JP5928351B2 - Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device - Google Patents

Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device Download PDF

Info

Publication number
JP5928351B2
JP5928351B2 JP2013004905A JP2013004905A JP5928351B2 JP 5928351 B2 JP5928351 B2 JP 5928351B2 JP 2013004905 A JP2013004905 A JP 2013004905A JP 2013004905 A JP2013004905 A JP 2013004905A JP 5928351 B2 JP5928351 B2 JP 5928351B2
Authority
JP
Japan
Prior art keywords
rotating
vehicle
rotation
vehicle body
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013004905A
Other languages
Japanese (ja)
Other versions
JP2014136463A (en
Inventor
石場 政次
政次 石場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013004905A priority Critical patent/JP5928351B2/en
Publication of JP2014136463A publication Critical patent/JP2014136463A/en
Application granted granted Critical
Publication of JP5928351B2 publication Critical patent/JP5928351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Description

本発明は、自動車等の車両又は航空機、ホバークラフト、リニアモータカー、船舶などのその他の移動体の空力制御装置に係り、より詳細には、車両又はその他の移動体の走行中に車両又はその他の移動体が受ける空気力を変更するための装置に係る。   The present invention relates to an aerodynamic control device for vehicles such as automobiles or other moving bodies such as airplanes, hovercrafts, linear motor cars, and ships, and more particularly, the vehicle or other movements while the vehicle or other moving bodies are traveling. It relates to a device for changing the aerodynamic force received by the body.

自動車等の車両又はその他の移動体の走行中、その車体又は胴体の周囲を流れる空気の流れから受ける力(空気力又は空力)によって車両又はその他の移動体の走行安定性、燃費等が大きく影響を受ける。そこで、従前より、走行中の車両又はその他の移動体の車体又は胴体周りの流れを制御するために、車体又は胴体側面に整流部材(エアスポイラ)を配置するなどして、車体又は胴体の挙動の安定化が図られている(非特許文献1)。例えば、特許文献1に於いては、車体表面に取り付けた翼の舵角を固定し或いは任意に変えて車体に働く力をコントロールする構成や翼の他にボディ溝を形成して車体の姿勢を制御する構成が開示されている。また、特許文献2には、車両のフロントバンパに縦スリットを設けて裏側に空気の流れるダクト(エアロスリット)を形成し、車両が横風を受けたときには、ダクト出入り口間の圧力差によりスリットから流れを吹き出させてフロント風の下側の流れを積極的に剥離させ、空気流によるヨーイングモーメントを小さくする構成(横風のないときには、ダクト出入り口間の圧力差が生じないので、スリットから流れの吹き出しがなく、空気流の剥離は生じない)を提案している。   During traveling of a vehicle such as an automobile or other moving body, the driving stability (fuel force or aerodynamic force) received from the flow of air flowing around the body or fuselage greatly affects the running stability, fuel consumption, etc. of the vehicle or other moving body. Receive. Therefore, in order to control the flow around the vehicle body or the fuselage of a traveling vehicle or other moving body, a rectifying member (air spoiler) is arranged on the side of the vehicle body or the fuselage to improve the behavior of the vehicle body or the fuselage. Stabilization is achieved (Non-Patent Document 1). For example, in Patent Document 1, the rudder angle of a wing attached to the surface of the vehicle body is fixed or arbitrarily changed to control the force acting on the vehicle body, and the body groove is formed in addition to the wing to change the posture of the vehicle body. A configuration to control is disclosed. In Patent Document 2, a vertical slit is provided in the front bumper of the vehicle to form a duct (aero slit) through which air flows on the back side, and when the vehicle receives a crosswind, it flows from the slit due to a pressure difference between the duct entrance and exit. A structure that reduces the yawing moment due to the airflow by actively separating the flow below the front wind by blowing out the airflow (when there is no crosswind, there is no pressure difference between the duct inlet and outlet, so the flow blows out from the slit. And no air flow separation occurs).

特開平5−176413号公報JP-A-5-176413 特開2005−306237JP-A-2005-306237

「自動車と流体力学:車体周り流れと空力特性」 炭谷圭二他2名、ながれ23(2004)445−454頁“Automobiles and hydrodynamics: Flow around the vehicle body and aerodynamic characteristics” Junji Sumiya and two others, Nagare 23 (2004) pp. 445-454

ところで、一般に、車両又はその他の移動体の車体又は胴体周り流れの制御又は空力特性制御は、車体又は胴体周りの流れの剥離域又は付着域が適切に得られるよう構成される。そこで、車体又は胴体に装着される空力デバイスは、車体又は胴体上にて予測される流れに対応して剥離域又は付着域が適切となるよう設計される。しかしながら、走行中の車両又はその他の移動体が受ける空気流は、しばしば、非定常的な或いは過渡的な流れとなる場合があり、そのような非定常空気流が生じた場合には、車体又は胴体表面に生ずる剥離、再付着、渦などの過渡流れ現象が生ずるところ、従前の空力デバイスは、その制御幅が比較的狭く、非定常的な或いは過渡的な流れには適切に対応し切れない場合がある。また、従前提案されている車体又は胴体周りの流れの制御は、例えば、定常CY(ヨーモーメント係数)の適合等による定常的な空力特性を考慮して構成された制御であり、過渡流れ現象に対しては、あまり有効ではない場合がある。   By the way, generally, the flow control or the aerodynamic characteristic control of the vehicle or other moving body around the vehicle body or the fuselage is configured so that the separation region or the adhesion region of the flow around the vehicle body or the fuselage can be appropriately obtained. Therefore, the aerodynamic device attached to the vehicle body or the fuselage is designed so that the separation region or the adhesion region is appropriate corresponding to the flow predicted on the vehicle body or the fuselage. However, the air flow experienced by a moving vehicle or other moving object is often unsteady or transient, and when such unsteady air flow occurs, Where transient flow phenomena occur on the fuselage surface, such as separation, reattachment, and vortex, conventional aerodynamic devices have a relatively narrow control range and cannot adequately handle unsteady or transient flows. There is a case. Further, the flow control around the vehicle body or the fuselage that has been proposed in the past is, for example, a control that is configured in consideration of steady aerodynamic characteristics such as adaptation of steady CY (yaw moment coefficient). On the other hand, it may not be very effective.

かくして、本発明の一つの目的は、自動車等の車両又はその他の移動体の車体又は胴体周り流れを制御する装置であって、非定常的な或いは過渡的な流れ現象が生ずる状況に於いても、車両又はその他の移動体の車体又は胴体周り流れの剥離域を適切に制御できるよう構成された装置を提供することである。   Thus, one object of the present invention is an apparatus for controlling the flow around a vehicle body or a fuselage of a vehicle such as an automobile or other moving body, even in a situation where an unsteady or transient flow phenomenon occurs. Another object of the present invention is to provide an apparatus configured to appropriately control a separation region of a flow around a vehicle body or a fuselage of a vehicle or other moving body.

