JP5925179B2 - Biological desulfurization apparatus and biological desulfurization method - Google Patents

Biological desulfurization apparatus and biological desulfurization method Download PDF

Info

Publication number
JP5925179B2
JP5925179B2 JP2013259808A JP2013259808A JP5925179B2 JP 5925179 B2 JP5925179 B2 JP 5925179B2 JP 2013259808 A JP2013259808 A JP 2013259808A JP 2013259808 A JP2013259808 A JP 2013259808A JP 5925179 B2 JP5925179 B2 JP 5925179B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
gas
containing gas
amount
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013259808A
Other languages
Japanese (ja)
Other versions
JP2015116514A (en
Inventor
田中 俊博
俊博 田中
大介 南
大介 南
正司 小田切
正司 小田切
祐 川崎
祐 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP2013259808A priority Critical patent/JP5925179B2/en
Publication of JP2015116514A publication Critical patent/JP2015116514A/en
Application granted granted Critical
Publication of JP5925179B2 publication Critical patent/JP5925179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gas Separation By Absorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本願発明は、硫化水素(HS)含有ガスの生物学的脱硫装置及び生物学的脱硫方法に関し、詳しくは下水、家畜糞尿、し尿、産業排水、汚泥、ごみ、食品残さなどの有機性物質のメタン発酵処理の工程で発生する硫化水素含有ガスから硫化水素を効率的に処理する技術に関する。 The present invention relates to a biological desulfurization apparatus and biological desulfurization method for hydrogen sulfide (H 2 S) -containing gas, and in particular, organic substances such as sewage, livestock manure, human waste, industrial wastewater, sludge, garbage, food residue, etc. The present invention relates to a technology for efficiently treating hydrogen sulfide from a hydrogen sulfide-containing gas generated in the process of methane fermentation.

有機性廃棄物または有機性廃水は水処理分野においてメタン発酵により処理され、メタンガスを主成分とする硫化水素含有ガスが発生する。硫化水素含有ガスはメタン発酵の方法によって濃度は異なるものの、主成分としてメタンを65%乃至85%、二酸化炭素を15%乃至35%、硫化水素を400ppm乃至6000ppm含んでいる。発生した硫化水素含有ガス中のメタンをボイラーの燃料として利用が可能であり、ボイラーから発生した蒸気は加温設備にて有効利用できる。また、硫化水素含有ガスはガスエンジンの燃料となり、発電も可能である。   Organic waste or organic wastewater is treated by methane fermentation in the water treatment field, and a hydrogen sulfide-containing gas containing methane gas as a main component is generated. Although the concentration of hydrogen sulfide-containing gas varies depending on the method of methane fermentation, it contains 65% to 85% methane, 15% to 35% carbon dioxide, and 400 ppm to 6000 ppm hydrogen sulfide as main components. Methane in the generated hydrogen sulfide-containing gas can be used as fuel for the boiler, and steam generated from the boiler can be used effectively in the heating equipment. In addition, the hydrogen sulfide-containing gas serves as fuel for the gas engine and can generate electricity.

硫化水素含有ガス中に含まれる硫化水素は、燃焼の際に亜硫酸ガス(SO)に酸化され、発生する亜硫酸ガスは水分に溶解すると硫酸となり、大気中に放出されると酸性雨の原因となるだけでなく、燃焼ガスが施設内で冷却されると凝縮した水分によって硫酸となり、腐食などの問題を生じさせる。
そのため、硫化水素含有ガスを利用するためには、硫化水素を除去することが重要な課題となっている。
Hydrogen sulfide contained in the hydrogen sulfide-containing gas is oxidized into sulfurous acid gas (SO 2 ) during combustion, and the generated sulfurous acid gas becomes sulfuric acid when dissolved in moisture, and if released into the atmosphere, it causes acid rain. In addition, when the combustion gas is cooled in the facility, the condensed moisture becomes sulfuric acid, which causes problems such as corrosion.
Therefore, in order to use the hydrogen sulfide-containing gas, it is an important issue to remove hydrogen sulfide.

硫化水素含有ガス中の硫化水素除去方法には、乾式脱硫方法があり、酸化鉄を主成分としたペレット状の脱硫剤を用いて硫化水素を除去する。乾式脱硫方法においては、硫化水素は、酸化鉄と化学的に反応するため、脱硫剤の硫化水素の除去量は、酸化鉄の存在量に概ね比例する。脱硫剤の硫化水素除去反応に関与する酸化鉄がなくなると除去性能は低下し、新規剤に交換する必要がある。   As a method for removing hydrogen sulfide in a hydrogen sulfide-containing gas, there is a dry desulfurization method, in which hydrogen sulfide is removed using a pellet-like desulfurization agent mainly composed of iron oxide. In the dry desulfurization method, since hydrogen sulfide chemically reacts with iron oxide, the amount of hydrogen sulfide removed by the desulfurizing agent is approximately proportional to the amount of iron oxide present. When the iron oxide involved in the hydrogen sulfide removal reaction of the desulfurizing agent disappears, the removal performance deteriorates and it is necessary to replace it with a new agent.

他の脱硫方法には、本願発明のように微生物を利用した生物学的脱硫方法がある。生物学的脱硫方法は、硫化水素含有ガスに微量の空気又は酸素を供給して、硫化水素を微生物により、以下の式(1)および式(2)に示す反応経路で硫黄(S)または硫酸(HSO)を生成させて除去する方法である。式(1)および式(2)に関与する微生物は、充填材表面に付着したり浮遊することが可能であり、硫黄酸化細菌である好気性菌が自然界に多く存在する。微生物が関与するために、温度や水分は微生物の生存環境として必須である。 Other desulfurization methods include biological desulfurization methods using microorganisms as in the present invention. In the biological desulfurization method, a small amount of air or oxygen is supplied to a hydrogen sulfide-containing gas, and hydrogen sulfide is converted into sulfur (S) or sulfuric acid by microorganisms in a reaction route represented by the following formulas (1) and (2). In this method, (H 2 SO 4 ) is generated and removed. The microorganisms involved in the formulas (1) and (2) can adhere to the surface of the filler or float, and there are many aerobic bacteria that are sulfur-oxidizing bacteria in nature. Since microorganisms are involved, temperature and moisture are essential for the living environment of microorganisms.

S + 1/2O → S + HO 式(1)
S + 3/2O + HO → HSO 式(2)
H 2 S + 1 / 2O 2 → S + H 2 O (1)
S + 3 / 2O 2 + H 2 O → H 2 SO 4 formula (2)

式(1)は硫化水素が硫黄酸化細菌により、単体硫黄(S)を生成する反応である。酸素が硫化水素の1/2mol以下の場合の主反応である。酸素が硫化水素の1/2molを超える場合には、硫黄酸化細菌によってさらに式(2)の反応を行い、硫酸(HSO)が生成する。硫化水素がすべて硫酸(HSO)に転換するには、硫黄酸化細菌の存在下で、理論的には酸素が硫化水素の2mol以上必要となる。 Formula (1) is a reaction in which hydrogen sulfide generates elemental sulfur (S) by sulfur-oxidizing bacteria. This is the main reaction when oxygen is 1/2 mol or less of hydrogen sulfide. When oxygen exceeds 1/2 mol of hydrogen sulfide, the reaction of Formula (2) is further performed by sulfur-oxidizing bacteria, and sulfuric acid (H 2 SO 4 ) is generated. In order to convert all the hydrogen sulfide into sulfuric acid (H 2 SO 4 ), 2 mol or more of hydrogen sulfide is theoretically required in the presence of sulfur-oxidizing bacteria.

特許文献1には、生物学的脱硫技術の一例が開示され、本方式では、処理が悪くなると、除去した硫化水素の一部は硫黄として析出し充填材に付着し、一部は硫酸に転換されている。析出した硫黄に対し、生物学的脱硫塔に水を張って曝気により剥離して処理性能を回復させる技術が記載されている。しかしながら、充填材に硫黄の析出がある場合、硫黄酸化菌が生成硫黄の付着により、生物反応が阻害されるため、当初の硫化水素除去能が加速度的に低下する欠点がある。   Patent Document 1 discloses an example of a biological desulfurization technique. In this method, when the treatment is deteriorated, part of the removed hydrogen sulfide is deposited as sulfur and adheres to the filler, and part is converted to sulfuric acid. Has been. A technique is described in which the precipitated sulfur is filled with water in a biological desulfurization tower and peeled off by aeration to recover the treatment performance. However, when sulfur deposits are present in the filler, there is a drawback that the initial hydrogen sulfide removing ability is reduced at an accelerated rate because the sulfur-oxidizing bacteria are inhibited by the generated sulfur and the biological reaction is inhibited.

特開2003−305328号公報JP 2003-305328 A

本願発明が解決しようとする課題は、上述した諸問題に鑑み、高負荷での硫化水素を効率的に処理が可能な硫化水素含有ガスの生物学的脱硫装置及び生物学的脱硫方法を提供することを目的とする。   The problem to be solved by the present invention is to provide a biological desulfurization apparatus and a biological desulfurization method for a hydrogen sulfide-containing gas capable of efficiently treating hydrogen sulfide under a high load in view of the above-described problems. For the purpose.

本願発明の生物学的脱硫装置及び生物学的脱硫方法は、以下の技術的特徴を備えている。   The biological desulfurization apparatus and the biological desulfurization method of the present invention have the following technical features.

(1) 硫化水素含有ガスから生物学的脱硫塔内に循環液を散水して生物学的に硫化水素を除去する生物学的脱硫装置において、硫化水素含有ガスラインを分配器を介して複数の流入ガスラインに接続し、該硫化水素含有ガスラインに酸素含有気体を供給するための酸素含有気体流入ラインが接続され、該生物学的脱硫塔内に微生物が付着する充填材からなる充填層を複数段設け、各段の充填層の上流端部には該流入ガスラインが各々接続され、該流入ガスラインは硫化水素含有ガス供給量調節手段を有し、最下流側の該充填層の下流端部に処理ガスを排出するための処理ガス流出ラインを設け、該硫化水素含有ガスラインで供給される硫化水素含有ガスを該分配器で分配し、前記分配された硫化水素含有ガスを、該流入ガスラインを介して前記各段の充填層の上流端部に供給することを特徴とする。 (1) In a biological desulfurization apparatus that removes hydrogen sulfide biologically by sprinkling a circulating liquid from a hydrogen sulfide-containing gas into a biological desulfurization tower, a plurality of hydrogen sulfide-containing gas lines are connected via a distributor. An oxygen-containing gas inflow line connected to an inflow gas line and supplying an oxygen-containing gas to the hydrogen sulfide-containing gas line; and a packed bed made of a filler to which microorganisms adhere in the biological desulfurization tower. A plurality of stages are provided, and the inflow gas line is connected to the upstream end of the packed bed in each stage, and the inflow gas line has a hydrogen sulfide-containing gas supply amount adjusting means, and is downstream of the most downstream side of the packed bed. A processing gas outflow line for discharging the processing gas is provided at the end, the hydrogen sulfide-containing gas supplied from the hydrogen sulfide-containing gas line is distributed by the distributor, and the distributed hydrogen sulfide-containing gas is Before through the inflow gas line It supplies to the upstream edge part of the packed bed of each stage .

(2) 上記(1)に記載の生物学的脱硫装置において、硫化水素含有ガスラインは硫化水素濃度計を有し、該硫化水素濃度計からの計測信号に基づき該硫化水素含有ガス供給量調節手段を制御する硫化水素制御手段を設けたことを特徴とする。 (2) In the biological desulfurization apparatus according to (1), the hydrogen sulfide-containing gas line has a hydrogen sulfide concentration meter, and the supply amount of the hydrogen sulfide-containing gas is adjusted based on a measurement signal from the hydrogen sulfide concentration meter. A hydrogen sulfide control means for controlling the means is provided.

(3) 上記(2)に記載の生物学的脱硫装置において、最下流側の該充填層の下流端部から排出される処理ガスの少なくとも一部を循環させる処理ガス循環ラインを備え、該処理ガス循環ラインは該硫化水素含有ガスラインの該硫化水素濃度計の上流側に接続され、該処理ガス循環ラインは処理ガス循環量調節手段を有し、該硫化水素制御手段は、該硫化水素濃度計からの計測信号に基づき該処理ガス循環量調節手段を制御することを特徴とする。 (3) The biological desulfurization apparatus according to (2), further including a processing gas circulation line for circulating at least a part of the processing gas discharged from the downstream end of the packed bed on the most downstream side, A gas circulation line is connected to an upstream side of the hydrogen sulfide concentration meter of the hydrogen sulfide-containing gas line, the processing gas circulation line has a processing gas circulation amount adjusting means, and the hydrogen sulfide control means has the hydrogen sulfide concentration The processing gas circulation rate adjusting means is controlled based on a measurement signal from the meter.

(4) 上記(1)乃至(3)のいずれかに記載の生物学的脱硫装置において、該硫化水素含有ガスラインの一部であり、該酸素含有気体流入ラインが接続された接続部の上流側に硫化水素含有ガス流量計を設け、該硫化水素含有ガスラインの他の一部であり、該酸素含有気体流入ラインが接続された接続部の上流側に硫化水素濃度計を設け、該酸素含有気体流入ラインは酸素含有気体供給量調節手段を有し、該硫化水素含有ガス流量計からの計測信号と該硫化水素濃度計からの計測信号の積によって計算される負荷量に基づき該酸素含有気体供給量調節手段を制御する負荷量制御手段を設けたことを特徴とする。 (4) In the biological desulfurization apparatus according to any one of (1) to (3) above, a part of the hydrogen sulfide-containing gas line, upstream of a connection portion to which the oxygen-containing gas inflow line is connected A hydrogen sulfide-containing gas flow meter is provided on the side, and a hydrogen sulfide concentration meter is provided on the upstream side of the connection part to which the oxygen-containing gas inflow line is connected, which is another part of the hydrogen sulfide-containing gas line. The contained gas inflow line has oxygen-containing gas supply amount adjusting means, and the oxygen-containing gas supply line is controlled based on a load amount calculated by a product of a measurement signal from the hydrogen sulfide-containing gas flow meter and a measurement signal from the hydrogen sulfide concentration meter. A load amount control means for controlling the gas supply amount adjusting means is provided.

(5) 有機性廃棄物をメタン発酵させて発生した硫化水素含有ガスを生物学的脱硫塔内に導入すると共に、該塔内に循環液を散水して生物学的に硫化水素を除去する生物学的脱硫方法において、該生物学的脱硫塔内に微生物が付着する充填材からなる充填層を複数段設け、該硫化水素含有ガスに酸素含有気体を供給する酸素供給工程と、該酸素供給工程を経た硫化水素含有ガスを複数に分配するガス分配工程と、該ガス分配工程で分配された硫化水素含有ガスを各段の充填層の上流端部に流入するガス流入工程と、最下流側の該充填層の下流端部から処理ガスを排出する処理ガス流出工程とを有し、該ガス流入工程では、硫化水素含有ガスの供給量を調節可能に設定されていることを特徴とする。 (5) A living body that introduces hydrogen sulfide-containing gas generated by methane fermentation of organic waste into a biological desulfurization tower and sprinkles the circulating liquid into the tower to biologically remove hydrogen sulfide. In the biological desulfurization method, the biological desulfurization tower is provided with a plurality of packed layers made of a filler to which microorganisms adhere, and an oxygen supply step for supplying an oxygen-containing gas to the hydrogen sulfide-containing gas, and the oxygen supply step A gas distribution step for distributing the hydrogen sulfide-containing gas that has passed through the gas distribution step, a gas inflow step for flowing the hydrogen sulfide-containing gas distributed in the gas distribution step into the upstream end of the packed bed in each stage, and a most downstream side And a processing gas outflow process for discharging the processing gas from the downstream end of the packed bed, wherein the supply amount of the hydrogen sulfide-containing gas is set to be adjustable in the gas inflow process.

(6) 上記(5)に記載の生物学的脱硫方法において、該酸素供給工程前の硫化水素含有ガス中の硫化水素濃度を計測し、その計測結果に基づき、前記硫化水素含有ガスの供給量を調節することを特徴とする。 (6) In the biological desulfurization method according to (5), the hydrogen sulfide concentration in the hydrogen sulfide-containing gas before the oxygen supply step is measured, and the supply amount of the hydrogen sulfide-containing gas is based on the measurement result It is characterized by adjusting.

(7) 上記(6)に記載の生物学的脱硫方法において、最下流側の該充填層の下流端部から排出される処理ガスの少なくとも一部を、前記硫化水素濃度を計測する場所の上流側に循環させる処理ガス循環工程を有し、前記硫化水素濃度の計測結果に基づき、該処理ガス循環工程における処理ガスの循環量を調節することを特徴とする。 (7) In the biological desulfurization method according to (6), at least a part of the processing gas discharged from the downstream end of the packed bed on the most downstream side is upstream of the place where the hydrogen sulfide concentration is measured. And a processing gas circulation step to be circulated to the side, and based on the measurement result of the hydrogen sulfide concentration, a circulation amount of the processing gas in the processing gas circulation step is adjusted.

(8) 上記(5)乃至(7)のいずれかに記載の生物学的脱硫方法において、該酸素供給工程前の硫化水素含有ガスの流量と、該酸素供給工程前の硫化水素含有ガス中の硫化水素濃度とを計測し、該硫化水素含有ガス流量計からの計測信号と該硫化水素濃度計からの計測信号の積によって計算される負荷量に基づき該酸素供給工程の酸素含有気体の供給量を調節することを特徴とする。 (8) In the biological desulfurization method according to any one of (5) to (7) above, the flow rate of the hydrogen sulfide-containing gas before the oxygen supply step, and the hydrogen sulfide-containing gas in the hydrogen sulfide-containing gas before the oxygen supply step The supply amount of the oxygen-containing gas in the oxygen supply step based on the load amount calculated by measuring the hydrogen sulfide concentration and calculating the product of the measurement signal from the hydrogen sulfide-containing gas flow meter and the measurement signal from the hydrogen sulfide concentration meter It is characterized by adjusting.

