JP5921605B2 - Rubber composition for tire and pneumatic tire using the same - Google Patents

Rubber composition for tire and pneumatic tire using the same Download PDF

Info

Publication number
JP5921605B2
JP5921605B2 JP2014115066A JP2014115066A JP5921605B2 JP 5921605 B2 JP5921605 B2 JP 5921605B2 JP 2014115066 A JP2014115066 A JP 2014115066A JP 2014115066 A JP2014115066 A JP 2014115066A JP 5921605 B2 JP5921605 B2 JP 5921605B2
Authority
JP
Japan
Prior art keywords
rubber
tire
weight
amino acid
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014115066A
Other languages
Japanese (ja)
Other versions
JP2014196504A (en
Inventor
服部 高幸
高幸 服部
守 内田
守 内田
市川 直哉
直哉 市川
洋二 井本
洋二 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014115066A priority Critical patent/JP5921605B2/en
Publication of JP2014196504A publication Critical patent/JP2014196504A/en
Application granted granted Critical
Publication of JP5921605B2 publication Critical patent/JP5921605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、高性能で、環境に優しいタイヤを製造できるタイヤ用ゴム組成物、およびそれを用いた空気入りタイヤに関する。 The present invention relates to a tire rubber composition that can produce a high-performance, environmentally friendly tire, and a pneumatic tire using the same.

従来、タイヤ用の補強フィラーとしては、黒色充填剤であるカーボンブラックの他にシリカが多く用いられており、シリカ以外にも、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウムが検討されている。 Conventionally, as a reinforcing filler for tires, silica is often used in addition to carbon black, which is a black filler, and in addition to silica, calcium carbonate, magnesium carbonate, and calcium hydroxide have been studied.

これらの充填剤の中で、白色充填剤、とくにシリカを用いた場合には、シリカの分散性が低いために充分な性能が得られず、とくにトレッド用途で使用した場合、耐摩耗性能が低下するという問題があった。この問題を改良するために、種々のシランカップリング剤やシリル化剤が使用されているが、いずれも高価であり、これらを合成するためのエネルギーとして、または場合によっては原材料の一部として石油などの化石燃料を使用しており、将来の供給に不安がある。 Among these fillers, when white fillers, especially silica, are used, sufficient performance cannot be obtained due to low dispersibility of silica, and wear resistance performance decreases particularly when used in tread applications. There was a problem to do. Various silane coupling agents and silylating agents have been used to remedy this problem, but they are all expensive and are used as energy to synthesize them, or in some cases as part of the raw materials. There are concerns about the future supply of fossil fuels.

一方、アミノ酸を加硫促進剤として使用する技術が知られている(特許文献1および2)。しかしながら、これらの方法では充填剤としてカーボンブラックを使用しており、シリカなどの白色充填剤については記載されていないので、分散性の低い白色充填剤の課題を提示するものではない。 On the other hand, techniques using amino acids as vulcanization accelerators are known (Patent Documents 1 and 2). However, in these methods, carbon black is used as a filler, and white fillers such as silica are not described. Therefore, the problem of a white filler with low dispersibility is not presented.

特開昭61−221241号公報Japanese Patent Laid-Open No. 61-212241 特開昭61−221242号公報JP-A-61-2212242

本発明の目的は、環境に配慮しながら、白色充填剤の分散性の問題を解決し、より高性能のタイヤを製造することができるタイヤ用ゴム組成物、およびそれを用いたタイヤを提供することである。 An object of the present invention is to provide a rubber composition for a tire that can solve the problem of dispersibility of the white filler while considering the environment and can produce a higher performance tire, and a tire using the rubber composition. That is.

本発明は、ジエン系ゴム、アミノ酸、および白色充填剤を含有するタイヤ用ゴム組成物に関する。 The present invention relates to a tire rubber composition containing a diene rubber, an amino acid, and a white filler.

ステアリン酸および/または亜鉛華を含有することが好ましい。 It is preferable to contain stearic acid and / or zinc white.

シランカップリング剤およびシリル化剤を含まないことが好ましい。 It is preferable not to contain a silane coupling agent and a silylating agent.

白色充填剤が、全充填剤中50重量%以上であることが好ましい。 The white filler is preferably 50% by weight or more of the total filler.

天然ゴムおよび/または改質天然ゴムを、全ジエン系ゴム成分中50重量%以上含有することが好ましい。 The natural rubber and / or modified natural rubber is preferably contained in an amount of 50% by weight or more based on the total diene rubber component.

アミノ酸が、メルカプト基、ジスルフィド基、モノスルフィド基、含チッ素複素環、ベンゼン環、フェノール性水酸基または3以上のアミノ基を有することが好ましい。 The amino acid preferably has a mercapto group, a disulfide group, a monosulfide group, a nitrogen-containing heterocyclic ring, a benzene ring, a phenolic hydroxyl group, or three or more amino groups.

また、本発明は、前記タイヤ用ゴム組成物を用いた空気入りタイヤに関する。 The present invention also relates to a pneumatic tire using the tire rubber composition.

本発明のタイヤ用ゴム組成物は、アミノ酸と白色充填剤を含有するので、シランカップリング剤やシリル化剤を使用することなく、環境に配慮するとともに、将来の石油資源の減少にも備えることができ、該ゴム組成物によって高性能のタイヤを提供することができる。 Since the rubber composition for tires of the present invention contains an amino acid and a white filler, it is environmentally friendly and does not use a silane coupling agent or silylating agent, and prepares for future reduction of petroleum resources. The rubber composition can provide a high-performance tire.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のタイヤ用ゴム組成物は、ジエン系ゴム、アミノ酸、および白色充填剤を含有する。 The rubber composition for tires of the present invention contains a diene rubber, an amino acid, and a white filler.

ジエン系ゴムとしては、天然ゴム(NR)、改質天然ゴム、ブタジエンゴム(BR)、シンジオタクチック−1,2−ポリブタジエン(1,2BR)、スチレン−ブタジエン共重合ゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル−ブタジエン共重合ゴム(NBR)、クロロプレンゴム(CR)、スチレン−イソプレン−ブタジエン共重合ゴム(SIBR)、スチレン−イソプレン共重合ゴム、イソプレン−ブタジエン共重合ゴムなどがあげられる。これらの中でも、環境に配慮できる点、および耐摩耗性、低転がり抵抗性、操縦安定性、引張強度の点で、天然ゴムまたは改質天然ゴムが好ましい。改質ゴムとしては、比較的容易に合成でき、性能も良好な点で、エポキシ化天然ゴムが好ましい。 Diene rubbers include natural rubber (NR), modified natural rubber, butadiene rubber (BR), syndiotactic-1,2-polybutadiene (1,2BR), styrene-butadiene copolymer rubber (SBR), and isoprene rubber. (IR), acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber (CR), styrene-isoprene-butadiene copolymer rubber (SIBR), styrene-isoprene copolymer rubber, isoprene-butadiene copolymer rubber and the like. Among these, natural rubber or modified natural rubber is preferable from the viewpoints of consideration for the environment, wear resistance, low rolling resistance, handling stability, and tensile strength. As the modified rubber, epoxidized natural rubber is preferable because it can be synthesized relatively easily and has good performance.

エポキシ化天然ゴムとしては、市販のエポキシ化天然ゴムを用いてもよいし、天然ゴムをエポキシ化して用いてもよい。天然ゴムをエポキシ化する方法としては特に限定されるものではなく、クロルヒドリン法、直接酸化法、過酸化水素法、アルキルヒドロペルオキシド法、過酸法などの方法を用いて行なうことができ、例えば、天然ゴムに過酢酸や過ギ酸などの有機過酸を反応させる方法などがあげられる。 As the epoxidized natural rubber, commercially available epoxidized natural rubber may be used, or natural rubber may be epoxidized. The method for epoxidizing natural rubber is not particularly limited, and can be carried out using a method such as a chlorohydrin method, a direct oxidation method, a hydrogen peroxide method, an alkyl hydroperoxide method, a peracid method, for example, Examples include a method of reacting natural rubber with an organic peracid such as peracetic acid or performic acid.

エポキシ化天然ゴムのエポキシ化率は5モル%以上であることが好ましく、10モル%以上であることがより好ましい。エポキシ化率が5モル%未満では、ゴム組成物に対する改質効果が小さい傾向がある。また、エポキシ化率は80モル%以下であることが好ましく、60モル%以下であることがより好ましい。エポキシ化率が80モル%をこえると、ポリマー成分がゲル化してしまうため好ましくない。 The epoxidation rate of the epoxidized natural rubber is preferably 5 mol% or more, and more preferably 10 mol% or more. If the epoxidation rate is less than 5 mol%, the modifying effect on the rubber composition tends to be small. The epoxidation rate is preferably 80 mol% or less, and more preferably 60 mol% or less. When the epoxidation rate exceeds 80 mol%, the polymer component is gelled, which is not preferable.

改質天然ゴムおよび/または天然ゴムの含有量は、ジエン系ゴム成分中に、好ましくは50重量%以上、より好ましくは60重量%以上、さらに好ましくは70重量%以上、最も好ましくは100重量%である。これにより、より環境に配慮したタイヤ用ゴム組成物とすることができる。また、改質天然ゴムおよび/または天然ゴムに含まれるタンパク質やリン脂質とも相互作用するので、合成ゴムと比較して、白色充填剤をより高度に分散させ易くなる。合成ゴムでは、重合時に末端または主鎖中に白色充填剤と相互作用または化学反応しうる官能基を導入することができるのに対し、天然ゴムや改質天然ゴムは既にゴム分子が出来上がっているので、改質によって合成ゴムのような官能基を導入することが困難である。したがって、天然ゴムを改質する材料として、反応性に富んだ天然物であるアミノ酸を使用するメリットがある。また、アミノ酸に含まれるアミノ基は、エポキシ基と反応しやすいこと、および前述したように比較的容易に合成でき、性能も良好な点で、改質天然ゴムとしてはエポキシ化天然ゴムを使用することが好ましい。 The content of the modified natural rubber and / or natural rubber is preferably 50% by weight or more, more preferably 60% by weight or more, further preferably 70% by weight or more, and most preferably 100% by weight in the diene rubber component. It is. Thereby, it can be set as the rubber composition for tires in consideration of the environment. Further, since the modified natural rubber and / or proteins and phospholipids contained in the natural rubber also interact, it becomes easier to disperse the white filler more highly than the synthetic rubber. In synthetic rubber, functional groups capable of interacting or chemically reacting with the white filler can be introduced into the terminal or main chain at the time of polymerization, whereas natural rubber and modified natural rubber already have rubber molecules. Therefore, it is difficult to introduce a functional group such as a synthetic rubber by modification. Therefore, there is a merit of using an amino acid which is a natural product rich in reactivity as a material for modifying natural rubber. In addition, an amino group contained in an amino acid is easily reacted with an epoxy group, and can be synthesized relatively easily as described above, and epoxidized natural rubber is used as a modified natural rubber in terms of good performance. It is preferable.

