WO2014097402A1 - Zeta potential measurement method and zeta potential measurement system - Google Patents

Zeta potential measurement method and zeta potential measurement system Download PDF

Info

Publication number
WO2014097402A1
WO2014097402A1 PCT/JP2012/082825 JP2012082825W WO2014097402A1 WO 2014097402 A1 WO2014097402 A1 WO 2014097402A1 JP 2012082825 W JP2012082825 W JP 2012082825W WO 2014097402 A1 WO2014097402 A1 WO 2014097402A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeta potential
particles
suspension
particle size
potential measurement
Prior art date
Application number
PCT/JP2012/082825
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 英人
高井 健次
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2012/082825 priority Critical patent/WO2014097402A1/en
Publication of WO2014097402A1 publication Critical patent/WO2014097402A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the present invention relates to a zeta potential measurement method and a zeta potential measurement system.
  • ⁇ ⁇ Zeta potential is an important indicator of particles.
  • the zeta potential is usually calculated by directly observing the mobility of the electrophoresed particles.
  • a zeta potential measuring device for example, Zetasizer 2000 manufactured by Malvern Instruments Ltd. is known.
  • the zeta potential measuring apparatus as described above directly observes the mobility of particles in the suspension, it cannot simply measure the zeta potential for each particle size of the particles in the suspension. Therefore, the present inventors have searched for a new method that can easily measure the zeta potential for each particle size.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a zeta potential measurement method and a zeta potential measurement system in which a zeta potential for each particle size of particles can be easily obtained.
  • a zeta potential measurement method is a method in which a parameter related to pressure at a position in a suspension is changed over time while an electric field is applied to the suspension including particles. And a step of calculating a zeta potential for each particle size of the particles using a change with time of the parameter and a particle size distribution of the particles.
  • the density of the columnar portion of the suspension existing above the position in the suspension changes with time as the particles move. For this reason, the parameter related to the pressure at the position in the suspension changes with time.
  • the zeta potential is different for each particle size, the moving speed of the particles due to the electric field is also different for each particle size. Therefore, the zeta potential for each particle size is reflected in the change with time of the parameter related to the pressure at the position in the suspension. Therefore, the zeta potential for each particle diameter can be easily obtained by using the change with time of the parameter and the particle size distribution of the particles.
  • the zeta potential measurement method may further include a step of imparting a charge to the particles in the suspension before measuring the change of the parameter with time.
  • friction charging may be performed in advance by a bead mill or the like.
  • a bead mill apart from fine particles to be classified, beads having a uniform particle size having a large particle diameter are charged into the suspension, and the fine particles to be classified are charged by stirring.
  • the zeta potential is equal for particles of the same composition.
  • tribocharging is performed in advance with a bead mill or the like, a phenomenon occurs in which the zeta potential varies depending on the particle size. This is considered to be because the contact property between the fine particles to be classified and the large-diameter bead having a uniform diameter varies depending on the particle diameter of the fine particles.
  • the beads with a large diameter and uniform diameter may be charged positively or negatively.
  • a bead having a coefficient of variation (CV) of the bead particle size of less than 3% may be used.
  • the parameter may be the weight of an object placed at a position in the suspension.
  • the buoyancy received by the object changes with time.
  • the weight of the object increases with time. Therefore, if the weight of the object arranged at the position in the suspension is measured, the zeta potential for each particle diameter can be obtained more easily.
  • the weight of the object can be measured using, for example, a scale that measures the weight of the object placed at a position in the suspension. In this case, the weight of the object is measured by placing the scale above the suspension and suspending the object from the scale.
  • the parameter may be a pressure at a position in the suspension.
  • the pressure can be measured using, for example, a pressure sensor that measures the pressure at a position in the suspension.
  • the parameter may be the turbidity or refractive index of the suspension at a position in the suspension, or the particle density of the suspension at a position in the suspension.
  • the particle density in the suspension can be measured, for example, by counting the number of particles in the image of the suspension in a certain range.
  • a zeta potential measurement system includes an electrode for applying an electric field to a suspension containing particles, and a measurement device that measures a change over time in a parameter related to pressure at a position in the suspension. And an arithmetic unit that calculates a zeta potential for each particle size of the particles using the change with time of the parameters and the particle size distribution of the particles.
  • the zeta potential for each particle size of the particles can be easily obtained by using the parameter change with time and the particle size distribution of the particles.
  • the zeta potential measurement system may further include a charge imparting device that imparts a charge to the particles in the suspension.
  • the measuring device may be a scale that measures the weight of an object placed at a position in the suspension. In this case, as described above, the zeta potential for each particle size of the particles can be obtained more easily.
  • the measurement device may be a pressure sensor that measures a change in pressure over time at a position in the suspension.
  • the measuring device may be a device that measures a change over time in turbidity or refractive index of the suspension at a position in the suspension, or the particle density of the suspension at a position in the suspension.
  • An apparatus for measuring a change with time may be used.
  • the apparatus for measuring the change in the particle density with time may include an apparatus for taking an image of the suspension in a certain range and an apparatus for counting the number of particles in the image.
  • a zeta potential measurement method and a zeta potential measurement system in which a zeta potential for each particle size of particles can be easily obtained.
  • FIG. 1 is a diagram schematically illustrating a zeta potential measurement system according to the first embodiment.
  • FIG. 2 is an enlarged view of a part of FIG.
  • the zeta potential measurement system 10 includes electrodes 44 and 46, a measurement device 36, and a calculation device 38.
  • the zeta potential measurement system 10 may include a charge applying device 12 as necessary.
  • the charge imparting device 12 imparts electric charge to particles (powder) in the suspension and stirs the particles in the suspension by, for example, stirring the suspension (slurry) accommodated in the stirring tank 14. It can be uniformly dispersed. The particles are usually given a negative charge, but may be given a positive charge.
  • the charge applying device 12 is a stirrer such as a bead mill.
  • the charge applying device 12 is connected to the controller 16, for example.
  • the controller 16 can control, for example, the stirring speed (peripheral speed of the stirring blade), the stirring time, and the like of the charge applying device 12.
  • the charge imparting device 12 may impart a charge to the particles in the suspension by a method other than stirring.
  • the suspension includes particles and a liquid (dispersion).
  • the particles in the suspension may be organic particles or inorganic particles. Such particles can be used as a core of conductive particles contained in an anisotropic conductive film or anisotropic conductive paste.
  • the organic particle material include acrylic resin and styrene resin.
  • the material of the inorganic particles include silica (SiO 2 ).
  • the average particle diameter of the particles in the suspension is, for example, 100 ⁇ m or less, 3 ⁇ m or less, or 50 ⁇ m or more.
  • the liquid in the suspension include water.
  • the beads used are made of an inorganic material such as silica.
  • the particle size of the beads is not particularly limited, but may be 100 ⁇ m or more and 1000 ⁇ m or less in consideration of ease of filtration. As the beads are monodispersed, a charge corresponding to the particle diameter can be imparted to the particles.
  • the variation in the particle size of the beads may be CV ⁇ 3%, where CV is the coefficient of variation of the particle size.
  • the ultrasonic vibrator 20 may be attached to the stirring tank 14.
  • the ultrasonic transducer 20 is driven by the ultrasonic transmitter 22 and irradiates the suspension in the stirring tank 14 with ultrasonic waves. Thereby, aggregation of the particles in the suspension is suppressed, and the particles can be more uniformly dispersed in the suspension.
  • the stirring tank 14 is provided with, for example, a valve 18.
  • the opening and closing of the valve 18 is controlled by the controller 16.
  • the controller 16 When the valve 18 is opened, the suspension is supplied to the sedimentation tank 30 through the supply pipe 26 and the bypass pipe 28 after passing through the pipe 24.
  • the charge imparting device 12 is a bead mill, the particle size of the beads used may be larger than the particle size of the particles in the suspension. Thereby, it can suppress that a bead passes the valve
  • the electrodes 44 and 46 are made of a conductive material such as a metal or a conductive polymer, for example.
  • the electrode 44 is, for example, a metal plate disposed on the bottom surface of the settling tank 30.
  • the electrode 46 is, for example, a metal mesh disposed on the liquid level of the suspension accommodated in the settling tank 30.
  • the electrodes 44 and 46 are connected to a DC power source 48 via, for example, electrical wiring.
  • a voltage ⁇ V is applied between the electrodes 44 and 46.
  • the voltage ⁇ V between the electrodes 44 and 46 may be 1 to 200V.
  • the electrode 44 can be a positive potential and the electrode 46 can be a negative potential.
  • the measuring device 36 measures a change with time of a parameter related to the pressure at a depth h (position in the suspension) from the liquid surface of the suspension.
  • the depth h is about 8 cm, for example.
  • the measuring device 36 is a scale that measures the weight of the detection container 32 (object) disposed at the depth h.
  • An example of the scale is a precision electronic balance with high measurement accuracy.
  • the weight of the detection container 32 is an example of a parameter related to the pressure at the depth h. By measuring the weight of the detection container 32, the pressure at the depth h can be indirectly detected.
  • the measuring device 36 is connected to the arithmetic device 38. Thereby, the weight data of the detection container 32 measured by the measuring device 36 is sent to the arithmetic device 38.
  • the detection container 32 is suspended from the measuring device 36 by a support wire 34, for example.
  • the detection container 32 is disposed between the opposing electrodes 44 and 46.
  • the bottom surface of the detection container 32 is located at a depth h.
  • the detection container 32 is filled with a suspension.
  • the computing device 38 calculates the zeta potential for each particle size of the particle using the change with time of the parameter and the particle size distribution of the particle.