(9) 上記(5)乃至(8)のいずれかに記載の生物学的脱硫方法において、該酸素供給工程を経た硫化水素含有ガス中の硫化水素濃度が400乃至700ppmであることを特徴とする。 (9) The biological desulfurization method according to any one of (5) to (8) above, wherein the hydrogen sulfide concentration in the hydrogen sulfide-containing gas that has passed through the oxygen supply step is 400 to 700 ppm. .

(10) 上記(5)乃至(9)のいずれかに記載の生物学的脱硫方法において、該充填層が上流段と下流段の2段で構成され、該ガス流入工程では、上流段へ流入するガス量は全体の50%乃至70%であり、残りが下流段へ流入することを特徴とする。 (10) In the biological desulfurization method according to any one of (5) to (9), the packed bed includes two stages, an upstream stage and a downstream stage. In the gas inflow process, the inflow to the upstream stage The amount of gas to be used is 50% to 70% of the whole, and the remainder flows into the downstream stage.

(11) 上記(5)乃至(9)のいずれかに記載の生物学的脱硫方法において、該充填層が上流段、中流段、及び下流段の3段で構成され、該ガス流入工程では、各段に流入するガス量の関係は、「上流段の流入ガス量≧中流段の流入ガス量≧下流段の流入ガス量」となることを特徴とする。 (11) In the biological desulfurization method according to any one of (5) to (9), the packed bed is configured of three stages, an upstream stage, a middle stage, and a downstream stage, and in the gas inflow step, The relationship between the amount of gas flowing into each stage is characterized in that “inflow gas amount in upstream stage ≧ inflow gas amount in middle stage ≧ inflow gas amount in downstream stage”.

本発明の生物学的脱硫装置及び生物学的脱硫方法を用いて硫化水素含有ガスを複数段の充填層へ分配して処理することで、高効率の生物学的な脱硫処理が維持される。   By using the biological desulfurization apparatus and the biological desulfurization method of the present invention to distribute and process the hydrogen sulfide-containing gas to the packed bed in a plurality of stages, a highly efficient biological desulfurization process is maintained.

特に、硫化水素含有ガスラインに硫化水素濃度計および硫化水素含有ガス流量計を設け、複数段の充填層ごとに硫化水素含有ガスを分配して硫化水素含有ガスの供給量を制御することで、最上流段の充填層の処理負荷量が小さくなり硫黄が析出しにくくなり、かつ充填材全体が効率的に活用され、高負荷でも効率的に硫化水素を除去し、硫酸に転換することが可能となる。   In particular, by providing a hydrogen sulfide concentration meter and a hydrogen sulfide-containing gas flow meter in the hydrogen sulfide-containing gas line, by distributing the hydrogen sulfide-containing gas for each of the plurality of packed beds and controlling the supply amount of the hydrogen sulfide-containing gas, The treatment load of the uppermost packed bed is reduced, making it difficult for sulfur to precipitate, and the entire packing material is used efficiently, enabling efficient removal of hydrogen sulfide and conversion to sulfuric acid even at high loads. It becomes.

また、硫化水素含有ガスラインに硫化水素含有ガス流量計と硫化水素濃度計を設け、該生物学的脱硫方法に適した混合ガス硫化水素濃度とするために該硫化水素計の値から処理ガス循環量を制御し、さらに、充填層の各段に供給する硫化水素含有ガスのガス量を制御することで、特に高濃度の硫化水素を含む硫化水素含有ガスに対して効率的に硫化水素を除去できる。   In addition, a hydrogen sulfide-containing gas flow meter and a hydrogen sulfide concentration meter are provided in the hydrogen sulfide-containing gas line, and in order to obtain a mixed gas hydrogen sulfide concentration suitable for the biological desulfurization method, the processing gas circulation is determined from the value of the hydrogen sulfide meter. The amount of hydrogen sulfide-containing gas supplied to each stage of the packed bed is controlled to effectively remove hydrogen sulfide, especially for hydrogen sulfide-containing gas containing high-concentration hydrogen sulfide. it can.

従来方式の硫化水素除去パターンを示す図である。It is a figure which shows the hydrogen sulfide removal pattern of a conventional system. 本発明の硫化水素除去パターンを示す図である。It is a figure which shows the hydrogen sulfide removal pattern of this invention. 本発明の生物学的脱硫装置の概略を示す図である。It is a figure which shows the outline of the biological desulfurization apparatus of this invention. 本発明の生物学的脱硫装置の概略を示す図であり、硫化水素含有ガスを上向流で処理する例を示す図である。It is a figure which shows the outline of the biological desulfurization apparatus of this invention, and is a figure which shows the example which processes a hydrogen sulfide containing gas by an upward flow. 本発明の生物学的脱硫装置の概略を示す図であり、処理ガス循環ラインを硫化水素含有ガスラインに接続した例を示す図である。It is a figure which shows the outline of the biological desulfurization apparatus of this invention, and is a figure which shows the example which connected the process gas circulation line to the hydrogen sulfide containing gas line. 実施例1の実験装置概要を示す図である。1 is a diagram showing an outline of an experimental apparatus of Example 1. FIG. 実施例2の実験装置概要を示す図である。It is a figure which shows the experimental apparatus outline | summary of Example 2. FIG. 実施例4の実験装置概要を示す図である。It is a figure which shows the experimental apparatus outline | summary of Example 4. FIG. 実施例5に係る経日変化を示す図である。It is a figure which shows the daily change which concerns on Example 5. FIG.

本発明の生物学的脱硫装置及び脱硫方法について、基本的な考え方について説明する。
まず、発明者らは、従来方式の脱硫装置を用いて硫化水素濃度1500ppmの合成硫化水素含有ガスからの硫化水素の除去の実験を行った。直径5cm、担体の充填層を上流段、下流段に分けた。上流段、下流段ともに、担体の各充填高さは100cmで担体の各充填容量2Lとした生物脱硫装置を用いた。この装置の概略は後述する図6の右側の「実施例1の比較例」に示されている。
The basic concept of the biological desulfurization apparatus and desulfurization method of the present invention will be described.
First, the inventors conducted an experiment of removing hydrogen sulfide from a synthetic hydrogen sulfide-containing gas having a hydrogen sulfide concentration of 1500 ppm using a conventional desulfurization apparatus. The packed bed of 5 cm diameter and carrier was divided into an upstream stage and a downstream stage. In both the upstream and downstream stages, a biological desulfurization apparatus was used in which each carrier filling height was 100 cm and each carrier filling capacity was 2 L. The outline of this apparatus is shown in “Comparative example of Example 1” on the right side of FIG.

硫化水素濃度1500ppm、硫化水素含有ガス量1L/minで硫化水素量3g/day、硫化水素負荷量0.7kg/(m・day)、での処理状況をつぶさに観察した。
従来方式(比較例)の結果として、充填高さ0cmから200cmを通過し、生物処理が行われる時間は上流段2分間、下流段2分間、全体で4分間である。硫化水素含有ガスを、充填層の最上流側から全量(負荷割合100%)流した場合の硫化水素除去パターンを図1に示す。流入の硫化水素含有ガスの硫化水素濃度が1500ppmであるとき、脱硫装置の上流段(充填高さ100cm)で620ppm、処理ガス(充填高さ200cm)で250ppmと硫化水素が処理しきれないで流出していた。
The treatment status at a hydrogen sulfide concentration of 1500 ppm, a hydrogen sulfide-containing gas amount of 1 L / min, a hydrogen sulfide amount of 3 g / day, and a hydrogen sulfide load of 0.7 kg / (m 3 · day) was closely observed.
As a result of the conventional system (comparative example), the filling height passes from 0 cm to 200 cm, and the biological treatment is performed for 2 minutes in the upstream stage, 2 minutes in the downstream stage, and 4 minutes in total. FIG. 1 shows a hydrogen sulfide removal pattern in the case where the entire amount of hydrogen sulfide-containing gas is flowed from the uppermost stream side of the packed bed (load ratio: 100%). When the hydrogen sulfide concentration of the inflowing hydrogen sulfide-containing gas is 1500 ppm, 620 ppm in the upstream stage of the desulfurization unit (filling height 100 cm) and 250 ppm in the processing gas (filling height 200 cm), the hydrogen sulfide cannot be treated. Was.

また、硫化水素濃度が1500ppmでは生物反応速度が遅いことからも、従来方式の場合において処理ガスの硫化水素濃度をさらに下げるには、硫化水素含有ガス量の硫化水素負荷量を低減することと、処理時間を長くとる必要があることが判明した。   In addition, since the biological reaction rate is slow when the hydrogen sulfide concentration is 1500 ppm, in order to further reduce the hydrogen sulfide concentration of the processing gas in the case of the conventional method, the hydrogen sulfide load amount of the hydrogen sulfide-containing gas amount is reduced, It has been found that it is necessary to increase the processing time.

次に、発明者らは鋭意研究を行った結果、供給する硫化水素含有ガスを、複数段で構成した充填層の各段に分配して供給することが処理効率を高くできることを見出した。例えば、従来方式と同一の硫化水素濃度1500ppm、硫化水素量3g/day、硫化水素負荷量0.7kg/(m−充填担体・day)とし、硫化水素含有ガスを上流段と下流段に分配して供給した。この装置の概略は後述する図6の左側の「実施例1」に示す。 Next, as a result of intensive studies, the inventors have found that it is possible to increase the processing efficiency by distributing and supplying the hydrogen sulfide-containing gas to be supplied to each stage of the packed bed composed of a plurality of stages. For example, the hydrogen sulfide concentration is 1500 ppm, the hydrogen sulfide amount is 3 g / day, the hydrogen sulfide load is 0.7 kg / (m 3 -filled carrier · day), and the hydrogen sulfide-containing gas is distributed to the upstream and downstream stages. And supplied. The outline of this apparatus is shown in “Example 1” on the left side of FIG.

具体的には、上流段には硫化水素含有ガス量を0.7L/min、硫化水素量は2.1g/day、負荷割合は全体負荷3g/dayの70%とし、下流段には硫化水素含有ガス量を0.3L/min、硫化水素量は0.9g/day、負荷割合は全体負荷の30%とした場合の硫化水素除去パターンを図2に示す。図2に示すように、硫化水素含有ガスを分配することで、処理ガスの硫化水素濃度は0ppmとなり、処理が完全に行われている。上流段では従来方式の70%の負荷に低減したことと、生物処理時間が3分間と延びたことで出口(充填高さ100cm)では150ppmまで低下できた。また、下流段には全体負荷の30%が流入することで下流段の滞留時間は2分間となる。下流段での入口直下(充填高さ105cm)の硫化水素濃度は550ppmに上昇するものの、2分間の滞留時間でも0ppmまで処理できることが確認された。   Specifically, the upstream stage has a hydrogen sulfide-containing gas amount of 0.7 L / min, the hydrogen sulfide amount is 2.1 g / day, the load ratio is 70% of the total load of 3 g / day, and the downstream stage has hydrogen sulfide. FIG. 2 shows a hydrogen sulfide removal pattern when the gas content is 0.3 L / min, the hydrogen sulfide amount is 0.9 g / day, and the load ratio is 30% of the total load. As shown in FIG. 2, by distributing the hydrogen sulfide-containing gas, the hydrogen sulfide concentration of the processing gas becomes 0 ppm, and the processing is completely performed. In the upstream stage, the load was reduced to 70% of the conventional method, and the biological treatment time was extended to 3 minutes, so that it could be reduced to 150 ppm at the outlet (filling height 100 cm). Further, 30% of the total load flows into the downstream stage, so that the residence time of the downstream stage is 2 minutes. Although the hydrogen sulfide concentration just below the inlet (filling height 105 cm) in the downstream stage increased to 550 ppm, it was confirmed that the treatment could be performed up to 0 ppm even with a residence time of 2 minutes.

本発明の生物学的脱硫装置及び脱硫方法は、このような実験に基づいてなされたものであり、高濃度の硫化水素を含むガスに対して高負荷でも安定して処理が可能な脱硫装置及び脱硫方法である。   The biological desulfurization apparatus and the desulfurization method of the present invention have been made based on such an experiment, and a desulfurization apparatus capable of stably treating a gas containing a high concentration of hydrogen sulfide even under a high load. This is a desulfurization method.

ここで、後述するガスの名称について、次のように定義する。
・硫化水素含有ガス: 硫化水素を含む気体のことである。
・酸素含有気体 : 酸素を含む気体のことであり、空気または、純酸素または、酸素発生器により酸素濃度を調節したガスのことである。
・混合ガス : 硫化水素含有ガスと、処理ガスが混合したガスのことである。
・処理ガス : 生物学的脱硫塔から排出したガスのことである。
Here, the name of the gas to be described later is defined as follows.
-Hydrogen sulfide-containing gas: A gas containing hydrogen sulfide.
-Oxygen-containing gas: A gas containing oxygen, which is air, pure oxygen, or a gas whose oxygen concentration is adjusted by an oxygen generator.
-Mixed gas: A gas in which hydrogen sulfide-containing gas and processing gas are mixed.
・ Processing gas: Gas discharged from the biological desulfurization tower.

また、本明細書で示す計算式等で用いる記号は、次の通り定義する。
・RHS : 硫化水素除去率 [%]
・CHS(in): 硫化水素含有ガス中の硫化水素濃度 [ppm]
・CHS(out): 処理ガス中の硫化水素濃度 [ppm]
・V25 : 25℃のときの1molの気体が占める体積 [m
・SHS : 1日あたりの硫化水素処理量 [kg/day]
・Qin : 硫化水素含有ガス量 [m/day]
・Q : 処理ガス循環量 [m/day]
・V充填材 : 充填容量 [m
・L : 硫化水素負荷量 [kg/(m・day)]
・V : 循環液量 [L]
・THS : 硫化水素除去量 [kg−HS/day]
・TS−HS : 除去した硫化水素に含まれる硫黄量[kg−S/day]
・O : 微生物による硫酸化での必要酸素量 [kg−O/day]
・O : 微生物の呼吸に必要な酸素量 [kg−O/day]
・OPO : 純酸素必要量 [m−O/day]
・OAir : 空気量 [m−air/day]
Further, symbols used in the calculation formulas and the like shown in this specification are defined as follows.
・ RH 2 S: Hydrogen sulfide removal rate [%]
CH 2 S (in): hydrogen sulfide concentration in hydrogen sulfide-containing gas [ppm]
CH 2 S (out): Hydrogen sulfide concentration in the process gas [ppm]
V 25 : Volume [m 3 ] occupied by 1 mol of gas at 25 ° C.
・ SH 2 S: Hydrogen sulfide treatment amount per day [kg / day]
・ Q in : hydrogen sulfide-containing gas amount [m 3 / day]
・ Q R : Process gas circulation rate [m 3 / day]
・ V filler : Filling capacity [m 3 ]
LR : Hydrogen sulfide load [kg / (m 3 · day)]
・ V R : Circulating fluid volume [L]
・ TH 2 S: Hydrogen sulfide removal amount [kg-H 2 S / day]
· TS-H 2 S: Sulfur content in the removed hydrogen sulfide [kg-S / day]
・ O 2 O : Required oxygen amount for sulfation by microorganisms [kg-O 2 / day]
・ O R : Oxygen required for respiration of microorganisms [kg-O 2 / day]
· OPO 2: pure oxygen demand [m 3 -O 2 / day]
・ OAir: Air volume [m 3 -air / day]

硫化水素除去率RHS[%]は、次の式(3)で示すことができる。
RHS=100×(CHS(in)− CHS(out))/CHS(in)
式(3)
The hydrogen sulfide removal rate RH 2 S [%] can be expressed by the following formula (3).
RH 2 S = 100 × (CH 2 S (in) −CH 2 S (out)) / CH 2 S (in)
Formula (3)

25℃のときの1molの気体が占める体積V25[m]は、0℃(273K)、1気圧における気体1molが占める体積22.4Lを用い式(4)であらわされる。
25=22.4×(298/273) 式(4)
The volume V 25 [m 3 ] occupied by 1 mol of gas at 25 ° C. is expressed by Equation (4) using 02.4 ° C. (273 K) and 22.4 L of volume occupied by 1 mol of gas at 1 atmosphere.
V 25 = 22.4 × (298/273) Formula (4)

1日あたりの硫化水素処理量SHS[kg/day]は、硫化水素分子量;34g/molを用い式(5)で示される。
SHS=(Qin+Q)×CHS(in) ×10−6×34/V25 式(5)
単位充填材あたりの硫化水素負荷量L[kg/(m・day)]は、式(6)で示される。Lは、単に硫化水素負荷量とよぶこととする。
=SHS/V充填材 式(6)
The daily hydrogen sulfide treatment amount SH 2 S [kg / day] is expressed by the formula (5) using a hydrogen sulfide molecular weight of 34 g / mol.
SH 2 S = (Q in + Q R ) × CH 2 S (in) × 10 −6 × 34 / V 25 formula (5)
The hydrogen sulfide load L R [kg / (m 3 · day)] per unit filler is expressed by the equation (6). LR is simply referred to as a hydrogen sulfide load.
L R = SH 2 S / V filler formula (6)

硫化水素除去量THS[kg−HS/day]は、LとRHSとV充填材を用いて式(7)で示される。
THS=L×RHS×V充填材 式(7)
除去した硫化水素に含まれる硫黄量TS−HS[kg−S/day]は、硫黄の分子量32g/mol、硫化水素分子量34g/molを用いて式(8)で示される。
TS−HS=THS×32/34 式(8)
Hydrogen sulfide removal amount TH 2 S [kg-H 2 S / day] is represented by the formula (7) with L R and RH 2 S and V filler.
TH 2 S = L R × RH 2 S × V Filler Formula (7)
The sulfur amount TS-H 2 S [kg-S / day] contained in the removed hydrogen sulfide is represented by the formula (8) using the molecular weight of sulfur of 32 g / mol and the molecular weight of hydrogen sulfide of 34 g / mol.
TS-H 2 S = TH 2 S × 32/34 Formula (8)

本発明に係る微生物が付着する充填材を充填した生物学的脱硫装置の一例を図3に示す。図3は硫化水素含有ガスを下向流で処理した装置図である。実施は、本実施態様に限定されない。   An example of a biological desulfurization apparatus filled with a filler to which microorganisms according to the present invention are attached is shown in FIG. FIG. 3 is an apparatus diagram in which a hydrogen sulfide-containing gas is processed in a downward flow. Implementation is not limited to this embodiment.

本発明を用い、硫化水素含有ガス0aを上向流で処理する様に配管を設置した装置図を図4に示す。図3と図4について共通して説明する。   FIG. 4 shows an apparatus diagram in which piping is installed to treat the hydrogen sulfide-containing gas 0a in an upward flow using the present invention. 3 and 4 will be described in common.

充填層1aは、脱硫塔内に複数段設けてもよく、具体的には充填層が2段乃至4段であることが好ましい。この充填層の充填材について説明する。
微生物が付着する充填材は、pH1以下の強酸性下で使用できるような耐薬品性を有する素材のものであればよく、例えば材質がポリエチレンやポリプロピレン、塩化ビニル、ポリウレタンなどの有機性物質が好ましい。また、充填材の形状は、筒状や、網状骨格パイプやボール状やウニ状が好ましい。比表面積は50m/m乃至1000m/mの範囲が好ましい。空隙率は、80%乃至96%の範囲が好ましい。
The packed bed 1a may be provided in a plurality of stages in the desulfurization tower, and specifically, the packed bed preferably has 2 to 4 stages. The filler for this packed bed will be described.
The filler to which microorganisms adhere is only required to be a material having chemical resistance that can be used under strong acidity of pH 1 or lower. For example, the material is preferably an organic substance such as polyethylene, polypropylene, vinyl chloride, and polyurethane. . Further, the shape of the filler is preferably a cylindrical shape, a reticulated skeleton pipe, a ball shape, or a sea urchin shape. The specific surface area is preferably in the range of 50 m 2 / m 3 to 1000 m 2 / m 3 . The porosity is preferably in the range of 80% to 96%.

分配器6は、流入するガスを複数に分岐して流すことができればよい。具体的には2方向に分岐する場合は、チーズなどの配管コネクタを用や三方バルブがあり、3方向に分岐する場合は、4方弁バルブがある。   The distributor 6 only needs to be able to branch the flowing gas into a plurality of flows. Specifically, when branching in two directions, a pipe connector such as cheese is used or there is a three-way valve, and when branching in three directions, there is a four-way valve valve.

散水ライン11は、循環液0dを充填材に散水することができればよい。充填材の湿潤状態を維持させるために、複数の充填層の各上流端部に散水ライン11を設置してもよい。   The watering line 11 should just be able to water the circulating liquid 0d to a filler. In order to maintain the wet state of the filler, a watering line 11 may be installed at each upstream end of the plurality of packed beds.

循環液貯留液槽1bから循環液0d中の硫酸濃度を調節するために間欠的に循環液の一部をブロー水0eとして排出し、補給水0fを補給して循環液貯留液槽1bの水量を一定にすることが必要である。   In order to adjust the sulfuric acid concentration in the circulating fluid 0d from the circulating fluid reservoir 1b, a part of the circulating fluid is intermittently discharged as blow water 0e, and the replenishing water 0f is replenished and the amount of water in the circulating fluid reservoir 1b. Must be constant.

硫化水素含有ガス0aの供給量を調節する場合には、硫化水素制御手段は硫化水素濃度信号入力手段16と硫化水素濃度演算器12と硫化水素濃度演算器による第1の演算結果の信号伝達手段15から構成され、硫化水素含有ガス供給量調節手段7を制御する。
さらに処理ガス循環量を調節する場合には、図5に示すように、硫化水素制御手段は硫化水素濃度信号入力手段16と硫化水素濃度演算器12と硫化水素濃度演算器による第2の演算結果の信号伝達手段21から構成され、処理ガス循環量調節手段20を制御する。
When adjusting the supply amount of the hydrogen sulfide-containing gas 0a, the hydrogen sulfide control means is a signal transmission means for the first calculation result by the hydrogen sulfide concentration signal input means 16, the hydrogen sulfide concentration calculator 12, and the hydrogen sulfide concentration calculator. 15 and controls the hydrogen sulfide-containing gas supply amount adjusting means 7.
Further, when the processing gas circulation amount is adjusted, as shown in FIG. 5, the hydrogen sulfide control means performs the second calculation result by the hydrogen sulfide concentration signal input means 16, the hydrogen sulfide concentration calculator 12, and the hydrogen sulfide concentration calculator. The signal transmission means 21 for controlling the processing gas circulation amount adjusting means 20 is controlled.

硫化水素濃度計4は、定電位電解式による測定方法、硝酸銀電位差滴定法、イオン電極法、ガスクロマトグラフ法等を用いてもよい。   The hydrogen sulfide concentration meter 4 may use a measurement method by a potentiostatic electrolytic method, a silver nitrate potentiometric titration method, an ion electrode method, a gas chromatograph method, or the like.

硫化水素濃度信号入力手段16は、硫化水素濃度計4の計測信号や計測値を硫化水素濃度演算器12または負荷量演算器13へ物理的に入力したり電気的に入力する手段であり、具体的には物理的には手動入力があり、電気的にはケーブルなどを介して電気的に入力したり、電波などを用いて無線送信して入力してもよい。   The hydrogen sulfide concentration signal input means 16 is a means for physically inputting or electrically inputting the measurement signal or measurement value of the hydrogen sulfide concentration meter 4 to the hydrogen sulfide concentration calculator 12 or the load amount calculator 13. Specifically, there is a manual input physically, and an electric input may be electrically input via a cable or the like, or may be input by wireless transmission using radio waves or the like.

硫化水素濃度演算器12はプログラムが組み込まれており、設定された範囲になると硫化水素含有ガス供給量調節手段7や処理ガス循環量調節手段20を制御できる。   The hydrogen sulfide concentration calculator 12 incorporates a program, and can control the hydrogen sulfide-containing gas supply amount adjusting means 7 and the processing gas circulation amount adjusting means 20 within a set range.

硫化水素含有ガス供給量の制御について、硫化水素濃度演算器による第1の演算結果の信号伝達手段15は、硫化水素濃度演算器12の演算結果を硫化水素含有ガス供給量調節手段7へ物理的に出力したり電気的に出力する手段であり、物理的手段として手動出力があり、電気的手段としてケーブルなどを介して出力したり、電波などを用いて無線で出力してもよい。   Regarding the control of the hydrogen sulfide-containing gas supply amount, the signal transmission means 15 of the first calculation result by the hydrogen sulfide concentration calculator physically transfers the calculation result of the hydrogen sulfide concentration calculator 12 to the hydrogen sulfide-containing gas supply amount adjusting means 7. Or a manual output as a physical means, an output via a cable or the like as an electrical means, or a wireless output using a radio wave or the like.

硫化水素含有ガス供給量調節手段7は、硫化水素含有ガス供給量を物理的に調節したり電気的に調節する手段であり、具体的には、物理的にはバルブやダンパなどがあり、電気的にはブロワやポンプなどがある。   The hydrogen sulfide-containing gas supply amount adjusting means 7 is a means for physically adjusting or electrically adjusting the hydrogen sulfide-containing gas supply amount. Specifically, the hydrogen sulfide-containing gas supply amount adjusting means 7 physically includes valves, dampers, etc. In particular, there are blowers and pumps.

図3と図4に示す装置を用いて、硫化水素含有ガス供給量の制御を用いた生物学的脱硫方法について説明する。
充填層の段数を上流段と下流段の2段とした場合には、実施例1(硫化水素含有ガス中の硫化水素濃度範囲;200ppm〜1500ppm)と実施例3(硫化水素含有ガス中の硫化水素濃度;400ppm〜700ppm)の実験結果より上流段への硫化水素含有ガス量が全体の50%乃至70%であり、下流段への硫化水素含有ガス量は、上流段への硫化水素含有ガス量の残量、即ち全体の50%乃至30%が最も処理は良好であることがわかった。
したがって、「上流段への流入ガス流量≧下流段への流入ガス流量」とすることが重要であることが判明した。
A biological desulfurization method using control of the supply amount of hydrogen sulfide-containing gas will be described using the apparatus shown in FIGS.
When the number of stages of the packed bed is two stages, an upstream stage and a downstream stage, Example 1 (hydrogen sulfide concentration range in hydrogen sulfide-containing gas; 200 ppm to 1500 ppm) and Example 3 (sulfurization in hydrogen sulfide-containing gas) From the experimental results of hydrogen concentration (400 ppm to 700 ppm), the hydrogen sulfide-containing gas amount to the upstream stage is 50% to 70% of the total, and the hydrogen sulfide-containing gas amount to the downstream stage is the hydrogen sulfide-containing gas to the upstream stage It was found that the remaining amount, ie 50% to 30% of the total, was the best treatment.
Accordingly, it has been found that it is important that “the inflow gas flow rate to the upstream stage ≧ the inflow gas flow rate to the downstream stage”.

図3と図4に示す装置を用いて充填層の段数を上流段、中流段、下流段の3段とした場合について、実施例4(硫化水素含有ガス中の硫化水素濃度;400ppm〜700ppm)にて調査した。   Example 4 (concentration of hydrogen sulfide in a hydrogen sulfide-containing gas; 400 ppm to 700 ppm) in the case where the number of stages of the packed bed is three stages of an upstream stage, a middle stream stage, and a downstream stage using the apparatus shown in FIGS. Was investigated.

具体的には、上流段への流入ガス量が全体の50%であったとき、中流段への流入ガス量は全体の25%乃至35%、下流段への流入ガス量は全体の25%乃至15%であり、上流段への流入ガス量が全体の40%であったとき、中流段への流入ガス量は全体の30%乃至40%、下流段への流入ガス量は全体の30%乃至20%であり、上流段への流入ガス量が全体の33%であったとき、中流段への流入ガス量は全体の33%、下流段への流入ガス量は全体の33%のとき、処理が良好であることがわかった。
したがって、各段に流入するガス量の関係は、「上流段の流入ガス量≧中流段の流入ガス量≧下流段の流入ガス量」とすることが重要であることが判明した。
Specifically, when the amount of gas flowing into the upstream stage is 50% of the whole, the amount of gas flowing into the middle stage is 25% to 35% of the whole, and the amount of gas flowing into the downstream stage is 25% of the whole. When the amount of gas flowing into the upstream stage is 40% of the whole, the amount of gas flowing into the middle stage is 30% to 40% of the whole, and the amount of gas flowing into the downstream stage is 30% of the whole. % To 20%. When the amount of gas flowing into the upstream stage is 33% of the total, the amount of gas flowing into the middle stage is 33% of the whole, and the amount of gas flowing into the downstream stage is 33% of the whole. When processing was found to be good.
Accordingly, it has been found that it is important that the relationship between the amounts of gas flowing into the respective stages is “upstream inflow gas amount ≧ middle flow inflow gas amount ≧ downstream flow inflow gas amount”.

硫化水素制御手段を備えた、すなわち硫化水素濃度により硫化水素含有ガス供給量調節手段7を制御する本発明では、流入ガス流量が増えると硫化水素負荷量も増える。このため、分配の概念は該硫化水素含有ガス流量計からの計測信号と該硫化水素濃度計からの計測信号の積によって計算される負荷量に対しても適用できる。   In the present invention having the hydrogen sulfide control means, that is, controlling the hydrogen sulfide-containing gas supply amount adjusting means 7 by the hydrogen sulfide concentration, the hydrogen sulfide load amount increases as the inflow gas flow rate increases. For this reason, the concept of distribution can be applied to the load calculated by the product of the measurement signal from the hydrogen sulfide-containing gas flow meter and the measurement signal from the hydrogen sulfide concentration meter.

処理ガス循環量の制御について、硫化水素濃度演算器による第2の演算結果の信号伝達手段21は、硫化水素濃度演算器12の演算結果を処理ガス循環量調節手段20へ物理的に出力したり電気的に出力する手段であり、具体的には物理的には手動出力があり、電気的にはケーブルなどを介して電気的に出力したり、電波などを用いて無線送信して出力してもよい。   Regarding the control of the processing gas circulation amount, the signal transmission means 21 of the second calculation result by the hydrogen sulfide concentration calculator physically outputs the calculation result of the hydrogen sulfide concentration calculator 12 to the processing gas circulation amount adjustment means 20. An electrical output means, specifically a manual output physically, and an electrical output via a cable etc., or a radio transmission using radio waves etc. Also good.

処理ガス循環量調節手段20は、処理ガス0cの循環量を物理的に調節したり電気的に調節する手段であり、具体的には物理的にはバルブやダンパなどがあり、電気的にはブロワやポンプなどがある。   The processing gas circulation amount adjusting means 20 is a means for physically adjusting or electrically adjusting the circulation amount of the processing gas 0c. Specifically, there are a valve, a damper and the like physically. There are blowers and pumps.

図5に示す装置を用いて、処理ガス循環量の制御を用いた生物学的脱硫方法について説明する。
硫化水素濃度が700ppmを超える硫化水素含有ガス0aを処理する場合には、処理ガス0cの一部を循環させて処理することで処理効率はさらによくなる。処理ガス0cの一部を循環させて硫化水素含有ガス0aを処理する様に配管を設置した装置図を図5に示す。
A biological desulfurization method using control of the processing gas circulation rate will be described using the apparatus shown in FIG.
When the hydrogen sulfide-containing gas 0a having a hydrogen sulfide concentration exceeding 700 ppm is processed, the processing efficiency is further improved by circulating a part of the processing gas 0c. FIG. 5 shows an apparatus diagram in which piping is installed so as to circulate a part of the processing gas 0c to process the hydrogen sulfide-containing gas 0a.

硫化水素濃度が700ppmを超える硫化水素含有ガス0aを処理する場合には、生物処理時間が長く、生物反応速度が極端に遅くなるため未処理の硫化水素が流出する。さらに、硫化水素濃度が400ppmよりも小さい場合は、生物処理時間が短くなり十分に硫化水素を処理できない。このことから、生物反応速度と生物処理時間を勘案すると、硫化水素含有ガス0a中の硫化水素濃度は400ppm乃至700ppmの範囲で処理することが好ましいことを、本発明者らは見出した。   When the hydrogen sulfide-containing gas 0a having a hydrogen sulfide concentration exceeding 700 ppm is treated, the biological treatment time is long and the biological reaction rate becomes extremely slow, so that untreated hydrogen sulfide flows out. Furthermore, when the hydrogen sulfide concentration is lower than 400 ppm, the biological treatment time is shortened and hydrogen sulfide cannot be sufficiently treated. Accordingly, the present inventors have found that it is preferable to treat the hydrogen sulfide concentration in the hydrogen sulfide-containing gas 0a in the range of 400 ppm to 700 ppm in consideration of the biological reaction rate and the biological treatment time.

図3と図4で示す装置を用いて、酸素含有気体0bの供給量の制御を用いた生物学的脱硫方法について説明する。
負荷量制御手段は、硫化水素濃度信号入力手段16と硫化水素含有ガス流量信号入力手段17と負荷量演算器13と負荷量演算器による演算結果の信号伝達手段14から構成され、酸素含有気体供給量調節手段9を制御する。
A biological desulfurization method using control of the supply amount of the oxygen-containing gas 0b will be described using the apparatus shown in FIGS.
The load amount control means comprises a hydrogen sulfide concentration signal input means 16, a hydrogen sulfide-containing gas flow rate signal input means 17, a load amount calculator 13, and a signal transmission means 14 of the calculation result by the load amount calculator, and supplies oxygen-containing gas. The amount adjusting means 9 is controlled.

硫化水素含有ガス流量計3は、オリフィス流量計や、容積流量計や、渦流量計や、流速式流量計等を用いることができ、容積式流量計は、実測乾式ガスメーターや、実測湿式を用いることができ、さらに、実測乾式ガスメーターは、膜式あるいは回転子式等を用いてもよい。   As the hydrogen sulfide-containing gas flow meter 3, an orifice flow meter, a volumetric flow meter, a vortex flow meter, a flow rate flow meter, or the like can be used, and the positive displacement flow meter uses an actual dry gas meter or an actual wet meter. In addition, the actual dry gas meter may be of a membrane type or a rotor type.

硫化水素含有ガス流量信号入力手段17は、硫化水素含有ガス流量計3の計測信号を負荷量演算器13へ物理的に入力したり電気的に入力する手段であり、具体的には物理的には手動入力があり、電気的にはケーブルなどを介して電気的に入力したり、電波などを用いて無線送信して入力してもよい。   The hydrogen sulfide-containing gas flow rate signal input means 17 is a means for physically inputting or electrically inputting the measurement signal of the hydrogen sulfide-containing gas flow meter 3 to the load amount calculator 13, specifically physically. Is manually input, and may be input electrically via a cable or by wireless transmission using radio waves or the like.

負荷量演算器13はプログラムが組み込まれており、設定された範囲になると酸素含有気体供給量調節手段9を制御できる。   The load amount calculator 13 has a built-in program, and can control the oxygen-containing gas supply amount adjusting means 9 within a set range.

負荷量演算器による演算結果の信号伝達手段14は、負荷量演算器13により硫化水素負荷量演算結果を酸素含有気体供給量調節手段9へ物理的に出力したり電気的に出力する手段であり、具体的には物理的には手動出力があり、電気的にはケーブルなどを介して電気的に出力したり、電波などを用いて無線送信して出力してもよい。   The calculation result signal transmission means 14 by the load amount calculator is a means for physically outputting or electrically outputting the hydrogen sulfide load amount calculation result to the oxygen-containing gas supply amount adjusting means 9 by the load amount calculator 13. Specifically, there is a manual output physically, and an electrical output via a cable or the like, or a radio transmission using radio waves or the like may be performed.

酸素含有気体供給量調節手段9は物理的に出力したり電気的に出力する手段であり、具体的には物理的にはバルブやダンパなどがあり、電気的にはブロワやポンプなどがある。   The oxygen-containing gas supply amount adjusting means 9 is a means for physically outputting or electrically outputting. Specifically, there are a valve, a damper and the like physically, and an electric blower and a pump.

図3と図4に示す装置を用いて、酸素供給量の制御について説明する。
生物学的脱硫方式で消費される酸素量には、微生物による硫酸化での必要酸素量(O)と、微生物の呼吸に必要な酸素量(O)がある。本発明の生物学的脱硫塔1に供給する酸素含有気体供給量は、O+Oで表される。
The control of the oxygen supply amount will be described using the apparatus shown in FIGS.
The amount of oxygen consumed in the biological desulfurization system includes the amount of oxygen necessary for sulfation by microorganisms (O 2 O 3 ) and the amount of oxygen necessary for respiration of microorganisms (O R ). The oxygen-containing gas supply amount supplied to the biological desulfurization tower 1 of the present invention is represented by O 2 O + OR 2 .

は、流入する硫化水素負荷量(L)を硫酸に酸化させるのに必要な酸素量であり、式(1)より1molの硫化水素に対して2molの酸素、すなわち、硫化水素量に対してモル比で2倍の酸素が必要となる。硫酸化での必要酸素量O[kg−O/day]は、Lと酸素分子量;32g/molと硫化水素分子量;34g/molを用いて式(9)で示される。
=2×L×32/34 式(9)
一例として、温度が35℃の硫化水素含有ガスを1mの充填材を用いてL;1.0kg/(m・day)で処理したとき、流入する硫化水素の量は29.4mol−HS/dayであり、硫化水素の硫酸化に必要なOは式(9)より1.9kg−O/day、すなわち58.8mol−O/dayである。
O 2 O is the amount of oxygen necessary to oxidize the inflowing hydrogen sulfide load (L R ) to sulfuric acid. From Formula (1), 2 mol of oxygen, that is, the amount of hydrogen sulfide, is equivalent to 1 mol of hydrogen sulfide. On the other hand, oxygen twice as much as the molar ratio is required. The required oxygen amount O 2 O [kg-O 2 / day] for sulfation is represented by the formula (9) using LR , oxygen molecular weight; 32 g / mol, hydrogen sulfide molecular weight; 34 g / mol.
O O = 2 × L R × 32/34 (9)
As an example, temperature and 35 ° C. of hydrogen sulfide-containing gas L R with a filler of 1 m 3; when treated with 1.0kg / (m 3 · day) , the amount of hydrogen sulfide entering the 29.4mol- H 2 S / day, and O 2 O required for sulfation of hydrogen sulfide is 1.9 kg-O 2 / day, that is, 58.8 mol-O 2 / day based on the formula (9).

は微生物の呼吸に必要な酸素量である。具体的には、充填材1m当たりの付着量は1kg−SS/mであり、呼吸速度は5mg−O/(g−SS・hr)乃至10mg−O/(g−SS・hr)、すなわち3.8mmol/(g−SS・day)乃至7.5mmol/(g−SS・day)であることが実験によりわかった。
充填材1mあたりに付着している微生物は1kg−SSであり、Oは0.12kg−O/day乃至0.24kg−O/day、すなわち3.8mol−O/day乃至7.5mol−O/dayとなる。
O R is an amount of oxygen required to respiration of microorganisms. Specifically, the adhesion amount per 1 m 3 of filler is 1 kg-SS / m 3 and the respiration rate is 5 mg-O 2 / (g-SS · hr) to 10 mg-O 2 / (g-SS · hr). ), That is, 3.8 mmol / (g-SS · day) to 7.5 mmol / (g-SS · day).
Microorganisms adhering per filler 1 m 3 is 1kg-SS, O R is 0.12kg-O 2 / day to 0.24kg-O 2 / day, i.e. 3.8mol-O 2 / day to 7 the .5mol-O 2 / day.

微生物の活動が酸素欠乏で阻害されずに式(1)、式(2)の反応を促進するには、硫化水素量29.4mol−HS/dayに対して62.6mol−O/day乃至66.3mol−O/day、すなわち硫化水素量1molに対し理論的な酸素量(O+O)はモル比で2.13倍乃至2.26倍必要となる。なお、理論値は酸素溶解効率100%の場合である。 In order to promote the reaction of the formulas (1) and (2) without inhibiting the activity of microorganisms due to oxygen deficiency, the amount of hydrogen sulfide is 22.6 mol-O 2 / day with respect to 29.4 mol-H 2 S / day. Day to 66.3 mol-O 2 / day, that is, the theoretical oxygen amount (O 2 O + O R ) is required to be 2.13 to 2.26 times in terms of molar ratio with respect to 1 mol of hydrogen sulfide. In addition, a theoretical value is a case where oxygen dissolution efficiency is 100%.

実際の酸素溶解効率は、実験で確認したところ約20%乃至85%となっている。実際の酸素溶解効率を考慮すると、硫化水素量に対して理論的な酸素量のモル比が2.13倍のときには、硫化水素量1に対しモル比で2.5倍乃至10.5倍の酸素量が必要となり、理論的な酸素量のモル比が2.26倍のときには、硫化水素量に対してモル比で2.7倍乃至11.3倍の酸素量が必要となる。すなわち、硫化水素量に対して理論的な酸素量のモル比は総合的に2.5倍乃至11.6倍である。   The actual oxygen dissolution efficiency is about 20% to 85% as confirmed by experiments. Considering the actual oxygen dissolution efficiency, when the molar ratio of the theoretical oxygen amount to the hydrogen sulfide amount is 2.13 times, the molar ratio is 2.5 to 10.5 times the hydrogen sulfide amount 1 When an oxygen amount is required and the molar ratio of the theoretical oxygen amount is 2.26 times, an oxygen amount of 2.7 times to 11.3 times as much as the hydrogen sulfide amount is required. That is, the theoretical molar ratio of the oxygen amount to the hydrogen sulfide amount is generally 2.5 times to 11.6 times.

なお、過剰の酸素含有気体0bを供給すると、処理ガス0c中に未反応の酸素含有気体0bが多く含まれ、処理ガス0c中のメタンガス濃度が下がり燃料の価値が下がる。したがって、この酸素含有気体供給量調節手段9において酸素量を硫化水素量に対してモル比で2.5倍乃至11.6倍、好ましくは2.5倍乃至7倍にするのが好ましい。   If an excessive oxygen-containing gas 0b is supplied, a large amount of unreacted oxygen-containing gas 0b is contained in the processing gas 0c, and the concentration of methane gas in the processing gas 0c is lowered, reducing the value of fuel. Accordingly, it is preferable that the oxygen content in the oxygen-containing gas supply amount adjusting means 9 is 2.5 times to 11.6 times, preferably 2.5 times to 7 times as much as the molar ratio of hydrogen sulfide.

本発明で使用する酸素含有気体0bは、空気または、純酸素または、酸素発生器により酸素濃度を調節したガスを用いてもよい。   The oxygen-containing gas 0b used in the present invention may be air, pure oxygen, or a gas whose oxygen concentration is adjusted by an oxygen generator.

本願発明において酸素含有気体0bとして純酸素を用いる場合、25℃(298K)での純酸素の必要量OPO[m−O/day]は、Oから酸素分子量;32g/mol、気体1molが占める体積(0℃(273K)、1気圧);22.4Lを用いて式(10)に示される。
OPO=O×22.4×(298/273)/32 式(10)
In the present invention, when pure oxygen is used as the oxygen-containing gas 0b, the required amount of pure oxygen at 25 ° C. (298 K) OPO 2 [m 3 —O 2 / day] is an oxygen molecular weight from O 2 O ; 32 g / mol, gas The volume occupied by 1 mol (0 ° C. (273 K), 1 atm); shown in formula (10) using 22.4 L.
OPO 2 = O 2 O × 22.4 × (298/273) / 32 Formula (10)

本発明において酸素含有気体として空気(酸素濃度;21v/v%、25℃)を用いる場合、25℃での空気の必要量OAir[m−O/day]は、OPOを用いて式(11)で表される。
OAir=OPO×(100/21) 式(11)
In the present invention, when air (oxygen concentration; 21 v / v%, 25 ° C.) is used as the oxygen-containing gas, the required amount of air OAir [m 3 —O 2 / day] at 25 ° C. is expressed using OPO 2. It is represented by (11).
OAir = OPO 2 × (100/21) Formula (11)

実施例1として、硫化水素含有ガスを分配して充填層の上流端部に供給する場合と、実施例1の比較例として硫化水素含有ガスを充填層の最上流端部にのみ供給する場合における処理性能について並行して実験を行い検討した。硫化水素含有ガス中の硫化水素濃度ごとにRunとして区分けし、本実験は実施例1と実施例1の比較例とを比較しながら行った。Runごとの評価期間は10日間とし、全評価期間は90日間とした。   In Example 1, the hydrogen sulfide-containing gas is distributed and supplied to the upstream end of the packed bed, and as a comparative example of Example 1, the hydrogen sulfide-containing gas is supplied only to the uppermost stream end of the packed bed. Experiments on the processing performance were conducted in parallel. The hydrogen sulfide-containing gas was classified as Run according to the hydrogen sulfide concentration, and this experiment was performed while comparing Example 1 and the comparative example of Example 1. The evaluation period for each run was 10 days, and the total evaluation period was 90 days.

実験装置は図6の生物学的脱硫装置を用いた。実施例1の実験装置概要を表1に示す。実験装置の内径は5cmである。
1層あたりの充填高さが1mとなるように充填材を充填し、充填層段数は上流段、下流段の2段とした。全充填高さは2mであり、全充填容量を4.2Lとした。充填材はφ15mm×h15mmの円筒状のものを用いた。
循環液は、脱硫塔下部の循環液貯留液槽からポンプによって脱硫塔上部へ送られ、ガス方向に並行して散水した。循環液の散水量は、200L/dayとした。処理温度は35℃に設定した。
硫化水素含有ガスは、メタン発酵槽で発生したバイオガスである。硫化水素含有ガス成分は、硫化水素濃度;100ppm、メタン濃度;80%、二酸化炭素濃度;20%であり、実験期間を通して一定だった。
酸素含有気体には空気(酸素を21v/v%含有;25℃)を用いた。空気供給量は、硫化水素量に対してモル比で2.5倍の酸素が供給されるように酸素含有気体供給量調節手段で43.1L/dayに調節した。
The experimental apparatus used was the biological desulfurization apparatus shown in FIG. An outline of the experimental apparatus of Example 1 is shown in Table 1. The inner diameter of the experimental device is 5 cm.
The filler was filled so that the filling height per layer was 1 m, and the number of packed bed stages was two stages, upstream and downstream. The total filling height was 2 m, and the total filling capacity was 4.2 L. The filler used was a cylindrical one of φ15 mm × h15 mm.
The circulating liquid was sent from the circulating liquid storage tank at the bottom of the desulfurization tower to the upper part of the desulfurization tower by a pump, and sprinkled in parallel with the gas direction. The amount of sprinkling of the circulating liquid was 200 L / day. The processing temperature was set to 35 ° C.
The hydrogen sulfide-containing gas is a biogas generated in a methane fermentation tank. The hydrogen sulfide-containing gas components were hydrogen sulfide concentration; 100 ppm, methane concentration; 80%, carbon dioxide concentration; 20%, and were constant throughout the experiment.
Air (containing 21 v / v% oxygen; 25 ° C.) was used as the oxygen-containing gas. The air supply amount was adjusted to 43.1 L / day by the oxygen-containing gas supply amount adjusting means so that oxygen at a molar ratio of 2.5 times the hydrogen sulfide amount was supplied.

Figure 0005925179
Figure 0005925179

実験条件を表2に示す。実施例1の系列では、硫化水素含有ガスは分配器を経由して充填層の各上流端部より下向流で流した。硫化水素含有ガスは、上流段への硫化水素含有ガス量を全体の70%とし、下流段への硫化水素含有ガス量を全体の30%とした。硫化水素含有ガスの分配は、硫化水素制御手段を介して硫化水素含有ガス供給量調節手段を制御して行った。   Table 2 shows the experimental conditions. In the series of Example 1, the hydrogen sulfide-containing gas was allowed to flow downward from each upstream end of the packed bed via a distributor. In the hydrogen sulfide-containing gas, the hydrogen sulfide-containing gas amount to the upstream stage was 70% of the whole, and the hydrogen sulfide-containing gas amount to the downstream stage was 30% of the whole. The distribution of the hydrogen sulfide-containing gas was performed by controlling the hydrogen sulfide-containing gas supply amount adjusting means via the hydrogen sulfide control means.

実施例1の比較例の系列では、硫化水素含有ガスは充填層の最上流端部より下向流で流した。
また、本実施例1および実施例1の比較例で使用した硫化水素含有ガスは、いずれもメタン発酵槽で発生したバイオガスと100%硫化水素ガスを混合させたガスである。100%硫化水素ガスはガスボンベに貯留したものを使用した。
硫化水素含有ガス中の硫化水素濃度は、200ppm乃至1500ppmの範囲で一定濃度となるようにバイオガスと混合させる100%硫化水素ガスの供給量を調節した。
In the series of comparative examples of Example 1, the hydrogen sulfide-containing gas was allowed to flow downward from the most upstream end of the packed bed.
Further, the hydrogen sulfide-containing gas used in the comparative example of Example 1 and Example 1 is a gas obtained by mixing biogas generated in a methane fermentation tank and 100% hydrogen sulfide gas. The 100% hydrogen sulfide gas used was stored in a gas cylinder.
The supply amount of 100% hydrogen sulfide gas mixed with the biogas was adjusted so that the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was a constant concentration in the range of 200 ppm to 1500 ppm.

硫化水素含有ガス流量は、2.4m/day乃至18.1m/dayの範囲で一定量となるようにバルブの開度で調節した。 Hydrogen-containing gas flow sulfide was adjusted by opening of the valve so that a certain amount in the range of 2.4 m 3 / day to 18.1 m 3 / day.

Figure 0005925179
Figure 0005925179

硫化水素含有ガス中の硫化水素濃度は、硫化水素含有ガス流入ラインに設置した硫化水素濃度計にて測定した。硫化水素濃度計で測定できないその他のガスについて、処理ガスは、処理ガス流出ラインから吸引ポンプを用いてテドラバッグに採取した。テドラバッグに採取したガス中の硫化水素濃度は、硫化水素濃度検知管(ガステック製ガス検知管;4H)を用いて測定した。   The hydrogen sulfide concentration in the hydrogen sulfide-containing gas was measured with a hydrogen sulfide concentration meter installed in the hydrogen sulfide-containing gas inflow line. For other gases that cannot be measured with a hydrogen sulfide concentration meter, the processing gas was collected from a processing gas outflow line into a tedla bag using a suction pump. The hydrogen sulfide concentration in the gas collected in the Tedra bag was measured using a hydrogen sulfide concentration detector tube (Gastec gas detector tube; 4H).

実施例1の結果を表3に示す。表中の値は、評価10日目の値を記載した。処理性能の評価は、式(3)により硫化水素除去率を計算して95%以上で処理良好とした。   The results of Example 1 are shown in Table 3. The values in the table are the values on the 10th day of evaluation. In the evaluation of the treatment performance, the hydrogen sulfide removal rate was calculated by the equation (3), and the treatment was good at 95% or more.

Figure 0005925179
Figure 0005925179

Run1−1およびRun1−2では、硫化水素含有ガス中の硫化水素濃度はそれぞれ200ppm、300ppmに設定された。
実施例1では、処理ガス中の硫化水素濃度はRun1−1では55ppm、Run1−2では25ppmであり、硫化水素除去率はRun1−1;73%、Run1−2;92%だった。
実施例1の比較例では、処理ガス中の硫化水素濃度はRun1−1では60ppm、Run1−2では30ppmであり、硫化水素除去率はRun1−1;70%、Run1−2;90%だった。
In Run 1-1 and Run 1-2, the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was set to 200 ppm and 300 ppm, respectively.
In Example 1, the hydrogen sulfide concentration in the process gas was 55 ppm for Run 1-1, 25 ppm for Run 1-2, and the hydrogen sulfide removal rates were Run 1-1; 73% and Run 1-2; 92%.
In the comparative example of Example 1, the hydrogen sulfide concentration in the process gas was 60 ppm for Run 1-1, 30 ppm for Run 1-2, and the hydrogen sulfide removal rates were Run 1-1; 70% and Run 1-2; 90%. .

Run1−3〜Run1−6では、硫化水素含有ガス中の硫化水素濃度は400ppm乃至700ppmに設定された。
実施例1では、処理ガス中の硫化水素濃度は5ppm乃至35ppmの範囲で、硫化水素除去率はRun1−3〜Run1−6で95%乃至99%であった。
実施例1の比較例では、処理ガス中の硫化水素濃度は20ppm乃至140ppmの範囲で、硫化水素除去率はRun1−3、Run1−4では95%乃至96%であったものの、Run1−5、Run1−6では92%乃至80%であった。
In Run1-3 to Run1-6, the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was set to 400 ppm to 700 ppm.
In Example 1, the hydrogen sulfide concentration in the process gas was in the range of 5 ppm to 35 ppm, and the hydrogen sulfide removal rate was 95% to 99% for Run1-3 to Run1-6.
In the comparative example of Example 1, the hydrogen sulfide concentration in the process gas was in the range of 20 ppm to 140 ppm, and the hydrogen sulfide removal rate was 95% to 96% for Run1-3 and Run1-4. In Run 1-6, it was 92% to 80%.

Run1−7〜Run1−9では、硫化水素含有ガス中の硫化水素濃度は800ppm乃至1500ppmに設定された。
実施例1では、処理ガス中の硫化水素濃度は160ppm乃至500ppmの範囲であり、硫化水素除去率は硫化水素濃度の増加に伴い80%乃至67%となった。
実施例1の比較例では、処理ガス中の硫化水素濃度は333ppm乃至1000ppmの範囲であり、硫化水素除去率は58%乃至33%となった。
In Run 1-7 to Run 1-9, the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was set to 800 ppm to 1500 ppm.
In Example 1, the hydrogen sulfide concentration in the process gas was in the range of 160 ppm to 500 ppm, and the hydrogen sulfide removal rate became 80% to 67% with the increase of the hydrogen sulfide concentration.
In the comparative example of Example 1, the hydrogen sulfide concentration in the process gas was in the range of 333 ppm to 1000 ppm, and the hydrogen sulfide removal rate was 58% to 33%.

実施例1では、比較例より常に除去率は高い。とくに、硫化水素濃度が400ppm乃至700ppmで硫化水素除去率が95%以上となり良好に処理できたのに対し、実施例1の比較例では硫化水素濃度が400ppmと500ppmで硫化水素除去率が95%であり、分配方式で処理することで処理性能に優位な結果が得られることがわかった。   In Example 1, the removal rate is always higher than in the comparative example. In particular, the hydrogen sulfide removal rate was 95% or higher when the hydrogen sulfide concentration was 400 ppm to 700 ppm, and the hydrogen sulfide removal rate was 95% or more in the comparative example of Example 1 with the hydrogen sulfide concentrations of 400 ppm and 500 ppm. It was found that processing superior in processing performance can be obtained by processing with the distribution method.

実施例2では、処理ガスを循環して硫化水素含有ガスと混合後に分配器を経由して充填層の各上流端部に供給する場合と、実施例2の比較例として処理ガスを循環して硫化水素含有ガスと混合後に充填層の最上流端部に供給する場合の処理性能について図7に示す生物学的脱硫装置を2塔並行して実施例2と実施例2の比較例とを比較しながら行った。処理ガスの循環量ごとにRunとして区分けした。本実験はRunごとの評価期間は10日間とし、全評価期間は80日間とした。   In Example 2, the process gas is circulated and mixed with the hydrogen sulfide-containing gas and then supplied to each upstream end of the packed bed via a distributor, and the process gas is circulated as a comparative example of Example 2. Comparison between Example 2 and Comparative Example of Example 2 in parallel with two towers of the biological desulfurization apparatus shown in FIG. 7 regarding the processing performance in the case of supplying to the uppermost stream end of the packed bed after mixing with the hydrogen sulfide-containing gas I went there. It was classified as Run according to the circulation amount of the processing gas. In this experiment, the evaluation period for each run was 10 days, and the total evaluation period was 80 days.

実施例2の実験装置概要を表4に示す。実験装置の内径は5cmである。
1層あたりの充填高さが1mとなるように充填材を充填し、充填層段数は上流段、下流段の2段とした。全充填高さは2mであり、全充填容量を4.2Lとした。充填材はφ15mm×h15mmの円筒状のものを用いた。
循環液は、脱硫塔下部の循環液貯留液槽からポンプによって脱硫塔上部へ送られ、ガス方向に並行して散水した。循環液の散水量は、200L/dayとした。処理温度は35℃に設定した。
硫化水素含有ガスは、実施例1と同じメタン発酵槽で発生したバイオガスである。硫化水素含有ガス成分は、硫化水素濃度;100ppm、メタン濃度;80%、二酸化炭素濃度;20%であり、実験期間を通して一定だった。
酸素含有気体には空気(酸素を21v/v%含有;25℃)を用いた。空気供給量は、硫化水素量に対してモル比で2.5倍の酸素が供給されるように酸素含有気体供給量調節手段で43.1L/dayに調節した。
An outline of the experimental apparatus of Example 2 is shown in Table 4. The inner diameter of the experimental device is 5 cm.
The filler was filled so that the filling height per layer was 1 m, and the number of packed bed stages was two stages, upstream and downstream. The total filling height was 2 m, and the total filling capacity was 4.2 L. The filler used was a cylindrical one of φ15 mm × h15 mm.
The circulating liquid was sent from the circulating liquid storage tank at the bottom of the desulfurization tower to the upper part of the desulfurization tower by a pump, and sprinkled in parallel with the gas direction. The amount of sprinkling of the circulating liquid was 200 L / day. The processing temperature was set to 35 ° C.
The hydrogen sulfide-containing gas is a biogas generated in the same methane fermentation tank as in Example 1. The hydrogen sulfide-containing gas components were hydrogen sulfide concentration; 100 ppm, methane concentration; 80%, carbon dioxide concentration; 20%, and were constant throughout the experiment.
Air (containing 21 v / v% oxygen; 25 ° C.) was used as the oxygen-containing gas. The air supply amount was adjusted to 43.1 L / day by the oxygen-containing gas supply amount adjusting means so that oxygen at a molar ratio of 2.5 times the hydrogen sulfide amount was supplied.

Figure 0005925179
Figure 0005925179

実験条件を表5に示す。実施例2の系列では、硫化水素含有ガスは処理ガスと混合後に分配器を経由して充填層の各上流端部より下向流で流した。硫化水素含有ガスは、上流段への硫化水素含有ガス量は全体の70%とし、下流段への硫化水素含有ガス量は30%とした。硫化水素含有ガスの分配は、硫化水素制御手段を介して硫化水素含有ガス供給量調節手段を制御して行った。   Table 5 shows the experimental conditions. In the series of Example 2, the hydrogen sulfide-containing gas was allowed to flow in a downward flow from each upstream end of the packed bed via the distributor after mixing with the processing gas. As for the hydrogen sulfide-containing gas, the amount of hydrogen sulfide-containing gas to the upstream stage was 70% of the whole, and the amount of hydrogen sulfide-containing gas to the downstream stage was 30%. The distribution of the hydrogen sulfide-containing gas was performed by controlling the hydrogen sulfide-containing gas supply amount adjusting means via the hydrogen sulfide control means.

実施例2の比較例の系列では、硫化水素含有ガスは処理ガスと混合後に充填層の最上流端部より下向流で流した。実施例2と実施例2の比較例は、共に処理ガスの一部を硫化水素濃度計の上流部に循環させて硫化水素含有ガスと混合した。
両系列とも処理ガス循環量は、Run2−2〜Run2−8において1.2m/day乃至9.6m/dayの範囲で一定量となるようにバルブの開度で調節した。なお、Run2−1は処理ガスを循環しなかった。
In the series of comparative examples of Example 2, the hydrogen sulfide-containing gas was allowed to flow downward from the uppermost stream end of the packed bed after mixing with the processing gas. In both the comparative example of Example 2 and Example 2, a part of the processing gas was circulated to the upstream portion of the hydrogen sulfide concentration meter and mixed with the hydrogen sulfide-containing gas.
Both series process gas circulation rate was adjusted by opening of the valve so that a certain amount in the range of 1.2 m 3 / day to 9.6 m 3 / day in Run2-2~Run2-8. Run 2-1 did not circulate the processing gas.

硫化水素含有ガスは、実施例1と同じ性状のバイオガスである。
硫化水素含有ガス中の硫化水素濃度は、1500ppmとなるようにバイオガスと混合させる100%硫化水素ガスの供給量を調節した。
硫化水素含有ガス流量は、2.4m/dayで一定量となるようにバルブの開度で調節した。
循環ガス量は、1.2m/day〜9.6m/dayの範囲で一定量となるようにバルブの開度で調節した。
The hydrogen sulfide-containing gas is a biogas having the same properties as in Example 1.
The supply amount of 100% hydrogen sulfide gas mixed with biogas was adjusted so that the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was 1500 ppm.
The flow rate of the hydrogen sulfide-containing gas was adjusted by the valve opening so as to be a constant amount of 2.4 m 3 / day.
Circulating gas amount was adjusted by the opening degree of the valve so that a certain amount in the range of 1.2m 3 /day~9.6m 3 / day.

Figure 0005925179
Figure 0005925179

実施例の結果を表6に示す。表中の値は、評価10日目の値を記載した。   The results of the examples are shown in Table 6. The values in the table are the values on the 10th day of evaluation.

Figure 0005925179
Figure 0005925179

Run2−1は処理ガスを循環しておらず、実施例の結果は本願発明、比較例ともにRun1−9の結果と同じである。
Run2−2は、処理ガス循環量を1.2m/dayとした。
実施例2では、処理ガス硫化水素濃度は300ppmであり硫化水素除去率は80%だった。
実施例2の比較例では、処理ガス硫化水素濃度は500ppmであり硫化水素除去率は67%だった。
Run 2-1 does not circulate the processing gas, and the results of the examples are the same as the results of Run 1-9 for both the present invention and the comparative example.
For Run 2-2, the processing gas circulation rate was set to 1.2 m 3 / day.
In Example 2, the treatment gas hydrogen sulfide concentration was 300 ppm, and the hydrogen sulfide removal rate was 80%.
In the comparative example of Example 2, the treatment gas hydrogen sulfide concentration was 500 ppm and the hydrogen sulfide removal rate was 67%.

Run2−3は、処理ガス循環量を2.4m/dayとした。
実施例2では、処理ガス硫化水素濃度は160ppmであり、硫化水素除去率は89%だった。
実施例2の比較例では、処理ガス硫化水素濃度は333ppmであり硫化水素除去率は78%だった。
In Run 2-3, the processing gas circulation rate was 2.4 m 3 / day.
In Example 2, the treatment gas hydrogen sulfide concentration was 160 ppm, and the hydrogen sulfide removal rate was 89%.
In the comparative example of Example 2, the treatment gas hydrogen sulfide concentration was 333 ppm and the hydrogen sulfide removal rate was 78%.

Run2−4〜Run2−7は、処理ガス循環量を2.8m/day乃至7.2m/dayの範囲とした。
実施例2では、処理ガス硫化水素濃度は15ppm乃至35ppmであり、硫化水素除去率は98%乃至99%だった。
実施例2の比較例では、処理ガス硫化水素濃度は20ppm乃至140ppmであり、硫化水素除去率は91%乃至99%だった。
In Run 2-4 to Run 2-7, the processing gas circulation rate was in the range of 2.8 m 3 / day to 7.2 m 3 / day.
In Example 2, the treatment gas hydrogen sulfide concentration was 15 ppm to 35 ppm, and the hydrogen sulfide removal rate was 98% to 99%.
In the comparative example of Example 2, the treatment gas hydrogen sulfide concentration was 20 ppm to 140 ppm, and the hydrogen sulfide removal rate was 91% to 99%.

Run2−8は処理ガス循環量を9.6m/dayとした。
実施例2では、処理ガス硫化水素濃度は45ppm、硫化水素除去率は97%だった。
実施例2の比較例では、処理ガス硫化水素濃度は100ppmであり硫化水素除去率は93%だった。
In Run 2-8, the processing gas circulation rate was 9.6 m 3 / day.
In Example 2, the treatment gas hydrogen sulfide concentration was 45 ppm, and the hydrogen sulfide removal rate was 97%.
In the comparative example of Example 2, the treatment gas hydrogen sulfide concentration was 100 ppm, and the hydrogen sulfide removal rate was 93%.

実施例2でも、実施例2の比較例より常に除去率は高い。とくに、循環流量が2.8m/day乃至9.6m/dayの範囲では、硫化水素除去率は95%以上であり良好に処理できたのに対し、実施例2の比較例では3.6m/day乃至6.6m/dayの範囲で硫化水素除去率が95%以上であり、分配方式で処理することで処理性能に優位な結果が得られることがわかった。 Even in Example 2, the removal rate is always higher than that of the comparative example of Example 2. In particular, when the circulating flow rate was in the range of 2.8 m 3 / day to 9.6 m 3 / day, the hydrogen sulfide removal rate was 95% or more, and the treatment was good, whereas in the comparative example of Example 2, it was 3. It was found that the hydrogen sulfide removal rate was 95% or more in the range of 6 m 3 / day to 6.6 m 3 / day, and that a result superior in processing performance could be obtained by processing by the distribution method.

実施例1に示したように、分配方式の硫化水素除去効果が高いため、実施例3では硫化水素含有ガス分配比を変化させたときの処理性能を検討した。具体的には、硫化水素濃度を400ppm〜700ppmの範囲で一定濃度としたときの硫化水素含有ガス分配比を変化させたときの処理性能について調査した。
硫化水素含有ガス中の硫化水素濃度ごとにRunとして区分けした。一定濃度における評価期間は10日間とし、全評価期間は40日間とした。
As shown in Example 1, since the hydrogen sulfide removal effect of the distribution method is high, in Example 3, the treatment performance when the hydrogen sulfide-containing gas distribution ratio was changed was examined. Specifically, the processing performance when the hydrogen sulfide-containing gas distribution ratio was changed when the hydrogen sulfide concentration was constant within the range of 400 ppm to 700 ppm was investigated.
Each hydrogen sulfide concentration in the hydrogen sulfide-containing gas was classified as Run. The evaluation period at a constant concentration was 10 days, and the total evaluation period was 40 days.

実験装置は、図6に示す実施例1の生物学的脱硫装置を用い、同一の実験装置を5塔並行運転した。実験装置はNo.1乃至No.5とし、ガス量の比率をそれぞれ異なる条件に設定して除去性能を比較した。
実施例3の実験装置概要を表7に示す。実験装置概要は実施例1と同じである。
空気供給量は、硫化水素量に対してモル比で2.5倍の酸素が供給されるように酸素含有気体供給量調節手段で46.7L/dayに調節した。
As the experimental apparatus, the biological desulfurization apparatus of Example 1 shown in FIG. 6 was used, and five identical towers were operated in parallel. The experimental apparatus is No. 1. 1 to No. The removal performance was compared by setting the gas amount ratio to different conditions.
An outline of the experimental apparatus of Example 3 is shown in Table 7. The outline of the experimental apparatus is the same as in Example 1.
The air supply amount was adjusted to 46.7 L / day by the oxygen-containing gas supply amount adjusting means so that oxygen at a molar ratio of 2.5 times the hydrogen sulfide amount was supplied.

Figure 0005925179
Figure 0005925179

実験条件を表8に示す。ガス処理方向および処理方式ともに実施例1の系列と同じである。
ガス量の比率範囲は、上流段;80%乃至40%の範囲とし、下流段;20%乃至60%の範囲とした。硫化水素含有ガスの分配は、硫化水素制御手段を介して硫化水素含有ガス供給量調節手段を制御して行った。各実験装置のガス量の比率は、No.1では上流段80%に対し下流段20%、No.2では上流段70%に対し下流段30%、No.3では上流段60%に対し下流段40%、No.4では上流段50%に対して下流段50%、No.5では上流段40%に対して下流段60%とした。
Table 8 shows the experimental conditions. Both the gas processing direction and the processing system are the same as those in the first embodiment.
The ratio range of the gas amount was in the range of 80% to 40% in the upstream stage and in the range of 20% to 60% in the downstream stage. The distribution of the hydrogen sulfide-containing gas was performed by controlling the hydrogen sulfide-containing gas supply amount adjusting means via the hydrogen sulfide control means. The ratio of the gas amount of each experimental apparatus is No. In No. 1, the upstream stage is 80% against the downstream stage 20%. In No. 2, the upstream stage is 70% with respect to the downstream stage 30%. In No. 3, the upstream stage is 60% and the downstream stage is 40%. In No. 4, 50% of the upstream stage is compared with 50% of the downstream stage. 5, the upstream stage is 40% with respect to the downstream stage 60%.

硫化水素含有ガス中の硫化水素濃度は、400ppm乃至700ppmの範囲で一定濃度となるようにバイオガスと混合させる100%硫化水素ガスの供給量を調節した。
硫化水素含有ガス流量は、5.6m/day乃至9.8m/dayの範囲で一定量となるようにバルブの開度で調節した。
The supply amount of 100% hydrogen sulfide gas mixed with the biogas was adjusted so that the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was a constant concentration in the range of 400 ppm to 700 ppm.
The flow rate of the hydrogen sulfide-containing gas was adjusted by the valve opening so as to be a constant amount in the range of 5.6 m 3 / day to 9.8 m 3 / day.

Figure 0005925179
Figure 0005925179

実施例3の結果を表9に示す。表中の値は、評価10日目の値を記載した。   The results of Example 3 are shown in Table 9. The values in the table are the values on the 10th day of evaluation.

Figure 0005925179
Figure 0005925179

Run3−1〜Run3−5での硫化水素濃度は400ppmとした。
Run3−1では、ガス量の比率が上流段;80%であり、下流段;20%に設定した。その結果、処理ガス硫化水素濃度は32ppmであり、硫化水素除去率は92%だった。
Run3−2では、ガス量の比率が上流段;70%であり、下流段;30%に設定した。その結果、処理ガス硫化水素濃度は16ppmであり、硫化水素除去率は96%だった。
Run3−3では、ガス量の比率が上流段;60%であり、下流段;40%に設定した。その結果、処理ガス硫化水素濃度は16ppmであり、硫化水素除去率は96%だった。
Run3−4では、ガス量の比率が上流段;50%であり、下流段;50%に設定した。その結果、処理ガス硫化水素濃度は16ppmであり、硫化水素除去率は96%だった。
Run3−5では、ガス量の比率が上流段;40%であり、下流段;60%に設定した。その結果、処理ガス硫化水素濃度は40ppmであり、硫化水素除去率は90%だった。
The hydrogen sulfide concentration in Run 3-1 to Run 3-5 was 400 ppm.
In Run 3-1, the ratio of the gas amount was set to the upstream stage; 80%, and the downstream stage; 20%. As a result, the treatment gas hydrogen sulfide concentration was 32 ppm, and the hydrogen sulfide removal rate was 92%.
In Run 3-2, the ratio of the gas amount was set to 70% for the upstream stage and 30% for the downstream stage. As a result, the treatment gas hydrogen sulfide concentration was 16 ppm, and the hydrogen sulfide removal rate was 96%.
In Run 3-3, the ratio of the gas amount was set to the upstream stage; 60%, and the downstream stage; 40%. As a result, the treatment gas hydrogen sulfide concentration was 16 ppm, and the hydrogen sulfide removal rate was 96%.
In Run 3-4, the ratio of the gas amount was set to the upstream stage; 50%, and the downstream stage; 50%. As a result, the treatment gas hydrogen sulfide concentration was 16 ppm, and the hydrogen sulfide removal rate was 96%.
In Run 3-5, the gas amount ratio was set to 40% for the upstream stage and 60% for the downstream stage. As a result, the treatment gas hydrogen sulfide concentration was 40 ppm, and the hydrogen sulfide removal rate was 90%.

硫化水素濃度をRun4−1〜Run4−5では500ppmとし、Run5−1〜Run5−5では600ppmとし、Run6−1〜Run6−6では700ppmとした。
Run4−1、Run5−1、Run6−1では、ガス量の比率を上流段;80%、下流段;20%とした。いずれの硫化水素濃度でも硫化水素除去率は90%乃至92%だった。
Run4−2〜Run4−4、Run5−2〜Run5−4、Run6−2〜Run6−4では、ガス量の比率を上流段;50%乃至70%、下流段;30%乃至50%の範囲とした。いずれの硫化水素濃度でも硫化水素除去率は95%乃至97%の範囲であった。
Run4−5、Run5−5、Run6−5では、ガス量の比率を上流段;40%、下流段;60%とした。いずれの硫化水素濃度でも硫化水素除去率は85%乃至90%に低下した。
The hydrogen sulfide concentration was 500 ppm for Run 4-1 to Run 4-5, 600 ppm for Run 5-1 to Run 5-5, and 700 ppm for Run 6-1 to Run 6-6.
In Run 4-1, Run 5-1, and Run 6-1, the ratio of gas amounts was set to 80% upstream stage and 20% downstream stage. At any hydrogen sulfide concentration, the hydrogen sulfide removal rate was 90% to 92%.
In Run 4-2 to Run 4-4, Run 5-2 to Run 5-4, and Run 6-2 to Run 6-4, the ratio of the gas amounts is in the range of upstream stage; 50% to 70%, downstream stage; 30% to 50%. did. At any hydrogen sulfide concentration, the hydrogen sulfide removal rate was in the range of 95% to 97%.
In Run 4-5, Run 5-5, and Run 6-5, the ratio of gas amounts was set to 40% for the upstream stage and 60% for the downstream stage. The hydrogen sulfide removal rate decreased to 85% to 90% at any hydrogen sulfide concentration.

本実施例3を通して次のことが分かる。n段目のガス量の比率をrとした場合、ガス量の比率はr≧rn+1である場合は良好に処理でき、後段の方が前段よりもガス量の比率が大きくなると硫化水素は取りきれなくなる。 The following can be seen through the third embodiment. when the n-th stage of the ratio of gas volume and r n, the ratio of the amount of gas can be satisfactorily processed when a r n ≧ r n + 1, and hydrogen sulfide towards the subsequent increases the ratio of gas volume than the preceding stage Cannot be completely removed.

したがって、ガス量の比率は上流段;50%乃至70%であり、下流段;上流段の残分(50%乃至30%)の範囲では処理性能が良好であり、優位な結果が得られることがわかた。   Therefore, the ratio of the gas amount is 50% to 70% in the upstream stage; the processing performance is good in the range of the remainder (50% to 30%) in the downstream stage and the upstream stage, and superior results are obtained. Gakata.

実施例4では、充填層の段数を3段とした場合の処理性能について検討した。Runごとの評価期間は7日間とし、全評価期間は70日間とした。   In Example 4, the processing performance when the number of stages of the packed bed was 3 was examined. The evaluation period for each run was 7 days, and the total evaluation period was 70 days.

実験装置は、図8の生物学的脱硫装置を用いた。実施例4の実験装置概要を表10に示す。実験装置概要は概ね実施例1と同じである。
充填層段数は3段として全充填高さを3mとし全充填容量を6.3Lとした。
空気供給量は、硫化水素量に対してモル比で2.5倍の酸素が供給されるように酸素含有気体供給量調節手段で70L/dayに調節した。
As the experimental apparatus, the biological desulfurization apparatus shown in FIG. 8 was used. An outline of the experimental apparatus of Example 4 is shown in Table 10. The outline of the experimental apparatus is almost the same as that of the first embodiment.
The number of packed bed stages was three, the total packed height was 3 m, and the total packed volume was 6.3 L.
The air supply amount was adjusted to 70 L / day by the oxygen-containing gas supply amount adjusting means so that oxygen at a molar ratio of 2.5 times the hydrogen sulfide amount was supplied.

Figure 0005925179
Figure 0005925179

実験条件を表11に示す。ガス処理方向および処理方式ともに実施例1の系列と同じである。
ガス量の比率は、上流段;50%乃至33%の範囲とし、中流段;40%乃至20%の範囲とし、下流段;33%乃至15%とした。硫化水素含有ガスの分配は、硫化水素制御手段を介して硫化水素含有ガス供給量調節手段を制御して行った。
Table 11 shows the experimental conditions. Both the gas processing direction and the processing system are the same as those in the first embodiment.
The ratio of the gas amount was in the range of 50% to 33% in the upstream stage, in the range of 40% to 20% in the middle stream stage, and in the range of 33% to 15% in the downstream stage. The distribution of the hydrogen sulfide-containing gas was performed by controlling the hydrogen sulfide-containing gas supply amount adjusting means via the hydrogen sulfide control means.

硫化水素含有ガス中の硫化水素濃度は、700ppmとなるようにバイオガスと混合させる100%硫化水素ガスの供給量を調節した。
硫化水素含有ガス流量は、8.4m/dayで一定量となるようにバルブの開度で調節した。
The supply amount of 100% hydrogen sulfide gas mixed with biogas was adjusted so that the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was 700 ppm.
The flow rate of the hydrogen sulfide-containing gas was adjusted by the valve opening so as to be a constant amount of 8.4 m 3 / day.

Figure 0005925179
Figure 0005925179

実施例4の結果を表12に示す。表中の値は、評価7日目の値を記載した。   The results of Example 4 are shown in Table 12. The values in the table are the values on the seventh day of evaluation.

Figure 0005925179
Figure 0005925179

Run7−1〜Run7−4では、上流段のガス量の比率を50%に固定し、中流段と下流段の分配率を変化させて調査した。Run7−1〜Run7−3では「上流段の流入ガス量≧中流段の流入ガス量≧下流段の流入ガス量」とした場合であるが、この場合では除去率97%〜98%が得られた。具体的には、Run7−1では、中流段と下流段のガス量の比率をそれぞれ35%、15%としたとき硫化水素除去率は98%だった。Run7−2では、中流段と下流段のガス量の比率をそれぞれ30%、20%としたとき硫化水素除去率は97%だった。Run7−3では、中流段と下流段のガス量の比率をそれぞれ25%、25%としたとき硫化水素除去率は97%だった。
Run7−4では、中流段と下流段のガス量の比率をそれぞれ20%、30%とした。「上流段の流入ガス量≧中流段の流入ガス量≧下流段の流入ガス量」に比べて硫化水素除去率は90%に低下した。
In Runs 7-1 to 7-4, the ratio of the gas amount in the upstream stage was fixed to 50%, and the distribution ratio in the midstream stage and the downstream stage was changed. In Runs 7-1 to 7-3, “upstream inflow gas amount ≧ middle flow inflow gas amount ≧ downstream inflow gas amount”, but in this case, a removal rate of 97% to 98% is obtained. It was. Specifically, in Run 7-1, the hydrogen sulfide removal rate was 98% when the ratio of the gas amount in the midstream and downstream stages was 35% and 15%, respectively. In Run 7-2, the hydrogen sulfide removal rate was 97% when the ratio of the gas amount in the middle and downstream stages was 30% and 20%, respectively. In Run 7-3, the hydrogen sulfide removal rate was 97% when the ratio of the gas amount in the middle and downstream stages was 25% and 25%, respectively.
In Run 7-4, the ratio of the gas amount in the midstream and downstream stages was 20% and 30%, respectively. Compared with “upstream inflow gas amount ≧ middle flow inflow gas amount ≧ downstream inflow gas amount”, the hydrogen sulfide removal rate decreased to 90%.

Run7−5〜Run7−7およびRun7−9では、「上流段の流入ガス量≧中流段の流入ガス量≧下流段の流入ガス量」とした場合であり、硫化水素除去率は97%だった。
Run7−8では、ガス量の比率を上流段;40%、中流段;25%、下流段;35%としたとき硫化水素除去率は90%だった。
Run7−10では、ガス量の比率を上流段;30%、中流段;30%、下流段;40%としたとき硫化水素除去率は80%だった。
In Runs 7-5 to 7-7 and Run 7-9, “the amount of inflow gas in the upstream stage ≧ the amount of inflow gas in the middle stage ≧ the amount of inflow gas in the downstream stage” and the hydrogen sulfide removal rate was 97%. .
In Run 7-8, the hydrogen sulfide removal rate was 90% when the ratio of the gas amount was set to 40% upstream, 25% downstream, and 35% downstream.
In Run 7-10, the hydrogen sulfide removal rate was 80% when the ratio of the gas amount was set to the upstream stage; 30%, the midstream stage; 30%, the downstream stage; 40%.

n段目の分配比率をrnと表す。具体的には、ガス量の比率は上流段をr、中流段をr、下流段をrと表す。表12には示していないが、400ppm、500ppm、600ppmの硫化水素含有ガス濃度についても検討したところ、ガス量の比率をr≧r≧rとすると高い除去性能が得られることがわかった。 The distribution ratio of the nth stage is represented as rn. Specifically, the ratio of the amount of gas r 1 upstream stage, the middle stage r 2, representing a downstream stage and r 3. Although not shown in Table 12, the hydrogen sulfide-containing gas concentrations of 400 ppm, 500 ppm, and 600 ppm were also examined, and it was found that high removal performance was obtained when the gas amount ratio was r 1 ≧ r 2 ≧ r 3. It was.

本実施例4で示したように、各段に流入するガス量の関係を「上流段の流入ガス量≧中流段の流入ガス量≧下流段の流入ガス量」とすることで硫化水素除去率は97%〜98%であり処理性能は良好となった。とくに、ガス量の比率は上流段;33%乃至50%、中流段;40%乃至30%、下流段;上流段と中流段の残分(15%乃至33%)の範囲では硫化水素除去率が95%であり、処理性能に優位な結果が得られることがわかった。   As shown in the fourth embodiment, the hydrogen sulfide removal rate is obtained by setting the relationship of the amount of gas flowing into each stage as “inflow gas amount in upstream stage ≧ inflow gas amount in middle stage ≧ inflow gas quantity in downstream stage”. Was 97% to 98%, and the processing performance was good. In particular, the ratio of the gas amount is the upstream stage: 33% to 50%, the middle stage; 40% to 30%, the downstream stage; the hydrogen sulfide removal rate in the range of the remainder of the upstream stage and the middle stage (15% to 33%) Was 95%, and it was found that a result superior in processing performance was obtained.

硫化水素負荷量は0.6kg/(m・day)乃至5.0kg/(m・day)で処理した。実施例5では、硫化水素量で酸素含有気体量として空気量を制御するのに対し、実施例5の比較例では常に一定量の酸素含有気体として空気を供給した。本実施例は硫化水素負荷量ごとにRunとして区分けした。一定硫化水素負荷量における評価期間は1日間とし、全評価期間は9日間とした。 The hydrogen sulfide loading was 0.6 kg / (m 3 · day) to 5.0 kg / (m 3 · day). In Example 5, the amount of hydrogen was controlled as the amount of oxygen-containing gas by the amount of hydrogen sulfide, whereas in the comparative example of Example 5, air was always supplied as a fixed amount of oxygen-containing gas. In the present embodiment, each hydrogen sulfide load was classified as Run. The evaluation period at a constant hydrogen sulfide load was 1 day, and the total evaluation period was 9 days.

実験装置は、図6に示す実施例1の生物学的脱硫装置を2塔並行して実施例5と実施例5の比較例とを比較しながらRun8−1〜Run8−9の実験を行った。実施例5の実験装置概要を表13に示す。実験装置概要は実施例1と同じである。   Experiments were conducted on Run 8-1 to Run 8-9 while comparing the biological desulfurization apparatus of Example 1 shown in FIG. 6 with two towers in parallel and comparing the comparative example of Example 5 and Example 5. . Table 13 shows an outline of the experimental apparatus of Example 5. The outline of the experimental apparatus is the same as in Example 1.

Figure 0005925179
Figure 0005925179

実施例5と実施例5の比較例の実験条件を表14に示す。ガス処理方向は下向流とし、処理方式は一過方式にて硫化水素含有ガスを充填層の上流段と下流段に分配した。
ガス量の比率は上流段;70%、下流段;30%とした。硫化水素含有ガスの分配は、硫化水素制御手段を介して硫化水素含有ガス供給量調節手段を制御して行った。
Table 14 shows the experimental conditions of the comparative example of Example 5 and Example 5. The gas treatment direction was downward flow, and the treatment method was a single-pass method, and the hydrogen sulfide-containing gas was distributed to the upstream and downstream stages of the packed bed.
The ratio of the gas amount was 70% for the upstream stage and 30% for the downstream stage. The distribution of the hydrogen sulfide-containing gas was performed by controlling the hydrogen sulfide-containing gas supply amount adjusting means via the hydrogen sulfide control means.

硫化水素含有ガス中の硫化水素濃度は、500ppmとなるようにバイオガスと混合させる100%硫化水素ガスの供給量を調節した。
硫化水素含有ガス流量は、3.6m/day乃至30m/dayの範囲で一定量となるようにバルブの開度で調節した。
空気供給量は、実施例5では硫化水素負荷量の変動に伴い酸素含有気体供給量調節手段で随時調節するのに対し、実施例5の比較例では酸素が常に一定量供給されるように空気供給量を酸素含有気体供給量調節手段で調節した。
The supply amount of 100% hydrogen sulfide gas mixed with biogas was adjusted so that the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was 500 ppm.
The hydrogen sulfide-containing gas flow rate was adjusted by the valve opening so as to be a constant amount in the range of 3.6 m 3 / day to 30 m 3 / day.
The air supply amount is adjusted at any time by the oxygen-containing gas supply amount adjusting means in accordance with the variation of the hydrogen sulfide load in Example 5, whereas in the comparative example of Example 5, the air is supplied so that a constant amount of oxygen is always supplied. The supply amount was adjusted by the oxygen-containing gas supply amount adjusting means.

Figure 0005925179
Figure 0005925179

実施例5と実施例5の比較例の結果を表15に示す。また、実施例5および実施例5の比較例の経日変化を図9に示す。   Table 15 shows the results of the comparative example of Example 5 and Example 5. Moreover, the daily change of the comparative example of Example 5 and Example 5 is shown in FIG.

Figure 0005925179
Figure 0005925179

Run8−1〜Run8−8において、硫化水素負荷量は0.6kg/(m・day)〜5kg/(m・day)の範囲で調査した。硫化水素含有ガス流量は3.6m/day〜30m/day、すなわち硫化水素量は2.5g/day〜21g/dayだった。
実施例5では、酸素供給量は6g/day〜50g/day、すなわち空気供給量を54L/day〜455L/dayとし、モル比は2.5倍で一定とした。硫化水素除去率は、Run8−1〜Run8−4では100%であり、Run8−5〜Run8−8では98%〜90%だった。
実施例5の比較例では、酸素供給量は26g/day、すなわち空気量を240L/dayで一定量とし、モル比は11.6倍〜1.3倍だった。硫化水素除去率は、Run8−1〜Run8−4では100%であり、Run8−5〜Run8−8では98%〜50%だった。
In Run8-1~Run8-8, hydrogen sulfide loading was investigated in the range of 0.6kg / (m 3 · day) ~5kg / (m 3 · day). The hydrogen sulfide-containing gas flow rate was 3.6 m 3 / day to 30 m 3 / day, that is, the amount of hydrogen sulfide was 2.5 g / day to 21 g / day.
In Example 5, the oxygen supply amount was 6 g / day to 50 g / day, that is, the air supply amount was 54 L / day to 455 L / day, and the molar ratio was constant at 2.5 times. The removal rate of hydrogen sulfide was 100% for Run 8-1 to Run 8-4, and 98% to 90% for Run 8-5 to Run 8-8.
In the comparative example of Example 5, the oxygen supply amount was 26 g / day, that is, the air amount was constant at 240 L / day, and the molar ratio was 11.6 times to 1.3 times. The removal rate of hydrogen sulfide was 100% for Run 8-1 to Run 8-4, and 98% to 50% for Run 8-5 to Run 8-8.

