剤のトナー粒子濃度検知が可能
となる。なお、液体現像剤の温度により、受信波の強度
が変化する場合が考えられるために、測定環境を一定温
度に保つことが有効である。あるいは温度特性をあらか
じめ把握しておき、液体現像剤の温度を検出し、温度補
正を行って液体現像剤のトナー粒子濃度測定を行うこと
も有効である。
FIG. 1 is a schematic view of a wet electrophotographic apparatus according to the present invention. The latent image holding member 1 is provided with an organic or inorganic photosensitive layer such as amorphous Si on a conductive substrate, and here uses a rotatable photosensitive drum. The latent image holder 1 is a known charger (a corotron charger or a scorotron charger, for example).
After being uniformly charged by the light source 2, an image-modulated laser beam emitted from the light source 3 or a light beam from an LED or the like is received, and an electrostatic latent image is formed on the surface. Thereafter, the electrostatic latent image is visualized by the developing device 4 to form a toner image. The toner image obtained by the toner attached to the electrostatic latent image is, as shown in FIG.
Is transferred from the intermediate transfer medium 5 to a recording medium 6 such as paper. Note that the toner image attached to the electrostatic latent image may be directly transferred directly to the recording medium 6, which is the final transfer medium. FIG. 2 is an enlarged view of the developing device 4. The configuration of the developing device 4 and a developing process will be described with reference to FIG. A liquid developer 22 is housed in a developer container 21 also serving as a developing device. The liquid developer 22 includes a non-polar carrier liquid and toner particles dispersed in the carrier liquid. The liquid developer 22 according to the present invention
Refers to the content of toner particles with respect to the carrier liquid, and varies depending on the characteristics of the liquid developer used. Usually, the ratio of the toner particles during liquid development is 0.1 to 5 wt.
Use within the range of%. Further, in the developer container 21, a rotatable developing roller 23 that partially contacts the liquid developer 22 is disposed.
Is rotated in the direction of the arrow to agitate the liquid developer 22 in the developer container 21, and carry the liquid developer 22 on the surface of the developing roller 23 so that the liquid developer 22
Is supplied in contact. Further, a predetermined developing bias is applied to the developing roller 23, and the toner particles adhere to only a predetermined portion of the latent image holding member 1 due to a potential difference between the developing bias and the latent image holding member 1. A toner image is obtained. In FIG. 2, a concentration measuring unit including a pair of piezoelectric vibrators 24-1 and 24-2 is disposed in the developer container 21 so as to face the ultrasonic transmitting / receiving surface (main surface). The ultrasonic wave oscillated from the vibrator 24-1 is received by the piezoelectric vibrator 24-2, and a change in the amount of attenuation of the received ultrasonic wave is measured, whereby the liquid developer 22 in the developer container 21 is measured.
Check the concentration of. The piezoelectric vibrator 24-1 includes a piezoelectric material and a pair of electrodes formed on opposing surfaces of the piezoelectric material. Examples of the piezoelectric material include piezoelectric ceramics, piezoelectric single crystals, and polymer piezoelectrics. Is Al, Au, A
What is usually used may be used, such as a metal film such as g. When the piezoelectric vibrator 24-1 is disposed in the developer container 21 as shown in FIG. 2, the piezoelectric ceramic may be swelled by the carrier liquid. Is preferred. The distance between the pair of piezoelectric vibrators 24-1 and 24-2 has an appropriate range depending on the frequency of the piezoelectric vibrator, and is not particularly limited.
It is desirable to set it to about 0.5 mm to 30 cm.
If the distance between the piezoelectric vibrators is too short, the toner particle concentration of the developer in the sandwiched region becomes higher than the concentration of the developer in other regions, and there is a possibility that accurate concentration measurement cannot be performed. In addition, if the propagation distance of the ultrasonic wave is long, a measurement error is likely to occur due to a large attenuation, and a drive voltage applied to the piezoelectric vibrator must be increased in order to prevent the measurement error. Next, the principle of measuring the toner particle concentration of the liquid developer will be described. When an ultrasonic wave is generated by oscillating a piezoelectric vibrator in a liquid developer, the peak value of the sound wave changes according to the toner concentration in the developing solution. Generally, when a sound wave propagates through a medium,
When energy is absorbed by the medium and the medium is acoustically non-uniform, wave reflection and scattering occur, and the wave energy in the traveling direction decreases. When suspended particles are suspended in a medium, energy is lost due to friction caused by relative movement between the liquid and the particles. Also, since substances having acoustically different characteristics are mixed, sound waves collide with particles and are scattered and reflected. As a result, sound waves are attenuated in the medium. That is, the attenuation of the sound wave changes depending on the amount of suspended particles in the medium. Therefore, the amount of suspended particles in the medium can be detected by keeping the propagation distance constant and observing the change in the amplitude of the received sound wave. When measuring the concentration of the liquid developer as in the present invention, it is considered that the medium is a carrier liquid and the toner particles are suspended particles. Therefore, the intensity of the ultrasonic wave received by the piezoelectric vibrator changes due to the increase or decrease of the toner particles in the carrier liquid. By measuring the intensity, the toner particle concentration of the liquid developer can be measured. In FIG.
2 shows a concentration measuring means according to the present invention and a mechanism for adjusting the concentration of a liquid developer contained in the developer container. In FIG. 3, the concentration adjustment step is indicated by an arrow. A part of the concentration measuring unit 34 in which a pair of piezoelectric vibrators 34-1 used as an ultrasonic oscillator and a piezoelectric vibrator 34-2 used as an ultrasonic receiver are opposed to each other is disposed in the developer container 31. Are located. A transmitting circuit 3 is provided between the electrodes of the piezoelectric vibrator 34-1.
The pulse voltage supplied from 5 is applied, and an ultrasonic wave is oscillated. This ultrasonic wave is converted into an electric signal by the receiving piezoelectric vibrator 34-2, and the intensity of the received ultrasonic wave is detected by the detection circuit 36. When the intensity is out of the predetermined intensity range, it is determined that the toner particle concentration of the liquid developer 32 has deviated from an appropriate value, and the concentration adjusting device 37 adjusts the toner particle concentration of the liquid developer so that the toner particle concentration is always adjusted. The liquid developer 32 can be maintained at an appropriate density, and the electrostatic latent image formed on the surface of the latent image holding member can be developed at a desired density. Although the adjustment of the density is not particularly limited, for example, the optimum density of the toner particles of the liquid developer is checked in advance and adjusted so that the maximum density value is within a range of about three times the minimum density value across the optimum value. I just need. Specifically, for example, when the optimum toner particle concentration of the liquid developer is x%, the initial density (maximum density) is 1.5 ×
%, And when the concentration of the liquid developer becomes about 0.5 ×% by the development, the concentration of the liquid developer toner particles may be adjusted to the initial concentration by the concentration adjusting device. Further, in FIG. 3, the piezoelectric vibrator 34-1 and the piezoelectric vibrator 3
4-2, the transmission circuit 3 via the switching device 33
5 and a detection circuit 36. In general, a transmitting piezoelectric vibrator has more severe deterioration in piezoelectric characteristics than a receiving piezoelectric vibrator. Therefore, even when the piezoelectric vibrator 34-2 connected to the detection circuit 36 can be used sufficiently, the measurement accuracy of the concentration measuring unit is reduced due to the deterioration of the piezoelectric vibrator 34-1 connected to the transmission circuit. I will. As shown in FIG. 3, the piezoelectric vibrator 34-1 and the piezoelectric vibrator 34-2
Is connected to the transmission circuit 35 and the detection circuit 36 via the switching device 33 so that the piezoelectric vibrator 34-1 and the piezoelectric vibrator 34-2 can be connected to either the transmission circuit 35 or the detection circuit 36. By appropriately switching each of the piezoelectric vibrators for transmission or reception, the life of the concentration measuring means can be further extended. As described above, when the two piezoelectric vibrators can be switched for transmission or reception, it is preferable to use substantially the same piezoelectric vibrators. If the two piezoelectric vibrators are the same, when measuring the concentration of the developer under the same conditions, the value of the signal received by the detection circuit before and after the switching of the piezoelectric vibrators does not change. Further, the toner particles in the liquid developer may aggregate depending on the use conditions, and as a result, it may not be possible to detect an accurate concentration. Therefore, it is desirable to add a trace amount of metallic soap to the liquid developer before detecting the concentration and to loosen the aggregation to detect the concentration. Alternatively, a metal soap in a range that does not easily aggregate may be added in advance.
FIG. 4 shows a modification in which one piezoelectric vibrator is used as an ultrasonic transceiver for both transmission and reception in the concentration measuring means. In FIG. 4, the piezoelectric vibrator 34 is the piezoelectric vibrator 3
4 is connected to a transmission circuit for applying a predetermined drive signal to the counter electrode and a detection circuit for detecting an electric signal obtained by an ultrasonic wave transmitted to the main surface of the piezoelectric vibrator 34. In this density measuring means, the ultrasonic wave generated from the piezoelectric vibrator 34 by the drive signal from the transmission circuit 35 is transmitted through the liquid developer 32 and is reflected by the piezoelectric vibrator 34 and the reflecting plate 41 disposed opposite to the piezoelectric vibrator 34. It is reflected to the child 34. As described above, the amount of attenuation of the intensity of the reflected wave changes depending on the toner particle concentration of the liquid developer. By receiving the attenuated reflected wave by the piezoelectric vibrator 34 and detecting the intensity of the reflected wave by the detection circuit 36, the toner particle concentration of the liquid developer can be measured. In addition, the inner wall of the developer container can be used as the reflection plate 41, and thus the number of components can be reduced.
FIG. 5 shows a modification in which the concentration measuring means is arranged with its main surface in contact with the outer wall of the developer container 31. In this modification, the ultrasonic wave generated from the piezoelectric vibrator 34 reaches the reflection plate 41 after being transmitted to the liquid developer 32 via the developer container 31, and the ultrasonic wave reflected by the reflection plate 41 again It is received by the piezoelectric vibrator 34 via the developer container. In this case, depending on the material of the developer container 31, the reflection of the ultrasonic wave may increase at the interface with the piezoelectric vibrator 34, and the ultrasonic wave cannot be efficiently emitted into the liquid developer 32. Therefore, it is desirable to apply an oil-based or water-based coupler to the main surface of the piezoelectric vibrator 34. in this way,
By disposing the density measuring means outside the developer container 31, it is possible to simplify the connection between the vibrator and the transmission circuit or the detection circuit. FIG. 6 shows a modified example of the developer container according to the present invention. The description of the same reference numerals as those in FIG. 2 is omitted. In FIG. 6, a developing device and a developer container 21 are separately provided. The developing device includes a developing roller 23 and a developing device 62. The liquid developer 22 is stored in the developer container 21 and the developer container 2
A liquid developer adjusted to a predetermined concentration from 1 is supplied to a developing device 62.
And the liquid developer is subjected to development by the developing roller 23 and then collected in a developer container. That is, a configuration is adopted in which the liquid developer adjusted to a predetermined concentration in the developer container 21 is supplied to the developing device. In the present invention, a concentration measuring means as shown in FIGS. 3 to 5 may be provided in a developing container 22 provided separately from such a developing device. The present inventors detected the toner particle concentration of the liquid developer using the concentration measuring means shown in FIG. As the piezoelectric vibrator, a lithium niobate piezoelectric vibrator having a frequency of 50 MHz was used, and a pulser / receiver Model 5900PR manufactured by Panametrics was connected to the piezoelectric vibrator as a transmission / detection circuit. The developing container 31 was filled with a predetermined concentration of a magenta liquid developer. The piezoelectric vibrator 34 was immersed in the liquid developer, and a stainless steel reflecting plate was disposed at a position 5 mm from the piezoelectric vibrator 34 so as to face the main surface thereof. Under these conditions, the transmission / detection circuit was driven to measure the relationship between the toner concentration and the intensity of the received wave. The magenta (Mag)
FIG. 7 shows the intensity of the received wave obtained by the ultrasonic vibrator when liquid developers having different concentrations are used as the developer. Similarly, yellow (Yellow),
Cyan concentration detection was also performed. The results are also shown in FIG. As is apparent from FIG. 7, regardless of the type of the liquid developer, the liquid developer and the intensity of the received wave have a linear relationship, and in any liquid developer, the concentration of the liquid developer toner particles is 0.2 wt% Was clearly detected.
Based on this result, the toner particle concentration of the liquid developer was 0.8
When output was performed by an electrophotographic apparatus while adjusting the density so as to fall within the range of 〜1 wt%, an image having a uniform density could be repeatedly output. In this experiment, the type of toner particles used for the liquid developer,
The relationship between the concentration of the liquid developer and the intensity of the received wave was linear due to the properties of the additive, the carrier liquid, and the piezoelectric vibrator. In such a case, the shape is not always linear.
However, regardless of these conditions, the intensity of the received wave with respect to the decrease in the concentration of the liquid developer tends to monotonously increase, and the concentration is uniquely determined with respect to the intensity of the received wave. The toner particle concentration of the agent can be detected. Since the intensity of the received wave may change depending on the temperature of the liquid developer, it is effective to maintain the measurement environment at a constant temperature. Alternatively, it is also effective to grasp the temperature characteristics in advance, detect the temperature of the liquid developer, correct the temperature, and measure the toner particle concentration of the liquid developer.

【発明の効果】上述したように、本発明によれば液体現
像剤のトナー粒子濃度を正確に検出できるために、湿式
電子写真装置の画像濃度を一定の値に維持することが可
能となる。
As described above, according to the present invention, since the toner particle concentration of the liquid developer can be accurately detected, it is possible to maintain the image density of the wet electrophotographic apparatus at a constant value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の湿式電子写真装置の概略図を示す。FIG. 1 shows a schematic view of a wet electrophotographic apparatus of the present invention.

【図2】 本発明に係る現像装置の拡大図を示す。FIG. 2 is an enlarged view of a developing device according to the present invention.

【図3】 本発明に係る濃度測定手段と、液体現像剤の
濃度調整機構を示す概略図である。
FIG. 3 is a schematic diagram showing a concentration measuring unit according to the present invention and a mechanism for adjusting the concentration of a liquid developer.

【図4】 本発明に係る濃度測定手段の第1の変形例を
示す概略図である。
FIG. 4 is a schematic diagram showing a first modified example of the concentration measuring means according to the present invention.

【図5】 本発明に係る濃度測定手段の第2の変形例を
示す概略図である。
FIG. 5 is a schematic view showing a second modified example of the concentration measuring means according to the present invention.

【図6】 本発明に係る現像装置の変形例を示す図面で
ある。
FIG. 6 is a view showing a modification of the developing device according to the present invention.

【図7】 液体現像剤の濃度と、本発明に係る濃度測定
手段による受信波の強度との関係を示す図である。
FIG. 7 is a diagram illustrating a relationship between the concentration of a liquid developer and the intensity of a received wave by a concentration measuring unit according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・潜像保持体 2・・・帯電機 3・・・光源 4・・・現像装置 5・・・中間転写媒体 6・・・記録媒体 21、31・・・現像剤容器 22、32・・・液体現像剤 23・・・現像ローラ 24、34・・・圧電振動子 35・・・送信回路 36・・・検波回路 37・・・濃度調整装置 41・・・反射板 DESCRIPTION OF SYMBOLS 1 ... Latent image holder 2 ... Charging machine 3 ... Light source 4 ... Developing device 5 ... Intermediate transfer medium 6 ... Recording medium 21, 31 ... Developer container 22, 32 ... Liquid developer 23 ... Developing rollers 24, 34 ... Piezoelectric vibrator 35 ... Transmission circuit 36 ... Detection circuit 37 ... Density adjusting device 41 ... Reflector

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】表面に静電潜像が形成される潜像保持体
と、 前記静電潜像を現像するキャリア液およびトナー粒子を
含む液体現像剤を収納する現像剤容器と、 前記現像剤容器内の液体現像剤中に超音波を発振し前記
液体現像剤を伝わる超音波の強度を測定して前記液体現
像剤中のトナー粒子濃度を測定する濃度測定手段とを有
することを特徴とする湿式電子写真装置。
1. A latent image holding member having an electrostatic latent image formed on a surface thereof, a developer container containing a liquid developer containing a carrier liquid and toner particles for developing the electrostatic latent image, and the developer Concentration measuring means for oscillating ultrasonic waves in the liquid developer in the container, measuring the intensity of the ultrasonic waves transmitted through the liquid developer, and measuring the concentration of toner particles in the liquid developer. Wet electrophotographic equipment.
【請求項2】前記濃度測定手段は2つの圧電振動子と、
一方の圧電振動子に駆動信号を送る送信回路と、前記一
方の圧電振動子から発生した超音波を受信する他方の圧
電振動子と接続され、前記超音波の強度を検出する検波
回路とを有することを特徴とする請求項1記載の湿式電
子写真装置。
2. The apparatus according to claim 1, wherein said concentration measuring means includes two piezoelectric vibrators;
A transmission circuit that sends a drive signal to one of the piezoelectric vibrators, and a detection circuit that is connected to the other piezoelectric vibrator that receives the ultrasonic waves generated from the one piezoelectric vibrator and that detects the intensity of the ultrasonic waves 2. The wet electrophotographic apparatus according to claim 1, wherein:
【請求項3】前記濃度測定手段は、圧電振動子と、この
圧電振動子の主面と対向配置された反射板を有すること
を特徴とする請求項1記載の湿式電子写真装置。
3. The wet electrophotographic apparatus according to claim 1, wherein said density measuring means has a piezoelectric vibrator and a reflector disposed to face a main surface of the piezoelectric vibrator.
【請求項4】前記濃度測定手段は、前記現像剤容器の外
に設けられた圧電振動子を有することを特徴とする請求
項1記載の湿式電子写真装置。
4. The wet electrophotographic apparatus according to claim 1, wherein said density measuring means has a piezoelectric vibrator provided outside said developer container.
【請求項5】前記濃度測定手段は、前記現像剤容器中に
設けられた圧電振動子を有することを特徴とする請求項
1記載の湿式電子写真装置。
5. The wet electrophotographic apparatus according to claim 1, wherein said density measuring means has a piezoelectric vibrator provided in said developer container.
【請求項6】前記濃度測定手段による濃度測定結果に基
づき、高濃度液体現像剤を供給して前記現像剤容器内の
液体現像剤の濃度を所定の値に調整する濃度制御手段を
有することを特徴とする請求項1記載の湿式電子写真装
置。
6. A density control means for supplying a high-concentration liquid developer and adjusting the concentration of the liquid developer in the developer container to a predetermined value based on a result of the density measurement by the density measurement means. The wet electrophotographic apparatus according to claim 1, wherein
【請求項7】前記2つの圧電振動子は、前記送信回路お
よび前記検波回路のいずれにも接続可能であることを特
徴とする請求項2記載の湿式電子写真装置。
7. The wet electrophotographic apparatus according to claim 2, wherein said two piezoelectric vibrators are connectable to any of said transmission circuit and said detection circuit.
【請求項8】前記2つの圧電振動子は、実質的に同一構
造の圧電振動子であることを特徴とする請求項7記載の
湿式電子写真装置。
8. A wet electrophotographic apparatus according to claim 7, wherein said two piezoelectric vibrators are piezoelectric vibrators having substantially the same structure.
【請求項9】表面に静電潜像が形成される潜像保持体
と、 この静電潜像を現像するキャリア液およびトナー粒子を
含む液体現像剤を収納する現像剤容器と、 この現像剤容器内、または前記現像剤容器外に配置され
た圧電振動子とを備えることを特徴とする湿式電子写真
装置。
9. A latent image holding member having a surface on which an electrostatic latent image is formed, a developer container for storing a liquid developer containing a carrier liquid and toner particles for developing the electrostatic latent image, and a developer container. A piezoelectric vibrator disposed in a container or outside the developer container.
【請求項10】前記圧電振動子に駆動信号を送信する送
信回路、及び前記圧電振動子に接続された検波回路とを
備えることを特徴とする請求項9に記載の湿式電子写真
装置。
10. The wet electrophotographic apparatus according to claim 9, further comprising: a transmission circuit for transmitting a drive signal to said piezoelectric vibrator; and a detection circuit connected to said piezoelectric vibrator.
【請求項11】前記圧電振動子を複数個備えることを特
徴とする請求項9記載の湿式電子写真装置。
11. The wet electrophotographic apparatus according to claim 9, comprising a plurality of said piezoelectric vibrators.
【請求項12】前記複数の圧電振動子の一つに駆動信号
を送信する送信回路と、前記複数の圧電振動子の他方に
接続された検波回路とを備えることを特徴とする請求項
11記載の湿式電子写真装置。
12. The apparatus according to claim 11, further comprising a transmission circuit for transmitting a drive signal to one of said plurality of piezoelectric vibrators, and a detection circuit connected to the other of said plurality of piezoelectric vibrators. Wet electrophotographic equipment.
JP2000186560A 1999-08-30 2000-06-21 Wet electrophotographic equipment Expired - Fee Related JP3585812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186560A JP3585812B2 (en) 1999-08-30 2000-06-21 Wet electrophotographic equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24279599 1999-08-30
JP11-242795 1999-08-30
JP2000186560A JP3585812B2 (en) 1999-08-30 2000-06-21 Wet electrophotographic equipment

Publications (2)

Publication Number Publication Date
JP2001142306A true JP2001142306A (en) 2001-05-25
JP3585812B2 JP3585812B2 (en) 2004-11-04

Family

ID=26535924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186560A Expired - Fee Related JP3585812B2 (en) 1999-08-30 2000-06-21 Wet electrophotographic equipment

Country Status (1)

Country Link
JP (1) JP3585812B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143188A2 (en) * 2006-06-01 2007-12-13 Hewlett-Packard Development Company, Jl.P. Apparatus and method for monitoring marking liquid
JP2009163124A (en) * 2008-01-09 2009-07-23 Miyakoshi Printing Machinery Co Ltd Toner supply device
DE102012103336A1 (en) * 2012-04-17 2013-10-17 Océ Printing Systems GmbH & Co. KG Method for operating a digital printer and determining the toner concentration and associated digital printer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143188A2 (en) * 2006-06-01 2007-12-13 Hewlett-Packard Development Company, Jl.P. Apparatus and method for monitoring marking liquid
WO2007143188A3 (en) * 2006-06-01 2008-02-28 Hewlett Packard Dev Company Jl Apparatus and method for monitoring marking liquid
US7570893B2 (en) 2006-06-01 2009-08-04 Hewlett-Packard Development Company, L.P. Methods of monitoring a marking liquid, apparatuses for monitoring a marking liquid, and image transfer devices
JP2009163124A (en) * 2008-01-09 2009-07-23 Miyakoshi Printing Machinery Co Ltd Toner supply device
JP4580429B2 (en) * 2008-01-09 2010-11-10 株式会社ミヤコシ Toner supply device
US8150285B2 (en) 2008-01-09 2012-04-03 Miyakoshi Printing Machinery Co., Ltd. Toner supplier apparatus
DE102012103336A1 (en) * 2012-04-17 2013-10-17 Océ Printing Systems GmbH & Co. KG Method for operating a digital printer and determining the toner concentration and associated digital printer
JP2013222207A (en) * 2012-04-17 2013-10-28 Oce Printing Systems Gmbh Method to operate digital printer and determine toner concentration, and digital printer
US9031426B2 (en) 2012-04-17 2015-05-12 OCé PRINTING SYSTEMS GMBH Method to operate a digital printer and determine the toner concentration, as well as an associated digital printer
DE102012103336B4 (en) * 2012-04-17 2016-12-08 Océ Printing Systems GmbH & Co. KG Method for operating a digital printer and determining the toner concentration and associated digital printer

Also Published As

Publication number Publication date
JP3585812B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US4314242A (en) Apparatus for detecting a residual quantity of toner
US5438393A (en) Powder fluidity detecting apparatus which includes a piezoelectric element
EP2021877B1 (en) Apparatus and method for monitoring marking liquid
JP3585812B2 (en) Wet electrophotographic equipment
US5074149A (en) Acoustic wave measurement of the properties of porous materials filled with air and granules
JPH0535050A (en) Electrifying device and process cartridge or image forming device having electrifying device
US20030219265A1 (en) Image forming apparatus
JP2006350072A (en) Image forming apparatus
JP3196046B2 (en) Powder fluidity detector
US6564711B1 (en) Ultrasonic cleaner and toner agglomerate disperser for liquid ink development (LID) systems using second sound
JP3196047B2 (en) Method and apparatus for detecting powder fluidity
US5729787A (en) Toner concentration monitor and method
JP3459370B2 (en) Wet developer concentration control device
JP2000292346A (en) Method and device for measuring liquid concentration
JP4653624B2 (en) Crystal grain size measuring device, crystal grain size measuring method, program, and computer-readable storage medium
US5532802A (en) Piezoelectric sensor for in-situ monitoring of electrostatographic developers
JP2001022252A (en) Process cartridge and electrophotographic image forming device
JP3029852B2 (en) Development method
JPH06167883A (en) Device for detecting amount of remaining toner for image forming device
JPH11338239A (en) Developer quantity detecting device, developing device, and image forming device provided with this developing device
JP5930858B2 (en) Method for determining particle mass concentration in a dispersion containing particles and liquid
JPS60111265A (en) Method and device for development of copying machine
SU58423A1 (en) Device for detecting and detecting hidden defects in metal products
JP2007064835A (en) Surface potential evaluating system
JPH11295974A (en) Method for detecting residual amount of developer and image forming device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees