JP2012255787A5 - - Google Patents

Download PDF

Info

Publication number
JP2012255787A5
JP2012255787A5 JP2012131813A JP2012131813A JP2012255787A5 JP 2012255787 A5 JP2012255787 A5 JP 2012255787A5 JP 2012131813 A JP2012131813 A JP 2012131813A JP 2012131813 A JP2012131813 A JP 2012131813A JP 2012255787 A5 JP2012255787 A5 JP 2012255787A5
Authority
JP
Japan
Prior art keywords
mass concentration
dispersion
particles
determining
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012131813A
Other languages
Japanese (ja)
Other versions
JP5930858B2 (en
JP2012255787A (en
Filing date
Publication date
Priority claimed from DE201110050957 external-priority patent/DE102011050957A1/en
Application filed filed Critical
Publication of JP2012255787A publication Critical patent/JP2012255787A/en
Publication of JP2012255787A5 publication Critical patent/JP2012255787A5/ja
Application granted granted Critical
Publication of JP5930858B2 publication Critical patent/JP5930858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (9)

粒子および液体を含む分散液中の粒子質量濃度を求める方法であって、
測定セル(MZ)内の分散液に、可変の周波数を有する交流場を印加し、該交流場によって前記分散液中の前記粒子を振動させ、前記分散液中の前記粒子に音圧波を形成し、
音圧波振幅(ESA)を前記周波数に基づいて測定し、前記音圧波の最大振幅を検出し、該最大振幅に対応する周波数を前記音圧波の共振周波数として求め、
初期測定過程において決定される、共振周波数と質量濃度(TK)との関数関係により、求められた前記共振周波数から、前記分散液中の前記粒子の質量濃度(TK)を求める
ことを特徴とする分散液中の粒子質量濃度を求める方法。
A method for determining a particle mass concentration in a dispersion containing particles and a liquid,
An alternating current field having a variable frequency is applied to the dispersion liquid in the measurement cell (MZ), the particles in the dispersion liquid are vibrated by the alternating current field, and sound pressure waves are formed in the particles in the dispersion liquid. ,
Sound pressure wave amplitude (ESA) is measured based on the frequency, the maximum amplitude of the sound pressure wave is detected, the frequency corresponding to the maximum amplitude is determined as the resonance frequency of the sound pressure wave,
The mass concentration (TK) of the particles in the dispersion is obtained from the obtained resonance frequency by the functional relationship between the resonance frequency and the mass concentration (TK) determined in the initial measurement process. A method for determining the mass concentration of particles in a dispersion.
前記交流場を、設定可能な周波数を有する交流電圧によって形成する、
請求項1記載の分散液中の粒子質量濃度を求める方法。
Forming the alternating field with an alternating voltage having a configurable frequency;
A method for determining the mass concentration of particles in the dispersion according to claim 1.
前記交流場を、光音響効果を用いて形成する、
請求項1記載の分散液中の粒子質量濃度を求める方法。
Forming the AC field using a photoacoustic effect;
A method for determining the mass concentration of particles in the dispersion according to claim 1.
前記共振周波数と前記質量濃度(TK)との前記関数関係を、前記初期測定過程において、所定の温度(T)のもとで前記測定セル(MZ)に既知の質量濃度(TK)を有する分散液充填し、かつ、該充填された分散液の共振周波数検出て、該共振周波数と質量濃度(TK)との関数関係テーブルに記述することにより、決定し、
別の分散液で測定された共振周波数により、前記テーブルから、前記別の分散液中の粒子の質量濃度(TK)を読み出す、
請求項1または2記載の分散液中の粒子質量濃度を求める方法。
In the initial measurement process, the functional relationship between the resonance frequency and the mass concentration (TK) is a dispersion having a known mass concentration (TK) in the measurement cell (MZ) under a predetermined temperature (T). liquid filling the, and detects the resonance frequency of the filled dispersion, by describing the functional relationship between the resonant frequency and the mass concentration (TK) in the table, determined,
Read the mass concentration (TK) of the particles in the other dispersion from the table according to the resonance frequency measured in the other dispersion.
A method for determining the mass concentration of particles in the dispersion according to claim 1.
前記分散液は、トナー粒子と支持液とを含み、かつ、電子写真式印刷機での電荷画像の現像に用いられる現像液である、
請求項1から4までのいずれか1項記載の分散液中の粒子質量濃度を求める方法。
The dispersion is a developer containing toner particles and a support liquid, and used for developing a charge image in an electrophotographic printer.
A method for determining a particle mass concentration in a dispersion according to any one of claims 1 to 4.
前記測定セル(MZ)内で、前記音圧波振幅(ESA)を前記周波数に依存して測定し、測定値を制御ユニット(ST)へ供給し、
該制御ユニット(ST)から前記測定値をプロセッサユニット(PR)へ供給し、該プロセッサユニットにより前記測定値から前記共振周波数を求め、前記共振周波数に基づいて質量濃度(TK)を求めて出力側へ出力する、
請求項1から5までのいずれか1項記載の分散液中の粒子質量濃度を求める方法。
In the measurement cell (MZ), the sound pressure wave amplitude (ESA) is measured depending on the frequency, and the measured value is supplied to the control unit (ST).
The measurement value is supplied from the control unit (ST) to the processor unit (PR), the resonance frequency is obtained from the measurement value by the processor unit, and the mass concentration (TK) is obtained based on the resonance frequency. Output to
A method for determining a particle mass concentration in a dispersion according to any one of claims 1 to 5.
前記制御ユニット(ST)により、前記質量濃度(TK)と、前記音圧波振幅(ESA)と、分散液の液体中の音速の既知の分散パラメータ(c)と、分散液中の粒子と液体とのあいだの密度差(Δρ)とから、分散液中の粒子のダイナミック電気泳動度(μ)を求める、
請求項6記載の分散液中の粒子質量濃度を求める方法。
By the control unit (ST), the mass concentration (TK), the sound pressure wave amplitude (ESA), the known dispersion parameter (c) of the sound velocity in the liquid of the dispersion liquid, the particles and the liquid in the dispersion liquid, The dynamic electrophoretic mobility (μ d ) of the particles in the dispersion is obtained from the density difference (Δρ) between
A method for determining the mass concentration of particles in the dispersion according to claim 6.
前記ダイナミック電気泳動度μを、式
μ=ESA/c*Δρ*TK*G
によって求め、ここで、cは音速であり、Δρは粒子と液体とのあいだの密度差であり、TKは質量濃度であり、Gは周波数に依存する較正係数である、
請求項7記載の分散液中の粒子質量濃度を求める方法。
The dynamic electrophoretic mobility μ d is expressed by the formula μ d = ESA / c * Δρ * TK * G
Where c is the speed of sound, Δρ is the density difference between the particle and the liquid, TK is the mass concentration, and G is a frequency dependent calibration factor,
A method for determining a particle mass concentration in the dispersion according to claim 7.
前記質量濃度(TK)および前記ダイナミック電気泳動度(μ)を1回の測定過程で同時に求める、
請求項8記載の分散液中の粒子質量濃度を求める方法。
The mass concentration (TK) and the dynamic electrophoretic mobility (μ d ) are simultaneously determined in one measurement process.
A method for determining the mass concentration of particles in the dispersion according to claim 8.
JP2012131813A 2011-06-09 2012-06-11 Method for determining particle mass concentration in a dispersion containing particles and liquid Expired - Fee Related JP5930858B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110050957 DE102011050957A1 (en) 2011-06-09 2011-06-09 Method for determining the mass concentration of particles in a particle and liquid dispersion
DE102011050957.7 2011-06-09

Publications (3)

Publication Number Publication Date
JP2012255787A JP2012255787A (en) 2012-12-27
JP2012255787A5 true JP2012255787A5 (en) 2015-04-30
JP5930858B2 JP5930858B2 (en) 2016-06-08

Family

ID=47220273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131813A Expired - Fee Related JP5930858B2 (en) 2011-06-09 2012-06-11 Method for determining particle mass concentration in a dispersion containing particles and liquid

Country Status (2)

Country Link
JP (1) JP5930858B2 (en)
DE (1) DE102011050957A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059909A (en) * 1986-09-30 1991-10-22 Colloidal Dynamics Pty. Ltd. Determination of particle size and electrical charge
US5245290A (en) 1989-02-27 1993-09-14 Matec Applied Sciences, Inc. Device for determining the size and charge of colloidal particles by measuring electroacoustic effect
US5121629A (en) 1989-11-13 1992-06-16 E. I. Du Pont De Nemours And Company Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics
US6672163B2 (en) 2000-03-14 2004-01-06 Halliburton Energy Services, Inc. Acoustic sensor for fluid characterization
US20060150836A1 (en) 2003-07-29 2006-07-13 Oce Printing Systems Gmbh Device and method for electrophoretic liquid development
DE102005055156B3 (en) 2005-11-18 2007-05-31 OCé PRINTING SYSTEMS GMBH Apparatus and method for developing potential images formed on an intermediate image carrier in an electrographic printing or copying device
JP2008014930A (en) 2006-06-07 2008-01-24 Pfu Ltd Device and method for measuring solid component concentration, and solid component concentration adjusting device
JP5400483B2 (en) * 2009-06-05 2014-01-29 日本電信電話株式会社 Component concentration analyzer and component concentration analysis method

Similar Documents

Publication Publication Date Title
Barnkob et al. Measuring the local pressure amplitude in microchannel acoustophoresis
JP4993349B2 (en) Potential measuring apparatus and image forming apparatus
O'Brien et al. A new formula for the dynamic mobility in a concentrated colloid
JP2012233887A (en) Adjusting mems attitude controller to reduce thermally varying bias
JP2010532863A5 (en)
Yoshida et al. Rheological evaluation of complex fluids using ultrasonic spinning rheometry in an open container
CN109374729B (en) Acoustic micro-mass sensor and detection method
WO2014097402A1 (en) Zeta potential measurement method and zeta potential measurement system
JP2012255787A5 (en)
Honzík et al. Acoustic fields in thin fluid layers between vibrating walls and rigid boundaries: integral method
Dukhin et al. The seismoelectric effect: A nonisochoric streaming current: 2. Theory and its experimental verification
CN107449491A (en) A kind of disturbance location of weak coupling resonant transducer determines method
JPWO2015186177A1 (en) Liquid volume measuring device
JPH0658914A (en) Measurement with sound wave for quality of porous material containing air and particulate
WO2014173745A3 (en) Method for controlling an acoustic cell
RU2573446C1 (en) Method of determining amplitude-frequency and phase-frequency characteristics of field sensitivity of hydroacoustic receiver
Meng et al. A liquid density sensor based on longitudinal wave effect of a piezoelectric quartz crystal in liquid phase
JP5713349B2 (en) Zeta potential measurement method and zeta potential measurement system
Xie et al. Behaviors of spherical intruder in 3-D vertically vibrating granular system with vertical longitudinal air pressure wave
JP5930858B2 (en) Method for determining particle mass concentration in a dispersion containing particles and liquid
Johnson et al. Acoustofluidic particle trapping, manipulation, and release using dynamic-mode cantilever sensors
Dukhin Observation of sol–gel transition for carbon nanotubes using electroacoustics: colloid vibration current versus streaming vibration current
JP2016109435A (en) Voltage detection device
Seaton et al. Application of the multicomponent lattice Boltzmann simulation method to oil/water dispersions
CN108460225A (en) A kind of emulation mode and system of anisotropy sheet metal induction type magnetic acoustic image