  • the arithmetic unit 38 calculates the zeta potential for each particle size of the particle using the change over time of the weight of the detection container 32 and the particle size distribution of the particle.
  • the arithmetic device 38 is a computer, for example.
  • the arithmetic device 38 may include a storage device such as a hard disk.
  • An output device 40 such as a display and an input device 42 such as a keyboard are connected to the arithmetic device 38.
  • the particle size distribution of the particles is measured in advance by, for example, a particle size distribution measuring device using a dynamic light scattering method, and is recorded in the storage device of the arithmetic device 38.
  • FIG. 3 is a flowchart showing the zeta potential measurement method according to the first embodiment.
  • the zeta potential measurement method according to the present embodiment is performed by, for example, the zeta potential measurement system 10 shown in FIG.
  • step S1 an electric charge is applied to the particles in the suspension.
  • charges are imparted to particles in the suspension in the stirring tank 14 using the charge imparting device 12.
  • the suspension in the stirring tank 14 is supplied to the settling tank 30.
  • step S1 for imparting electric charge to the particles may not be performed.
  • a parameter change with time is measured while applying an electric field to the suspension containing particles (step S2).
  • an electric field is applied to the suspension in the settling tank 30 using the electrodes 44 and 46. While the electric field is continuously applied, the change over time of the weight of the detection container 32 is measured using the measuring device 36. The change over time in the measured weight of the detection container 32 is recorded in the storage device of the arithmetic device 38.
  • the zeta potential for each particle size of the particle is calculated using the parameter change with time and the particle size distribution of the particle (step S3).
  • the calculation device 38 uses the time-dependent change in the weight of the detection container 32 and the particle size distribution of the particles to calculate the zeta potential for each particle size as follows.
  • G t represents the amount of weight change at time t.
  • G te indicates the amount of weight change at the measurement end time.
  • W t indicates the weight of the detection container 32 measured at time t.
  • W te indicates the weight of the detection container 32 measured at the measurement end time.
  • f (D p ) represents the particle size distribution of the particles.
  • D p represents the particle size.
  • De indicates a predetermined particle size.
  • h represents the depth from the liquid surface of the suspension.
  • represents the moving speed of the particles. t indicates time. Therefore, ⁇ t corresponds to the moving distance of the particles.
  • G t / G te on the left side indicates the ratio of the total mass of particles that have passed the depth h at time t to the total mass of particles that have passed the depth h at the measurement end time.
  • First half of the right side shows that the particles having a particle size larger than a predetermined particle size D e has passed through the depth h at the time t.
  • Second part of the right side of the particles having a particle size not greater than a predetermined particle diameter D e, only particles located within a range of a distance ⁇ t on the depth h will pass through the depth h at the time t Indicates that
  • the moving speed ⁇ (D p ) of the particles is expressed by the following formula (2).
  • the moving speed ⁇ (D p ) of the particles is the same as the moving speed ⁇ of the particles in the formula (1).
  • [rho p represents the density of the particles.
  • ⁇ f represents the density of the dispersion.
  • g represents gravitational acceleration.
  • indicates the viscosity of the dispersion.
  • e indicates the base of natural logarithm (about 2.7).
  • represents the dielectric constant of the dispersion.
  • ⁇ V represents the voltage applied to the suspension.
  • l represents the distance between the opposing electrodes.
  • represents the zeta potential.
  • the first half of the right side corresponds to the particle settling velocity due to gravity (Stokes equation).
  • the latter half of the right side corresponds to the speed of particle movement by the electric field.
  • the zeta potential ⁇ is a function H (D p ) of the particle size D p .
  • D p the particle size of the zeta potential
  • the following expression (3) is established.
  • a higher order expression such as a cubic expression or a quartic expression may be used.
  • the particle size distribution f (D p ) of the particles is measured in advance by, for example, a particle size distribution measuring apparatus using a dynamic light scattering method.
  • G t / G te which is the left side of the expression (1) is calculated from a plurality of (for example, 40) time t from the experimental data of the change with time of the weight of the detection container 32.
  • a, b, c are matched to the experimental value (G t / G te calculated at a plurality of times t). Determine the optimal value of.
  • the approximate expression of the zeta potential is an n-order expression, n + 1 optimum values are determined.
  • the above procedure may be executed by a computer program.
  • the computer program may be stored in a storage device of the arithmetic device 38, a computer-readable recording medium, or other storage device.
  • step S2 may be started within 4 hours or within 1 hour.
  • the differential value (gradient) of the zeta potential with respect to the particle size increases.
  • the density of the columnar portion of the suspension that exists above the depth h from the liquid surface of the suspension is changed over time as the particles move. Change. For this reason, when the pressure at the depth h changes with time, the buoyancy received by the detection container 32 changes with time. For example, when the pressure at the depth h decreases with time, the buoyancy received by the detection container 32 also decreases with time. As a result, the weight of the detection container 32 increases with time.
  • the zeta potential differs for each particle size, the moving speed of the particles due to the electric field also varies for each particle size.
  • the change in the weight of the detection container 32 with time reflects the zeta potential for each particle size. Therefore, the zeta potential for each particle diameter can be easily obtained by using the change over time of the weight of the detection container 32 and the particle size distribution of the particles. Even the zeta potential of large particles having an average particle size of 10 ⁇ m or more, which is usually difficult, can be measured.
  • the particles can be classified.
  • the differential value (gradient) of the zeta potential with respect to the particle size is large, the coefficient of variation (CV) of the particle size in the particles obtained by classification can be reduced.
  • FIG. 4 is a graph showing an example of the particle size distribution.
  • the horizontal axis indicates the particle size D p ( ⁇ m).
  • the vertical axis represents frequency (%).
  • FIG. 5 is a graph showing an example of the change over time (sedimentation curve) of the weight of the detection container.
  • the horizontal axis indicates time t (seconds).
  • the vertical axis represents the weight (gram) of the detection container 32.
  • FIG. 6 is a graph showing an example of the relationship between the particle size and the zeta potential.
  • the horizontal axis indicates the particle size D p ( ⁇ m).
  • the vertical axis represents the zeta potential (mV).
  • the density ⁇ p of the silica particles was 2.24 g / cm 3 .
  • the number of revolutions of the bead mill was 2300 rpm.
  • the absolute value of the zeta potential gradually decreases as the particle size increases. The value of the zeta potential varies depending on the number of rotations of the bead mill.
  • the particles in the suspension are acrylic resin particles (median diameter 2.59 ⁇ m, specific gravity 1.18 g / cm 3 ) will be described with reference to FIGS.
  • FIG. 7 is a graph showing another example of the change over time of the weight of the detection container.
  • the horizontal axis indicates time t (seconds).
  • the vertical axis represents the weight (gram) of the detection container 32.
  • the voltage ⁇ V applied between the electrodes 44 and 46 was 30V.
  • the concentration C 0 of the acrylic resin particles was 0.75 wt%. Using silica particles with a particle diameter of 100 ⁇ m, beads were milled for 30 minutes at a peripheral speed (u ⁇ ) of 6.65 m / s, thereby imparting charges to the acrylic resin particles.
  • FIG. 8 is a graph showing another example of the relationship between the particle size and the zeta potential.
  • the horizontal axis indicates the particle size D p ( ⁇ m).
  • the vertical axis represents the zeta potential (mV).
  • the density ⁇ pe of the acrylic resin particles was 1.18 g / cm 3 .
  • the absolute value of the zeta potential gradually increases as the particle size increases.
  • the gradient of the zeta potential of the resin particles (FIG. 8) is opposite to the gradient of the zeta potential of the inorganic particles (FIG. 6).
  • the number average of the zeta potential was ⁇ 37.1 mV.
  • the zeta potential measured by the Zetasizer was -42 mV.
  • the zeta potential measured in the present embodiment was a value close to the zeta potential measured by the zeta sizer.
  • FIG. 9 is a diagram schematically showing a zeta potential measurement system according to the second embodiment.
  • the zeta potential measurement system 10A shown in FIG. 9 includes the pressure detector 54, the support member 52, and the measurement device 50 in place of the detection container 32, the support wire 34, and the measurement device 36, and the zeta potential shown in FIG.
  • the same configuration as that of the potential measurement system 10 is provided. Therefore, the zeta potential measurement system 10A exhibits at least the same effects as those based on the configuration of the zeta potential measurement system 10 excluding the detection container 32, the support wire 34, and the measurement device 36.
  • the pressure detector 54 is disposed at a depth h from the liquid level of the suspension.
  • the pressure detection unit 54 is connected to the measurement device 50 via the support member 52.
  • the measuring device 50 is a pressure sensor that measures a change in pressure over time at a depth h.
  • the measuring device 50 is connected to the arithmetic device 38. Thereby, the pressure data measured in the measuring device 50 is sent to the arithmetic device 38.
  • the computing device 38 can calculate the zeta potential using the change with time of the pressure at the depth h and the particle size distribution of the particles, as in the first embodiment.
  • the left side of Equation (1) is P t / P te .
  • P t indicates the amount of pressure change at time t.
  • Pte indicates the amount of pressure change at the measurement end time.
  • Another pressure detector may be arranged on the liquid level of the suspension to measure the pressure, and the pressure difference between the liquid level of the suspension and the depth h may be measured.
  • the pressure at the depth h is measured as an example of a parameter related to the pressure at the depth h.
  • the pressure at the depth h decreases with time.
  • the zeta potential for each particle diameter of the particles can be easily obtained by using the change with time of the pressure at the depth h and the particle size distribution of the particles.
  • the parameter related to the pressure at the depth h from the liquid level of the suspension may be a parameter obtained by converting the pressure using an arbitrary physical quantity, or may be a parameter capable of indirectly detecting the pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A zeta potential measurement method according to an embodiment includes a step of applying an electric field to a suspension that contains particles and at the same time measuring the change over time in a parameter pertaining to pressure at a location in the suspension, and a step of using the change over time in the parameter and a particle size distribution to calculate the zeta potential for each particle size.