本願発明では、充填剤として、カーボンブラックの代わりに白色充填剤を用いる。白色充填剤としては、シリカ、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化アルミニウム、酸化チタン、スターチなどがあげられる。中でも、補強性や転がり抵抗に優れている点で、シリカ、水酸化アルミニウム、スターチが好ましい。シリカとしては、湿式法または乾式法により製造されたシリカがあげられるが、特に限定はない。 In the present invention, a white filler is used instead of carbon black as the filler. Examples of the white filler include silica, calcium carbonate, magnesium carbonate, calcium hydroxide, aluminum hydroxide, titanium oxide, and starch. Among these, silica, aluminum hydroxide, and starch are preferable because they are excellent in reinforcing properties and rolling resistance. Silica includes silica produced by a wet method or a dry method, but is not particularly limited.

シリカのBET吸着比表面積は、好ましくは20m/g以上、より好ましくは40m/g以上、さらに好ましくは50m2/g以上である。シリカのBET吸着比表面積が20m/g未満では、補強効果が小さい。また、シリカのBET吸着比表面積は、好ましくは600m/g以下、より好ましくは500m/g以下、さらに好ましくは450m/g以下である。である。シリカのNSAが600m/gをこえると、未加硫ゴムの粘度が高くなり加工性が低下する傾向がある。 The BET adsorption specific surface area of silica is preferably 20 m 2 / g or more, more preferably 40 m 2 / g or more, and still more preferably 50 m 2 / g or more. When the BET adsorption specific surface area of silica is less than 20 m 2 / g, the reinforcing effect is small. Further, the BET adsorption specific surface area of silica is preferably 600 m 2 / g or less, more preferably 500 m 2 / g or less, and further preferably 450 m 2 / g or less. It is. If the N 2 SA of silica exceeds 600 m 2 / g, the viscosity of the unvulcanized rubber tends to increase and the processability tends to decrease.

シリカの含有量は、ジエン系ゴム100重量部に対して10重量部以上、好ましくは20重量部以上、より好ましくは30重量部以上である。シリカの含有量が10重量部未満ではゴムの強度が不充分となる。また、シリカの含有量は150重量部以下、好ましくは100重量部以下、より好ましくは80重量部以下である。シリカの含有量が150重量部をこえると、未加硫ゴムの粘度が高くなり加工性が低下する。 The content of silica is 10 parts by weight or more, preferably 20 parts by weight or more, more preferably 30 parts by weight or more with respect to 100 parts by weight of the diene rubber. If the silica content is less than 10 parts by weight, the strength of the rubber will be insufficient. The silica content is 150 parts by weight or less, preferably 100 parts by weight or less, more preferably 80 parts by weight or less. When the silica content exceeds 150 parts by weight, the viscosity of the unvulcanized rubber increases and the processability decreases.

本願発明では、アミノ酸を白色充填剤と併用するので、白色充填剤と併用されるシランカップリング剤やシリル化剤を使用する必要がないが、シランカップリング剤やシリル化剤を併用することもできる。 In the present invention, since an amino acid is used in combination with a white filler, it is not necessary to use a silane coupling agent or silylating agent used in combination with the white filler, but a silane coupling agent or silylating agent may be used in combination. it can.

アミノ酸とは、分子内にアミノ基とカルボキシル基を有する化合物であり、アミノ基またはカルボキシル基がシリカのシラノール基などと相互作用または反応する。また、アミノ基やカルボキシル基、その他の官能基がゴムと反応または相互作用する場合もある。これらの作用によって、白色充填剤の分散性を改善することができる。アミノ酸としては、たとえばL−メチオニン、L−シスチン、L−システイン、L−アルギニン、L−ヒスチジン、L−チロシン、グリシン、L−アラニン、L−フェニルアラニン、L−リジン、L−ドーパ、L−アスパラギン、L−アスパラギン酸、L−グルタミン酸などがあげられる。アミノ酸は、メルカプト基、ジスルフィド基、モノスルフィド基、含チッ素複素環、ベンゼン環、フェノール性水酸基または3以上のアミノ基を有することが、ゴム成分と相互作用または反応しやすく、分散性改善効果が高い点で、好ましい。中でも、耐摩耗性を大きく向上させる点で、モノスルフィド基または3以上のアミノ基を有するアミノ酸が好ましい。また、転がり抵抗を大きく低減できる点で、含チッ素複素環を有するアミノ酸が好ましい。さらに、前述するようなアミノ酸のL体は天然に存在し、生物の生体内で合成される。このため、かかるL体のアミノ酸は、天然タンパク質の加水分解からの抽出、または微生物を用いた発酵によって得ることができ、シランカップリング剤と比較して環境に優しく、一般に省エネルギーのプロセスによって得られる。とくに発酵によって得られたL−アミノ酸は、省エネルギーの点で好ましい。 An amino acid is a compound having an amino group and a carboxyl group in the molecule, and the amino group or the carboxyl group interacts or reacts with a silanol group of silica. In addition, amino groups, carboxyl groups, and other functional groups may react or interact with rubber. By these actions, the dispersibility of the white filler can be improved. Examples of amino acids include L-methionine, L-cystine, L-cysteine, L-arginine, L-histidine, L-tyrosine, glycine, L-alanine, L-phenylalanine, L-lysine, L-dopa, and L-asparagine. , L-aspartic acid, L-glutamic acid and the like. Amino acids have a mercapto group, a disulfide group, a monosulfide group, a nitrogen-containing heterocyclic ring, a benzene ring, a phenolic hydroxyl group, or three or more amino groups, and can easily interact with or react with the rubber component, thereby improving dispersibility. Is preferable from the viewpoint of high. Of these, a monosulfide group or an amino acid having 3 or more amino groups is preferable in terms of greatly improving the wear resistance. An amino acid having a nitrogen-containing heterocycle is preferred in that the rolling resistance can be greatly reduced. Furthermore, the L form of the amino acid as described above exists in nature and is synthesized in the living organism. For this reason, such L-form amino acids can be obtained by extraction from hydrolysis of natural proteins, or fermentation using microorganisms, and are environmentally friendly compared to silane coupling agents, and are generally obtained by an energy-saving process. . In particular, L-amino acids obtained by fermentation are preferable in terms of energy saving.

アミノ酸の含有量は、ジエン系ゴム100重量部に対して0.1重量部以上、好ましくは0.25重量部以上、より好ましくは0.5重量部以上、さらに好ましくは2重量部以上である。アミノ酸の含有量が0.1重量部未満では、白色充填剤の分散性改善効果、補強効果、転がり抵抗低減効果が得られない傾向にある。また、アミノ酸の含有量は20重量部以下、好ましくは10重量部以下、より好ましくは6重量部以下、さらに好ましくは5重量部以下である。アミノ酸の含有量が20重量部をこえると、ゴム中に均一に分散させることが困難となって析出したり、不必要にコストが増大する傾向にある。 The amino acid content is 0.1 parts by weight or more, preferably 0.25 parts by weight or more, more preferably 0.5 parts by weight or more, and further preferably 2 parts by weight or more with respect to 100 parts by weight of the diene rubber. . When the amino acid content is less than 0.1 parts by weight, the dispersibility improving effect, the reinforcing effect, and the rolling resistance reducing effect of the white filler tend not to be obtained. The amino acid content is 20 parts by weight or less, preferably 10 parts by weight or less, more preferably 6 parts by weight or less, and still more preferably 5 parts by weight or less. If the amino acid content exceeds 20 parts by weight, it will be difficult to uniformly disperse in the rubber, resulting in precipitation or unnecessary increase in cost.

アミノ酸は予めゴム、または白色充填剤と反応させたのちに混合することができる。予め反応させておくことで、白色充填剤の分散性を改善する効果や、耐摩耗性の改善効果、転がり抵抗低減効果が高くなる傾向がある。 Amino acids can be mixed after previously reacting with rubber or white filler. By making it react beforehand, there exists a tendency for the effect which improves the dispersibility of a white filler, the improvement effect of abrasion resistance, and the rolling resistance reduction effect to become high.

本発明のタイヤ用ゴム組成物は、ゴム組成物の加工性を改善でき、加硫反応を良好に進行できる点で、ステアリン酸および/または亜鉛華を含有することが好ましい。ステアリン酸の含有量は、ゴム成分100重量部に対して0.2〜5重量部が好ましい。一方、亜鉛華の含有量は、ゴム成分100重量部に対して0.5〜10重量部が好ましい。 The tire rubber composition of the present invention preferably contains stearic acid and / or zinc white from the viewpoint that the processability of the rubber composition can be improved and the vulcanization reaction can proceed well. The content of stearic acid is preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the rubber component. On the other hand, the content of zinc white is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the rubber component.

硫黄の含有量はジエン系ゴム100重量部に対して0.2重量部以上、好ましくは0.5重量部以上、さらに好ましくは1重量部以上である。硫黄の含有量が0.2重量部未満では、ゴムが柔らかくなりすぎタイヤ用ゴムとして適切でなくなる。また、硫黄の含有量は8重量部以下、好ましくは4重量部以下、さらに好ましくは2.5重量部以下である。アミノ酸の含有量が8重量部をこえると、硫黄のブルーミングによりタイヤ成形時にゴムの粘着が悪化する。 The sulfur content is 0.2 parts by weight or more, preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the diene rubber. If the sulfur content is less than 0.2 parts by weight, the rubber becomes too soft and is not suitable as a tire rubber. The sulfur content is 8 parts by weight or less, preferably 4 parts by weight or less, and more preferably 2.5 parts by weight or less. When the amino acid content exceeds 8 parts by weight, rubber adhesion deteriorates during tire molding due to sulfur blooming.

本発明のタイヤ用ゴム組成物には、前記ジエン系ゴム、白色充填剤、アミノ酸など以外に、必要に応じてカーボンブラックなどの補強剤、老化防止剤、ワックス、加硫促進剤などの通常のゴム工業で使用される配合剤を適宜配合することができる。 In the tire rubber composition of the present invention, in addition to the diene rubber, white filler, amino acid, and the like, a reinforcing agent such as carbon black, an anti-aging agent, a wax, a vulcanization accelerator, and the like as necessary. A compounding agent used in the rubber industry can be appropriately blended.

加硫促進剤としては、グアニジン系加硫促進剤、スルフェンアミド系加硫促進剤などがあげられる。加硫促進剤の配合量は、前記ゴム成分100重量部に対して、0.1〜5重量部であることが好ましい。 Examples of the vulcanization accelerator include guanidine vulcanization accelerators and sulfenamide vulcanization accelerators. The compounding amount of the vulcanization accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the rubber component.

本発明のタイヤは、本発明のタイヤ用ゴム組成物を用いて通常の方法で製造される。すなわち、必要に応じて前記配合剤を配合した本発明のタイヤ用ゴム組成物を、未加硫の段階でタイヤの各部材の形状にあわせて押し出し加工し、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。 The tire of the present invention is produced by a usual method using the tire rubber composition of the present invention. That is, if necessary, the rubber composition for tires of the present invention blended with the above compounding agent is extruded in accordance with the shape of each member of the tire at an unvulcanized stage, and is processed on a tire molding machine by a normal method. An unvulcanized tire is formed by molding with. The unvulcanized tire is heated and pressurized in a vulcanizer to obtain a tire.

以下、本発明を実施例に基づいて具体的に説明するが、これは本発明を限定するものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this does not limit this invention.

実施例1〜30および比較例1〜5
(1)各種薬品の説明
SBR:日本ゼオン(株)製のニッポールNS116(溶液重合SBR、結合スチレン量21%、Tg−25℃)
天然ゴム:RSS♯3
エポキシ化天然ゴム:GUTHRIE POLYMER SDN.BHD社製のENR−25(エポキシ化率:25モル%、ガラス転移点:−41℃)
シリカ:デグッサ社製のUltrasil VN3
カーボンブラック:三菱化学(株)製のダイヤブラックI(ISAFカーボン)
ワックス:日本精鑞製のオゾエース0355
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
ステアリン酸:日本油脂(株)製の桐
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤BBS:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD(ジフェニルグアニジン)
アミノ酸1:味の素(株)製のL−メチオニン(モノスルフィド結合含有)
アミノ酸2:味の素(株)製のL−シスチン(ジスルフィド結合含有)
アミノ酸3:キシダ化学(株)製のL−システイン(メルカプト基含有)
アミノ酸4:味の素(株)製のL−アルギニン(3つ以上のアミノ基含有)
アミノ酸5:味の素(株)製のL−ヒスチジン(Nが2つ入った複素環含有)
アミノ酸6:味の素(株)製のL−チロシン(ヒドロキシフェニル基含有)
Examples 1-30 and Comparative Examples 1-5
(1) Description of various chemicals SBR: Nippon NS116 manufactured by Nippon Zeon Co., Ltd. (solution polymerization SBR, 21% bound styrene, Tg-25 ° C.)
Natural rubber: RSS # 3
Epoxidized natural rubber: GUTHRIE POLYMER SDN. BHD ENR-25 (epoxidation rate: 25 mol%, glass transition point: -41 ° C)
Silica: Ultrasil VN3 manufactured by Degussa
Carbon Black: Diamond Black I (ISAF Carbon) manufactured by Mitsubishi Chemical Corporation
Wax: Ozoace 0355 made by Nippon Seiki
Anti-aging agent: NOCRACK 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Stearic acid: Tungsten zinc oxide manufactured by NOF Corporation: Zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Sulfur powder vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd. BBS: Ouchi Shinsei Chemical Industry ( Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by
Vulcanization accelerator DPG: Noxeller D (diphenylguanidine) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Amino acid 1: L-methionine (containing monosulfide bond) manufactured by Ajinomoto Co., Inc.
Amino acid 2: L-cystine (containing disulfide bond) manufactured by Ajinomoto Co., Inc.
Amino acid 3: L-cysteine (containing mercapto group) manufactured by Kishida Chemical Co., Ltd.
Amino acid 4: L-arginine (containing 3 or more amino groups) manufactured by Ajinomoto Co., Inc.
Amino acid 5: L-histidine manufactured by Ajinomoto Co., Inc. (containing a heterocyclic ring containing two N atoms)
Amino acid 6: L-tyrosine (hydroxyphenyl group-containing) manufactured by Ajinomoto Co., Inc.

(株)神戸製鋼所の1.7Lのバンバリーミキサーを用いて、表1および2の工程1に示す配合量の薬品を充填率が58%になるように添加して、回転数80rpmの条件下で、混練機の表示温度が140℃になるまで3〜8分間混練した。なお、実施例25〜30および比較例5では、シリカを工程1中で2回に分けて投入した。一旦、排出した後、工程1で得られた混練物に対して、工程2に示す配合量の硫黄および加硫促進剤を加え、オープンロールを用いて50℃で3分間混練して未加硫ゴム組成物を得た。工程2で得られた未加硫ゴム組成物を、それぞれの評価に必要なサイズに成形し、150℃で最適時間プレス加硫することにより、実施例および比較例のゴム組成物を作製した。最適加硫時間は、キュラストメーターなどの加硫試験機を用いて、t100を求め、それに従って決定した。 Using a 1.7L Banbury mixer of Kobe Steel, Inc., the chemicals in the blending amounts shown in step 1 of Tables 1 and 2 were added so that the filling rate was 58%, and the conditions were 80 rpm. Then, the kneading was carried out for 3 to 8 minutes until the indicated temperature of the kneader reached 140 ° C. In Examples 25 to 30 and Comparative Example 5, silica was added in two portions in Step 1. Once discharged, the kneaded product obtained in step 1 is added with the amounts of sulfur and vulcanization accelerator shown in step 2 and kneaded at 50 ° C. for 3 minutes using an open roll and unvulcanized. A rubber composition was obtained. The unvulcanized rubber composition obtained in Step 2 was formed into a size necessary for each evaluation and subjected to press vulcanization at 150 ° C. for an optimum time, thereby preparing rubber compositions of Examples and Comparative Examples. The optimal vulcanization time was determined according to t100 obtained using a vulcanization tester such as a curast meter.

なお、以下の各測定において、表1(実施例1〜6、比較例1)では比較例1を、表2(実施例7〜12、比較例2)では比較例2を、表3(実施例13〜18、比較例3)では比較例3を、表4(実施例19〜24、比較例4)では比較例4を、表5(実施例25〜30、比較例5)では比較例5を、それぞれ基準配合とした。 In each of the following measurements, Comparative Example 1 is shown in Table 1 (Examples 1 to 6, Comparative Example 1), Comparative Example 2 is shown in Table 2 (Examples 7 to 12 and Comparative Example 2), and Table 3 (Execution Example). Examples 13 to 18 and Comparative Example 3) are Comparative Examples 3, Table 4 (Examples 19 to 24 and Comparative Example 4) are Comparative Examples 4 and Table 5 (Examples 25 to 30 and Comparative Example 5) are Comparative Examples. 5 was used as a reference composition.

(耐摩耗性試験)
ランボーン摩耗試験機にて、負荷荷重2.5kg、温度20℃、スリップ率40%、試験時間2分間の条件下で、各加硫ゴム組成物から得られたランボーン摩耗試験用加硫ゴム試験片を摩耗させて、ランボーン摩耗量を測定し、各配合の容量損失量をそれぞれ計算し、基準配合の耐摩耗性指数を100として、下記計算式により耐摩耗性をそれぞれ指数表示した。耐摩耗性指数が大きいほど、耐摩耗性が優れていることを示す。
(Abrasion resistance test)
Vulcanized rubber specimens for lamborn abrasion test obtained from each vulcanized rubber composition under the conditions of load load of 2.5 kg, temperature of 20 ° C., slip rate of 40%, test time of 2 minutes with a lamborn abrasion tester. The wear loss was measured, the amount of Lambourn wear was measured, the amount of capacity loss of each formulation was calculated, and the wear resistance index of the reference formulation was set to 100, and the wear resistance was indicated by the following formula. The larger the wear resistance index, the better the wear resistance.

(耐摩耗性指数)=(基準配合の容量損失量)/(各配合の容量損失量)×100 (Abrasion resistance index) = (capacity loss amount of reference blend) / (capacity loss amount of each blend) × 100

(転がり抵抗試験)
加硫ゴム組成物として、2mm×130mm×130mmのゴムスラブシートを作製し、そこから測定用試験片を切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各試験用ゴム組成物のtanδを測定し、基準配合の転がり抵抗指数を100として、下記計算式により転がり抵抗特性をそれぞれ指数表示した。転がり抵抗指数が小さいほど、転がり抵抗が低く、転がり抵抗特性が優れていることを示す。
(Rolling resistance test)
A rubber slab sheet of 2 mm × 130 mm × 130 mm was prepared as a vulcanized rubber composition, a test piece for measurement was cut out from the rubber slab sheet, and a temperature of 70 ° C. was obtained using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). Under the conditions of initial strain 10%, dynamic strain 2%, and frequency 10Hz, tan δ of each test rubber composition was measured, and the rolling resistance index of the reference blend was set to 100, and the rolling resistance characteristics were respectively displayed as an index by the following formula. did. The smaller the rolling resistance index, the lower the rolling resistance and the better the rolling resistance characteristics.

(転がり抵抗指数)=(各配合のtanδ)/(基準配合のtanδ)×100 (Rolling resistance index) = (tan δ of each formulation) / (tan δ of reference formulation) × 100

(操縦安定性指数の評価)
上記と同様に、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各試験用ゴム組成物の複素弾性率Eを測定し、基準配合の弾性率を100として、下記計算式により操縦安定性指数をそれぞれ指数表示した。操縦安定性指数が大きいほど、操縦安定性が高く、優れていることを示す。
(Evaluation of steering stability index)
Similarly to the above, each test rubber composition was tested under the conditions of a temperature of 70 ° C., an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.). The complex elastic modulus E * was measured, the elastic modulus of the reference blend was set to 100, and the steering stability index was indicated as an index according to the following formula. The larger the steering stability index, the higher the steering stability and the better.

(操縦安定性指数)=(各配合のE)/(基準配合のE)×100 (Steering stability index) = (E * of each formulation) / (E * of the reference formulation) × 100

(引張強さ試験)
JIS K 6251加硫ゴム及び熱可塑性ゴム−引張特性の求め方に従って、引張強さを測定した。基準配合の引張強さを100として、下記計算式により引張強さ指数をそれぞれ計算し指数表示した。引張強さ指数が大きいほど、強度が高く、優れていることを示す。
(Tensile strength test)
JIS K 6251 vulcanized rubber and thermoplastic rubber-Tensile strength was measured according to the method of obtaining tensile properties. With the tensile strength of the reference blend as 100, the tensile strength index was calculated according to the following formula and displayed as an index. The larger the tensile strength index, the higher the strength and the better.

(引張強さ指数)=(各配合の引張強さ)/(基準配合の引張強さ)×100 (Tensile strength index) = (Tensile strength of each formulation) / (Tensile strength of standard formulation) × 100

Figure 0005921605
Figure 0005921605

Figure 0005921605
Figure 0005921605

Figure 0005921605
Figure 0005921605

Figure 0005921605
Figure 0005921605

表1〜4からわかるように、実施例では耐摩耗性は、基準配合と比較して同等か、または大きく向上した。転がり抵抗指数についても、基準配合比で小さく、低減することができた。Eについても向上しながら、操縦安定性指数も向上した。とくにモノスルフィド結合を有するアミノ酸、または3つ以上のアミノ基を有するアミノ酸で耐摩耗性と同時に操縦安定性を大きく向上させることができたうえに、転がり抵抗もより小さくすることができた。さらに引張強度も向上した。また、Nが2つ入った複素環を有するアミノ酸では、耐摩耗性や操縦安定性は基準配合とほぼ同等であったが、転がり抵抗を大きく低減させることができた。その他のアミノ酸でも、大小はあるものの、向上効果が確認できた。 As can be seen from Tables 1 to 4, in the examples, the wear resistance was equal to or significantly improved compared to the reference formulation. The rolling resistance index was also small at the reference blending ratio and could be reduced. While improving E * , the steering stability index also improved. In particular, an amino acid having a monosulfide bond or an amino acid having three or more amino groups can greatly improve wear resistance and steering stability, and can also reduce rolling resistance. Furthermore, the tensile strength was improved. In addition, in the amino acid having a heterocyclic ring containing two N, the wear resistance and the steering stability were almost the same as those of the reference blend, but the rolling resistance could be greatly reduced. Although other amino acids were large and small, the improvement effect could be confirmed.

また、フィラーとしてはカーボンブラックと併用した系、シリカ単独の系のいずれでも効果が得られたが、とくにシリカ単独配合とした方がより優れていた。また、表の数値ではわからないが、基準配合の70℃におけるtanδ同士を比較すると、カーボンブラック併用配合よりも、シリカ単独配合の方が低いので、シリカ配合比率の高い配合において、効果が高い。 In addition, although the effect was obtained by either the system used in combination with carbon black or the system of silica alone as the filler, the blending of silica alone was more excellent. Moreover, although it does not understand in the numerical value of a table | surface, when tan-delta at 70 degreeC of a reference | standard mixing | blending is compared, since the compound of a silica single combination is lower than a carbon black combination mixing | blending, the effect is high in the mixing | blending with a high silica compounding ratio.

さらに、ゴムとしては、合成ゴムと併用した配合よりは、天然ゴムおよび/または改質天然ゴムのみを用いた配合で、より効果が高くなった。 Furthermore, as a rubber, the effect was higher when blended with only natural rubber and / or modified natural rubber than blended with synthetic rubber.

Claims (6)

ジエン系ゴム、アミノ酸、およびシリカを含有し、
前記ジエン系ゴムが、天然ゴムおよび/または改質天然ゴムを、全ジエン系ゴム成分中50重量%以上含有するタイヤ用ゴム組成物。
(但し、ジエン系ゴム、アミノ酸、およびシリカを含有し、
前記ジエン系ゴムが、天然ゴムおよび/または改質天然ゴムを、全ジエン系ゴム成分中50重量%以上含有し、
シランカップリング剤およびシリル化剤を含まないタイヤ用ゴム組成物を除く。)
Containing a diene rubber, an amino acid, and silica;
The rubber composition for tires, wherein the diene rubber contains 50% by weight or more of natural rubber and / or modified natural rubber in the total diene rubber component.
(However, it contains diene rubber, amino acid, and silica,
The diene rubber contains natural rubber and / or modified natural rubber in an amount of 50% by weight or more in the total diene rubber component,
Excluding tire rubber compositions that do not contain silane coupling agents and silylating agents. )
ジエン系ゴム、アミノ酸、およびシリカを含有し、
前記ジエン系ゴムが、天然ゴムおよび/または改質天然ゴムと、スチレン−ブタジエン共重合ゴムとを含有するタイヤ用ゴム組成物。
Containing a diene rubber, an amino acid, and silica;
A rubber composition for tires, wherein the diene rubber contains natural rubber and / or modified natural rubber and styrene-butadiene copolymer rubber.
さらに、ステアリン酸および/または亜鉛華を含有する請求項1又は2記載のタイヤ用ゴム組成物。 Furthermore, the rubber composition for tires of Claim 1 or 2 containing a stearic acid and / or zinc white. シリカが、全充填剤中50重量%以上である請求項1〜3のいずれか1項に記載のタイヤ用ゴム組成物。 The rubber composition for tires according to any one of claims 1 to 3, wherein silica is 50% by weight or more in all fillers. アミノ酸が、メルカプト基、ジスルフィド基、モノスルフィド基、含チッ素複素環、ベンゼン環、フェノール性水酸基または3以上のアミノ基を有する請求項1〜4のいずれか1項に記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 4, wherein the amino acid has a mercapto group, a disulfide group, a monosulfide group, a nitrogen-containing heterocyclic ring, a benzene ring, a phenolic hydroxyl group, or three or more amino groups. object. 請求項1〜5のいずれか1項に記載のタイヤ用ゴム組成物を用いた空気入りタイヤ。 A pneumatic tire using the tire rubber composition according to any one of claims 1 to 5.
JP2014115066A 2014-06-03 2014-06-03 Rubber composition for tire and pneumatic tire using the same Active JP5921605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115066A JP5921605B2 (en) 2014-06-03 2014-06-03 Rubber composition for tire and pneumatic tire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115066A JP5921605B2 (en) 2014-06-03 2014-06-03 Rubber composition for tire and pneumatic tire using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007182285A Division JP5574562B2 (en) 2007-07-11 2007-07-11 Rubber composition for tire and pneumatic tire using the same

Publications (2)

Publication Number Publication Date
JP2014196504A JP2014196504A (en) 2014-10-16
JP5921605B2 true JP5921605B2 (en) 2016-05-24

Family

ID=52357512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115066A Active JP5921605B2 (en) 2014-06-03 2014-06-03 Rubber composition for tire and pneumatic tire using the same

Country Status (1)

Country Link
JP (1) JP5921605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6816566B2 (en) * 2017-03-03 2021-01-20 昭和電工マテリアルズ株式会社 Resin compositions, adhesive films, prepregs, multilayer printed wiring boards and semiconductor devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136244A (en) * 1976-05-12 1977-11-14 Sanyo Trading Co Vulcanizable rubber compositions
JP4517470B2 (en) * 1999-07-30 2010-08-04 Jsr株式会社 Rubber composition and tire
CA2339080C (en) * 2001-03-02 2009-11-17 Bayer Inc. Filled elastomeric butyl compounds
US6780925B2 (en) * 2001-12-21 2004-08-24 The Goodyear Tire & Rubber Company Rubber composition with silica reinforcement obtained with an amino acid or amino acid-containing protein based activator and use thereof in tires
JP5574562B2 (en) * 2007-07-11 2014-08-20 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire using the same
JP5507801B2 (en) * 2007-07-11 2014-05-28 住友ゴム工業株式会社 Rubber composition for tire

Also Published As

Publication number Publication date
JP2014196504A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5574562B2 (en) Rubber composition for tire and pneumatic tire using the same
JP5103623B2 (en) Rubber composition for tire
JP4308292B2 (en) Rubber composition for inner liner and tire having inner liner comprising the same
JP5924562B1 (en) Modified rubber, tire rubber composition and tire using the same
CN100999592B (en) Rubber composition for inner liner and tire having inner liner using the same
US20070142529A1 (en) Rubber composition for sidewall
JP5904430B1 (en) Modified rubber and method for producing the same, rubber composition, and tire
JP4768521B2 (en) Rubber composition and tire having clinch and / or apex using the same
JP4606807B2 (en) Rubber composition for tire tread
JP5507801B2 (en) Rubber composition for tire
US7414087B2 (en) Rubber composition and pneumatic tire using the same
TW201716486A (en) Rubber composition and tire
JP2009084534A (en) Rubber composition for clinch and tire having clinch using the composition
JP5921605B2 (en) Rubber composition for tire and pneumatic tire using the same
JP2014133843A (en) Rubber composition for tread and pneumatic tire
JP2009051869A (en) Rubber composition for tire and pneumatic tire using the same
JPWO2018139165A1 (en) tire
JP4823882B2 (en) Rubber composition for inner liner and tire having inner liner using the same
JP5503684B2 (en) Rubber composition for sidewall or base tread, and pneumatic tire
JP2008115327A (en) Rubber composition
JP2011074240A (en) Tread rubber composition and pneumatic tire
JP2014034584A (en) Rubber composition for tire and pneumatic tire using the same
JPWO2016125596A1 (en) Modified conjugated diene polymer and rubber composition containing the same
JP2016138198A (en) Rubber composition for tire and tire
JP5606940B2 (en) Method for producing rubber composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250