Run8−9において、硫化水素負荷量は1.4kg/(m・day)に減らした。硫化水素含有ガス流量は8.5m/day、すなわち硫化水素量は6g/dayだった。実施例5では、酸素供給量は14g/day、すなわち空気供給量を128L/dayとし、硫化水素量に対する酸素量のモル比は2.5倍とした。硫化水素除去率、硫酸転換率ともに100%であり、メタン濃度は59%だったのに対し、実施例5の比較例では、酸素供給量は26g/day、すなわち空気供給量を240L/dayとし、硫化水素量に対する酸素量のモル比は4.6倍としたところ硫化水素除去率は85%、硫酸転換率は70%であり、メタン濃度は58%と、実施例5の比較例の硫化水素除去率、硫酸転換率ともに低くなった。 In Run 8-9, the hydrogen sulfide load was reduced to 1.4 kg / (m 3 · day). The flow rate of the hydrogen sulfide-containing gas was 8.5 m 3 / day, that is, the amount of hydrogen sulfide was 6 g / day. In Example 5, the oxygen supply amount was 14 g / day, that is, the air supply amount was 128 L / day, and the molar ratio of the oxygen amount to the hydrogen sulfide amount was 2.5 times. The hydrogen sulfide removal rate and the sulfuric acid conversion rate were both 100% and the methane concentration was 59%, whereas in the comparative example of Example 5, the oxygen supply amount was 26 g / day, that is, the air supply amount was 240 L / day. When the molar ratio of the oxygen amount to the hydrogen sulfide amount was 4.6 times, the hydrogen sulfide removal rate was 85%, the sulfuric acid conversion rate was 70%, and the methane concentration was 58%. Both hydrogen removal rate and sulfuric acid conversion rate decreased.

したがって、本発明では実施例5で示したように硫化水素負荷量に対して一定のモル比となるように酸素を供給することで4kg/(m・day)までは硫化水素除去率は95%以上であり、比較例より高除去率が得られる硫化水素除去方法であることがわかった。
本実験期間をとおして実施例5では硫黄の析出は見られなかったのに対し、実施例5の比較例では硫黄が析出し充填材に付着した。硫黄の析出がほとんど見られなかった実施例5では微生物の活性が維持されているため処理が回復したのに対し、硫黄が析出した実施例5の比較例では微生物の活性が低下して処理は回復しなかった。したがって、硫化水素量に対する酸素量のモル比を一定とするように空気を供給することが好ましいことがわかった。
Therefore, in the present invention, as shown in Example 5, the hydrogen sulfide removal rate is 95 up to 4 kg / (m 3 · day) by supplying oxygen so that the molar ratio is constant with respect to the hydrogen sulfide load. It was found to be a hydrogen sulfide removal method that provides a higher removal rate than the comparative example.
Throughout this experiment period, no precipitation of sulfur was observed in Example 5, whereas in the comparative example of Example 5, sulfur was deposited and adhered to the filler. In Example 5 in which almost no precipitation of sulfur was observed, the treatment was recovered because the activity of the microorganism was maintained, whereas in the comparative example of Example 5 in which sulfur was deposited, the activity of the microorganism was decreased and the treatment was not performed. It did not recover. Therefore, it has been found that it is preferable to supply air so that the molar ratio of the oxygen amount to the hydrogen sulfide amount is constant.

次に、硫酸転換率について注目する。実施例5では、Run8−1〜Run8−7の範囲において硫化水素負荷量は0.6kg/(m・day)〜5kg/(m・day)の範囲であり、硫酸転換率は100%であった。Run8−8において硫化水素負荷量は5kg/(m・day)であり、硫酸転換率は95%となった。実施例5の比較例では、Run8−1〜Run8−4のとき硫化水素量に対する酸素量のモル比は11.6倍〜2.5倍であり、硫酸転換率は100%だった。Run8−5〜Run8−8のとき硫化水素量に対する酸素量のモル比は2.1倍〜1.3倍であり、硫酸転換率は80%〜30%へ減少傾向にあった。
したがって、硫酸転換率を100%とするためには、硫化水素量に対する酸素量のモル比は2.5倍以上とすることが好ましい。
Next, attention is focused on the sulfuric acid conversion rate. In Example 5, hydrogen sulfide loading in the range of Run8-1~Run8-7 is in the range of 0.6kg / (m 3 · day) ~5kg / (m 3 · day), sulfuric acid conversion is 100% Met. In Run 8-8, the hydrogen sulfide load was 5 kg / (m 3 · day), and the sulfuric acid conversion rate was 95%. In the comparative example of Example 5, when Run 8-1 to Run 8-4, the molar ratio of the oxygen amount to the hydrogen sulfide amount was 11.6 times to 2.5 times, and the sulfuric acid conversion rate was 100%. In the case of Run 8-5 to Run 8-8, the molar ratio of the oxygen amount to the hydrogen sulfide amount was 2.1 times to 1.3 times, and the sulfuric acid conversion rate tended to decrease to 80% to 30%.
Therefore, in order to make the sulfuric acid conversion rate 100%, the molar ratio of the oxygen amount to the hydrogen sulfide amount is preferably 2.5 times or more.

バイオガス中のメタン濃度について注目すると、実施例5では硫化水素量に対する酸素量のモル比は2.5倍で一定となるように空気供給量を調整しており、Run8−1〜Run8−9を通してメタン濃度は59%で一定であった。
実施例5の比較例では、一定量の空気を供給しており、Run8−1では硫化水素量に対する酸素量のモル比が11.6倍であり、メタン濃度は55%であった。Run8−2〜Run8−8では硫化水素量に対する酸素量のモル比が7倍〜1.3倍であり、メタン濃度は58%〜59%であった。したがって、硫化水素負荷量が低いと一定量の空気を供給する場合にはバイオガス中のメタンガス濃度が低下し、バイオガスとしての価値が低下する。したがって、硫化水素量に対する酸素量のモル比が7倍よりも小さくなるように空気を供給することが好ましい。
Paying attention to the methane concentration in the biogas, in Example 5, the air supply amount was adjusted so that the molar ratio of the oxygen amount to the hydrogen sulfide amount was 2.5 times constant, and Run 8-1 to Run 8-9. Throughout, the methane concentration was constant at 59%.
In the comparative example of Example 5, a constant amount of air was supplied. In Run 8-1, the molar ratio of the oxygen amount to the hydrogen sulfide amount was 11.6 times, and the methane concentration was 55%. In Run 8-2 to Run 8-8, the molar ratio of the oxygen amount to the hydrogen sulfide amount was 7 to 1.3 times, and the methane concentration was 58% to 59%. Therefore, when a certain amount of air is supplied when the hydrogen sulfide load is low, the concentration of methane gas in the biogas decreases, and the value as biogas decreases. Therefore, it is preferable to supply air so that the molar ratio of the oxygen amount to the hydrogen sulfide amount is less than seven times.

実施例6では、酸素濃度の異なる酸素含有気体を用いて生物学的に脱硫処理する場合の効果について検討した。本実施例は処理する硫化水素量に対する酸素量のモル比ごとに区分けした。評価期間は10日間とし、全評価期間は40日間とした。   In Example 6, the effect of biologically desulfurizing using oxygen-containing gases having different oxygen concentrations was examined. This example was divided according to the molar ratio of the amount of oxygen to the amount of hydrogen sulfide to be treated. The evaluation period was 10 days, and the total evaluation period was 40 days.

実験装置は、図6に示す実施例1の生物学的脱硫装置を用い、同一の実験装置を3塔並行運転した。実験装置はNo.1乃至No.3とし、酸素含有気体中の酸素濃度をそれぞれ異なる条件に設定して除去性能を比較した。
実施例6の実験装置概要を表16に示す。実験装置概要は実施例1と同じである。硫化水素含有ガスは、実施例5と同じメタン発酵槽で発生したバイオガスである。硫化水素含有ガス成分は、硫化水素濃度100ppm、メタン濃度60%、二酸化炭素濃度40%であり、実験期間を通して一定だった。
As the experimental apparatus, the biological desulfurization apparatus of Example 1 shown in FIG. 6 was used, and three identical towers were operated in parallel. The experimental apparatus is No. 1. 1 to No. 3, the oxygen concentration in the oxygen-containing gas was set to different conditions, and the removal performance was compared.
Table 16 shows an outline of the experimental apparatus of Example 6. The outline of the experimental apparatus is the same as in Example 1. The hydrogen sulfide-containing gas is a biogas generated in the same methane fermentation tank as in Example 5. The hydrogen sulfide-containing gas component had a hydrogen sulfide concentration of 100 ppm, a methane concentration of 60%, and a carbon dioxide concentration of 40%, and was constant throughout the experiment.

Figure 0005925179
Figure 0005925179

実施例6の実験条件を表17に示す。ガス方向は下向流とし、処理方式は一過方式にて硫化水素含有ガスを充填層の上流段と下流段に分配した。
ガス量の比率は上流段;70%、下流段;30%とした。硫化水素含有ガスの分配は、硫化水素制御手段を介して硫化水素含有ガス供給量調節手段を制御して行った。
Table 17 shows the experimental conditions of Example 6. The gas direction was a downward flow, and the treatment method was a transient method, and the hydrogen sulfide-containing gas was distributed to the upstream and downstream stages of the packed bed.
The ratio of the gas amount was 70% for the upstream stage and 30% for the downstream stage. The distribution of the hydrogen sulfide-containing gas was performed by controlling the hydrogen sulfide-containing gas supply amount adjusting means via the hydrogen sulfide control means.

硫化水素含有ガス中の硫化水素濃度は500ppmとなるように、バイオガスと混合させる100%硫化水素ガスの供給量を調節した。
硫化水素含有ガス流量は12.1m/dayで一定量となるようにバルブの開度で調節し、硫化水素量は8.4g/dayとした。
酸素含有気体は空気(酸素を21v/v%含有;25℃)を用いた。空気酸素含有気体中の酸素濃度は、酸素発生装置を用いて21%、50%、90%に調節した。各実験装置には酸素濃度の異なる酸素含有気体中を供給し、No.1では21%、No.2では50%、No.3では90%とした。酸素含有気体の供給は酸素含有気体供給量調節手段を調節した。
酸素含有気体供給量は、処理する硫化水素量に対する酸素量のモル比に合わせて調節した。具体的には、酸素濃度が21%の酸素含有気体では70L/day乃至860L/day、酸素濃度が50%の酸素含有気体では30L/day乃至360L/day、酸素濃度が90%の酸素含有気体では17L/day乃至200L/dayの範囲で調節した。
The supply amount of 100% hydrogen sulfide gas mixed with biogas was adjusted so that the hydrogen sulfide concentration in the hydrogen sulfide-containing gas was 500 ppm.
The flow rate of the hydrogen sulfide-containing gas was adjusted by the valve opening so that the flow rate was 12.1 m 3 / day, and the amount of hydrogen sulfide was 8.4 g / day.
Air (containing 21 v / v% oxygen; 25 ° C.) was used as the oxygen-containing gas. The oxygen concentration in the air oxygen-containing gas was adjusted to 21%, 50%, and 90% using an oxygen generator. Each experimental apparatus was supplied with oxygen-containing gases having different oxygen concentrations. 1 was 21%, No. 1 2 is 50%, no. 3 was 90%. The oxygen-containing gas was supplied by adjusting the oxygen-containing gas supply amount adjusting means.
The oxygen-containing gas supply amount was adjusted according to the molar ratio of the oxygen amount to the amount of hydrogen sulfide to be treated. Specifically, an oxygen-containing gas having an oxygen concentration of 21% is 70 L / day to 860 L / day, an oxygen-containing gas having an oxygen concentration of 50% is 30 L / day to 360 L / day, and an oxygen-containing gas having an oxygen concentration of 90% Then, it adjusted in the range of 17L / day-200L / day.

Figure 0005925179
Figure 0005925179

実施例6の結果を表18に示す。   The results of Example 6 are shown in Table 18.

Figure 0005925179
Figure 0005925179

Run9−1では、処理する硫化水素量に対する酸素量のモル比が1倍となるように酸素供給量を8g/dayとした。酸素含有気体中の酸素濃度よらず硫化水素除去率100%、硫酸転換率は75%、メタン濃度は60%だった。
Run9−2では、処理する硫化水素量に対する酸素要求量のモル比が2.5倍となるように酸素供給量を20g/dayとした。酸素含有気体中の酸素濃度によらず硫化水素除去率および硫酸転換率はいずれも100%だった。メタン濃度は酸素濃度が21%の空気では59%であり、酸素濃度が50%および90%の空気では60%だった。本期間で処理したバイオガスはいずれも燃料として問題なく利用できた。
Run9−3では、処理する硫化水素量に対する酸素量のモル比が7倍となるように酸素供給量を55g/dayとした。酸素含有気体中の酸素濃度によらず硫化水素除去率は100%で処理でき、硫酸転換率は100%だった。メタン濃度は、酸素濃度が21%の空気では58%であり、酸素濃度が50%および90%の空気ではいずれも59%であり、本期間で処理したバイオガスはいずれも燃料として問題なく利用できた。
Run9−4では、処理する硫化水素量に対する酸素量モル比が12倍となるように酸素供給量を95g/dayとした。酸素含有気体中の酸素濃度によらず硫化水素除去率は100%で処理でき、硫酸転換率は100%だった。メタン濃度は、酸素濃度が21%の空気では55%、酸素濃度が50%の空気では58%、酸素濃度が90%の空気では59%だった。
ここで、バイオガス中のメタン濃度が55%になるとボイラーの燃料としては不十分であったものの、酸素濃度が50%および90%の空気では燃料として問題なく利用できた。
In Run 9-1, the oxygen supply amount was set to 8 g / day so that the molar ratio of the oxygen amount to the amount of hydrogen sulfide to be processed was 1 time. Regardless of the oxygen concentration in the oxygen-containing gas, the hydrogen sulfide removal rate was 100%, the sulfuric acid conversion rate was 75%, and the methane concentration was 60%.
In Run 9-2, the oxygen supply rate was set to 20 g / day so that the molar ratio of the oxygen demand to the amount of hydrogen sulfide to be processed was 2.5 times. Regardless of the oxygen concentration in the oxygen-containing gas, the hydrogen sulfide removal rate and the sulfuric acid conversion rate were both 100%. The methane concentration was 59% for air with an oxygen concentration of 21% and 60% for air with an oxygen concentration of 50% and 90%. All the biogas treated in this period could be used as fuel without any problems.
In Run 9-3, the oxygen supply amount was 55 g / day so that the molar ratio of the oxygen amount to the amount of hydrogen sulfide to be treated was 7 times. Regardless of the oxygen concentration in the oxygen-containing gas, the hydrogen sulfide removal rate was 100%, and the sulfuric acid conversion rate was 100%. The methane concentration is 58% for air with an oxygen concentration of 21%, 59% for air with an oxygen concentration of 50% and 90%, and any biogas treated in this period can be used as a fuel without any problems. did it.
In Run 9-4, the oxygen supply amount was set to 95 g / day so that the molar ratio of the oxygen amount to the amount of hydrogen sulfide to be processed was 12 times. Regardless of the oxygen concentration in the oxygen-containing gas, the hydrogen sulfide removal rate was 100%, and the sulfuric acid conversion rate was 100%. The methane concentration was 55% for air with an oxygen concentration of 21%, 58% for air with an oxygen concentration of 50%, and 59% for air with an oxygen concentration of 90%.
Here, when the methane concentration in the biogas was 55%, it was insufficient as a boiler fuel, but it could be used as a fuel without problems in air with an oxygen concentration of 50% and 90%.

本実施例の実験結果より、酸素含有気体中の酸素濃度が高濃度になると供給する酸素含有気体供給量が少なくてもバイオガスとしての価値を損なうことなく処理できた。
したがって、硫化水素量に対する酸素量のモル比が2.5倍乃至7倍となるように調整すれば酸素含有気体中の酸素濃度によらず処理したバイオガスの利用価値は保たれる。
From the experimental results of this example, when the oxygen concentration in the oxygen-containing gas becomes high, even if the oxygen-containing gas supply amount to be supplied is small, it can be processed without impairing the value as a biogas.
Therefore, if the molar ratio of the oxygen amount to the hydrogen sulfide amount is adjusted to be 2.5 to 7 times, the utility value of the treated biogas is maintained regardless of the oxygen concentration in the oxygen-containing gas.

以上説明したように、本願発明によれば、高負荷での硫化水素を効率的に処理し、且つ処理する硫化水素を硫酸に転換することで装置内の閉塞をなくし、洗浄などの工程をなくして低コストで処理が可能な硫化水素含有ガスの生物学的脱硫装置及び生物学的脱硫方法を提供することが可能となる。   As described above, according to the present invention, hydrogen sulfide under a high load is efficiently treated, and the hydrogen sulfide to be treated is converted into sulfuric acid, thereby eliminating clogging in the apparatus and eliminating steps such as cleaning. It is possible to provide a biological desulfurization apparatus and biological desulfurization method for hydrogen sulfide-containing gas that can be processed at low cost.

0a 硫化水素含有ガス
0b 酸素含有気体
0c 処理ガス
0d 循環液
0e ブロー水
0f 補給水
1 生物学的脱硫塔
1a 充填層
1b 循環液貯留液槽
2 硫化水素含有ガスライン
3 硫化水素含有ガス流量計
4 硫化水素濃度計
5 流入ガスライン
6 分配器
7 硫化水素含有ガス供給量調節手段
8 酸素含有気体流入ライン
9 酸素含有気体供給量調節手段
10 処理ガス流出ライン
11 散水ライン
12 硫化水素濃度演算器
13 負荷量演算器
14 負荷量演算器による演算結果の信号伝達手段
15 硫化水素濃度演算器による第1の演算結果の信号伝達手段
16 硫化水素濃度信号入力手段
17 硫化水素含有ガス流量信号入力手段
18 処理ガス循環ライン
19 送風機
20 処理ガス循環量調節手段
21 硫化水素濃度演算器による第2の演算結果の信号伝達手段
0a Hydrogen sulfide containing gas 0b Oxygen containing gas 0c Treatment gas 0d Circulating fluid 0e Blowing water 0f Makeup water 1 Biological desulfurization tower 1a Packed bed 1b Circulating fluid reservoir 2 Hydrogen sulfide containing gas line 3 Hydrogen sulfide containing gas flow meter 4 Hydrogen sulfide concentration meter 5 Inflow gas line 6 Distributor 7 Hydrogen sulfide-containing gas supply amount adjusting means 8 Oxygen-containing gas inflow line 9 Oxygen-containing gas supply amount adjusting means 10 Process gas outflow line 11 Sprinkling line 12 Hydrogen sulfide concentration calculator 13 Load Quantity calculator 14 Signal transmission means 15 of calculation result by load quantity calculator 15 Signal transmission means 16 of first calculation result by hydrogen sulfide concentration calculator 16 Hydrogen sulfide concentration signal input means 17 Hydrogen sulfide-containing gas flow rate signal input means 18 Process gas Circulation line 19 Blower 20 Process gas circulation amount adjusting means 21 Signal transmission hand of second calculation result by hydrogen sulfide concentration calculator

Claims (11)

硫化水素含有ガスから生物学的脱硫塔内に循環液を散水して生物学的に硫化水素を除去する生物学的脱硫装置において、
硫化水素含有ガスラインを分配器を介して複数の流入ガスラインに接続し、
該硫化水素含有ガスラインに酸素含有気体を供給するための酸素含有気体流入ラインが接続され、
該生物学的脱硫塔内に微生物が付着する充填材からなる充填層を複数段設け、
各段の充填層の上流端部には該流入ガスラインが各々接続され、
該流入ガスラインは硫化水素含有ガス供給量調節手段を有し、
最下流側の該充填層の下流端部に処理ガスを排出するための処理ガス流出ラインを設け、該硫化水素含有ガスラインで供給される硫化水素含有ガスを該分配器で分配し、前記分配された硫化水素含有ガスを、該流入ガスラインを介して前記各段の充填層の上流端部に供給することを特徴とする生物学的脱硫装置。
In a biological desulfurization apparatus that biologically removes hydrogen sulfide by sprinkling a circulating liquid from a hydrogen sulfide-containing gas into a biological desulfurization tower,
Connect hydrogen sulfide-containing gas lines to multiple inflow gas lines via distributors,
An oxygen-containing gas inflow line for supplying an oxygen-containing gas to the hydrogen sulfide-containing gas line is connected;
In the biological desulfurization tower, a plurality of packed layers made of a filler to which microorganisms adhere are provided,
The inflow gas line is connected to the upstream end of the packed bed in each stage,
The inflow gas line has a hydrogen sulfide-containing gas supply amount adjusting means,
A processing gas outflow line for discharging a processing gas is provided at the downstream end of the packed bed on the most downstream side, and the hydrogen sulfide-containing gas supplied through the hydrogen sulfide-containing gas line is distributed by the distributor, and the distribution is performed. A biological desulfurization apparatus, wherein the hydrogen sulfide-containing gas is supplied to the upstream end of the packed bed of each stage through the inflow gas line .
請求項1に記載の生物学的脱硫装置において、
硫化水素含有ガスラインは硫化水素濃度計を有し、
該硫化水素濃度計からの計測信号に基づき該硫化水素含有ガス供給量調節手段を制御する硫化水素制御手段を設けたことを特徴とする生物学的脱硫装置。
The biological desulfurization apparatus according to claim 1,
The hydrogen sulfide-containing gas line has a hydrogen sulfide concentration meter,
A biological desulfurization apparatus comprising hydrogen sulfide control means for controlling the hydrogen sulfide-containing gas supply amount adjusting means based on a measurement signal from the hydrogen sulfide concentration meter.
請求項2に記載の生物学的脱硫装置において、
最下流側の該充填層の下流端部から排出される処理ガスの少なくとも一部を循環させる処理ガス循環ラインを備え、
該処理ガス循環ラインは該硫化水素含有ガスラインの該硫化水素濃度計の上流側に接続され、
該処理ガス循環ラインは処理ガス循環量調節手段を有し、
該硫化水素制御手段は、該硫化水素濃度計からの計測信号に基づき該処理ガス循環量調節手段を制御することを特徴とする生物学的脱硫装置。
The biological desulfurization apparatus according to claim 2,
A processing gas circulation line for circulating at least a part of the processing gas discharged from the downstream end of the packed bed on the most downstream side;
The processing gas circulation line is connected to the upstream side of the hydrogen sulfide concentration meter of the hydrogen sulfide-containing gas line,
The processing gas circulation line has a processing gas circulation amount adjusting means,
The biological desulfurization apparatus, wherein the hydrogen sulfide control means controls the processing gas circulation rate adjusting means based on a measurement signal from the hydrogen sulfide concentration meter.
請求項1乃至3のいずれかに記載の生物学的脱硫装置において、
該硫化水素含有ガスラインの一部であり、該酸素含有気体流入ラインが接続された接続部の上流側に硫化水素含有ガス流量計を設け、
該硫化水素含有ガスラインの他の一部であり、該酸素含有気体流入ラインが接続された接続部の上流側に硫化水素濃度計を設け、
該酸素含有気体流入ラインは酸素含有気体供給量調節手段を有し、
該硫化水素含有ガス流量計からの計測信号と該硫化水素濃度計からの計測信号の積によって計算される負荷量に基づき該酸素含有気体供給量調節手段を制御する負荷量制御手段を設けたことを特徴とする生物学的脱硫装置。
The biological desulfurization apparatus according to any one of claims 1 to 3,
A hydrogen sulfide-containing gas flow meter that is a part of the hydrogen sulfide-containing gas line and is upstream of a connection portion to which the oxygen-containing gas inflow line is connected;
The hydrogen sulfide-containing gas line is another part, and a hydrogen sulfide concentration meter is provided on the upstream side of the connection portion to which the oxygen-containing gas inflow line is connected,
The oxygen-containing gas inflow line has oxygen-containing gas supply amount adjusting means,
Load amount control means for controlling the oxygen-containing gas supply amount adjusting means based on the load amount calculated by the product of the measurement signal from the hydrogen sulfide-containing gas flow meter and the measurement signal from the hydrogen sulfide concentration meter is provided. Biological desulfurization equipment characterized by.
有機性廃棄物をメタン発酵させて発生した硫化水素含有ガスを生物学的脱硫塔内に導入すると共に、該塔内に循環液を散水して生物学的に硫化水素を除去する生物学的脱硫方法において、
該生物学的脱硫塔内に微生物が付着する充填材からなる充填層を複数段設け、
該硫化水素含有ガスに酸素含有気体を供給する酸素供給工程と、
該酸素供給工程を経た硫化水素含有ガスを複数に分配するガス分配工程と、
該ガス分配工程で分配された硫化水素含有ガスを各段の充填層の上流端部に流入するガス流入工程と、
最下流側の該充填層の下流端部から処理ガスを排出する処理ガス流出工程とを有し、
該ガス流入工程では、硫化水素含有ガスの供給量を調節可能に設定されていることを特徴とする生物学的脱硫方法。
Biological desulfurization in which hydrogen sulfide-containing gas generated by methane fermentation of organic waste is introduced into a biological desulfurization tower, and the circulating liquid is sprinkled into the tower to remove hydrogen sulfide biologically. In the method
In the biological desulfurization tower, a plurality of packed layers made of a filler to which microorganisms adhere are provided,
An oxygen supply step of supplying an oxygen-containing gas to the hydrogen sulfide-containing gas;
A gas distribution step of distributing the hydrogen sulfide-containing gas that has undergone the oxygen supply step into a plurality of portions;
A gas inflow step of flowing the hydrogen sulfide-containing gas distributed in the gas distribution step into the upstream end of the packed bed of each stage;
A process gas outflow step of discharging the process gas from the downstream end of the packed bed on the most downstream side,
In the gas inflow step, the biological desulfurization method is characterized in that the supply amount of the hydrogen sulfide-containing gas is set to be adjustable.
請求項5に記載の生物学的脱硫方法において、
該酸素供給工程前の硫化水素含有ガス中の硫化水素濃度を計測し、その計測結果に基づき、前記硫化水素含有ガスの供給量を調節することを特徴とする生物学的脱硫方法。
The biological desulfurization method according to claim 5,
A biological desulfurization method comprising measuring a hydrogen sulfide concentration in a hydrogen sulfide-containing gas before the oxygen supply step, and adjusting a supply amount of the hydrogen sulfide-containing gas based on the measurement result.
請求項6に記載の生物学的脱硫方法において、
最下流側の該充填層の下流端部から排出される処理ガスの少なくとも一部を、前記硫化水素濃度を計測する場所の上流側に循環させる処理ガス循環工程を有し、
前記硫化水素濃度の計測結果に基づき、該処理ガス循環工程における処理ガスの循環量を調節することを特徴とする生物学的脱硫方法。
The biological desulfurization method according to claim 6,
A process gas circulation step of circulating at least a part of the process gas discharged from the downstream end of the packed bed on the most downstream side to the upstream side of the place where the hydrogen sulfide concentration is measured;
A biological desulfurization method characterized by adjusting a circulation amount of a treatment gas in the treatment gas circulation step based on a measurement result of the hydrogen sulfide concentration.
請求項5乃至7のいずれかに記載の生物学的脱硫方法において、
該酸素供給工程前の硫化水素含有ガスの流量と、該酸素供給工程前の硫化水素含有ガス中の硫化水素濃度とを計測し、該硫化水素含有ガス流量計からの計測信号と該硫化水素濃度計からの計測信号の積によって計算される負荷量に基づき該酸素供給工程の酸素含有気体の供給量を調節することを特徴とする生物学的脱硫方法。
The biological desulfurization method according to any one of claims 5 to 7,
The flow rate of the hydrogen sulfide-containing gas before the oxygen supply step and the hydrogen sulfide concentration in the hydrogen sulfide-containing gas before the oxygen supply step are measured, and the measurement signal from the hydrogen sulfide-containing gas flow meter and the hydrogen sulfide concentration A biological desulfurization method, comprising: adjusting a supply amount of an oxygen-containing gas in the oxygen supply step based on a load amount calculated by a product of measurement signals from a meter.
請求項5乃至8のいずれかに記載の生物学的脱硫方法において、
該酸素供給工程を経た硫化水素含有ガス中の硫化水素濃度が400乃至700ppmであることを特徴とする生物学的脱硫方法。
The biological desulfurization method according to any one of claims 5 to 8,
A biological desulfurization method, wherein the hydrogen sulfide concentration in the hydrogen sulfide-containing gas that has undergone the oxygen supply step is 400 to 700 ppm.
請求項5乃至9のいずれかに記載の生物学的脱硫方法において、
該充填層が上流段と下流段の2段で構成され、
該ガス流入工程では、上流段へ流入するガス量は全体の50%乃至70%であり、残りが下流段へ流入することを特徴とする生物学的脱硫方法。
The biological desulfurization method according to any one of claims 5 to 9,
The packed bed is composed of two stages, an upstream stage and a downstream stage,
In the gas inflow step, the amount of gas flowing into the upstream stage is 50% to 70% of the whole, and the rest flows into the downstream stage.
請求項5乃至9のいずれかに記載の生物学的脱硫方法において、
該充填層が上流段、中流段、及び下流段の3段で構成され、
該ガス流入工程では、各段に流入するガス量の関係は、「上流段の流入ガス量≧中流段の流入ガス量≧下流段の流入ガス量」となることを特徴とする生物学的脱硫方法。
The biological desulfurization method according to any one of claims 5 to 9,
The packed bed is composed of three stages, an upstream stage, a midstream stage, and a downstream stage,
In the gas inflow process, biological desulfurization characterized in that the relationship between the amount of gas flowing into each stage is “the amount of inflow gas in the upstream stage ≧ the amount of inflow gas in the middle stage ≧ the amount of inflow gas in the downstream stage”. Method.
JP2013259808A 2013-12-17 2013-12-17 Biological desulfurization apparatus and biological desulfurization method Active JP5925179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013259808A JP5925179B2 (en) 2013-12-17 2013-12-17 Biological desulfurization apparatus and biological desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013259808A JP5925179B2 (en) 2013-12-17 2013-12-17 Biological desulfurization apparatus and biological desulfurization method

Publications (2)

Publication Number Publication Date
JP2015116514A JP2015116514A (en) 2015-06-25
JP5925179B2 true JP5925179B2 (en) 2016-05-25

Family

ID=53529771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013259808A Active JP5925179B2 (en) 2013-12-17 2013-12-17 Biological desulfurization apparatus and biological desulfurization method

Country Status (1)

Country Link
JP (1) JP5925179B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225618B1 (en) * 2019-01-28 2022-01-18 Susteon Inc. Continuous desulfurization process based on metal oxide-based regenerable sorbents
JP7309208B2 (en) * 2020-09-09 2023-07-18 株式会社一芯 Deodorizing device and deodorizing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3542345A1 (en) * 1985-11-29 1987-06-04 Imhausen Chemie Gmbh METHOD FOR REMOVING SULDURATE FROM EXHAUST GAS
JPS63197516A (en) * 1987-02-13 1988-08-16 Kurita Water Ind Ltd Deodorizing method
JPH0226615A (en) * 1988-07-12 1990-01-29 Fuso Yunitetsuku Kk Desulfurization apparatus for digester gas
JPH0515730A (en) * 1991-07-12 1993-01-26 Kajima Corp Biological deodorizing apparatus
JPH06154546A (en) * 1992-11-17 1994-06-03 Kurita Water Ind Ltd Biological smell deodorizing device
JPH07274936A (en) * 1994-04-08 1995-10-24 Nippon Steel Corp Carrier-packed type apparatus for microbial deodorization
JP3802161B2 (en) * 1996-10-25 2006-07-26 株式会社タクマ Biological treatment of malodorous gases
US5985649A (en) * 1997-04-28 1999-11-16 H. David Stensel Device and method for removal of gas contaminates through a shallow sparged bioreactor
JPH11197447A (en) * 1998-01-13 1999-07-27 Sumitomo Heavy Ind Ltd Operation method for filling column type biological deodorizing device
JP3750648B2 (en) * 2001-11-02 2006-03-01 Jfeエンジニアリング株式会社 Digestion gas desulfurization apparatus and desulfurization method
JP2006143780A (en) * 2004-11-16 2006-06-08 Toshiba Corp Biogas purification system
JP5326187B2 (en) * 2006-03-31 2013-10-30 栗田工業株式会社 Gas processing apparatus provided with gas pretreatment apparatus and cleaning method
JP2009247926A (en) * 2008-04-01 2009-10-29 Hitachi Plant Technologies Ltd Waste gas treatment apparatus
JP4344773B1 (en) * 2008-07-22 2009-10-14 株式会社神鋼環境ソリューション Digestion gas desulfurization method and apparatus
WO2012061933A1 (en) * 2010-11-09 2012-05-18 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture And Agri-Food Biological oxidation of hydrogen sulphide in a psychrophilic anaerobic digestion bioreactor subjected to microaerobic conditions
JP5330436B2 (en) * 2011-03-15 2013-10-30 株式会社東芝 Biogas biodesulfurization apparatus and cleaning method thereof

Also Published As

Publication number Publication date
JP2015116514A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
Ramos et al. Where does the removal of H2S from biogas occur in microaerobic reactors?
JP6170197B1 (en) Desulfurization system and desulfurization method
CN101973666B (en) Method for synchronously removing heavy metal and nitrate from drinking water and device thereof
JP2010042327A (en) Water treatment system
JP5756061B2 (en) Biological desulfurization apparatus and desulfurization method for biogas
JP5925179B2 (en) Biological desulfurization apparatus and biological desulfurization method
JP5756060B2 (en) Biogas biological desulfurization apparatus and biological desulfurization method
WO2012081715A1 (en) Biological purification agent, biological purification system and biological purification method for water to be treated
JP5767723B2 (en) Biological desulfurization apparatus and biological desulfurization method
CZ297094B6 (en) Method and device for biological treatment of fluid during biogas generation
CN105722796B (en) The control program of organic waste-water treating apparatus, the processing method of organic wastewater and organic waste-water treating apparatus
JP2016123957A (en) Apparatus and method for treating waste water containing dissolved substance and volatile substance
JP2015214695A (en) Apparatus and method for biologically desulfurizing biogas
US9527759B2 (en) Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
JP5767722B2 (en) Biological desulfurization apparatus and desulfurization method
JP6101740B2 (en) Biological desulfurization method of biogas
JP6752181B2 (en) Desulfurization system and desulfurization method
JP6215257B2 (en) Biological desulfurization method of biogas
CN204981302U (en) Industrial waste water ozone catalytic oxidation processing apparatus
WO2023153468A1 (en) Methane generation system and methane generation method
CN104496086A (en) Electrolytic coupling-type Fenton water treatment device
CN204310900U (en) A kind of electrolysis coupling class Fenton water treating equipment
CN208454628U (en) A kind of complex ecological autotrophic denitrification sewage-treatment plant
JP7030582B2 (en) Desulfurization equipment and biogas desulfurization method
CN109912133B (en) Realization of N by regulating and controlling dissolved oxygen2O reduction and treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160419

R150 Certificate of patent or registration of utility model

Ref document number: 5925179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250