Description

ゼータ電位測定方法及びゼータ電位測定システムZeta potential measurement method and zeta potential measurement system
 本発明は、ゼータ電位測定方法及びゼータ電位測定システムに関する。 The present invention relates to a zeta potential measurement method and a zeta potential measurement system.
 粒子の重要な指標としてゼータ電位がある。ゼータ電位は、通常、電気泳動させた粒子の移動度を直接観測することによって算出される。このようなゼータ電位測定装置として、例えば、Malvern Instruments Ltd.製ゼータサイザー2000が知られている。 ゼ ー Zeta potential is an important indicator of particles. The zeta potential is usually calculated by directly observing the mobility of the electrophoresed particles. As such a zeta potential measuring device, for example, Zetasizer 2000 manufactured by Malvern Instruments Ltd. is known.
 一方、微粒子表面のゼータ電位の差を利用して微粒子を分級する方法が、近年盛んに検討されている(特許文献1~3参照)。 On the other hand, methods for classifying fine particles by utilizing the difference in zeta potential on the fine particle surface have been actively studied in recent years (see Patent Documents 1 to 3).
特開2005-230712号公報JP 2005-230712 A 特開2005-334865号公報JP 2005-334865 A 特開2011-125801号公報JP 2011-125801 A
 微粒子表面のゼータ電位の差を利用して微粒子を分級する方法においては、粒径ごとの精密なゼータ電位の数値が必要になる。 In the method of classifying fine particles using the difference in zeta potential on the surface of fine particles, a precise numerical value of zeta potential for each particle size is required.
 しかしながら、上述のようなゼータ電位測定装置では、懸濁液中の粒子の移動度を直接観測するため、懸濁液中の粒子の粒径ごとのゼータ電位を簡便に測定することはできない。そこで本発明者は、粒径ごとのゼータ電位を簡便に測定できる新たな方法の探索を行った。 However, since the zeta potential measuring apparatus as described above directly observes the mobility of particles in the suspension, it cannot simply measure the zeta potential for each particle size of the particles in the suspension. Therefore, the present inventors have searched for a new method that can easily measure the zeta potential for each particle size.
 本発明は、上記事情に鑑みて為されたものであり、粒子の粒径ごとのゼータ電位が簡便に得られるゼータ電位測定方法及びゼータ電位測定システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a zeta potential measurement method and a zeta potential measurement system in which a zeta potential for each particle size of particles can be easily obtained.
 上述の課題を解決するため、本発明の一側面に係るゼータ電位測定方法は、粒子を含む懸濁液に電界を印加しながら、前記懸濁液中の位置における圧力に関連するパラメータの経時変化を測定するステップと、前記パラメータの経時変化と前記粒子の粒度分布とを用いて、前記粒子の粒径ごとのゼータ電位を算出するステップと、を含む。 In order to solve the above-described problem, a zeta potential measurement method according to one aspect of the present invention is a method in which a parameter related to pressure at a position in a suspension is changed over time while an electric field is applied to the suspension including particles. And a step of calculating a zeta potential for each particle size of the particles using a change with time of the parameter and a particle size distribution of the particles.
 上記ゼータ電位測定方法では、粒子が移動することによって、懸濁液中の位置より上に存在する懸濁液の柱状部分の密度が経時変化する。このため、懸濁液中の位置における圧力に関連するパラメータが経時変化する。ここで、ゼータ電位は粒径ごとに異なるため、電界による粒子の移動速度も粒径ごとに異なる。そのため、懸濁液中の位置における圧力に関連するパラメータの経時変化には、粒径ごとのゼータ電位が反映されることになる。したがって、パラメータの経時変化と粒子の粒度分布とを用いることによって、粒子の粒径ごとのゼータ電位が簡便に得られる。 In the above zeta potential measurement method, the density of the columnar portion of the suspension existing above the position in the suspension changes with time as the particles move. For this reason, the parameter related to the pressure at the position in the suspension changes with time. Here, since the zeta potential is different for each particle size, the moving speed of the particles due to the electric field is also different for each particle size. Therefore, the zeta potential for each particle size is reflected in the change with time of the parameter related to the pressure at the position in the suspension. Therefore, the zeta potential for each particle diameter can be easily obtained by using the change with time of the parameter and the particle size distribution of the particles.
 上記ゼータ電位測定方法は、前記パラメータの経時変化を測定する前に、前記懸濁液中の前記粒子に電荷を付与するステップを更に含んでもよい。 The zeta potential measurement method may further include a step of imparting a charge to the particles in the suspension before measuring the change of the parameter with time.
 微粒子表面のゼータ電位の差を利用して微粒子を分級する方法を採用する場合、予めビーズミル等により摩擦帯電を行ってもよい。ビーズミルでは、分級の対象となる微粒子とは別に粒径の大きい均一径のビーズを懸濁液に投入し、攪拌を行うことによって分級の対象となる微粒子を帯電させる。古典的なゼータ電位の考え方では、同一組成の粒子であればゼータ電位は等しいとされる。しかしながら、予めビーズミル等で摩擦帯電を行う場合、粒径によってゼータ電位が異なるという現象が起こる。これは、分級の対象となる微粒子と粒径の大きい均一径のビーズとの接触性が、微粒子の粒径によって異なる為であると考えられる。 When adopting a method of classifying fine particles using the difference in zeta potential on the surface of the fine particles, friction charging may be performed in advance by a bead mill or the like. In the bead mill, apart from fine particles to be classified, beads having a uniform particle size having a large particle diameter are charged into the suspension, and the fine particles to be classified are charged by stirring. According to the classic concept of zeta potential, the zeta potential is equal for particles of the same composition. However, when tribocharging is performed in advance with a bead mill or the like, a phenomenon occurs in which the zeta potential varies depending on the particle size. This is considered to be because the contact property between the fine particles to be classified and the large-diameter bead having a uniform diameter varies depending on the particle diameter of the fine particles.
 粒径の大きい均一径のビーズは、プラス又はマイナスに帯電してもよい。ビーズの粒径は均一であればあるほど好ましい結果が得られる。具体的には、ビーズの粒径の変動係数(CV)が3%未満であるようなビーズを用いると良い。このような方法により粒子に電荷を付与した後、上述のゼータ電位測定方法を用いて粒径ごとのゼータ電位を測定しておくことによって、分級精度の向上が見込める。 The beads with a large diameter and uniform diameter may be charged positively or negatively. The more uniform the particle size of the beads, the better results. Specifically, a bead having a coefficient of variation (CV) of the bead particle size of less than 3% may be used. After applying a charge to the particles by such a method, the accuracy of classification can be expected by measuring the zeta potential for each particle size using the above-described zeta potential measurement method.
 前記パラメータは、前記懸濁液中の位置に配置された物体の重量であってもよい。この場合、懸濁液中の位置における圧力が経時変化することによって、物体の受ける浮力が経時変化する。例えば、懸濁液中の位置における圧力が経時的に小さくなると、物体の受ける浮力も経時的に小さくなる。この場合、物体の重量は経時的に大きくなる。よって、懸濁液中の位置に配置された物体の重量を測定すれば、粒子の粒径ごとのゼータ電位がより簡便に得られる。物体の重量は、例えば懸濁液中の位置に配置された物体の重量を測定する秤を用いて測定可能である。この場合、秤を懸濁液の上方に配置し、秤から物体を吊り下げることによって物体の重量が測定される。 The parameter may be the weight of an object placed at a position in the suspension. In this case, as the pressure at the position in the suspension changes with time, the buoyancy received by the object changes with time. For example, if the pressure at the position in the suspension decreases with time, the buoyancy received by the object also decreases with time. In this case, the weight of the object increases with time. Therefore, if the weight of the object arranged at the position in the suspension is measured, the zeta potential for each particle diameter can be obtained more easily. The weight of the object can be measured using, for example, a scale that measures the weight of the object placed at a position in the suspension. In this case, the weight of the object is measured by placing the scale above the suspension and suspending the object from the scale.
 前記パラメータは、前記懸濁液中の位置における圧力であってもよい。圧力は、例えば懸濁液中の位置における圧力を測定する圧力センサを用いて測定可能である。 The parameter may be a pressure at a position in the suspension. The pressure can be measured using, for example, a pressure sensor that measures the pressure at a position in the suspension.
 前記パラメータは、前記懸濁液中の位置における前記懸濁液の濁度又は屈折率であってもよいし、前記懸濁液中の位置における前記懸濁液の粒子密度であってもよい。懸濁液中の粒子密度は、例えばある範囲における前記懸濁液の画像中の粒子数をカウントすることによって測定可能である。 The parameter may be the turbidity or refractive index of the suspension at a position in the suspension, or the particle density of the suspension at a position in the suspension. The particle density in the suspension can be measured, for example, by counting the number of particles in the image of the suspension in a certain range.
 本発明の一側面に係るゼータ電位測定システムは、粒子を含む懸濁液に電界を印加するための電極と、前記懸濁液中の位置における圧力に関連するパラメータの経時変化を測定する測定装置と、前記パラメータの経時変化と前記粒子の粒度分布とを用いて、前記粒子の粒径ごとのゼータ電位を算出する演算装置と、を備える。 A zeta potential measurement system according to one aspect of the present invention includes an electrode for applying an electric field to a suspension containing particles, and a measurement device that measures a change over time in a parameter related to pressure at a position in the suspension. And an arithmetic unit that calculates a zeta potential for each particle size of the particles using the change with time of the parameters and the particle size distribution of the particles.
 このシステムでは、上述のように、パラメータの経時変化と粒子の粒度分布とを用いることによって、粒子の粒径ごとのゼータ電位が簡便に得られる。 In this system, as described above, the zeta potential for each particle size of the particles can be easily obtained by using the parameter change with time and the particle size distribution of the particles.
 上記ゼータ電位測定システムは、前記懸濁液中の前記粒子に電荷を付与する電荷付与装置を更に備えてもよい。 The zeta potential measurement system may further include a charge imparting device that imparts a charge to the particles in the suspension.
 前記測定装置は、前記懸濁液中の位置に配置された物体の重量を測定する秤であってもよい。この場合、上述のように、粒子の粒径ごとのゼータ電位がより簡便に得られる。 The measuring device may be a scale that measures the weight of an object placed at a position in the suspension. In this case, as described above, the zeta potential for each particle size of the particles can be obtained more easily.
 前記測定装置は、前記懸濁液中の位置において圧力の経時変化を測定する圧力センサであってもよい。 The measurement device may be a pressure sensor that measures a change in pressure over time at a position in the suspension.