本発明によれば、一つの態様に於いて、上記の課題は、車両の空力制御装置であって、同一の回転軸周りにて互いに独立の回転速度にて回転される少なくとも二つの回転部材にして車体表面にて回転軸方向に縦列された少なくとも二つの回転部材から構成される回転体と、少なくとも二つの回転部材の回転を制御する回転制御部とを含む装置によって達成される。上記の構成に於いて、少なくとも二つの回転部材は、典型的には、筒状部材であってよく、回転部材毎に独立してモータ等のアクチュエータにより回転駆動されてよい。また、一つの空力制御装置は、複数の回転体を含んでいてよく、複数の回転体は、例えば、それぞれの回転軸を互いに平行な状態で車体表面に並置されてよい。回転制御部は、任意の態様にて空力制御が要求されたときに、回転部材の駆動モータに制御指令を与え、回転部材の回転作動を制御するよう構成されてよい。   According to the present invention, in one aspect, the above-described problem is an aerodynamic control device for a vehicle, in which at least two rotating members that rotate around the same rotation axis at mutually independent rotation speeds are provided. This is achieved by an apparatus including a rotating body composed of at least two rotating members arranged in the direction of the rotation axis on the surface of the vehicle body, and a rotation control unit that controls the rotation of the at least two rotating members. In the above configuration, the at least two rotating members may typically be cylindrical members, and may be rotationally driven by an actuator such as a motor independently for each rotating member. In addition, one aerodynamic control device may include a plurality of rotating bodies, and the plurality of rotating bodies may be juxtaposed on the surface of the vehicle body with their respective rotation axes being parallel to each other, for example. The rotation control unit may be configured to give a control command to the drive motor of the rotating member and control the rotation operation of the rotating member when aerodynamic control is requested in an arbitrary manner.

上記の構成に於いては、端的に述べれば、少なくとも二つの回転部材から成る回転体が、車体表面に配置され、回転制御部の制御の下で、回転部材が回転される。かかる回転部材が走行中の車両の車体表面に於いて回転すると、車体表面周りを流れる空気流が、少なくとも二つの回転部材の回転の態様に依存して、変化し、車体周りの流れの剥離域又は付着域の範囲に変化が生ずることとなる。そこで、本発明に於いては、車両の走行状態、特に、車体周りの流れの状況に応じて、回転部材の回転を能動的に制御し、これにより、車体周りの流れの剥離域又は付着域の制御が図られる。より具体的には、回転部材の回転の態様として、まず、車体表面上の空気の流れに沿った方向に回転部材を回転する場合には、空気流を車体表面上から剥離せずに車体表面に沿って流れるよう制御することが可能となる。また、車体表面上の空気の流れと逆方向に回転部材を回転する場合には、空気流を車体表面上から或る程度剥離して流すことが可能となる。更にまた、縦列した少なくとも二つの回転部材に於いて、互いに反対の方向に回転すると、空気流を車体表面上から大きく剥離して流すことが可能となる。これは、二つの回転部材の境界に於いて、せん断流れが形成され、これにより、渦流が形成されることによる。そして、空気流が車体表面上から剥離すればするほど、車体に対する空気力の作用が低減されるので、車体周りの流れの状況に応じて、回転部材の回転の態様を種々選択することにより、車体周りの流れによる車両の走行挙動の作用を制御することが可能となる。   In the above configuration, to put it briefly, a rotating body composed of at least two rotating members is disposed on the surface of the vehicle body, and the rotating members are rotated under the control of the rotation control unit. When such a rotating member rotates on the vehicle body surface of the running vehicle, the air flow flowing around the vehicle body surface changes depending on the mode of rotation of at least two rotating members, and the flow separation region around the vehicle body changes. Or a change will arise in the range of an adhesion zone. Therefore, in the present invention, the rotation of the rotating member is actively controlled in accordance with the running state of the vehicle, in particular, the flow condition around the vehicle body, thereby the flow separation area or the adhesion area around the vehicle body. Is controlled. More specifically, as a mode of rotation of the rotating member, first, when the rotating member is rotated in a direction along the air flow on the surface of the vehicle body, the air flow is not separated from the surface of the vehicle body. It is possible to control to flow along. Further, when the rotating member is rotated in a direction opposite to the air flow on the surface of the vehicle body, the air flow can be separated to a certain extent from the surface of the vehicle body. Furthermore, when at least two rotating members arranged in a row rotate in opposite directions, the airflow can be largely separated from the surface of the vehicle body. This is because a shear flow is formed at the boundary between the two rotating members, thereby forming a vortex flow. And, as the air flow is separated from the surface of the vehicle body, the action of the aerodynamic force on the vehicle body is reduced, so according to the state of the flow around the vehicle body, by selecting various modes of rotation of the rotating member, It is possible to control the action of the running behavior of the vehicle due to the flow around the vehicle body.

車体表面に於ける回転体の配置は、車体の構造や車両に要求される挙動等に応じて適宜決定されてよい。一つの態様に於いて、本発明の装置は、典型的には、車体のヨー挙動制御の空力的な支援に有利に用いられ、その場合、車体に対して水平方向の空気流がヨー挙動に空力的に影響を及ぼすので、水平方向の空気流を変化させるべく、回転体は、その回転軸が略鉛直方向に延在するよう配置されてよい。また、ヨー挙動に空力的に影響を及ぼす空気の流れは、横風であり、横風は、走行中の車両に於いては、斜め前方から車体に当たるので、回転体は、好適には、車両の前方の角領域に配設される。また、更に、空気流に対する回転体の回転作用は、車体表面にできるだけ近いところで発生させる方が有利であるので、一つの実施形態に於いて、好ましくは、回転体は、バンパやフロントフェンダーパネル前方などの、車両の前方部材の角領域の外表面より内側に配設され、少なくとも二つの回転部材の回転する表面が車両の側面に於ける前方部材の外表面外に露出された状態にて配置されてよい。なお、この場合、回転体の配置されている側の回転体よりも後方の車体表面を流れる空気流が制御されることとなる。   The arrangement of the rotating body on the surface of the vehicle body may be appropriately determined according to the structure of the vehicle body, the behavior required of the vehicle, and the like. In one embodiment, the apparatus of the present invention is typically used advantageously for aerodynamic support of the control of the yaw behavior of the vehicle body, in which case the air flow in a direction parallel to the vehicle body is converted to the yaw behavior. In order to change the air flow in the horizontal direction because of aerodynamic influence, the rotating body may be arranged such that its rotation axis extends in a substantially vertical direction. Also, the air flow that aerodynamically affects the yaw behavior is a crosswind, and the crosswind strikes the vehicle body from diagonally forward in a traveling vehicle. Is disposed in the corner region. Furthermore, since it is advantageous that the rotating action of the rotating body with respect to the air flow is generated as close as possible to the surface of the vehicle body, in one embodiment, preferably the rotating body is a front part of a bumper or front fender panel. Arranged on the inner side of the outer surface of the corner area of the front member of the vehicle, etc., with the rotating surface of at least two rotating members exposed outside the outer surface of the front member on the side of the vehicle May be. In this case, the airflow flowing on the vehicle body surface behind the rotating body on the side where the rotating body is arranged is controlled.

また、もう一つの態様に於いて、回転体が、回転軸を略鉛直方向に向けた状態で、車両の車体の前方部分の角領域の上側表面から上方へ突出した状態で配置されよい。この場合、車両の一方の側から車体上面を通過して他方の側へ流れる空気流の状態の制御が可能となる。なお、かかる構成に於いては、回転体を、車体の前方部分の上側表面から上方へ突出した突出位置と、車両の車体の前方部分の上側表面よりも内側に収納した収納位置との間にて移動するための機構(回転体移動部)が設けられ、回転体を適宜突出又は収納して空気流の制御が選択的に実行できるようになっていてよい。また、回転体が車体の前方側部に設けられるコーナーポールとして利用されてよい。   In another aspect, the rotating body may be arranged in a state of protruding upward from the upper surface of the corner area of the front portion of the vehicle body of the vehicle with the rotating shaft directed in a substantially vertical direction. In this case, it is possible to control the state of the airflow that flows from the one side of the vehicle through the upper surface of the vehicle body to the other side. In this configuration, the rotating body is positioned between the protruding position where the rotating body protrudes upward from the upper surface of the front part of the vehicle body and the storage position where the rotating body is stored inside the upper surface of the front part of the vehicle body. And a mechanism (rotating body moving section) for moving the moving body, and the rotating body may be appropriately projected or housed so that air flow control can be selectively executed. Further, the rotating body may be used as a corner pole provided on the front side portion of the vehicle body.

かくして、本発明によれば、上記のいずれかの態様にて構成された空力制御装置を備えた車両が提供されることとなる。   Thus, according to the present invention, a vehicle including the aerodynamic control device configured in any one of the above aspects is provided.

なお、上記の空力制御装置の構成は、航空機、ホバークラフト、リニアモータカー、船舶などのその他の移動体にも適用可能である。従って、本発明のもう一つの態様によれば、移動体の空力制御装置であって、同一の回転軸周りにて互いに独立の回転速度にて回転される少なくとも二つの回転部材にして胴体表面にて回転軸方向に縦列された少なくとも二つの回転部材から構成される回転体と、少なくとも二つの回転部材の回転を制御する回転制御部とを含む装置及びかかる空力制御装置を備えた移動体が提供される。   The configuration of the aerodynamic control device described above can also be applied to other moving bodies such as aircraft, hovercraft, linear motor cars, and ships. Therefore, according to another aspect of the present invention, there is provided an aerodynamic control device for a moving body, wherein at least two rotating members that are rotated at mutually independent rotational speeds around the same rotational axis are formed on the body surface. An apparatus including a rotating body composed of at least two rotating members arranged in a row in the direction of the rotation axis, and a rotation control unit that controls the rotation of at least two rotating members, and a moving body including such an aerodynamic control device are provided. Is done.

総じて、上記の本発明によれば、車体又は胴体表面に適宜配設された回転体の能動的な回転による車体又は胴体表面の空気流の制御によって、走行中の車体又は胴体の空力特性の改善が図られる。特に、本発明に於いては、回転体の回転部材の回転の態様を種々変更でき、また、空気流の制御の要否に応じて制御を適切な時期に実行可能となる。従って、単に予め想定される定常的な空気流に対応すべく固定的に配置される従前の整流部材や整流構造とは異なり、本発明によれば、非定常的な或いは過渡的な流れ現象が生ずる状況に於いても、生じた現象に応じた空気流の制御を選択的に実行可能である。   In general, according to the present invention described above, the aerodynamic characteristics of a running vehicle body or fuselage can be improved by controlling the air flow on the vehicle body or fuselage surface by active rotation of a rotating body appropriately disposed on the vehicle body or fuselage surface. Is planned. In particular, in the present invention, the mode of rotation of the rotating member of the rotating body can be variously changed, and control can be executed at an appropriate time depending on whether or not air flow control is necessary. Therefore, unlike conventional rectifying members and rectifying structures that are fixedly arranged to correspond to a steady air flow that is assumed in advance, according to the present invention, an unsteady or transient flow phenomenon is caused. Even in the situation that occurs, it is possible to selectively execute control of the air flow in accordance with the phenomenon that has occurred.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

図1(A)は、本発明の空力制御装置の第一の実施形態の模式的な斜視図と制御構成図である。図1(B)は、本発明の空力制御装置の回転体の配置を説明する図である。図1(C)は、本発明の空力制御装置が装備された車両の前方斜視図である。図1(D)は、本発明の空力制御装置の第一の実施形態の作動によって達成される、受容する風の偏揺角に対するヨーモーメント係数CYの変化をグラフの形式で表した図である。FIG. 1A is a schematic perspective view and a control configuration diagram of the first embodiment of the aerodynamic control device of the present invention. FIG. 1B is a diagram for explaining the arrangement of the rotating bodies of the aerodynamic control device of the present invention. FIG. 1C is a front perspective view of a vehicle equipped with the aerodynamic control device of the present invention. FIG. 1D is a graph showing the change in yaw moment coefficient CY with respect to the yaw angle of the received wind, which is achieved by the operation of the first embodiment of the aerodynamic control device of the present invention. . 図2は、車体の右前方から風を受けた場合の本発明の空力制御装置の第一の実施形態の回転体の作動状況と車体周りの空気流の流れを模式的に表した図である。(A)左右の回転体の回転方向を、風の向きと一致させた場合。(B)風の向きの逆方向に左の回転体の下の回転部材を回転した場合。(C)風の向きの逆方向に左の回転体の上下の回転部材を回転した場合。(D)左の回転体の上下の回転部材を互いに逆向きに回転した場合。FIG. 2 is a diagram schematically showing the operating state of the rotating body and the flow of airflow around the vehicle body of the first embodiment of the aerodynamic control device of the present invention when wind is received from the right front of the vehicle body. . (A) When the direction of rotation of the left and right rotating bodies is matched with the direction of the wind. (B) When the rotating member under the left rotating body is rotated in the direction opposite to the wind direction. (C) When the upper and lower rotating members of the left rotating body are rotated in the opposite direction of the wind direction. (D) When the upper and lower rotating members of the left rotating body are rotated in opposite directions. 図3(A)は、本発明の空力制御装置の第二の実施形態が装備された車両の前方斜視図である。図3(B)は、本発明の空力制御装置の第二の実施形態の構成を模式的に表す図である。図3(C)は、本発明の空力制御装置の第二の実施形態の制御構成図である。図3(D)は、本発明の空力制御装置の第二の実施形態の作動によって達成される、受容する風の偏揺角に対するヨーモーメント係数CYをグラフの形式で表した図である。FIG. 3A is a front perspective view of a vehicle equipped with the second embodiment of the aerodynamic control device of the present invention. FIG. 3B is a diagram schematically illustrating the configuration of the second embodiment of the aerodynamic control device of the present invention. FIG. 3C is a control configuration diagram of the second embodiment of the aerodynamic control device of the present invention. FIG. 3D is a graph showing the yaw moment coefficient CY relative to the received yaw angle, which is achieved by the operation of the second embodiment of the aerodynamic control device of the present invention. 図4は、車体の左前方から風を受けた場合の本発明の空力制御装置の第二の実施形態の回転体の作動状況と車体周りの空気流の流れを模式的に表した車両の斜視図(左)と上面図(右)である。(A)空力制御装置が作動していない場合。(B)二つの回転体を回転せずに突出させた場合。(C)四つの回転体を回転せずに突出させた場合。(D)四つの回転体を突出させて回転した場合。FIG. 4 is a perspective view of the vehicle schematically showing the operating state of the rotating body and the flow of airflow around the vehicle body in the second embodiment of the aerodynamic control device of the present invention when wind is received from the left front of the vehicle body. It is a figure (left) and a top view (right). (A) The aerodynamic control device is not operating. (B) When two rotating bodies are projected without rotating. (C) When four rotators are projected without rotating. (D) When rotating with four rotating bodies protruding.

1、10…回転体
2、3、12、13…回転部材の回転モータ
4、14…上回転部材
5、15…下回転部材
6…中間支持枠
7…支持枠
12a…回転軸
20…支持台
22…ギヤ
23…回転体上下動モータ
DESCRIPTION OF SYMBOLS 1, 10 ... Rotating body 2, 3, 12, 13 ... Rotation motor rotation motor 4, 14 ... Upper rotation member 5, 15 ... Lower rotation member 6 ... Intermediate support frame 7 ... Support frame 12a ... Rotating shaft 20 ... Support stand 22 ... Gear 23 ... Rotary body vertical motion motor

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.

第一の実施形態
(1)装置の構成
図1(A)〜(C)を参照して、本発明の車両の空力制御装置の第一の実施形態は、車体が受ける風又は空気流に接触してその状態を制御する回転体1と、かかる回転体の回転作動を制御する制御部100とから構成される。まず、回転体1に於いては、概ねコの字状の支持枠7の両端部の間に、上回転部材4と下回転部材5とが、円形の中間支持枠6を介して、縦列され、それぞれ、モータ2、3(図示せず)により、回転軸Z周りに回転可能となっている。そして、回転体1は、図1(B)、(C)に例示されている如く、典型的には、回転軸Zが略鉛直方向に延在するように、車両前方の角領域、例えば、バンパやフロントフェンダーパネル前方などの、車両の前方部材の内側に埋設され、回転部材の表面の一部が車体表面外部に露出されるよう、前方部材にスリットが形成される。なお、空力制御装置は、車両の左右両側にそれぞれ設けられていてよく、また、一つの側に、複数個(図中、a〜dの四個)の回転体1が、車両の前方部材の表面に沿って、羅列されていてよい。
First Embodiment (1) Device Configuration Referring to FIGS. 1A to 1C, a first embodiment of a vehicle aerodynamic control device of the present invention is in contact with wind or airflow received by a vehicle body. The rotating body 1 that controls the state of the rotating body 1 and the control unit 100 that controls the rotational operation of the rotating body. First, in the rotating body 1, the upper rotating member 4 and the lower rotating member 5 are vertically arranged between both ends of a substantially U-shaped support frame 7 via a circular intermediate support frame 6. The motors 2 and 3 (not shown) can rotate around the rotation axis Z, respectively. As illustrated in FIGS. 1B and 1C, the rotating body 1 typically has a corner area in front of the vehicle such that the rotation axis Z extends in a substantially vertical direction, for example, A slit is formed in the front member so as to be embedded inside the front member of the vehicle, such as in front of the bumper or the front fender panel, and to expose a part of the surface of the rotating member to the outside of the vehicle body surface. The aerodynamic control device may be provided on each of the left and right sides of the vehicle, and a plurality of (four in the figure, a to d) rotating bodies 1 are provided on one side of the vehicle front member. It may be enumerated along the surface.

一方、制御部100に於いては、回転体1の上回転部材4と下回転部材5とのそれぞれの回転を制御するよう構成される。具体的には、まず、上回転部材4を回転の要否と回転の方向とを指示する上ローラ回転指令信号と下回転部材5を回転の要否と回転の方向とを指示する下ローラ回転指令信号とが、それぞれ、対応するモータコントローラへ与えられる。そして、モータコントローラは、指令信号に応答して、モータドライバを通じて、モータ電源からの電力によりモータ2、3を適宜回転する。なお、上ローラ回転指令信号と下ローラ回転指令信号とは、運転者の指示により、或いは、車両の走行状態に応じて、適宜発せられるようになっていてよい。回転部材の回転の態様に関して、後に詳細に説明される如く、車両に装備された各回転体1のうち、回転される回転体の数、上下回転部材の回転方向、車体が受ける風の方向等によって、回転体よりも後方の空気流の状態、剥離域の範囲等が変化し、これにより、車両の挙動に及ぼす空気流の作用が変化することとなる。そこで、本実施形態に於いては、空気流の作用を適切にするべく、回転される回転体の数、上下回転部材の回転方向を適宜選択できるようになっていてよい。   On the other hand, the control unit 100 is configured to control the rotation of the upper rotating member 4 and the lower rotating member 5 of the rotating body 1. Specifically, first, an upper roller rotation command signal for instructing whether or not the upper rotating member 4 needs to be rotated and a direction of rotation, and a lower roller rotation for instructing whether or not the lower rotating member 5 needs to be rotated and the direction of rotation. Each command signal is given to the corresponding motor controller. Then, in response to the command signal, the motor controller appropriately rotates the motors 2 and 3 with electric power from the motor power source through the motor driver. The upper roller rotation command signal and the lower roller rotation command signal may be appropriately issued according to a driver's instruction or according to the traveling state of the vehicle. Regarding the mode of rotation of the rotating member, as will be described in detail later, of each rotating body 1 equipped in the vehicle, the number of rotating bodies to be rotated, the rotating direction of the upper and lower rotating members, the direction of the wind received by the vehicle body, etc. As a result, the state of the air flow behind the rotating body, the range of the separation region, and the like change, and thereby the action of the air flow on the behavior of the vehicle changes. Therefore, in the present embodiment, the number of rotating bodies to be rotated and the rotation direction of the upper and lower rotating members may be appropriately selected in order to make the action of the air flow appropriate.

(2)装置の作動
既に触れた如く、車体の前方部材に回転体1を配備した本発明の空力制御装置に於いて、回転体1の上下回転部材の回転状態を種々変更することにより、車体周りの空気流の制御が可能となる。以下、図2を参照して、上下回転部材の回転状態に対応した車体周りの空気流の状況を説明する。なお、図2の例に於いては、全て、車両の走行中に右から横風が到来し、これにより、横風と走行風との合成風の空気流が車両の右前方から車体周りを流れる場合が説明されている。横風が左から到来する場合には、上下回転部材の回転状態と空気流の変化は、図2の場合と左右対称となる。
(2) Operation of the device As already mentioned, in the aerodynamic control device of the present invention in which the rotating body 1 is disposed on the front member of the vehicle body, the vehicle body can be changed by variously changing the rotation state of the upper and lower rotating members of the rotating body 1. The surrounding air flow can be controlled. Hereinafter, with reference to FIG. 2, the state of the airflow around the vehicle body corresponding to the rotating state of the up-and-down rotating member will be described. In the example of FIG. 2, in all cases, a cross wind comes from the right while the vehicle is running, and as a result, an air flow of the combined wind of the cross wind and the running wind flows around the vehicle body from the right front of the vehicle. Has been explained. When the cross wind comes from the left, the rotation state of the up-and-down rotating member and the change in the air flow are symmetric with respect to FIG.

まず、図2(A)の如く、車体左右に於いて、回転体1の上下回転部材の露出表面の移動方向が空気流の向きと一致するよう上下回転部材4、5を回転させた場合、車体のタイヤハウス近傍を流れる空気流が整流され、空気抵抗が低減できることとなる。即ち、一般に、タイヤハウス近傍に於いては、タイヤの上半分の表面に於いて移動方向が空気流の向きと逆向きとなるため、空気流が乱れ、空気抵抗の増大を惹起することとなる。しかしながら、図2(A)の如く、回転体1の上下回転部材の回転を空気流に沿う方向にすると、タイヤの回転による空気流の乱れが抑制される効果が得られる。   First, as shown in FIG. 2A, when the vertical rotating members 4 and 5 are rotated so that the moving direction of the exposed surface of the vertical rotating member of the rotating body 1 coincides with the direction of the air flow on the left and right sides of the vehicle body, The air flow flowing in the vicinity of the tire house of the vehicle body is rectified, and the air resistance can be reduced. That is, generally, in the vicinity of the tire house, the moving direction is opposite to the direction of the air flow on the upper half surface of the tire, so that the air flow is disturbed and the air resistance is increased. . However, as shown in FIG. 2A, when the rotation of the upper and lower rotating members of the rotating body 1 is in the direction along the airflow, an effect of suppressing the turbulence of the airflow due to the rotation of the tire can be obtained.

次に、図2(B)、(C)の如く、車体左側の回転体1の回転部材の露出表面の移動方向が空気流の向きと逆向きとなるよう上下回転部材4、5を回転させた場合、回転部材後方の車体周りの空気流に於いて渦が発生し、剥離域が形成されることとなる。ここで、図2(B)の右図の車両の斜視図に示されている如く、下回転部材のみを回転させた場合には、その流れ制御域(影響を受ける空気流の範囲)は、タイヤの略下半分の高さの範囲となり、図2(C)の右図の車両の斜視図に示されている如く、上下回転部材を回転させた場合には、その流れ制御域は、タイヤの略全域高さの範囲となる。従って、剥離域の大きさの程度は、下回転部材のみを回転させた場合に比して、上下回転部材を回転させた方が、大きくなる。そして、かかる剥離域が形成され、その範囲が大きくなるほど、空気流による車体のヨー方向への作用が低減され、これにより、車両のヨー挙動が風の影響を受け難くなる。   Next, as shown in FIGS. 2B and 2C, the vertical rotating members 4 and 5 are rotated so that the moving direction of the exposed surface of the rotating member of the rotating body 1 on the left side of the vehicle body is opposite to the direction of the air flow. In this case, a vortex is generated in the air flow around the vehicle body behind the rotating member, and a separation region is formed. Here, as shown in the perspective view of the vehicle on the right side of FIG. 2B, when only the lower rotating member is rotated, the flow control area (the range of the affected air flow) is When the vertical rotation member is rotated as shown in the perspective view of the vehicle shown in the right diagram of FIG. It becomes the range of almost the entire height. Therefore, the degree of the size of the peeling area becomes larger when the vertical rotating member is rotated than when only the lower rotating member is rotated. As the separation area is formed and the range becomes larger, the action of the airflow in the yaw direction of the vehicle body is reduced, and the yaw behavior of the vehicle is less affected by the wind.

更に、図2(D)の如く、車体左側の回転体1の回転部材の露出表面の移動方向が上下の回転部材4、5とで互いに逆向きにすると、その流れ制御域に於いて渦が大きくなり、剥離域が拡大されることが見出された。これは、上下の回転部材4、5の回転方向が異なることにより、それらの境界領域でせん断流れが発生し、この作用によって、風下の渦が大きくなったためと考えられる。   Further, as shown in FIG. 2D, when the moving direction of the exposed surface of the rotating member of the rotating body 1 on the left side of the vehicle body is reversed between the upper and lower rotating members 4 and 5, vortices are generated in the flow control region. It has been found that the exfoliation zone is enlarged with an increase. This is thought to be due to the fact that the rotational directions of the upper and lower rotating members 4 and 5 are different, so that a shear flow is generated in the boundary region between them, and this action increases the leeward vortex.

かくして、上記の如く、回転体1の上下回転部材の回転の態様を変更することにより、車体の側方を流れる空気流に於ける剥離域の大きさが制御され、これにより、車両のヨー挙動に対する風の作用の制御が可能となる。図1(D)は、車体が受容する風の偏揺角(車体正面前方を0度として、車体のヨー方向に図った風の角度)に対するヨーモーメント係数CYが回転体1の上下回転部材の回転状態によって変化することを示したグラフである。(ヨーモーメント係数CYは、CY=M/(1/2ρV・A・WB)により与えられ、風による発生するヨーモーメントの大きさを無次元化した量である。ここで、Mは、ヨーモーメント、ρは、空気密度、Vは、相対風速、Aは、前面投影面積、WBは、ホイールベース長である。)同図を参照して理解される如く、回転体1に於いて、回転体の回転動作なしの場合に比して、回転体1の下回転部材のみ空気流と逆方向に回転させた場合(a〜d下回転)、回転体1の上下回転部材を空気流と逆方向に回転させた場合(a〜d上下回転)、回転体1の上下回転部材を互いに逆方向に回転させた場合(a〜d上下反転回転)となるにつれて、ヨーモーメント係数CYが低下することとなる。ヨーモーメント係数CYが低下するほど、風によるヨー挙動の影響が低減するので、同図は、上下回転部材の回転の態様を変更することにより、横方向安定性を調節することが可能となることを示している。即ち、本発明の車両の空力制御装置の第一の実施形態によれば、回転体1の上下回転部材の回転の態様を制御することにより、車体周りの空気力の制御及び横方向安定性の調節が可能となる。 Thus, as described above, by changing the rotation mode of the vertical rotating member of the rotator 1, the size of the separation area in the airflow flowing on the side of the vehicle body is controlled. It is possible to control the action of the wind on the. FIG. 1D shows that the yaw moment coefficient CY relative to the yaw angle of the wind received by the vehicle body (the wind angle measured in the yaw direction of the vehicle body when the front front of the vehicle body is 0 degree) It is the graph which showed changing with a rotation state. (Yaw moment coefficient CY is given by CY = M / (1 / 2ρV 2 · A · WB) and is a non-dimensional quantity of the magnitude of the yaw moment generated by the wind, where M is yaw (Moment, ρ is air density, V is relative wind speed, A is front projected area, and WB is wheelbase length.) As can be understood with reference to FIG. When only the lower rotating member of the rotating body 1 is rotated in the opposite direction to the air flow (down rotation of a to d), the vertical rotating member of the rotating body 1 is opposite to the air flow as compared with the case where the body does not rotate. When rotating in the direction (a to d up-down rotation), the yaw moment coefficient CY decreases as the up-and-down rotation member of the rotator 1 rotates in the opposite directions (a to d up-down inversion rotation). It becomes. As the yaw moment coefficient CY decreases, the influence of the yaw behavior due to the wind decreases. Therefore, in the same figure, it is possible to adjust the lateral stability by changing the mode of rotation of the vertical rotating member. Is shown. That is, according to the first embodiment of the aerodynamic control device for a vehicle of the present invention, by controlling the mode of rotation of the vertical rotating member of the rotating body 1, the aerodynamic force around the vehicle body and the lateral stability can be controlled. Adjustment is possible.

第二の実施形態
(1)装置の構成
図3(A)を参照して、本発明の車両の空力制御装置の第二の実施形態に於いては、図示の如く、車両前方の上側表面から突出する支柱状の部材10が設けられる。かかる支柱状部材10は、図3(B)に例示されている如く、第一の実施形態の場合と同様に、上回転部材14と下回転部材15とからなる回転体10であってよく、また、同図左の如く、回転体10全体が車体表面より下に収納された収納状態と、同図右の如く、回転体10の略全体が車体表面より上に突出した突出状態との間にて上下動できるようになっていてよい。かかる構成について、より詳細には、回転体10の下部には、ギヤ22と係合する溝が形成された支持台20が連結され、上下動モータ23によりギヤ22が適宜回転することにより、支持台20が上下に移動し、回転体10が収納状態又は突出状態に位置決めされるようになっていてよい。また、回転体10の上回転部材14と下回転部材15は、それぞれ、回転モータ12、13により、独立に回転可能であってよい。更に、図3(A)の如く、回転体10は、車両の前方角領域の左右両側にそれぞれ設けられていてよく、また、一つの側に、複数個(図中、a〜dの四個)の回転体10が、車両の前方角領域の上表面に沿って、羅列されていてよい。なお、回転体10は、典型的には、コーナーポールと類似の形状を有しているので、コーナーポールとして利用されてもよい。(或いは、コーナーポールを本発明の空力制御装置として利用できるよう改良してもよい。)
Second Embodiment (1) Configuration of Device Referring to FIG. 3 (A), in the second embodiment of the aerodynamic control device for a vehicle of the present invention, as shown, from the upper surface in front of the vehicle. A protruding columnar member 10 is provided. As illustrated in FIG. 3B, the columnar member 10 may be a rotating body 10 including an upper rotating member 14 and a lower rotating member 15 as in the case of the first embodiment. Further, as shown in the left of the figure, between the storage state in which the entire rotating body 10 is stored below the surface of the vehicle body and the protruding state in which the substantially entire rotating body 10 protrudes above the surface of the vehicle body as shown in the right of the figure. It may be possible to move up and down. More specifically, with respect to such a configuration, a support base 20 having a groove that engages with the gear 22 is connected to the lower portion of the rotating body 10, and the gear 22 is appropriately rotated by a vertical movement motor 23 to support the structure. The base 20 may move up and down, and the rotating body 10 may be positioned in the storage state or the protruding state. Further, the upper rotating member 14 and the lower rotating member 15 of the rotating body 10 may be independently rotatable by the rotating motors 12 and 13, respectively. Further, as shown in FIG. 3A, the rotating body 10 may be provided on each of the left and right sides of the front corner area of the vehicle, and a plurality of (four pieces a to d in the figure) are provided on one side. ) May be arranged along the upper surface of the front corner area of the vehicle. Note that the rotating body 10 typically has a shape similar to that of a corner pole, and may be used as a corner pole. (Alternatively, the corner pole may be improved so that it can be used as the aerodynamic control device of the present invention.)

上記の回転体10の上下動と、回転体10の上回転部材14と下回転部材15の回転作動とは、図3(C)に例示されている如き、制御部にて制御されてよい。同図の制御部に於いては、まず、回転体10が収納状態にある時に、回転体10を突出状態にする場合には、そのための上下動制御指令が、モータコントローラへ与えられる。そして、この場合、モータコントローラは、モータドライバを通じて、モータドライバを通じて、モータ電源からの電力により、各回転体10に対応する上下動モータ23を作動し、これにより、回転体10が車体表面上に突出する。また、回転体10の上回転部材14と下回転部材15を回転させるときには、モータコントローラへ回転制御指令が与えられ、モータコントローラは、モータドライバを通じて、モータドライバを通じて、各回転体10の上回転部材14及び/又は下回転部材15に対応する回転モータを作動し、上回転部材14及び/又は下回転部材15を回転する。なお、上下動制御指令と回転制御指令とは、運転者の指示により、或いは、車両の走行状態に応じて、適宜発せられるようになっていてよい。回転体の突出と回転部材の回転の態様に関して、後に詳細に説明される如く、車両に装備された各回転体1のうち、突出又は回転される回転体の数、上下回転部材の回転の有無とそれらの回転方向、車体が受ける風の方向等によって、回転体から車体上面を通過して反対の側へ回り込む空気流の状態、剥離域の範囲等が変化し、これにより、車両の挙動に及ぼす空気流の作用が変化することとなる。そこで、本実施形態に於いては、空気流の作用を適切にするべく、突出又は回転される回転体の数、上下回転部材の回転の有無とそれらの回転方向を適宜選択できるようになっていてよい。   The vertical movement of the rotating body 10 and the rotation operations of the upper rotating member 14 and the lower rotating member 15 of the rotating body 10 may be controlled by a control unit as illustrated in FIG. In the control unit shown in FIG. 1, when the rotating body 10 is in the retracted state when the rotating body 10 is in the retracted state, a vertical movement control command for that purpose is given to the motor controller. In this case, the motor controller operates the vertical movement motor 23 corresponding to each rotating body 10 by the electric power from the motor power source through the motor driver and through the motor driver, whereby the rotating body 10 is placed on the surface of the vehicle body. Protruding. Further, when rotating the upper rotating member 14 and the lower rotating member 15 of the rotating body 10, a rotation control command is given to the motor controller, and the motor controller passes through the motor driver and through the motor driver. 14 and / or the rotation motor corresponding to the lower rotation member 15 is operated to rotate the upper rotation member 14 and / or the lower rotation member 15. The vertical movement control command and the rotation control command may be appropriately issued according to a driver's instruction or according to the traveling state of the vehicle. As will be described in detail later, the number of rotating bodies that are projected or rotated out of each rotating body 1 mounted on the vehicle, and whether or not the upper and lower rotating members are rotated, as will be described in detail later, regarding the manner of protrusion of the rotating body and the rotation of the rotating member. Depending on the rotation direction of the vehicle, the direction of the wind received by the vehicle body, etc., the state of the air flow passing through the upper surface of the vehicle body from the rotating body to the opposite side, the range of the separation zone, etc. may be changed. The effect of the airflow will change. Therefore, in the present embodiment, the number of rotating bodies that are protruded or rotated, the presence or absence of rotation of the upper and lower rotating members, and their rotating directions can be appropriately selected in order to make the airflow action appropriate. It's okay.

(2)装置の作動
車体の前方角領域に回転体10を配備した本発明の空力制御装置に於いては、車体上面に突出される回転体10の数、突出された上下回転部材の回転状態を種々変更することにより、車体周りの空気流の制御が可能となる。以下、図4を参照して、回転体10の突出状態及び上下回転部材の回転状態に対応した車体周りの空気流の状況を説明する。なお、図4の例に於いては、全て、車両の走行中に左から横風が到来し、これにより、横風と走行風との合成風の空気流が車両の左前方から車体上面を通って右後方を流れる場合が説明されている。横風が右から到来する場合には、回転体10の突出状態及び上下回転部材の回転状態と空気流の変化の態様は、図4の場合と左右対称となる。
(2) Operation of the device In the aerodynamic control device of the present invention in which the rotator 10 is disposed in the front corner area of the vehicle body, the number of the rotators 10 protruding from the upper surface of the vehicle body and the rotation state of the protruding vertical rotating members By making various changes, it is possible to control the air flow around the vehicle body. Hereinafter, the state of the airflow around the vehicle body corresponding to the protruding state of the rotating body 10 and the rotating state of the vertical rotating member will be described with reference to FIG. In the example of FIG. 4, in all cases, a cross wind comes from the left while the vehicle is running, and as a result, an air flow of the combined wind of the cross wind and the running wind passes from the left front of the vehicle through the upper surface of the vehicle body. The case of flowing to the right rear is described. When the cross wind comes from the right, the protruding state of the rotating body 10, the rotating state of the vertical rotating member, and the change of the air flow are symmetric with respect to the case of FIG.

まず、図4(A)の如く、回転体10が突出していない場合には、合成風の空気流は、車両上面から右後方へ向かって車体表面に付着した状態で流れる。次に、図4(B)〜4(C)の如く、回転体10を回転させずに、回転体10を突出させると、回転体10を通過した後の空気流に於いて、渦が発生し、空気流の剥離域が形成される。かかる構成に於いて、回転体10の突出数を増やすと、流れ制御域が拡大し、渦の発生領域と程度は増大し、車体表面上に於ける空気流の剥離域も拡大される。更に、図4(D)の如く、回転体10を突出させた状態で、上下回転部材を互いに逆方向に回転させると、それらの界面に於いてせん断流れに起因する渦が発生し、この影響により、風下の空気流の剥離域が更に拡大されることとなる。   First, as shown in FIG. 4A, when the rotator 10 does not protrude, the airflow of the synthetic wind flows from the upper surface of the vehicle toward the right rear in a state of adhering to the vehicle body surface. Next, as shown in FIGS. 4B to 4C, when the rotating body 10 is projected without rotating the rotating body 10, vortices are generated in the air flow after passing through the rotating body 10. As a result, an air flow separation region is formed. In such a configuration, when the number of protrusions of the rotating body 10 is increased, the flow control area is expanded, the vortex generation area and extent are increased, and the air flow separation area on the vehicle body surface is also expanded. Further, as shown in FIG. 4D, when the rotary member is rotated in the opposite direction with the rotating body 10 protruding, a vortex caused by shear flow is generated at the interface between these members. As a result, the separation area of the leeward air flow is further expanded.

既に第一の実施形態の説明に於いても述べた如く、車体表面上に於ける空気流の剥離域が拡大されるほど、車体に作用する負圧が低減され、車体に作用する風によるヨーモーメントが低減される。図3(D)は、本実施形態による回転体の突出数と回転状態を種々変更した場合の、車体が受容する風の偏揺角に対するヨーモーメント係数CYの変化を示したグラフである。同図を参照して理解される如く、回転体を突出させていない場合(動作なし)に比して、車体表面上に突出させる回転体の数を増大すると、ヨーモーメント係数CYは、低減し、更に、回転体の上下回転部材の回転(互いに逆方向の回転)を実行すると、回転体を回転させていない場合よりも、更に、ヨーモーメント係数CYは、低減される。既に述べた如く、ヨーモーメント係数CYが低下するほど、風によるヨー挙動の影響が低減するので、同図は、回転体の突出数と上下回転部材の回転の態様を変更することにより、横方向安定性を調節することが可能となることを示している。また、回転体を突出させると、空気抵抗は増大することとなるので、回転体の突出は、空気制動として利用されてもよい。   As already described in the description of the first embodiment, the negative pressure acting on the vehicle body is reduced as the air flow separation area on the surface of the vehicle body is enlarged, and the yaw due to wind acting on the vehicle body is reduced. The moment is reduced. FIG. 3D is a graph showing changes in the yaw moment coefficient CY relative to the yaw angle of the wind received by the vehicle body when the number of protrusions and the rotation state of the rotating body according to the present embodiment are variously changed. As can be understood with reference to the figure, the yaw moment coefficient CY decreases as the number of rotating bodies that protrude on the surface of the vehicle body increases as compared with the case where the rotating bodies do not protrude (no operation). Furthermore, when the rotation of the upper and lower rotating members of the rotating body (rotations in opposite directions) is executed, the yaw moment coefficient CY is further reduced as compared with the case where the rotating body is not rotated. As already described, as the yaw moment coefficient CY decreases, the influence of the yaw behavior due to the wind decreases, so the figure shows that by changing the number of protrusions of the rotating body and the mode of rotation of the vertical rotating member, It shows that the stability can be adjusted. Further, since the air resistance increases when the rotating body protrudes, the protrusion of the rotating body may be used as air braking.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。   Although the above description has been made in relation to the embodiment of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiment exemplified above. It will be apparent that the invention is not limited and applies to various devices without departing from the inventive concept.

特に、少なくとも二つの縦列された回転部材を逆向きにして回転し、これにより、その境界にせん断流れを生ずる構成によれば、その風下に於いて、渦が発生することにより、車体表面からの剥離域を形成することが可能となる。かかる原理による回転体は、図1又は図3に例示された部位以外の位置又は向きに設けられてもよく、そのような場合も本発明の範囲に属すると理解されるべきである。   In particular, according to the configuration in which at least two tandem rotating members are rotated in the opposite directions and thereby generate a shear flow at the boundary thereof, vortices are generated in the leeward, so that It is possible to form a peeling area. The rotating body according to such a principle may be provided at a position or an orientation other than the part illustrated in FIG. 1 or FIG. 3, and such a case should be understood as belonging to the scope of the present invention.

また、第二の実施形態に於いて、支柱状の部材10は、回転しない支柱であってもよい。その場合、回転のための機構は省略される(即ち、回転体10は、単なる上下可能な支柱部材10となる。)。支柱状の部材10が回転しなくても、その突出した支柱の数によって剥離域の形成と調節が或る程度可能であることは理解されるべきである。   In the second embodiment, the columnar member 10 may be a column that does not rotate. In that case, a mechanism for rotation is omitted (that is, the rotating body 10 becomes a column member 10 that can be simply moved up and down). It should be understood that even if the strut-shaped member 10 does not rotate, the separation zone can be formed and adjusted to some extent depending on the number of projecting struts.

更に、上記に説明された一連の空力制御装置の構成は、航空機、ホバークラフト、リニアモータカー、船舶などのその他の移動体の胴体に適用され、胴体周囲の空力の制御に用いられてもよく、そのような場合も本発明の範囲に属すると理解されるべきである。   Furthermore, the configuration of the series of aerodynamic control devices described above may be applied to the fuselage of other moving bodies such as aircraft, hovercraft, linear motor cars, and ships, and may be used to control aerodynamics around the fuselage. Such cases should also be understood to fall within the scope of the present invention.

Claims (9)

車両の空力制御装置であって、略鉛直方向に延在する同一の回転軸周りにて互いに独立の回転速度にて回転される少なくとも二つの回転部材にして車体表面にて前記回転軸方向に縦列された少なくとも二つの回転部材から構成される回転体と、前記少なくとも二つの回転部材の回転を制御する回転制御部とを含み、前記回転体に於いて前記少なくとも二つの回転部材が互いに反対の方向に回転される装置。 An aerodynamic control device for a vehicle, wherein at least two rotating members rotated at mutually independent rotational speeds around the same rotating shaft extending in a substantially vertical direction are arranged in a vertical direction on the surface of the vehicle body in the rotating shaft direction. A rotating body composed of at least two rotating members, and a rotation control unit for controlling the rotation of the at least two rotating members, wherein the at least two rotating members are opposite to each other in the rotating body. The device that is rotated into . 請求項1の装置であって、前記回転体が前記車両の前方の角領域に配設されている装置。   The apparatus according to claim 1, wherein the rotating body is disposed in a corner area in front of the vehicle. 請求項1又は2の装置であって、前記回転体が前記車両の前方部材の角領域の外表面より内側に配設され、前記少なくとも二つの回転部材の回転する表面が前記前方部材の外表面外に露出されている装置。   3. The apparatus according to claim 1, wherein the rotating body is disposed inside an outer surface of a corner region of the front member of the vehicle, and a rotating surface of the at least two rotating members is an outer surface of the front member. A device that is exposed to the outside. 請求項1又は2の装置であって、前記回転体が、前記回転軸を略鉛直方向に向けた状態で、前記車両の車体の前方部分の角領域の上側表面から上方へ突出している装置。   3. The apparatus according to claim 1, wherein the rotating body protrudes upward from an upper surface of a corner area of a front portion of the vehicle body of the vehicle with the rotating shaft directed in a substantially vertical direction. 請求項4の装置であって、前記回転体を、車体の前方部分の上側表面から上方へ突出した突出位置と前記車両の車体の前方部分の上側表面よりも内側に収納した収納位置との間にて移動する回転体移動部を含む装置。   5. The apparatus according to claim 4, wherein the rotating body is between a protruding position protruding upward from an upper surface of a front portion of a vehicle body and a storage position where the rotating body is stored inside an upper surface of the front portion of the vehicle body of the vehicle. The apparatus containing the rotary body moving part which moves by. 請求項1乃至5のいずれかの空力制御装置を備えた車両。   A vehicle comprising the aerodynamic control device according to claim 1. 請求項1乃至6のいずれかの装置であって、前記回転体が前記車両のコーナーポールである装置。   The apparatus according to claim 1, wherein the rotating body is a corner pole of the vehicle. 移動体の空力制御装置であって、略鉛直方向に延在する同一の回転軸周りにて互いに独立の回転速度にて回転される少なくとも二つの回転部材にして胴体表面にて前記回転軸方向に縦列された少なくとも二つの回転部材から構成される回転体と、前記少なくとも二つの回転部材の回転を制御する回転制御部とを含み、前記回転体に於いて前記少なくとも二つの回転部材が互いに反対の方向に回転される装置。 An aerodynamic control device for a moving body, comprising at least two rotating members rotated at mutually independent rotational speeds around the same rotating shaft extending in a substantially vertical direction in the direction of the rotating shaft on the body surface at least two of the rotary body composed of the rotary member is a column, said at least saw including a rotation controller for controlling the rotation of the two rotary members, said at least opposite two rotary members to each other at the rotary body Device rotated in the direction of . 請求項8の空力制御装置を備えた移動体。   A moving body comprising the aerodynamic control device according to claim 8.
JP2013004905A 2013-01-15 2013-01-15 Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device Expired - Fee Related JP5928351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004905A JP5928351B2 (en) 2013-01-15 2013-01-15 Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004905A JP5928351B2 (en) 2013-01-15 2013-01-15 Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device

Publications (2)

Publication Number Publication Date
JP2014136463A JP2014136463A (en) 2014-07-28
JP5928351B2 true JP5928351B2 (en) 2016-06-01

Family

ID=51414238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004905A Expired - Fee Related JP5928351B2 (en) 2013-01-15 2013-01-15 Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device

Country Status (1)

Country Link
JP (1) JP5928351B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157490A (en) * 1984-08-28 1986-03-24 Sumitomo Heavy Ind Ltd Wind resistance recoverer in ships
JP2841514B2 (en) * 1989-08-08 1998-12-24 株式会社デンソー Air spoiler for vehicles
JPH04342675A (en) * 1991-05-21 1992-11-30 Nissan Motor Co Ltd Method for stabilizing vehicle against side wind
JP4215910B2 (en) * 1999-09-30 2009-01-28 株式会社ヨコオ Driving mechanism of automobile corner pole
JP2010143530A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp Aerodynamic controller for vehicle

Also Published As

Publication number Publication date
JP2014136463A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
US20190291863A1 (en) Vertical takeoff and landing aircraft with tilted-wing configurations
JP6299792B2 (en) Air jet thrust generator for attitude control of moving objects
US10266214B2 (en) Variable spoiler apparatus of rear bumper for vehicle
US20200164976A1 (en) Vertical takeoff and landing aircraft with passive wing tilt
CN109552435B (en) Adjustable diverter system for motor vehicles
CN103395491A (en) Slotting duct propeller systems and hovercar applying same
EP2864195A1 (en) Morphing wing for an aircraft
CN205768418U (en) Modified model distributed electric ducted fan wing flap high-lift system and hovercar thereof
US20220402608A1 (en) Aircraft with Wingtip Positioned Propellers
JP5162714B1 (en) Automobile
JP6631367B2 (en) Amphibious vehicle
JP5585180B2 (en) Moving body
JP4085716B2 (en) Vertical take-off and landing aircraft
JP5928351B2 (en) Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device
CN205770120U (en) A kind of continuous distributed electric ducted fan wing flap high-lift system
US20170297701A1 (en) Kite with controllable trailing edge
WO2011043431A1 (en) Wing structure and fairing device
RU2770718C1 (en) Hybrid vehicle - air car of a coaxial configuration
CN201849546U (en) Energy-saving wing plate for motor vehicle
JP7385254B2 (en) Electric aircraft and its attitude control method
JP7012227B1 (en) Flying object
US20140076419A1 (en) Self adjusting deturbulator enhanced flap and wind deflector
JP5928352B2 (en) Vehicle or moving body aerodynamic control device and vehicle or moving body equipped with aerodynamic control device
CN107284658A (en) A kind of compound vertical/STOL aircraft
WO2021070261A1 (en) Flying vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5928351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees