JP5920513B2 - Lead-free glass for sealing, sealing material, sealing material paste - Google Patents

Lead-free glass for sealing, sealing material, sealing material paste Download PDF

Info

Publication number
JP5920513B2
JP5920513B2 JP2015088538A JP2015088538A JP5920513B2 JP 5920513 B2 JP5920513 B2 JP 5920513B2 JP 2015088538 A JP2015088538 A JP 2015088538A JP 2015088538 A JP2015088538 A JP 2015088538A JP 5920513 B2 JP5920513 B2 JP 5920513B2
Authority
JP
Japan
Prior art keywords
sealing
lead
sealing material
free glass
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015088538A
Other languages
Japanese (ja)
Other versions
JP2015163587A (en
Inventor
文俊 杉浦
文俊 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015088538A priority Critical patent/JP5920513B2/en
Publication of JP2015163587A publication Critical patent/JP2015163587A/en
Application granted granted Critical
Publication of JP5920513B2 publication Critical patent/JP5920513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、封着用無鉛ガラス、封着材料及び封着材料ペーストに係り、特に、軟化点が低く、耐水性を向上させたバナジウム系ガラスからなる封着用無鉛ガラス、それを用いた封着材料及び封着材料ペーストに関する。   The present invention relates to a lead-free glass for sealing, a sealing material and a sealing material paste, and in particular, a lead-free glass for sealing made of vanadium-based glass having a low softening point and improved water resistance, and a sealing material using the same And a sealing material paste.

ディスプレイパネルや半導体パッケージ等の電子製品、電気製品の封着部に用いる封着材料として、樹脂や低融点ガラスが用いられているが、低融点ガラスは樹脂に比べて気密性が高いという利点があるため多く用いられるようになってきている。このような低融点ガラスとしては、従来、主成分が酸化鉛を含有したものが使用されてきた(特許文献1参照)。   Resin and low-melting glass are used as sealing materials for sealing parts of electronic products and electrical products such as display panels and semiconductor packages, but low-melting glass has the advantage of higher airtightness than resin. Because it is, it has come to be used a lot. As such a low-melting glass, glass containing lead oxide as a main component has been conventionally used (see Patent Document 1).

ところが、近年、鉛化合物の人体や環境への有害性が問題視され、封着用ガラスにおいても酸化鉛を含有しない材料の開発が望まれ、様々な材料の検討がなされるようになってきている。   However, in recent years, the harmfulness of lead compounds to the human body and the environment has been regarded as a problem, and development of materials that do not contain lead oxide is desired in sealing glass, and various materials have been studied. .

酸化鉛を含有しない低融点ガラスとして、鉛系の封着用ガラスよりも軟化点が低いため、低温での施工が可能なバナジウム系ガラスが提案され、実用化が検討されている(例えば、特許文献2参照。)。また、軟化点(Ts)をさらに下げ、耐水性を向上させたバナジウム系ガラスも提案されている(例えば、特許文献3参照。)。   As a low-melting glass not containing lead oxide, a softening point is lower than that of lead-based sealing glass. Therefore, vanadium-based glass that can be applied at a low temperature has been proposed, and its practical application has been studied (for example, patent documents) 2). A vanadium-based glass having a further lowered softening point (Ts) and improved water resistance has also been proposed (see, for example, Patent Document 3).

特開平2−48430公報Japanese Patent Laid-Open No. 2-48430 特開2009−221048号公報JP 2009-2221048 A 特開2010−52990号公報JP 2010-52990 A

しかしながら、特許文献2及び3に記載されているようなバナジウム系の低融点ガラスであっても、耐水性が未だ十分ではなく、実用化するに当たっては、さらなる特性の向上が課題となっている。また、軟化点(Ts)もより低く、さらに低温域で使用できる封着用無鉛ガラスが求められている。   However, even the vanadium-based low-melting glass as described in Patent Documents 2 and 3 is still insufficient in water resistance, and further improvement in characteristics has been a challenge when put to practical use. Further, a lead-free glass for sealing that has a lower softening point (Ts) and can be used in a low temperature range is demanded.

そこで、本発明は、上記課題を解決するために、低温域での使用が可能で、かつ、耐水性を向上させた新規な封着用無鉛ガラスの提供を目的とする。   Accordingly, in order to solve the above-described problems, the present invention aims to provide a novel lead-free glass for sealing that can be used in a low temperature range and has improved water resistance.

上記課題を解消するために、本発明者らは鋭意検討した結果、特定の配合のバナジウム系ガラスが、封着用途として使用するのに十分な低融点でかつ耐水性に優れていることを見出した。すなわち、本発明の封着用無鉛ガラスは、10〜55質量%のVと、1〜10質量%のPと、32.5〜54.5質量%のTeOと、0〜13質量%のZnOと、0〜13質量%のBaOと、1〜6質量%のCuOと、を含有し、ZnOとBaOとはその合量ZnO+BaOが0〜13質量%の範囲であり、実質的にPbO及びFeを含有しないことを特徴とする。 In order to solve the above problems, the present inventors have intensively studied, and as a result, found that a vanadium glass having a specific composition has a low melting point sufficient for use as a sealing application and is excellent in water resistance. It was. That is, the lead-free glass for sealing of the present invention has 10 to 55% by mass of V 2 O 5 , 1 to 10% by mass of P 2 O 5 , 32.5 to 54.5% by mass of TeO 2 , 0 ~ 13 mass% ZnO, 0-13 mass% BaO, and 1-6 mass% CuO, ZnO and BaO are in the range of 0-13 mass% in total ZnO + BaO, It is characterized by not containing PbO and Fe 2 O 3 substantially.

本発明の封着用無鉛ガラス、封着材料及び封着材料ペーストによれば、ガラス素材自体が低融点であって低温で封着作業ができるため、安全に封着できかつ取り扱いが容易で、さらに、封着操作時の加熱温度を十分に確保できるため、安定して封着操作が可能である。   According to the lead-free glass for sealing, sealing material and sealing material paste of the present invention, the glass material itself has a low melting point and can be sealed at a low temperature, so that it can be safely sealed and handled easily. Since the heating temperature during the sealing operation can be sufficiently secured, the sealing operation can be performed stably.

また、本発明の封着用無鉛ガラス、封着材料及び封着材料ペーストは、耐水性に優れているため、製品製造時の不具合の発生を抑制し、さらに、製品の経年劣化が抑制される。そのため、これらにより封着された電子製品及び電気製品は、信頼性が高く、長寿命とできる。   Moreover, since the lead-free glass for sealing, sealing material, and sealing material paste of this invention are excellent in water resistance, generation | occurrence | production of the malfunction at the time of product manufacture is suppressed, and also aged deterioration of a product is suppressed. Therefore, the electronic product and the electrical product sealed by these have high reliability and can have a long life.

本発明の実施形態による半導体デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device by embodiment of this invention. 本発明の実施形態による半導体デバイスの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device by embodiment of this invention.

本発明の封着用無鉛ガラスは、上記した通りVと、Pと、TeOと、を必須成分としたバナジウム系ガラスである。以下、この封着用無鉛ガラスの成分について詳細に説明する。 The lead-free glass for sealing of the present invention is vanadium-based glass containing V 2 O 5 , P 2 O 5 , and TeO 2 as essential components as described above. Hereinafter, the components of the lead-free glass for sealing will be described in detail.

本発明に用いられるVは、ガラス内でネットワークフォーマーとしての働きを持ち、さらに、ガラスの軟化点を下げ、溶解時のガラスに流動性を与える成分である。このVは、ガラス中に10〜55質量%の範囲で含有させるもので、20〜45質量%であることが好ましい。Vが10質量%未満では軟化点が高くなってしまい、55質量%を超えるとガラスが結晶化しやすくなってしまう。 V 2 O 5 used in the present invention is a component that functions as a network former in the glass, further lowers the softening point of the glass, and imparts fluidity to the glass during melting. This V 2 O 5 is contained in the glass in the range of 10 to 55% by mass, and preferably 20 to 45% by mass. If V 2 O 5 is less than 10% by mass, the softening point becomes high, and if it exceeds 55% by mass, the glass tends to crystallize.

本発明に用いられるPは、ガラス内でネットワークフォーマーとしての働きを有する成分である。このPは、ガラス中に1〜10質量%の範囲で含有させるもので、1.5〜9質量%であることが好ましい。Pが1質量%未満ではネットワークフォーマーとしての機能が発揮されずガラス化が困難になり、10質量%を超えると軟化点が高くなったり、耐水性が低下したり、してしまう。 P 2 O 5 used in the present invention is a component having a function as a network former in glass. This P 2 O 5 is contained in the glass in the range of 1 to 10% by mass, and preferably 1.5 to 9% by mass. If P 2 O 5 is less than 1% by mass, the function as a network former is not exhibited and vitrification becomes difficult, and if it exceeds 10% by mass, the softening point becomes high or the water resistance decreases. .

本発明に用いられるTeOは、ガラスの耐水性を向上させる成分である。このTeOは、ガラス中に15〜70質量%の範囲で含有させるもので、30〜60質量%であることが好ましい。TeOが15質量%未満では耐水性を向上させる効果が有効に発揮されず、70質量%を超えると、熱膨張係数が増大してしまう。 TeO 2 used in the present invention is a component that improves the water resistance of glass. This TeO 2 is contained in the range of 15 to 70% by mass in the glass, and is preferably 30 to 60% by mass. If TeO 2 is less than 15% by mass, the effect of improving the water resistance is not exhibited effectively, and if it exceeds 70% by mass, the thermal expansion coefficient increases.

本発明に用いられるZnOは、ガラスの失透を抑え、ガラスの軟化点と熱膨張係数を低下させる任意の成分である。このZnOは、ガラス中に0〜13質量%の範囲で含有させる。ZnOが13質量%を超えると封着用無鉛ガラスの熱膨張係数が増大し、被封着物と封着材料との界面や封着材料内にクラックやマイクロクラックが発生し、気密封着が得られないおそれがある。   ZnO used in the present invention is an arbitrary component that suppresses the devitrification of the glass and lowers the softening point and the thermal expansion coefficient of the glass. This ZnO is contained in the glass in the range of 0 to 13% by mass. When ZnO exceeds 13% by mass, the thermal expansion coefficient of the lead-free glass for sealing increases, cracks and microcracks occur in the interface between the sealed object and the sealing material and in the sealing material, and a hermetic seal is obtained. There is a risk of not.

本発明に用いられるBaOは、ガラスの失透を抑え、また、ガラスの粘性を低下させる任意の成分である。このBaOは、ガラス中に0〜13質量%の範囲で含有させる。BaOが13質量%を超えると軟化点が高くなってしまい、低温での封着が困難になってしまう。また、封着用無鉛ガラスの熱膨張係数が増大することで、被封着物と封着材料との界面や封着材料内にクラックやマイクロクラックが発生し、気密封着が得られないおそれがある。   BaO used in the present invention is an arbitrary component that suppresses devitrification of the glass and lowers the viscosity of the glass. This BaO is contained in the glass in the range of 0 to 13% by mass. If BaO exceeds 13% by mass, the softening point becomes high, and sealing at low temperatures becomes difficult. In addition, an increase in the thermal expansion coefficient of the lead-free glass for sealing may cause cracks or microcracks in the interface between the material to be sealed and the sealing material or in the sealing material, and there is a possibility that airtight sealing cannot be obtained. .

また、任意成分であるZnOとBaOは、これらの合量ZnO+BaOが、ガラス中に0〜13質量%の範囲で含有させる。この合量が13質量%を超えると封着用無鉛ガラスの熱膨張係数が増大し、被封着物と封着材料との界面や封着材料内にクラックやマイクロクラックが発生し、気密封着が得られないおそれがある。   Moreover, ZnO and BaO which are optional components are contained in a range of 0 to 13% by mass of these total amounts ZnO + BaO in the glass. When this total amount exceeds 13% by mass, the thermal expansion coefficient of the lead-free glass for sealing increases, cracks and microcracks are generated in the interface between the sealed object and the sealing material and in the sealing material, and the hermetic sealing is achieved. May not be obtained.

その他の成分としては、CuO、MgO、CaO、SrO等が挙げられ、本発明の効果を阻害しない範囲で含有できる。特に、CuOは化学的耐久性を向上させる成分であり、1〜6質量%含有させることが好ましい。
また、封着用無鉛ガラスの所望とする平均熱膨張係数は、140×10−7/℃以下である。140×10−7/℃超では、無機充填材を添加しても封着材料としての平均熱膨張係数を充分に低下させることが困難となる。また、封着材料の封着時の流動性の低下も招くおそれがある。好ましくは、125×10−7/℃以下であり、さらに好ましくは115×10−7/℃以下である。平均熱膨張係数の下限値は特に限定する必要はないが、敢えて限定するならば、80×10−7/℃以上が好ましく、90×10−7/℃以上がさらに好ましい。
Other components include CuO, MgO, CaO, SrO and the like, and can be contained within a range that does not impair the effects of the present invention. In particular, CuO is a component that improves chemical durability, and is preferably contained in an amount of 1 to 6% by mass.
Moreover, the desired average thermal expansion coefficient of the lead-free glass for sealing is 140 × 10 −7 / ° C. or less. If it exceeds 140 × 10 −7 / ° C., it is difficult to sufficiently reduce the average thermal expansion coefficient as a sealing material even if an inorganic filler is added. Moreover, the fluidity at the time of sealing the sealing material may be reduced. Preferably, it is 125 × 10 −7 / ° C. or less, and more preferably 115 × 10 −7 / ° C. or less. The lower limit value of the average thermal expansion coefficient is not particularly limited, but if it is intentionally limited, it is preferably 80 × 10 −7 / ° C. or higher, more preferably 90 × 10 −7 / ° C. or higher.

また、本発明の封着用無鉛ガラスは、実質的にPbO及びFeを含有しないものである。PbOは、環境及び人体への負荷が大きく、製品自体への使用が好ましくない成分である。また、Feは、軟化点(Ts)を高くし封着時の焼成温度が高くなり、これを含有させると本発明の効果を発揮し得ない。ここで、実質的に含有しないとは、ガラス中に含まれる量が0.1質量%以下をいう。 Further, sealing lead-free glass of the present invention is substantially free of PbO and Fe 2 O 3. PbO is a component that has a heavy load on the environment and the human body and is not preferable for use in the product itself. Further, Fe 2 O 3 is, the firing temperature during sealing to increase the softening point (Ts) is increased, not to exhibit the effect of the present invention with the inclusion of this. Here, “substantially not contained” means that the amount contained in the glass is 0.1% by mass or less.

上記のような配合とすることによって、低融点で耐水性に優れた封着用無鉛ガラスが得られる。ここで、本発明における低融点とは、封着用無鉛ガラスの軟化点が375℃以下のことであり、365℃以下が好ましく、355℃以下が特に好ましい。軟化点が低いと封着時の温度を低くできるため、低温域での封着加工が可能で、それだけ被加工物に対する熱的影響を少なくし、かつ、熱エネルギー消費を低減できる。また、低温での作業が可能となるため、安全、確実に封着操作ができる。   By setting it as the above mixing | blending, the lead-free glass for sealing excellent in water resistance with a low melting point is obtained. Here, the low melting point in the present invention means that the lead-free glass for sealing has a softening point of 375 ° C. or lower, preferably 365 ° C. or lower, particularly preferably 355 ° C. or lower. When the softening point is low, the temperature at the time of sealing can be lowered, so that the sealing process can be performed in a low temperature range, the thermal influence on the workpiece can be reduced, and the heat energy consumption can be reduced. Further, since the work can be performed at a low temperature, the sealing operation can be performed safely and reliably.

また、耐水性は、封着用無鉛ガラスを45℃のイオン交換水に72時間浸漬したときの質量減少量によって評価し、質量減少量が1.0%以下となるものが好ましく、0.5%以下であることがより好ましく、0.3%以下であることが特に好ましい。この耐水性が低下すると、水分との接触によるガラス成分の抜け出しが生じて質量減少量が大きくなり、ガラスが変質して封着材料としての機能が損なわれる場合がある。このような場合には、経時的に製品が不良化してしまい、短寿命となることも考えられる。なお、ここで用いられるイオン交換水の導電率は1〜2μS/cmである。   Further, the water resistance is evaluated by a mass reduction amount when the lead-free glass for sealing is immersed in ion exchange water at 45 ° C. for 72 hours, and the mass reduction amount is preferably 1.0% or less, preferably 0.5% It is more preferable that it is below, and it is especially preferable that it is 0.3% or less. When this water resistance is lowered, the glass component comes out due to contact with moisture and the amount of mass reduction increases, and the glass may be altered to impair the function as a sealing material. In such a case, it is conceivable that the product deteriorates with time and has a short life. In addition, the electrical conductivity of the ion exchange water used here is 1-2 μS / cm.

結晶化は示差熱分析装置(リガク社製TG−8110)で25℃(室温)〜500℃の範囲で測定を行った際に結晶化ピークが現れるか否かで判定する。   Crystallization is determined by whether or not a crystallization peak appears when measurement is performed in the range of 25 ° C. (room temperature) to 500 ° C. with a differential thermal analyzer (TG-8110, manufactured by Rigaku Corporation).

次に、本発明の封着材料は、上記の配合割合となるように原料の粉末混合物を白金るつぼ等の容器に入れ、これを電気炉等の加熱炉内で所定時間加熱して溶融させてガラス化し、この溶融物を水冷ローラーでシート状に成型し、粉砕機によって適当な粒度まで粉砕して封着用無鉛ガラスとすればよい。その封着用無鉛ガラスの粒度は、0.05〜100μmの範囲が好適であり、上記粉砕による粗粒分は分級して除去すればよい。ただし、小型デバイス用の超薄型ディスプレイパネルのシール材に用いる封着用無鉛ガラスでは、上記粒度を10μm以下、より好適には6μm以下とすることが推奨される。   Next, in the sealing material of the present invention, the raw material powder mixture is placed in a container such as a platinum crucible so as to have the above blending ratio, and this is heated and melted in a heating furnace such as an electric furnace for a predetermined time. It is possible to vitrify, shape this melt into a sheet with a water-cooled roller, and pulverize it to an appropriate particle size with a pulverizer to obtain a lead-free glass for sealing. The particle size of the lead-free glass for sealing is preferably in the range of 0.05 to 100 μm, and the coarse particles by the pulverization may be classified and removed. However, in the lead-free glass for sealing used as a sealing material for ultra-thin display panels for small devices, it is recommended that the particle size is 10 μm or less, more preferably 6 μm or less.

上記の粉砕には、従来よりガラス粉末の製造に汎用されているボールミル等の各種乾式粉砕機を使用できるが、特に3μm以下といった細かい粒度にするには湿式粉砕を利用するのがよい。この湿式粉砕は、水やアルコール水溶液の如き水性溶媒中で、5mm径以下のアルミナやジルコニアからなる粉砕メディア(ボールもしくはビーズ)を用いて粉砕するものであり、乾式粉砕よりも更に細かく粉砕することが可能であるが、水性溶媒を用いた微粉砕であるため、被粉砕物であるガラス組成物が高い耐水性を備えている必要がある。   For the above pulverization, various dry pulverizers such as a ball mill conventionally used for the production of glass powder can be used. In particular, wet pulverization is preferably used for a fine particle size of 3 μm or less. This wet pulverization is pulverized in an aqueous solvent such as water or an aqueous alcohol solution using pulverization media (balls or beads) made of alumina or zirconia having a diameter of 5 mm or less, and is pulverized more finely than dry pulverization. However, since it is fine pulverization using an aqueous solvent, the glass composition as the pulverized product needs to have high water resistance.

本発明の封着材料は、上記のようにして得られた封着用無鉛ガラスのみで封着材料を構成することも可能であるが、一般には、この封着用無鉛ガラスに必要に応じて、低膨張充填材等の無機充填材を配合して構成される。無機充填材の配合量は目的に応じて適宜に設定されるものであるが、封着材料に対して40体積%以下が好ましい。無機充填材の配合量が40体積%を超えると、封着時における封着材料の流動性が低下して接着強度が低下するおそれがある。封着材料は封着用無鉛ガラスと0〜40体積%の無機充填材とを含有するものである。無機充填材の含有量の下限値は特に限定されるものではない。   The sealing material of the present invention can be composed of only the lead-free glass for sealing obtained as described above. It is composed of an inorganic filler such as an expansion filler. The blending amount of the inorganic filler is appropriately set according to the purpose, but is preferably 40% by volume or less with respect to the sealing material. If the blending amount of the inorganic filler exceeds 40% by volume, the fluidity of the sealing material at the time of sealing may be reduced, and the adhesive strength may be reduced. The sealing material contains lead-free glass for sealing and 0 to 40% by volume of an inorganic filler. The lower limit value of the content of the inorganic filler is not particularly limited.

無機充填材の代表例としては低膨張充填材が挙げられる。低膨張充填材とは封着用無鉛ガラスより低い熱膨張係数を有するものである。封着材料は低膨張充填材以外の無機充填材を含有していてもよい。低膨張充填材の含有量は、上述したように40体積%以下が好ましい。低膨張充填材の含有量の下限値は特に限定されるものではなく、封着用無鉛ガラスと素子用半導体基板や封止用基板との熱膨張係数の差に応じて適宜に設定されるものであるが、実用的な配合効果(封着材料の熱膨張係数の調整や、封着強度の向上)を得るためには5体積%以上配合することが好ましい。   A typical example of the inorganic filler is a low expansion filler. A low expansion filler has a lower thermal expansion coefficient than a lead-free glass for sealing. The sealing material may contain an inorganic filler other than the low expansion filler. As described above, the content of the low expansion filler is preferably 40% by volume or less. The lower limit of the content of the low expansion filler is not particularly limited, and is appropriately set according to the difference in thermal expansion coefficient between the lead-free glass for sealing and the semiconductor substrate for elements or the substrate for sealing. However, in order to obtain a practical blending effect (adjustment of the thermal expansion coefficient of the sealing material and improvement of the sealing strength), it is preferable to blend 5% by volume or more.

低膨張充填材としては、シリカ、アルミナ、ジルコニア、珪酸ジルコニウム、チタン酸アルミニウム、ムライト、コージェライト、ユークリプタイト、スポジュメン、リン酸ジルコニウム系化合物、酸化錫系化合物、および石英固溶体から選ばれる少なくとも1種を用いることが好ましい。リン酸ジルコニウム系化合物としては、(ZrO)、NaZr(PO、KZr(PO、Ca0.5Zr(PO、NbZr(PO、Zr(WO)(PO、これらの複合化合物が挙げられる。 The low expansion filler is at least one selected from silica, alumina, zirconia, zirconium silicate, aluminum titanate, mullite, cordierite, eucryptite, spodumene, zirconium phosphate compound, tin oxide compound, and quartz solid solution. It is preferable to use seeds. Examples of the zirconium phosphate-based compound include (ZrO) 2 P 2 O 7 , NaZr 2 (PO 4 ) 3 , KZr 2 (PO 4 ) 3 , Ca 0.5 Zr 2 (PO 4 ) 3 , and NbZr (PO 4 ). 3 , Zr 2 (WO 3 ) (PO 4 ) 2 , and composite compounds thereof.

この実施形態の封着材料ペーストは、封着材料とビヒクルとの混合物からなるものである。ビヒクルとしては、例えばメチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース、ニトロセルロース等のバインダ成分を、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したもの、あるいはメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリテート、2−ヒドロオキシエチルメタアクリレート等のアクリル系樹脂(バインダ成分)を、メチルエチルケトン、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものが用いられる。   The sealing material paste of this embodiment consists of a mixture of a sealing material and a vehicle. As the vehicle, for example, a binder component such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, propyl cellulose, nitrocellulose or the like dissolved in a solvent such as terpineol, butyl carbitol acetate, ethyl carbitol acetate, or methyl Acrylic resins (binder components) such as (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl methacrylate, methyl ethyl ketone, terpineol, butyl carbitol acetate, ethyl carbitol acetate, etc. Those dissolved in a solvent are used.

封着材料とビヒクルとの混合比は、所望のペースト粘度等に応じて適宜に設定されるものであり、特に限定されるものではない。封着材料ペーストの粘度は、封止用基板もしくは素子用半導体基板に塗布する装置に対応した粘度に合わせればよく、有機樹脂(バインダ成分)と溶剤との混合割合、また封着材料とビヒクルとの混合割合により調整できる。封着材料ペーストは、消泡剤や分散剤のようにガラスペーストで公知の添加物を含有していてもよい。封着材料ペーストの調製には、攪拌翼を備えた回転式の混合機やロールミル等を用いた公知の方法を適用できる。   The mixing ratio of the sealing material and the vehicle is appropriately set according to the desired paste viscosity and the like, and is not particularly limited. The viscosity of the sealing material paste may be adjusted to the viscosity corresponding to the device applied to the sealing substrate or the device semiconductor substrate, the mixing ratio of the organic resin (binder component) and the solvent, and the sealing material and the vehicle. The mixing ratio can be adjusted. The sealing material paste may contain a known additive in a glass paste like an antifoaming agent or a dispersing agent. A known method using a rotary mixer equipped with a stirring blade, a roll mill or the like can be applied to the preparation of the sealing material paste.

上述した封着用無鉛ガラス、封着材料および封着材料ペーストは、半導体デバイス等の封着工程(例えば、素子用半導体基板と封止用基板との接合工程)に使用される。図1はこの実施形態の封着用無鉛ガラス、封着材料および封着材料ペーストを使用した半導体デバイスの構成例を示している。図1に示す半導体デバイス1としては、圧力センサ、加速度センサ、ジャイロセンサ、マイクロミラー、光変調器等のMEMS、CCD素子やCMOS素子を適用した光デバイス等が挙げられるが、これらに限定されない。   The above-mentioned lead-free glass for sealing, sealing material, and sealing material paste are used in a sealing process for a semiconductor device or the like (for example, a bonding process between a semiconductor substrate for elements and a sealing substrate). FIG. 1 shows a configuration example of a semiconductor device using the lead-free glass for sealing, the sealing material, and the sealing material paste of this embodiment. Examples of the semiconductor device 1 shown in FIG. 1 include, but are not limited to, a pressure sensor, an acceleration sensor, a gyro sensor, a micromirror, an optical device using a CCD element or a CMOS element, and the like.

半導体デバイス1は素子用半導体基板2と封止用基板3とを具備している。素子用半導体基板2には、Si基板に代表される各種の半導体基板が適用される。封止用基板3としては、半導体基板(Si基板等)、ガラス基板、セラミックス基板等が使用される。素子用半導体基板2の表面2aには、半導体デバイス1に応じた素子部4が設けられている。素子部4はセンサ素子、ミラー素子、光変調素子、光検出素子等を備えており、各種公知の構造を有している。半導体デバイス1は素子部4の構造に限定されるものではない。   The semiconductor device 1 includes an element semiconductor substrate 2 and a sealing substrate 3. Various semiconductor substrates typified by Si substrates are applied to the element semiconductor substrate 2. As the sealing substrate 3, a semiconductor substrate (Si substrate or the like), a glass substrate, a ceramic substrate, or the like is used. An element portion 4 corresponding to the semiconductor device 1 is provided on the surface 2 a of the element semiconductor substrate 2. The element unit 4 includes a sensor element, a mirror element, a light modulation element, a light detection element, and the like, and has various known structures. The semiconductor device 1 is not limited to the structure of the element unit 4.

素子用半導体基板2の表面2aには、素子部4の外周に沿って第1の封止領域5が設けられている。第1の封止領域5は素子部4を囲うように設けられている。封止用基板3の表面3aには、第1の封止領域5に対応する第2の封止領域6が設けられている。素子用半導体基板2と封止用基板3とは、素子部4や第1の封止領域5を有する表面2aと第2の封止領域6を有する表面3aとが対向するように、所定の間隙を持って配置されている。素子用半導体基板2と封止用基板3との間の間隙は封着層7で封止されている。   A first sealing region 5 is provided along the outer periphery of the element portion 4 on the surface 2 a of the element semiconductor substrate 2. The first sealing region 5 is provided so as to surround the element portion 4. A second sealing region 6 corresponding to the first sealing region 5 is provided on the surface 3 a of the sealing substrate 3. The element semiconductor substrate 2 and the sealing substrate 3 are formed in a predetermined manner so that the surface 2a having the element portion 4 and the first sealing region 5 and the surface 3a having the second sealing region 6 face each other. It is arranged with a gap. A gap between the element semiconductor substrate 2 and the sealing substrate 3 is sealed with a sealing layer 7.

封着層7は素子部4を封止するように、素子用半導体基板2の封止領域5と封止用基板3の封止領域6との間に形成されている。素子部4は素子用半導体基板2と封止用基板3と封着層7とで構成されたパッケージで気密封止されている。封着層7はこの実施形態の封着材料の溶融固着層からなるものである。パッケージ内は半導体デバイス1に応じた状態で気密封止されている。例えば、半導体デバイス1がMEMSである場合には、パッケージ内は真空状態で気密封止されることが一般的である。   The sealing layer 7 is formed between the sealing region 5 of the element semiconductor substrate 2 and the sealing region 6 of the sealing substrate 3 so as to seal the element portion 4. The element portion 4 is hermetically sealed with a package including the element semiconductor substrate 2, the sealing substrate 3, and the sealing layer 7. The sealing layer 7 is composed of a melt-fixed layer of the sealing material of this embodiment. The package is hermetically sealed in a state corresponding to the semiconductor device 1. For example, when the semiconductor device 1 is a MEMS, the package is generally hermetically sealed in a vacuum state.

次に、この実施形態の半導体デバイス1の製造工程について、図2を参照して説明する。まず、図2(a)に示すように、封止用基板3の封止領域6に封着材料層(封着材料の焼成層)8を形成する。封着材料層8の形成にあたっては、まず封止領域6に封着材料ペーストを塗布し、これを乾燥させて封着材料ペーストの塗布層を形成する。封着材料や封着材料ペーストの具体的な構成は前述した通りである。   Next, the manufacturing process of the semiconductor device 1 of this embodiment will be described with reference to FIG. First, as shown in FIG. 2A, a sealing material layer (firing layer of sealing material) 8 is formed in the sealing region 6 of the sealing substrate 3. In forming the sealing material layer 8, first, a sealing material paste is applied to the sealing region 6 and dried to form an application layer of the sealing material paste. The specific configuration of the sealing material and the sealing material paste is as described above.

封着材料ペーストは、例えばスクリーン印刷やグラビア印刷等の印刷法を適用して封止領域6上に塗布したり、あるいはディスペンサ等を用いて封止領域6に沿って塗布したりする。封着材料ペーストの塗布層は、例えば120℃以上の温度で10分以上乾燥させる。乾燥工程は塗布層内の溶剤を除去するために実施するものである。塗布層内に溶剤が残留していると、その後の焼成工程でバインダ成分を十分に除去できないおそれがある。   The sealing material paste is applied onto the sealing region 6 by applying a printing method such as screen printing or gravure printing, or is applied along the sealing region 6 using a dispenser or the like. The coating layer of the sealing material paste is dried, for example, at a temperature of 120 ° C. or more for 10 minutes or more. A drying process is implemented in order to remove the solvent in an application layer. If the solvent remains in the coating layer, the binder component may not be sufficiently removed in the subsequent firing step.

上記した封着材料ペーストの塗布層を焼成して封着材料層8を形成する。焼成工程は、まず塗布層を封着材料の主成分である封着用無鉛ガラスのガラス転移点以下の温度に加熱し、塗布層内のバインダ成分を除去した後、封着用無鉛ガラスの軟化点以上の温度に加熱し、封着用無鉛ガラスを溶融して封止用基板3に焼き付ける。このようにして、封着材料の焼成層からなる封着材料層8を形成する。   The sealing material layer 8 is formed by baking the coating layer of the sealing material paste described above. In the firing step, first, the coating layer is heated to a temperature below the glass transition point of the sealing lead-free glass that is the main component of the sealing material, and after removing the binder component in the coating layer, the softening point of the sealing lead-free glass or higher. The lead-free glass for sealing is melted and baked on the sealing substrate 3. In this way, the sealing material layer 8 composed of the fired layer of the sealing material is formed.

次に、図2(b)に示すように、封着材料層8を有する封止用基板3と、それとは別に作製した素子部4を有する素子用半導体基板2とを、表面2aと表面3aとが対向するように封着材料層8を介して積層する。素子用半導体基板2の素子部4上には、封着材料層8の厚さに基づいて間隙が形成される。この後、封止用基板3と素子用半導体基板2との積層物を封着材料層8中の封着用無鉛ガラスの軟化点以上の温度に加熱し、封着用無鉛ガラスを溶融・固化させることによって、素子用半導体基板2と封止用基板3との間の間隙を気密封止する封着層7を形成する(図2(c))。   Next, as shown in FIG. 2B, a sealing substrate 3 having a sealing material layer 8 and an element semiconductor substrate 2 having an element portion 4 produced separately from the surface 2a and the surface 3a. Are laminated via the sealing material layer 8 so as to face each other. A gap is formed on the element portion 4 of the element semiconductor substrate 2 based on the thickness of the sealing material layer 8. Thereafter, the laminate of the sealing substrate 3 and the element semiconductor substrate 2 is heated to a temperature equal to or higher than the softening point of the lead-free glass for sealing in the sealing material layer 8 to melt and solidify the lead-free glass for sealing. Thus, the sealing layer 7 for hermetically sealing the gap between the element semiconductor substrate 2 and the sealing substrate 3 is formed (FIG. 2C).

この際、封着用無鉛ガラスは半導体基板2と封着層7との接着性が良好で、封着層7による気密封止性を高められる。さらに、封着用無鉛ガラスは耐水性に優れているため、それ自体に空気中の水分が吸着することがなく、封着加工時の加熱溶融に伴ってアウトガスとして水蒸気が発生することがないため、半導体デバイスの機能を低下させることがない。従って、気密封止性に加えてデバイス特性や信頼性に優れる半導体デバイス1を再現性よく提供できる。   At this time, the lead-free glass for sealing has good adhesion between the semiconductor substrate 2 and the sealing layer 7, and the hermetic sealing property by the sealing layer 7 can be enhanced. Furthermore, since the lead-free glass for sealing is excellent in water resistance, moisture in the air does not adsorb to itself, and water vapor is not generated as outgas with heating and melting at the time of sealing, The function of the semiconductor device is not deteriorated. Therefore, it is possible to provide the semiconductor device 1 that is excellent in device characteristics and reliability in addition to hermetic sealing properties with good reproducibility.

なお、上記には半導体デバイスを例に説明したが、本発明の封着用無鉛ガラスによる封着加工対象は、特に制約はなく、例えば、電子管、蛍光表示管、蛍光表示パネル、プラズマディスプレイパネル、有機ELディスプレイパネル、液晶ディスプレイ用バックライトパネル、半導体パッケージ等の各種電子部品・電気製品の開口部や接合部が挙げられる。   In addition, although the semiconductor device was demonstrated to the example above, the sealing object by the lead-free glass for sealing of this invention does not have a restriction | limiting in particular, For example, an electron tube, a fluorescent display tube, a fluorescent display panel, a plasma display panel, organic Examples thereof include openings and joints of various electronic parts and electrical products such as EL display panels, liquid crystal display backlight panels, and semiconductor packages.

次に、本発明の具体的な実施例およびその評価結果について述べる。なお、以下の説明は本発明を限定するものではく、本発明の趣旨に沿った形での改変が可能である。   Next, specific examples of the present invention and evaluation results thereof will be described. In addition, the following description does not limit this invention, The modification | change in the form along the meaning of this invention is possible.

[封着用無鉛ガラスの作成]
(実施例1)
まず、質量割合でVを39.0%、Pを3.0%、TeOを51.0%、ZnOを4.0%、BaOを2.0%、CuOを1.0%となるように原料粉末を混合し、封着用無鉛ガラスを得た。得られた封着用無鉛ガラスの転移点(Tg)、軟化点(Ts)、30〜250℃における熱膨張係数(平均熱膨張係数(α))を測定し、さらに耐水性について評価した。その結果を表1に示した。
[Create lead-free glass for sealing]
Example 1
First, in terms of mass ratio, V 2 O 5 is 39.0%, P 2 O 5 is 3.0%, TeO 2 is 51.0%, ZnO is 4.0%, BaO is 2.0%, CuO is 1 The raw material powder was mixed so that it might become 0.0%, and the lead-free glass for sealing was obtained. The transition point (Tg), softening point (Ts), and thermal expansion coefficient (average thermal expansion coefficient (α)) at 30 to 250 ° C. of the obtained lead-free glass for sealing were measured, and water resistance was further evaluated. The results are shown in Table 1.

(実施例2〜13)
封着用無鉛ガラスの組成を表1及び表2に示す条件に変更した以外は、実施例1と同様にして封着用無鉛ガラスを調製した。そのとき得られた封着用無鉛ガラスの転移点、軟化点、熱膨張係数、耐水性評価について、表1及び表2に示した。
(Examples 2 to 13)
A lead-free glass for sealing was prepared in the same manner as in Example 1 except that the composition of the lead-free glass for sealing was changed to the conditions shown in Tables 1 and 2. Table 1 and Table 2 show the transition point, softening point, thermal expansion coefficient, and water resistance evaluation of the lead-free glass for sealing obtained at that time.

Figure 0005920513
Figure 0005920513

Figure 0005920513
Figure 0005920513

〔転移点、軟化点〕
示差熱分析装置(リガク社製TG−8110)により、リファレンス(標準サンプル)としてα−アルミナを用い、加熱速度10℃/分、温度範囲25℃(室温)〜500℃の測定条件でサンプルのガラス転移点〔Tg〕、軟化点〔Ts〕を測定した。
[Transition point, softening point]
Using a differential thermal analyzer (TG-8110 manufactured by Rigaku Corporation), α-alumina was used as a reference (standard sample), and the sample glass was measured under the measurement conditions of a heating rate of 10 ° C./min and a temperature range of 25 ° C. (room temperature) to 500 ° C. The transition point [Tg] and the softening point [Ts] were measured.

〔平均熱膨張係数(α)〕
熱機械分析装置(リガク社製TMA8310)により、平均熱膨張係数(α)を測定した。この測定は、封着用無鉛ガラス(30g)を型内で溶融・硬化させて5mmΦ×20mm(試料径×高さ)の円柱に成形し、上底面が平行に成形されたものを測定試料として用い、25℃(室温)〜250℃まで10℃/分で昇温させ、平均熱膨張係数(α)を求めた。また、標準サンプルには石英ガラスを用いた。上記表1および2に記載に記載した封着用無鉛ガラスのものであるが、無機充填材を配合した封着材料の平均熱膨張係数(α)としては70〜100×10−7/℃が好ましい。
[Average thermal expansion coefficient (α)]
The average thermal expansion coefficient (α) was measured with a thermomechanical analyzer (TMA8310 manufactured by Rigaku Corporation). In this measurement, lead-free glass (30 g) for sealing is melted and cured in a mold and formed into a cylinder of 5 mmΦ × 20 mm (sample diameter × height), and an upper bottom surface formed in parallel is used as a measurement sample. The temperature was increased from 25 ° C. (room temperature) to 250 ° C. at a rate of 10 ° C./min, and the average thermal expansion coefficient (α) was determined. Moreover, quartz glass was used for the standard sample. Although it is a thing of the lead-free glass for sealing described in the said Table 1 and 2, as an average thermal expansion coefficient ((alpha)) of the sealing material which mix | blended the inorganic filler, 70-100x10 < -7 > / degreeC is preferable. .

〔ガラス結晶化〕
結晶化は示差熱分析装置(リガク社製TG−8110)で25℃(室温)〜500℃の範囲で測定を行った際に結晶化ピークが現れるか否かで判定した。
[Glass crystallization]
Crystallization was judged by whether or not a crystallization peak appeared when measurement was performed in a range of 25 ° C. (room temperature) to 500 ° C. with a differential thermal analyzer (TG-8110 manufactured by Rigaku Corporation).

〔耐水性評価〕
各封着用無鉛ガラス(30g)を型内で溶融・硬化させて5mmΦ×20mm(試料径×高さ)の円柱に成形し、この円柱状試料をそれぞれ20mLのイオン交換水が入った容器内の水中に浸漬し、この容器を45℃に設定した恒温槽に収容し、72時間経過後に試料を取り出し、60℃にて2時間乾燥し、自然冷却後の試料の質量を測定し、初期質量に対する質量減少率を算出した。なお、耐水性の評価は質量減少率が、◎…0〜0.3%以下、○…0.3%超〜1.0%、×…1.0%超を基準とし評価した。
(Water resistance evaluation)
Each lead-free glass (30 g) for sealing is melted and cured in a mold to form a cylinder of 5 mmΦ × 20 mm (sample diameter × height), and each columnar sample is stored in a container containing 20 mL of ion-exchanged water. Immerse in water, place the container in a thermostat set at 45 ° C, take out the sample after 72 hours, dry at 60 ° C for 2 hours, measure the mass of the sample after natural cooling, The mass reduction rate was calculated. The water resistance was evaluated based on a mass reduction rate of ◎ ... 0 to 0.3% or less, ○ ... more than 0.3% to 1.0%, x ... more than 1.0%.

(比較例1〜6)
封着用無鉛ガラスの組成を表3、表4に示す条件に変更した以外は、実施例1と同様にして封着用無鉛ガラスを調製した。そのとき得られた封着用無鉛ガラスの転移点(Tg)、軟化点(Ts)、平均熱膨張係数(α)、耐水性評価について、表3及び表4に示した。
(Comparative Examples 1-6)
A lead-free glass for sealing was prepared in the same manner as in Example 1 except that the composition of the lead-free glass for sealing was changed to the conditions shown in Tables 3 and 4. Table 3 and Table 4 show the transition point (Tg), softening point (Ts), average thermal expansion coefficient (α), and water resistance evaluation of the lead-free glass for sealing obtained at that time.

Figure 0005920513
Figure 0005920513

Figure 0005920513
Figure 0005920513

[封着材料ペーストの作成]
(実施例14)
実施例1で得られた封着用無鉛ガラスと、低膨張充填材としてコージェライト粉末とを用意した。さらに、バインダ成分としてのエチルセルロース10質量%を、ブチルカルビトールアセテートからなる溶剤90質量%に溶解してビヒクルを作製した。
[Creation of sealing material paste]
(Example 14)
The lead-free glass for sealing obtained in Example 1 and cordierite powder as a low expansion filler were prepared. Further, 10% by mass of ethyl cellulose as a binder component was dissolved in 90% by mass of a solvent composed of butyl carbitol acetate to prepare a vehicle.

上述した封着用無鉛ガラス90体積%とコージェライト粉末10体積%とを混合して封着材料を作製した。この封着材料80質量%をビヒクル20質量%と混合して封着材料ペーストを調製した。   A sealing material was prepared by mixing 90% by volume of the above-mentioned lead-free glass for sealing and 10% by volume of cordierite powder. A sealing material paste was prepared by mixing 80% by mass of the sealing material with 20% by mass of the vehicle.

次いで、ガラス基板からなる封止用基板の外周領域に、封着材料ペーストをスクリーン印刷法で塗布(線幅:750μm)した後、120℃×10分の条件で乾燥させた。この塗布層を加熱炉にて400℃×10分の条件で焼成することによって、ガラス基板上に封着材料層を形成した。   Next, a sealing material paste was applied to the outer peripheral region of the sealing substrate made of a glass substrate by a screen printing method (line width: 750 μm), and then dried under conditions of 120 ° C. × 10 minutes. This coating layer was baked in a heating furnace under conditions of 400 ° C. × 10 minutes, thereby forming a sealing material layer on the glass substrate.

次に、封着材料層を有する封止用基板と同材質のガラス基板とを積層した。この封止用基板とガラス基板との積層物を加熱炉内に配置し、400℃×10分の条件で熱処理することによって、封止用基板とガラス基板とを封着した。次に、このようにして作製した半導体デバイスの封着性を評価し、その結果を表5に示した。   Next, a sealing substrate having a sealing material layer and a glass substrate of the same material were laminated. The laminate of the sealing substrate and the glass substrate was placed in a heating furnace and heat-treated at 400 ° C. for 10 minutes to seal the sealing substrate and the glass substrate. Next, the sealing properties of the semiconductor devices thus fabricated were evaluated, and the results are shown in Table 5.

(実施例15〜19)
使用する封着用無鉛ガラスの種類と、コージェライトとの配合割合を表5に示す条件に変更した以外は、実施例14と同様にして封着材料ペーストを調製した。さらに、これらの封着材料ペーストを用いた以外は実施例14と同様にして、封止用基板に対する封着材料層の形成工程、および封止用基板と同材質のガラス基板との封着工程(加熱工程)を実施した。次に、このようにして作製したガラス基板の封着性を評価し、その結果を表5に示した。
(Examples 15 to 19)
A sealing material paste was prepared in the same manner as in Example 14, except that the type of sealing lead-free glass used and the blending ratio of cordierite were changed to the conditions shown in Table 5. Further, in the same manner as in Example 14 except that these sealing material pastes were used, a sealing material layer forming step on the sealing substrate, and a sealing step between the sealing substrate and the glass substrate made of the same material (Heating step) was performed. Next, the sealing property of the glass substrate thus prepared was evaluated, and the results are shown in Table 5.

Figure 0005920513
Figure 0005920513

〔封着性〕
実施例14〜19のガラス基板積層物について、封止用基板と同材質のガラス基板が封着できているものを○、封着できていないものを×とした。
[Sealability]
Regarding the glass substrate laminates of Examples 14 to 19, the glass substrate made of the same material as the sealing substrate was sealed, and the unsealed glass substrate was marked x.

表1〜4で明らかなように、実施例1〜13により得られた封着用無鉛ガラスは、融点が375℃以下と低く、かつ、耐水性に非常に優れたものである。また、この封着用無鉛ガラスを用いて得られた封着材料ペーストは、封着性も良好で、十分に実用に耐えるものであることがわかった。   As is clear from Tables 1 to 4, the lead-free glass for sealing obtained in Examples 1 to 13 has a melting point as low as 375 ° C. or lower and very excellent water resistance. Moreover, it turned out that the sealing material paste obtained using this lead-free glass for sealing has favorable sealing property, and can fully endure practical use.

本発明の封着用無鉛ガラス、封着材料及び封着ペーストは、低温域での使用が可能で、耐水性に優れており、封着性も良好であるため、種々の電子製品、電気製品の封着に広く使用できる。   The lead-free glass, sealing material, and sealing paste of the present invention can be used in a low temperature range, have excellent water resistance, and have good sealing properties, so that various electronic products and electrical products can be used. Can be widely used for sealing.

1…半導体デバイス、2…素子用半導体基板、2a,3a…表面、3…封止用基板、4…素子部、5…第1の封止領域、6…第2の封止領域、7…封着層、8…封着材料層   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Element semiconductor substrate, 2a, 3a ... Surface, 3 ... Sealing substrate, 4 ... Element part, 5 ... 1st sealing area | region, 6 ... 2nd sealing area | region, 7 ... Sealing layer, 8 ... sealing material layer

Claims (8)

10〜55質量%のVと、1〜10質量%のPと、32.5〜54.5質量%のTeO2 と、0〜13質量%のZnOと、0〜13質量%のBaOと、1〜6質量%のCuOと、を含有し、ZnOとBaOとはその合量ZnO+BaOが0〜13質量%の範囲であり、実質的にPbO及びFeを含有しないことを特徴とする封着用無鉛ガラス。 And V 2 O 5 of 10 to 55 wt%, and P 2 O 5 of 1 to 10 mass%, and TeO 2 of from 32.5 to 54.5 wt%, and 0-13 wt% of ZnO, 0 to 13 It contains 1% by mass of BaO and 1-6% by mass of CuO, and ZnO and BaO have a total amount of ZnO + BaO in the range of 0 to 13% by mass and substantially contain PbO and Fe 2 O 3 . Lead-free glass for sealing, characterized by not. 前記Vの配合量が15〜50質量%であり、前記TeOの配合量が32.5〜54.5質量%である請求項1記載の封着用無鉛ガラス。 The lead-free glass for sealing according to claim 1, wherein the blending amount of the V 2 O 5 is 15 to 50% by mass and the blending amount of the TeO 2 is 32.5 to 54.5% by mass. 500℃以下の温度において結晶化しない請求項1又は2記載の封着用無鉛ガラス。   The lead-free glass for sealing according to claim 1 or 2, which does not crystallize at a temperature of 500 ° C or lower. 軟化点が375℃以下である請求項1乃至3のいずれか1項記載の封着用無鉛ガラス。   The lead-free glass for sealing according to any one of claims 1 to 3, wherein the softening point is 375 ° C or lower. 45℃のイオン交換水に72時間浸漬した時の質量減少率が、0.3%以下である請求項1乃至4のいずれか1項記載の封着用無鉛ガラス。   The lead-free glass for sealing according to any one of claims 1 to 4, wherein a mass reduction rate when immersed in ion-exchanged water at 45 ° C for 72 hours is 0.3% or less. 請求項1乃至5のいずれか1項記載の封着用無鉛ガラスと、0〜40体積%の範囲の無機充填剤とを含有することを特徴とする封着材料。   A sealing material comprising the lead-free glass for sealing according to any one of claims 1 to 5 and an inorganic filler in the range of 0 to 40% by volume. 前記無機充填剤が、シリカ、アルミナ、ジルコニア、珪酸ジルコニウム、チタン酸アルミニウム、ムライト、コージェライト、ユークリプタイト、スポジュメン、リン酸ジルコニウム系化合物、酸化錫系化合物、および石英固溶体から選ばれる少なくとも1種からなる低膨張充填剤である請求項6記載の封着材料。   The inorganic filler is at least one selected from silica, alumina, zirconia, zirconium silicate, aluminum titanate, mullite, cordierite, eucryptite, spodumene, zirconium phosphate compound, tin oxide compound, and quartz solid solution. The sealing material according to claim 6, wherein the sealing material is a low expansion filler. 請求項6又は7記載の封着材料とビヒクルとの混合物からなることを特徴とする封着材料ペースト。   A sealing material paste comprising a mixture of the sealing material according to claim 6 or 7 and a vehicle.
JP2015088538A 2015-04-23 2015-04-23 Lead-free glass for sealing, sealing material, sealing material paste Active JP5920513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088538A JP5920513B2 (en) 2015-04-23 2015-04-23 Lead-free glass for sealing, sealing material, sealing material paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088538A JP5920513B2 (en) 2015-04-23 2015-04-23 Lead-free glass for sealing, sealing material, sealing material paste

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010257970A Division JP2012106891A (en) 2010-11-18 2010-11-18 Lead-free glass for sealing, sealing material and sealing material paste

Publications (2)

Publication Number Publication Date
JP2015163587A JP2015163587A (en) 2015-09-10
JP5920513B2 true JP5920513B2 (en) 2016-05-18

Family

ID=54186699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088538A Active JP5920513B2 (en) 2015-04-23 2015-04-23 Lead-free glass for sealing, sealing material, sealing material paste

Country Status (1)

Country Link
JP (1) JP5920513B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222182B2 (en) * 2018-05-25 2023-02-15 日本電気硝子株式会社 Glass composition and sealing material
CN109970347A (en) * 2019-04-29 2019-07-05 齐鲁工业大学 A kind of TeO improving performance of lithium ion battery2-V2O5- CuO devitrified glass negative electrode material
CN114057393B (en) * 2021-11-16 2022-11-18 海南大学 Glass negative electrode material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945071A (en) * 1989-04-19 1990-07-31 National Starch And Chemical Investment Holding Company Low softening point metallic oxide glasses suitable for use in electronic applications
US5188990A (en) * 1991-11-21 1993-02-23 Vlsi Packaging Materials Low temperature sealing glass compositions
JPH05170481A (en) * 1991-12-20 1993-07-09 Nippon Electric Glass Co Ltd Seal bonding composition having low melting point
JP5011481B2 (en) * 2006-01-06 2012-08-29 株式会社日立製作所 Bonding glass and flat panel display device using the bonding glass
JP5574518B2 (en) * 2008-03-17 2014-08-20 日本電気硝子株式会社 Sealing material
JP2010052990A (en) * 2008-08-28 2010-03-11 Yamato Denshi Kk Lead-free glass material for sealing and organic el display panel using the same
JP5414409B2 (en) * 2009-01-16 2014-02-12 日立粉末冶金株式会社 Low melting glass composition, low-temperature sealing material and electronic component using the same

Also Published As

Publication number Publication date
JP2015163587A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP2012106891A (en) Lead-free glass for sealing, sealing material and sealing material paste
JP5713993B2 (en) Lead-free glass material for sealing organic EL, organic EL display using the same, and method for manufacturing the display
JP5716743B2 (en) SEALING PASTE AND ELECTRONIC DEVICE MANUFACTURING METHOD USING THE SAME
TWI526413B (en) A sealing glass, a glass member having a sealing material layer, and an electronic device and a manufacturing method thereof
JP5609875B2 (en) Sealing glass for semiconductor device, sealing material, sealing material paste, semiconductor device and manufacturing method thereof
TWI482743B (en) A glass member having a sealing material layer and an electronic device using the same, and a method of manufacturing the same
JP5673102B2 (en) Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
CN103328402B (en) Glass member with sealing material layer, electronic device using same and method for producing same
JP6357937B2 (en) Sealing material and sealing package
TWI462829B (en) Glass member having sealing material layer and method for manufacturing the same, and electronic device and manufacturing method thereof
KR20200071675A (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package, and organic electroluminescence element
JP5920513B2 (en) Lead-free glass for sealing, sealing material, sealing material paste
JP6089921B2 (en) Glass paste
JP6311530B2 (en) Lead-free glass for sealing, sealing material, sealing material paste and sealing package
JP5232395B2 (en) Glass paste composition and sealing method
JP2016199423A (en) Glass paste and electronic component
JP2015120623A (en) Sealing material, substrate with sealing material layer and method of manufacturing the same, and sealing body
JP2008308393A (en) Lead-free low softening point glass, lead-free low softening point glass composition, lead-free low softening point glass paste, and fluorescent display tube
JP2008214152A (en) Glass paste composition
JP2015044695A (en) Sealing glass, sealing material, and sealing paste
CN113165957B (en) Glass powder and packaging material using same
JP5772662B2 (en) SEALING MATERIAL PASTE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING THE SAME
JP2011219334A (en) Dielectric formation glass paste for plasma display panel
JP4836075B2 (en) Low-melting lead-free glass material
KR20240017761A (en) Glass composition, glass paste, sealing package, and organic electroluminescence element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5920513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250