 前記測定装置は、前記懸濁液中の位置において前記懸濁液の濁度又は屈折率の経時変化を測定する装置でもよいし、前記懸濁液中の位置において前記懸濁液の粒子密度の経時変化を測定する装置でもよい。粒子密度の経時変化を測定する装置は、ある範囲における前記懸濁液の画像を撮影する装置と、前記画像中の粒子数をカウントする装置とを備えてもよい。 The measuring device may be a device that measures a change over time in turbidity or refractive index of the suspension at a position in the suspension, or the particle density of the suspension at a position in the suspension. An apparatus for measuring a change with time may be used. The apparatus for measuring the change in the particle density with time may include an apparatus for taking an image of the suspension in a certain range and an apparatus for counting the number of particles in the image.
 本発明によれば、粒子の粒径ごとのゼータ電位が簡便に得られるゼータ電位測定方法及びゼータ電位測定システムが提供される。 According to the present invention, there are provided a zeta potential measurement method and a zeta potential measurement system in which a zeta potential for each particle size of particles can be easily obtained.
第1実施形態に係るゼータ電位測定システムを模式的に示す図である。It is a figure showing typically the zeta potential measurement system concerning a 1st embodiment. 図1の一部を拡大した図である。It is the figure which expanded a part of FIG. 第1実施形態に係るゼータ電位測定方法を示すフローチャートである。It is a flowchart which shows the zeta potential measurement method which concerns on 1st Embodiment. 粒度分布の一例を示すグラフである。It is a graph which shows an example of a particle size distribution. 検出容器の重量の経時変化の一例を示すグラフである。It is a graph which shows an example of a time-dependent change of the weight of a detection container. 粒径とゼータ電位との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a particle size and zeta potential. 検出容器の重量の経時変化の別の例を示すグラフである。It is a graph which shows another example of the time-dependent change of the weight of a detection container. 粒径とゼータ電位との関係の別の例を示すグラフである。It is a graph which shows another example of the relationship between a particle size and zeta potential. 第2実施形態に係るゼータ電位測定システムを模式的に示す図である。It is a figure which shows typically the zeta potential measurement system which concerns on 2nd Embodiment.
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate descriptions are omitted.
(第1実施形態)
 図1は、第1実施形態に係るゼータ電位測定システムを模式的に示す図である。図2は、図1の一部を拡大した図である。図1に示されるゼータ電位測定システム10では沈降天秤法が用いられている。ゼータ電位測定システム10は、電極44,46と、測定装置36と、演算装置38とを備える。ゼータ電位測定システム10は、必要に応じて電荷付与装置12を備えてもよい。
(First embodiment)
FIG. 1 is a diagram schematically illustrating a zeta potential measurement system according to the first embodiment. FIG. 2 is an enlarged view of a part of FIG. In the zeta potential measurement system 10 shown in FIG. 1, a sedimentation balance method is used. The zeta potential measurement system 10 includes electrodes 44 and 46, a measurement device 36, and a calculation device 38. The zeta potential measurement system 10 may include a charge applying device 12 as necessary.
 電荷付与装置12は、例えば攪拌槽14内に収容された懸濁液(スラリー)を攪拌することによって、懸濁液中の粒子(粉体)に電荷を付与すると共に懸濁液中に粒子を均一に分散させることができる。粒子は通常マイナスの電荷を付与されるが、プラスの電荷を付与されてもよい。電荷付与装置12は、例えばビーズミル等の攪拌器である。電荷付与装置12は、例えばコントローラ16に接続される。コントローラ16は、例えば電荷付与装置12の攪拌速度(攪拌翼の周速度)、攪拌時間等を制御することができる。電荷付与装置12は、攪拌以外の方法によって懸濁液中の粒子に電荷を付与してもよい。 The charge imparting device 12 imparts electric charge to particles (powder) in the suspension and stirs the particles in the suspension by, for example, stirring the suspension (slurry) accommodated in the stirring tank 14. It can be uniformly dispersed. The particles are usually given a negative charge, but may be given a positive charge. The charge applying device 12 is a stirrer such as a bead mill. The charge applying device 12 is connected to the controller 16, for example. The controller 16 can control, for example, the stirring speed (peripheral speed of the stirring blade), the stirring time, and the like of the charge applying device 12. The charge imparting device 12 may impart a charge to the particles in the suspension by a method other than stirring.
 懸濁液は、粒子と液体(分散液)とを含む。懸濁液中の粒子は、有機粒子でもよいし、無機粒子でもよい。このような粒子は、異方導電膜又は異方導電ペーストに含まれる導電粒子の核体として使用可能である。有機粒子の材料としては、例えばアクリル樹脂、スチレン樹脂、等が挙げられる。無機粒子の材料としては、例えばシリカ(SiO)等が挙げられる。懸濁液中の粒子の平均粒径は、例えば100μm以下であり、3μm以下でもよいし、50μm以上でもよい。懸濁液中の液体としては、例えば水等が挙げられる。 The suspension includes particles and a liquid (dispersion). The particles in the suspension may be organic particles or inorganic particles. Such particles can be used as a core of conductive particles contained in an anisotropic conductive film or anisotropic conductive paste. Examples of the organic particle material include acrylic resin and styrene resin. Examples of the material of the inorganic particles include silica (SiO 2 ). The average particle diameter of the particles in the suspension is, for example, 100 μm or less, 3 μm or less, or 50 μm or more. Examples of the liquid in the suspension include water.
 電荷付与装置12がビーズミルの場合、使用されるビーズは、例えばシリカ等の無機材料からなる。ビーズの粒径は、特に限定されないが、濾別の容易性を考慮すると、100μm以上、1000μm以下であってもよい。ビーズが単分散であるほど、粒径に応じた電荷を粒子に付与できる。ビーズの粒径のばらつきについては、粒径の変動係数をCVとして、CV<3%であってもよい。 When the charge imparting device 12 is a bead mill, the beads used are made of an inorganic material such as silica. The particle size of the beads is not particularly limited, but may be 100 μm or more and 1000 μm or less in consideration of ease of filtration. As the beads are monodispersed, a charge corresponding to the particle diameter can be imparted to the particles. The variation in the particle size of the beads may be CV <3%, where CV is the coefficient of variation of the particle size.
 攪拌槽14には、超音波振動子20が取り付けられてもよい。超音波振動子20は、超音波発信器22によって駆動され、攪拌槽14内の懸濁液に超音波を照射する。これにより、懸濁液中の粒子の凝集が抑制されると共に、懸濁液中に粒子をより均一に分散させることができる。 The ultrasonic vibrator 20 may be attached to the stirring tank 14. The ultrasonic transducer 20 is driven by the ultrasonic transmitter 22 and irradiates the suspension in the stirring tank 14 with ultrasonic waves. Thereby, aggregation of the particles in the suspension is suppressed, and the particles can be more uniformly dispersed in the suspension.
 攪拌槽14には、例えばバルブ(valve)18が設けられている。バルブ18の開閉は、コントローラ16によって制御される。バルブ18が開くと、懸濁液は、配管24を通った後、供給管26及びバイパス管28を経由して沈降槽30に供給される。電荷付与装置12がビーズミルの場合、使用されるビーズの粒径は、懸濁液中の粒子の粒径より大きくてもよい。これにより、ビーズがバルブ18を通過することを抑制できる。 The stirring tank 14 is provided with, for example, a valve 18. The opening and closing of the valve 18 is controlled by the controller 16. When the valve 18 is opened, the suspension is supplied to the sedimentation tank 30 through the supply pipe 26 and the bypass pipe 28 after passing through the pipe 24. When the charge imparting device 12 is a bead mill, the particle size of the beads used may be larger than the particle size of the particles in the suspension. Thereby, it can suppress that a bead passes the valve | bulb 18. FIG.
 電極44,46間において、粒子を含む懸濁液に電界が印加される。電界は、例えば重力方向に沿って印加される。電極44,46は、例えば金属又は導電性高分子等の導電性材料からなる。電極44は、例えば沈降槽30の底面に配置された金属プレートである。電極46は、例えば沈降槽30内に収容された懸濁液の液面に配置された金属メッシュである。電極44,46は、例えば電気配線を介してそれぞれDC電源48に接続される。これにより、電極44,46間に電圧ΔVが印加される。電極44,46間の電圧ΔVは、1~200Vであってもよい。例えば電極44をプラス電位、電極46をマイナス電位とすることができる。 Between the electrodes 44 and 46, an electric field is applied to the suspension containing particles. The electric field is applied along the direction of gravity, for example. The electrodes 44 and 46 are made of a conductive material such as a metal or a conductive polymer, for example. The electrode 44 is, for example, a metal plate disposed on the bottom surface of the settling tank 30. The electrode 46 is, for example, a metal mesh disposed on the liquid level of the suspension accommodated in the settling tank 30. The electrodes 44 and 46 are connected to a DC power source 48 via, for example, electrical wiring. As a result, a voltage ΔV is applied between the electrodes 44 and 46. The voltage ΔV between the electrodes 44 and 46 may be 1 to 200V. For example, the electrode 44 can be a positive potential and the electrode 46 can be a negative potential.
 測定装置36は、懸濁液の液面からの深さh(懸濁液中の位置)における圧力に関連するパラメータの経時変化を測定する。深さhは例えば8cm程度である。本実施形態において、測定装置36は、深さhに配置された検出容器32(物体)の重量を測定する秤である。秤としては、例えば測定精度の高い精密電子天秤が挙げられる。検出容器32の重量は、深さhにおける圧力に関連するパラメータの一例である。検出容器32の重量を測定することによって、深さhにおける圧力を間接的に検知することができる。測定装置36は、演算装置38に接続されている。これにより、測定装置36において測定された検出容器32の重量データは演算装置38に送られる。 The measuring device 36 measures a change with time of a parameter related to the pressure at a depth h (position in the suspension) from the liquid surface of the suspension. The depth h is about 8 cm, for example. In the present embodiment, the measuring device 36 is a scale that measures the weight of the detection container 32 (object) disposed at the depth h. An example of the scale is a precision electronic balance with high measurement accuracy. The weight of the detection container 32 is an example of a parameter related to the pressure at the depth h. By measuring the weight of the detection container 32, the pressure at the depth h can be indirectly detected. The measuring device 36 is connected to the arithmetic device 38. Thereby, the weight data of the detection container 32 measured by the measuring device 36 is sent to the arithmetic device 38.
 検出容器32は、例えば支持ワイヤ34によって測定装置36から吊り下げられている。検出容器32は、対向する電極44,46間に配置されている。検出容器32の底面は深さhに位置する。検出容器32内には、懸濁液が充填されている。バイパス管28から沈降槽30内に懸濁液を供給することによって、懸濁液の供給による検出容器32の振動を抑制できる。 The detection container 32 is suspended from the measuring device 36 by a support wire 34, for example. The detection container 32 is disposed between the opposing electrodes 44 and 46. The bottom surface of the detection container 32 is located at a depth h. The detection container 32 is filled with a suspension. By supplying the suspension into the sedimentation tank 30 from the bypass pipe 28, the vibration of the detection container 32 due to the supply of the suspension can be suppressed.
 演算装置38は、パラメータの経時変化と粒子の粒度分布とを用いて、粒子の粒径ごとのゼータ電位を算出する。本実施形態において、演算装置38は、検出容器32の重量の経時変化と粒子の粒度分布とを用いて、粒子の粒径ごとのゼータ電位を算出する。演算装置38は、例えばコンピュータである。演算装置38は、例えばハードディスク等の記憶装置を有してもよい。演算装置38には、例えばディスプレイ等の出力装置40と、例えばキーボード等の入力装置42が接続されている。粒子の粒度分布は、例えば動的光散乱法を用いた粒度分布測定装置によって予め測定され、演算装置38の記憶装置に記録されている。 The computing device 38 calculates the zeta potential for each particle size of the particle using the change with time of the parameter and the particle size distribution of the particle. In the present embodiment, the arithmetic unit 38 calculates the zeta potential for each particle size of the particle using the change over time of the weight of the detection container 32 and the particle size distribution of the particle. The arithmetic device 38 is a computer, for example. The arithmetic device 38 may include a storage device such as a hard disk. An output device 40 such as a display and an input device 42 such as a keyboard are connected to the arithmetic device 38. The particle size distribution of the particles is measured in advance by, for example, a particle size distribution measuring device using a dynamic light scattering method, and is recorded in the storage device of the arithmetic device 38.
 図3は、第1実施形態に係るゼータ電位測定方法を示すフローチャートである。本実施形態に係るゼータ電位測定方法は、例えば図1に示されるゼータ電位測定システム10によって行われる。 FIG. 3 is a flowchart showing the zeta potential measurement method according to the first embodiment. The zeta potential measurement method according to the present embodiment is performed by, for example, the zeta potential measurement system 10 shown in FIG.
 まず、懸濁液中の粒子に電荷を付与する(ステップS1)。本実施形態では、電荷付与装置12を用いて攪拌槽14内の懸濁液中の粒子に電荷を付与する。粒子に電荷を付与した後、攪拌槽14内の懸濁液を沈降槽30に供給する。ただし、粒子に電荷を付与するステップS1を行わなくてもよい。 First, an electric charge is applied to the particles in the suspension (step S1). In the present embodiment, charges are imparted to particles in the suspension in the stirring tank 14 using the charge imparting device 12. After charge is applied to the particles, the suspension in the stirring tank 14 is supplied to the settling tank 30. However, step S1 for imparting electric charge to the particles may not be performed.
 次に、粒子を含む懸濁液に電界を印加しながら、パラメータの経時変化を測定する(ステップS2)。本実施形態では、電極44,46を用いて、沈降槽30内の懸濁液に電界を印加する。電界を印加し続ける間、測定装置36を用いて検出容器32の重量の経時変化を測定する。測定された検出容器32の重量の経時変化は、演算装置38の記憶装置に記録される。 Next, a parameter change with time is measured while applying an electric field to the suspension containing particles (step S2). In the present embodiment, an electric field is applied to the suspension in the settling tank 30 using the electrodes 44 and 46. While the electric field is continuously applied, the change over time of the weight of the detection container 32 is measured using the measuring device 36. The change over time in the measured weight of the detection container 32 is recorded in the storage device of the arithmetic device 38.
 次に、パラメータの経時変化と粒子の粒度分布とを用いて、粒子の粒径ごとのゼータ電位を算出する(ステップS3)。本実施形態では、検出容器32の重量の経時変化と粒子の粒度分布とを用いて、演算装置38が以下のように粒径ごとのゼータ電位を算出する。 Next, the zeta potential for each particle size of the particle is calculated using the parameter change with time and the particle size distribution of the particle (step S3). In the present embodiment, using the time-dependent change in the weight of the detection container 32 and the particle size distribution of the particles, the calculation device 38 calculates the zeta potential for each particle size as follows.
 測定された検出容器32の重量の経時変化については、任意の時刻tにおいて、以下の式(1)が成立する。
Figure JPOXMLDOC01-appb-M000001
Regarding the change over time of the measured weight of the detection container 32, the following expression (1) is established at an arbitrary time t.
Figure JPOXMLDOC01-appb-M000001
 Gは、時刻tにおける重量変化量を示す。Gteは、測定終了時刻における重量変化量を示す。Wは、時刻tにおいて測定された検出容器32の重量を示す。Wteは、測定終了時刻において測定された検出容器32の重量を示す。Wは、初期(時刻t=0)において測定された検出容器32の重量を示す。f(D)は粒子の粒度分布を示す。Dは粒径を示す。Dは所定の粒径を示す。hは懸濁液の液面からの深さを示す。νは粒子の移動速度を示す。tは時刻を示す。よって、νtは粒子の移動距離に対応する。 G t represents the amount of weight change at time t. G te indicates the amount of weight change at the measurement end time. W t indicates the weight of the detection container 32 measured at time t. W te indicates the weight of the detection container 32 measured at the measurement end time. W 0 indicates the weight of the detection container 32 measured in the initial stage (time t = 0). f (D p ) represents the particle size distribution of the particles. D p represents the particle size. De indicates a predetermined particle size. h represents the depth from the liquid surface of the suspension. ν represents the moving speed of the particles. t indicates time. Therefore, νt corresponds to the moving distance of the particles.
 左辺のG/Gteは、時刻tにおいて深さhを通過した粒子の総質量が、測定終了時刻において深さhを通過した粒子の総質量に占める割合を示している。右辺の前半部分は、所定の粒径D以上の粒径を有する粒子が、時刻tにおいて深さhを通過していることを示す。右辺の後半部分は、所定の粒径D以下の粒径を有する粒子のうち、深さhから上に距離νtまでの範囲に位置する粒子だけが、時刻tにおいて深さhを通過していることを示す。 G t / G te on the left side indicates the ratio of the total mass of particles that have passed the depth h at time t to the total mass of particles that have passed the depth h at the measurement end time. First half of the right side shows that the particles having a particle size larger than a predetermined particle size D e has passed through the depth h at the time t. Second part of the right side, of the particles having a particle size not greater than a predetermined particle diameter D e, only particles located within a range of a distance νt on the depth h will pass through the depth h at the time t Indicates that
 粒子の移動速度ν(D)は、以下の式(2)で表される。粒子の移動速度ν(D)は式(1)の粒子の移動速度νと同じものである。
Figure JPOXMLDOC01-appb-M000002
The moving speed ν (D p ) of the particles is expressed by the following formula (2). The moving speed ν (D p ) of the particles is the same as the moving speed ν of the particles in the formula (1).
Figure JPOXMLDOC01-appb-M000002
 ρは粒子の密度を示す。ρは分散液の密度を示す。gは重力加速度を示す。μは分散液の粘度を示す。eは自然対数の底(約2.7)を示す。εは分散液の誘電率を示す。ΔVは懸濁液に印加された電圧を示す。lは対向する電極間距離を示す。ζはゼータ電位を示す。 [rho p represents the density of the particles. ρ f represents the density of the dispersion. g represents gravitational acceleration. μ indicates the viscosity of the dispersion. e indicates the base of natural logarithm (about 2.7). ε represents the dielectric constant of the dispersion. ΔV represents the voltage applied to the suspension. l represents the distance between the opposing electrodes. ζ represents the zeta potential.
 右辺の前半部分は、重力による粒子の沈降速度(ストークスの式)に対応する。右辺の後半部分は、電界による粒子の移動速度に対応する。 The first half of the right side corresponds to the particle settling velocity due to gravity (Stokes equation). The latter half of the right side corresponds to the speed of particle movement by the electric field.
 ゼータ電位は粒径に依存するので、ゼータ電位ζは粒径Dの関数H(D)である。ゼータ電位の近似式として例えば2次式を用いると以下の式(3)が成立する。ゼータ電位の近似式としては、例えば3次式、4次式等の高次式を用いてもよい。
ζ=aD +bD+c  (3)
Since the zeta potential depends on the particle size, the zeta potential ζ is a function H (D p ) of the particle size D p . For example, when a quadratic expression is used as an approximate expression of the zeta potential, the following expression (3) is established. As an approximate expression of the zeta potential, for example, a higher order expression such as a cubic expression or a quartic expression may be used.
ζ = aD p 2 + bD p + c (3)
 一方、粒子の粒度分布f(D)を、例えば動的光散乱法を用いた粒度分布測定装置によって予め測定する。検出容器32の重量の経時変化の実験データから、複数(例えば40個)の時刻tにおいて式(1)の左辺であるG/Gteを算出する。これらの値を式(1)に当てはめ、式(1)~(3)を用いて、実験値(複数の時刻tにおいて算出されたG/Gte)に合うように、a,b,cの最適値を決定する。ゼータ電位の近似式をn次式とした場合、n+1個の最適値が決定される。 On the other hand, the particle size distribution f (D p ) of the particles is measured in advance by, for example, a particle size distribution measuring apparatus using a dynamic light scattering method. G t / G te which is the left side of the expression (1) is calculated from a plurality of (for example, 40) time t from the experimental data of the change with time of the weight of the detection container 32. These values are applied to Equation (1), and using Equations (1) to (3), a, b, c are matched to the experimental value (G t / G te calculated at a plurality of times t). Determine the optimal value of. When the approximate expression of the zeta potential is an n-order expression, n + 1 optimum values are determined.
 上述の手順は、コンピュータプログラムによって実行されてもよい。コンピュータプログラムは、演算装置38の記憶装置に格納されてもよいし、コンピュータ読み取り可能な記録媒体、その他の記憶装置に格納されてもよい。 The above procedure may be executed by a computer program. The computer program may be stored in a storage device of the arithmetic device 38, a computer-readable recording medium, or other storage device.
 ステップS1の後、4時間以内、又は1時間以内にステップS2を開始してもよい。この場合、粒径に対するゼータ電位の微分値(勾配)が大きくなる。 After step S1, step S2 may be started within 4 hours or within 1 hour. In this case, the differential value (gradient) of the zeta potential with respect to the particle size increases.
 本実施形態に係るゼータ電位測定システム10及びゼータ電位測定方法では、粒子が移動することによって、懸濁液の液面からの深さhより上に存在する懸濁液の柱状部分の密度が経時変化する。このため、深さhにおける圧力が経時変化することによって、検出容器32の受ける浮力が経時変化する。例えば、深さhにおける圧力が経時的に小さくなると、検出容器32の受ける浮力も経時的に小さくなる。その結果、検出容器32の重量が経時的に大きくなる。ここで、ゼータ電位は粒径ごとに異なるため、電界による粒子の移動速度も粒径ごとに異なる。そのため、検出容器32の重量の経時変化には、粒径ごとのゼータ電位が反映されることになる。したがって、検出容器32の重量の経時変化と粒子の粒度分布とを用いることによって、粒子の粒径ごとのゼータ電位が簡便に得られる。通常は困難である平均粒径10μm以上の大粒子のゼータ電位であっても測定することができる。 In the zeta potential measurement system 10 and the zeta potential measurement method according to the present embodiment, the density of the columnar portion of the suspension that exists above the depth h from the liquid surface of the suspension is changed over time as the particles move. Change. For this reason, when the pressure at the depth h changes with time, the buoyancy received by the detection container 32 changes with time. For example, when the pressure at the depth h decreases with time, the buoyancy received by the detection container 32 also decreases with time. As a result, the weight of the detection container 32 increases with time. Here, since the zeta potential differs for each particle size, the moving speed of the particles due to the electric field also varies for each particle size. Therefore, the change in the weight of the detection container 32 with time reflects the zeta potential for each particle size. Therefore, the zeta potential for each particle diameter can be easily obtained by using the change over time of the weight of the detection container 32 and the particle size distribution of the particles. Even the zeta potential of large particles having an average particle size of 10 μm or more, which is usually difficult, can be measured.
 ゼータ電位が粒径ごとに異なることを利用すると、粒子の分級を行うことができる。粒径に対するゼータ電位の微分値(勾配)が大きいと、分級を行って得られる粒子における粒径の変動係数(CV)を小さくすることができる。 If the fact that the zeta potential is different for each particle size is used, the particles can be classified. When the differential value (gradient) of the zeta potential with respect to the particle size is large, the coefficient of variation (CV) of the particle size in the particles obtained by classification can be reduced.
 次に、図4~6を用いて、懸濁液中の粒子をシリカ粒子とした場合の実験例について説明する。 Next, an experimental example in which the particles in the suspension are silica particles will be described with reference to FIGS.
 図4は、粒度分布の一例を示すグラフである。横軸は粒径D(μm)を示す。縦軸は頻度(%)を示す。 FIG. 4 is a graph showing an example of the particle size distribution. The horizontal axis indicates the particle size D p (μm). The vertical axis represents frequency (%).
 図5は、検出容器の重量の経時変化(沈降曲線)の一例を示すグラフである。横軸は時刻t(秒)を示す。縦軸は検出容器32の重量(グラム)を示す。電極44,46間に印加される電圧が0Vの場合、検出容器32の重量は経時変化していない。電極44,46間に印加される電圧が70Vの場合、検出容器32の重量は経時的に増加している。図5に示されるように、電界を印加することにより、細かい粒子であっても沈降速度を早くすることができる。 FIG. 5 is a graph showing an example of the change over time (sedimentation curve) of the weight of the detection container. The horizontal axis indicates time t (seconds). The vertical axis represents the weight (gram) of the detection container 32. When the voltage applied between the electrodes 44 and 46 is 0 V, the weight of the detection container 32 does not change with time. When the voltage applied between the electrodes 44 and 46 is 70 V, the weight of the detection container 32 increases with time. As shown in FIG. 5, by applying an electric field, the sedimentation rate can be increased even for fine particles.
 図6は、粒径とゼータ電位との関係の一例を示すグラフである。横軸は粒径D(μm)を示す。縦軸はゼータ電位(mV)を示す。シリカ粒子の密度ρを2.24g/cmとした。ビーズミルの回転数を2300rmpとした。図6に示されるように、粒径が大きくなるに連れてゼータ電位の絶対値が徐々に小さくなっている。ビーズミルの回転数によってゼータ電位の値は異なる。 FIG. 6 is a graph showing an example of the relationship between the particle size and the zeta potential. The horizontal axis indicates the particle size D p (μm). The vertical axis represents the zeta potential (mV). The density ρ p of the silica particles was 2.24 g / cm 3 . The number of revolutions of the bead mill was 2300 rpm. As shown in FIG. 6, the absolute value of the zeta potential gradually decreases as the particle size increases. The value of the zeta potential varies depending on the number of rotations of the bead mill.
 次に、図7~8を用いて、懸濁液中の粒子をアクリル樹脂粒子(中位径2.59μm、比重1.18g/cm)とした場合の実験例について説明する。 Next, an experimental example in which the particles in the suspension are acrylic resin particles (median diameter 2.59 μm, specific gravity 1.18 g / cm 3 ) will be described with reference to FIGS.
 図7は、検出容器の重量の経時変化の別の例を示すグラフである。横軸は時刻t(秒)を示す。縦軸は検出容器32の重量(グラム)を示す。電極44,46間に印加される電圧ΔVを30Vとした。アクリル樹脂粒子の濃度Cを0.75wt%とした。粒径100μmのシリカ粒子を用いて、周速度(uθ)6.65m/sで30分間ビーズミルを行うことによって、アクリル樹脂粒子に電荷を付与した。 FIG. 7 is a graph showing another example of the change over time of the weight of the detection container. The horizontal axis indicates time t (seconds). The vertical axis represents the weight (gram) of the detection container 32. The voltage ΔV applied between the electrodes 44 and 46 was 30V. The concentration C 0 of the acrylic resin particles was 0.75 wt%. Using silica particles with a particle diameter of 100 μm, beads were milled for 30 minutes at a peripheral speed (u θ ) of 6.65 m / s, thereby imparting charges to the acrylic resin particles.
 図8は、粒径とゼータ電位との関係の別の例を示すグラフである。横軸は粒径D(μm)を示す。縦軸はゼータ電位(mV)を示す。アクリル樹脂粒子の密度ρpeを1.18g/cmとした。図8に示されるように、粒径が大きくなるに連れてゼータ電位の絶対値が徐々に大きくなっている。樹脂粒子のゼータ電位の勾配(図8)は、無機粒子のゼータ電位の勾配(図6)と逆になっている。ゼータ電位の個数平均は-37.1mVであった。一方、ゼータサイザーにより測定されたゼータ電位は-42mVであった。本実施形態において測定されたゼータ電位は、ゼータサイザーにより測定されたゼータ電位に近い値であった。 FIG. 8 is a graph showing another example of the relationship between the particle size and the zeta potential. The horizontal axis indicates the particle size D p (μm). The vertical axis represents the zeta potential (mV). The density ρ pe of the acrylic resin particles was 1.18 g / cm 3 . As shown in FIG. 8, the absolute value of the zeta potential gradually increases as the particle size increases. The gradient of the zeta potential of the resin particles (FIG. 8) is opposite to the gradient of the zeta potential of the inorganic particles (FIG. 6). The number average of the zeta potential was −37.1 mV. On the other hand, the zeta potential measured by the Zetasizer was -42 mV. The zeta potential measured in the present embodiment was a value close to the zeta potential measured by the zeta sizer.
(第2実施形態)
 図9は、第2実施形態に係るゼータ電位測定システムを模式的に示す図である。図9に示されるゼータ電位測定システム10Aは、検出容器32、支持ワイヤ34及び測定装置36に代えて圧力検知部54、支持部材52及び測定装置50を備えること以外は、図1に示されるゼータ電位測定システム10と同一の構成を備えている。よって、ゼータ電位測定システム10Aは、検出容器32、支持ワイヤ34及び測定装置36を除くゼータ電位測定システム10の構成に基づく作用効果と同様の作用効果を少なくとも奏する。
(Second Embodiment)
FIG. 9 is a diagram schematically showing a zeta potential measurement system according to the second embodiment. The zeta potential measurement system 10A shown in FIG. 9 includes the pressure detector 54, the support member 52, and the measurement device 50 in place of the detection container 32, the support wire 34, and the measurement device 36, and the zeta potential shown in FIG. The same configuration as that of the potential measurement system 10 is provided. Therefore, the zeta potential measurement system 10A exhibits at least the same effects as those based on the configuration of the zeta potential measurement system 10 excluding the detection container 32, the support wire 34, and the measurement device 36.
 圧力検知部54は、懸濁液の液面から深さhに配置されている。圧力検知部54は、支持部材52を介して測定装置50に接続されている。本実施形態において、測定装置50は、深さhにおいて圧力の経時変化を測定する圧力センサである。測定装置50は、演算装置38に接続されている。これにより、測定装置50において測定された圧力データは演算装置38に送られる。演算装置38は、深さhにおける圧力の経時変化と粒子の粒度分布とを用いて、第1実施形態と同様にゼータ電位を算出することができる。この場合、式(1)の左辺は、P/Pteとなる。Pは、時刻tにおける圧力変化量を示す。Pteは、測定終了時刻における圧力変化量を示す。懸濁液の液面にも別の圧力検知部を配置して圧力を測定し、懸濁液の液面と深さhとの間の圧力差を測定してもよい。 The pressure detector 54 is disposed at a depth h from the liquid level of the suspension. The pressure detection unit 54 is connected to the measurement device 50 via the support member 52. In the present embodiment, the measuring device 50 is a pressure sensor that measures a change in pressure over time at a depth h. The measuring device 50 is connected to the arithmetic device 38. Thereby, the pressure data measured in the measuring device 50 is sent to the arithmetic device 38. The computing device 38 can calculate the zeta potential using the change with time of the pressure at the depth h and the particle size distribution of the particles, as in the first embodiment. In this case, the left side of Equation (1) is P t / P te . P t indicates the amount of pressure change at time t. Pte indicates the amount of pressure change at the measurement end time. Another pressure detector may be arranged on the liquid level of the suspension to measure the pressure, and the pressure difference between the liquid level of the suspension and the depth h may be measured.
 本実施形態では、深さhにおける圧力に関連するパラメータの一例として、深さhにおける圧力が測定される。この場合、粒子が移動することによって、深さhにおける圧力は経時的に小さくなる。本実施形態では、第1実施形態と同様に、深さhにおける圧力の経時変化と粒子の粒度分布とを用いることによって、粒子の粒径ごとのゼータ電位が簡便に得られる。 In this embodiment, the pressure at the depth h is measured as an example of a parameter related to the pressure at the depth h. In this case, as the particles move, the pressure at the depth h decreases with time. In the present embodiment, similarly to the first embodiment, the zeta potential for each particle diameter of the particles can be easily obtained by using the change with time of the pressure at the depth h and the particle size distribution of the particles.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。 As mentioned above, although the suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment.
 例えば、懸濁液の液面から深さhにおける圧力に関連するパラメータは、任意の物理量を用いて圧力を変換して得られるパラメータでもよいし、圧力を間接的に検知可能なパラメータでもよい。 For example, the parameter related to the pressure at the depth h from the liquid level of the suspension may be a parameter obtained by converting the pressure using an arbitrary physical quantity, or may be a parameter capable of indirectly detecting the pressure.
 10,10A…ゼータ電位測定システム、12…電荷付与装置、32…検出容器(物体)、36,50…測定装置、38…演算装置、44,46…電極。 DESCRIPTION OF SYMBOLS 10,10A ... Zeta potential measurement system, 12 ... Charge imparting device, 32 ... Detection container (object), 36, 50 ... Measuring device, 38 ... Arithmetic unit, 44, 46 ... Electrode.

Claims (8)

  1.  粒子を含む懸濁液に電界を印加しながら、前記懸濁液中の位置における圧力に関連するパラメータの経時変化を測定するステップと、
     前記パラメータの経時変化と前記粒子の粒度分布とを用いて、前記粒子の粒径ごとのゼータ電位を算出するステップと、
    を含む、ゼータ電位測定方法。
    Measuring an aging of a parameter related to pressure at a position in the suspension while applying an electric field to the suspension containing particles;
    Calculating the zeta potential for each particle size of the particles using the time course of the parameters and the particle size distribution of the particles;
    A zeta potential measurement method comprising:
  2.  前記パラメータの経時変化を測定する前に、前記懸濁液中の前記粒子に電荷を付与するステップを更に含む、請求項1に記載のゼータ電位測定方法。 The zeta potential measurement method according to claim 1, further comprising a step of applying a charge to the particles in the suspension before measuring a change in the parameter with time.
  3.  前記パラメータが、前記懸濁液中の位置に配置された物体の重量である、請求項1又は2に記載のゼータ電位測定方法。 The zeta potential measurement method according to claim 1 or 2, wherein the parameter is a weight of an object arranged at a position in the suspension.
  4.  前記パラメータが、前記懸濁液中の位置における圧力である、請求項1又は2に記載のゼータ電位測定方法。 The zeta potential measurement method according to claim 1 or 2, wherein the parameter is a pressure at a position in the suspension.
  5.  粒子を含む懸濁液に電界を印加するための電極と、
     前記懸濁液中の位置における圧力に関連するパラメータの経時変化を測定する測定装置と、
     前記パラメータの経時変化と前記粒子の粒度分布とを用いて、前記粒子の粒径ごとのゼータ電位を算出する演算装置と、
    を備える、ゼータ電位測定システム。
    An electrode for applying an electric field to a suspension containing particles;
    A measuring device for measuring a time-dependent change of a parameter related to pressure at a position in the suspension;
    An arithmetic unit that calculates a zeta potential for each particle size of the particles, using the change over time of the parameters and the particle size distribution of the particles;
    A zeta potential measurement system comprising:
  6.  前記懸濁液中の前記粒子に電荷を付与する電荷付与装置を更に備える、請求項5に記載のゼータ電位測定システム。 The zeta potential measurement system according to claim 5, further comprising a charge imparting device that imparts a charge to the particles in the suspension.
  7.  前記測定装置が、前記懸濁液中の位置に配置された物体の重量を測定する秤である、請求項5又は6に記載のゼータ電位測定システム。 The zeta potential measurement system according to claim 5 or 6, wherein the measuring device is a scale for measuring the weight of an object placed at a position in the suspension.
  8.  前記測定装置が、前記懸濁液中の位置において圧力の経時変化を測定する圧力センサである、請求項5又は6に記載のゼータ電位測定システム。 The zeta potential measurement system according to claim 5 or 6, wherein the measurement device is a pressure sensor that measures a change in pressure over time at a position in the suspension.
PCT/JP2012/082825 2012-12-18 2012-12-18 Zeta potential measurement method and zeta potential measurement system WO2014097402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082825 WO2014097402A1 (en) 2012-12-18 2012-12-18 Zeta potential measurement method and zeta potential measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082825 WO2014097402A1 (en) 2012-12-18 2012-12-18 Zeta potential measurement method and zeta potential measurement system

Publications (1)

Publication Number Publication Date
WO2014097402A1 true WO2014097402A1 (en) 2014-06-26

Family

ID=50977787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082825 WO2014097402A1 (en) 2012-12-18 2012-12-18 Zeta potential measurement method and zeta potential measurement system

Country Status (1)

Country Link
WO (1) WO2014097402A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530827A (en) * 2014-04-02 2016-04-06 Haydale Graphene Ind Plc Method of characterising surface chemistry
CN107621434A (en) * 2017-11-03 2018-01-23 江苏省交通技师学院 A kind of nanometer diesel oil dispersion stabilization evaluation device
WO2020086935A1 (en) 2018-10-25 2020-04-30 Dupont Industrial Biosciences Usa, Llc Alpha-1,3-glucan graft copolymers
US11130686B2 (en) 2017-01-10 2021-09-28 Vermeer Manufacturing Company Systems and methods for dosing slurries to remove suspended solids
WO2022235655A1 (en) 2021-05-04 2022-11-10 Nutrition & Biosciences USA 4, Inc. Compositions comprising insoluble alpha-glucan
WO2023183280A1 (en) 2022-03-21 2023-09-28 Nutrition & Biosciences USA 4, Inc. Compositions comprising insoluble alpha-glucan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134614B2 (en) * 1978-04-24 1986-08-08 Noranda Mines Ltd
JPS63103961A (en) * 1986-10-22 1988-05-09 Kiyouseki Seihin Gijutsu Kenkyusho:Kk Method and device for inspecting deterioration of lubricating oil
JP2668372B2 (en) * 1986-09-30 1997-10-27 コロイダル・ダイナミクス・プロプライエタリ・リミテッド Method and apparatus for determining electrophoretic mobility of particles in suspension
JP2002236088A (en) * 2001-02-08 2002-08-23 Univ Hiroshima Device for measuring distribution of grain sizes of powder particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134614B2 (en) * 1978-04-24 1986-08-08 Noranda Mines Ltd
JP2668372B2 (en) * 1986-09-30 1997-10-27 コロイダル・ダイナミクス・プロプライエタリ・リミテッド Method and apparatus for determining electrophoretic mobility of particles in suspension
JPS63103961A (en) * 1986-10-22 1988-05-09 Kiyouseki Seihin Gijutsu Kenkyusho:Kk Method and device for inspecting deterioration of lubricating oil
JP2002236088A (en) * 2001-02-08 2002-08-23 Univ Hiroshima Device for measuring distribution of grain sizes of powder particles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEHITO YOSHIDA ET AL.: "Chinko Tenbinho o Riyo shita Shingata no Ryushi Zeta Den'i Sokutei Sochi no Shisaku", FUNTAI NI KANSURU TORONKAI KOEN RONBUNSHU, vol. 50, 30 October 2012 (2012-10-30), pages 31 - 34 *
TAKAHISA TACHIKAWA ET AL.: "Chinkoho o Riyo shita Shingata no Zeta Den'i Sokutei Sochi no Shisaku", ABSTRACTS OF ANNUAL MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 77, 15 February 2012 (2012-02-15), JAPAN, pages ROMBUNNO.M217 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530827A (en) * 2014-04-02 2016-04-06 Haydale Graphene Ind Plc Method of characterising surface chemistry
GB2530827B (en) * 2014-04-02 2018-04-18 Haydale Graphene Ind Plc Method of characterising surface chemistry
US11130686B2 (en) 2017-01-10 2021-09-28 Vermeer Manufacturing Company Systems and methods for dosing slurries to remove suspended solids
CN107621434A (en) * 2017-11-03 2018-01-23 江苏省交通技师学院 A kind of nanometer diesel oil dispersion stabilization evaluation device
WO2020086935A1 (en) 2018-10-25 2020-04-30 Dupont Industrial Biosciences Usa, Llc Alpha-1,3-glucan graft copolymers
US11859022B2 (en) 2018-10-25 2024-01-02 Nutrition & Biosciences USA 4, Inc. Alpha-1,3-glucan graft copolymers
WO2022235655A1 (en) 2021-05-04 2022-11-10 Nutrition & Biosciences USA 4, Inc. Compositions comprising insoluble alpha-glucan
WO2023183280A1 (en) 2022-03-21 2023-09-28 Nutrition & Biosciences USA 4, Inc. Compositions comprising insoluble alpha-glucan
WO2023183284A1 (en) 2022-03-21 2023-09-28 Nutrition & Biosciences USA 4, Inc. Compositions comprising insoluble alpha-glucan

Similar Documents

Publication Publication Date Title
WO2014097402A1 (en) Zeta potential measurement method and zeta potential measurement system
Chatté et al. Shear thinning in non-Brownian suspensions
Nichol et al. Flow-induced agitations create a granular fluid
Lobry et al. Shear thinning in non-Brownian suspensions explained by variable friction between particles
Tsai et al. Slowly sheared dense granular flows: Crystallization and nonunique final states
Miller et al. Stress fluctuations for continuously sheared granular materials
Pignatel et al. Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers
WO2015030184A1 (en) Dispersoid analysis method and dispersoid analysis device
Brzinski III et al. Characterization of the drag force in an air-moderated granular bed
Guo et al. Correlations between local flow mechanism and macroscopic rheology in concentrated suspensions under oscillatory shear
Lenoble et al. The flow of a very concentrated slurry in a parallel-plate device: Influence of gravity
Feng et al. A three-dimensional resolved discrete particle method for studying particle-wall collision in a viscous fluid
JP5713349B2 (en) Zeta potential measurement method and zeta potential measurement system
US20070107540A1 (en) Method and apparatus for assessing or characterizing properties of powdered or particulate materials
Martys et al. Pipe flow of sphere suspensions having a power-law-dependent fluid matrix
Lemaire et al. Rheology of non-Brownian suspensions: a rough contact story
Senis et al. Systematic study of the settling kinetics in an aggregating colloidal suspension
Coutinho et al. Settling characteristics of composites of PNIPAM microgels and TiO2 nanoparticles
KR101458320B1 (en) Viscometer using Terminal setting velocity and Method of measuring viscosity
Bouillard et al. Rheology of powders and nanopowders through the use of a Couette four-bladed vane rheometer: flowability, cohesion energy, agglomerates and dustiness
Shewan Rheology of soft particle suspensions
Sobisch et al. Separation behaviour of particles in biopolymer solutions in dependence on centrifugal acceleration: Investigation of slow structuring processes in formulations
Panaitescu et al. Experimental investigation of cyclically sheared granular particles with direct particle tracking
Ahonguio et al. Motion and stability of cones in a yield stress fluid
Williams et al. Sedimentation behaviour of complex polydisperse suspensions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP