JP4836075B2 - Low-melting lead-free glass material - Google Patents

Low-melting lead-free glass material Download PDF

Info

Publication number
JP4836075B2
JP4836075B2 JP2006026615A JP2006026615A JP4836075B2 JP 4836075 B2 JP4836075 B2 JP 4836075B2 JP 2006026615 A JP2006026615 A JP 2006026615A JP 2006026615 A JP2006026615 A JP 2006026615A JP 4836075 B2 JP4836075 B2 JP 4836075B2
Authority
JP
Japan
Prior art keywords
glass
lead
low
glass material
free glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006026615A
Other languages
Japanese (ja)
Other versions
JP2007204328A (en
Inventor
昌弘 吉田
泰雄 幡手
明宏 太田
二充 皿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Electronic Co Ltd
Original Assignee
Yamato Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Electronic Co Ltd filed Critical Yamato Electronic Co Ltd
Priority to JP2006026615A priority Critical patent/JP4836075B2/en
Publication of JP2007204328A publication Critical patent/JP2007204328A/en
Application granted granted Critical
Publication of JP4836075B2 publication Critical patent/JP4836075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Description

本発明は、電子管、蛍光表示管、蛍光表示パネル、プラズマディスプレイパネル、液晶ディスプレイ用バックライトパネル、半導体パッケージ等の各種電子部品・電気製品の開口部や接合部の封着加工、ならびに高真空部の隔壁や電極包囲部等の焼結造形に用いる鉛フリーのガラス材に関する。   The present invention relates to an electronic tube, a fluorescent display tube, a fluorescent display panel, a plasma display panel, a backlight panel for a liquid crystal display, a sealing process for openings and joints of various electronic parts and electrical products such as semiconductor packages, and a high vacuum portion. The present invention relates to a lead-free glass material used for sintering molding such as partition walls and electrode surrounding parts.

一般的に、内部を高真空にして用いる各種電子部品・電気製品の封着加工や焼結造形には、低融性ガラス材が使用される。この低融性ガラス材は、低融点ガラスの粉末からなり、この粉末を有機バインダー溶液でペースト化して封着対象物品の被融着部に塗着し、電気炉等で焼成することにより、ビークル成分を揮散させてガラス粉末が融着したガラス連続層を形成させるものである。   Generally, a low-melting glass material is used for sealing and sintering molding of various electronic parts and electrical products that are used with a high vacuum inside. This low-melting glass material is made of low-melting glass powder, and this powder is pasted with an organic binder solution, applied to the portion to be sealed of the article to be sealed, and fired in an electric furnace or the like, thereby producing a vehicle. The component is volatilized to form a continuous glass layer in which the glass powder is fused.

従来、このような低融性ガラス材としては、主としてPbO−B2 3 系の鉛ガラスの粉末が広く使用されていた。すなわち、鉛ガラスは、PbOの低融点性と高い溶融性により、低い温度で且つ広い温度範囲で加工を行える上、熱膨張が小さく、接着性、密着性、化学的安定性等にも優れるため、高い封止性、融着強度、耐久性が得られるという利点がある。しかるに、鉛は有毒物質であるため、鉛系ガラスの製造過程での労働安全衛生面での問題がある上、鉛系ガラスを使用した電子部品や電気製品が寿命に至った際、そのまま廃棄物として埋立て等で処分すれば鉛の溶出による土壌汚染や地下水汚染の懸念がある一方、再生利用するにも鉛を含むために用途上の制約が大きく、その処置に困窮している現状である。 Conventionally, PbO—B 2 O 3 -based lead glass powder has been widely used as such a low-melting glass material. That is, lead glass can be processed at a low temperature and in a wide temperature range due to the low melting point and high meltability of PbO, and also has low thermal expansion, and is excellent in adhesion, adhesion, chemical stability, and the like. There is an advantage that high sealing performance, fusion strength, and durability can be obtained. However, since lead is a toxic substance, there are problems with occupational safety and health in the manufacturing process of lead-based glass, and when electronic parts and electrical products using lead-based glass reach the end of their life, they are discarded as they are. As a result, there are concerns about soil contamination and groundwater contamination due to elution of lead, but there are significant restrictions on usage because it contains lead even if it is recycled. .

そこで、近年においては、毒性の問題のない無鉛の低融性ガラス材の開発が広く進められつつある。そして、既に多くの無鉛ガラス材の組成が報告されており、特許技術では、例えばP2 5 −ZnO−アルカリ金属酸化物系(特許文献1)、P2 5 −WO3 −アルカリ金属酸化物系(特許文献2)、SnO−P2 5 −ZnO系(特許文献3)、CuO−P2 5 系(特許文献4)、SnO−P2 5 −B2 3 系(特許文献5)、Bi2 3 −B2 3 −SiO2 −Al2 3 −CeO系(特許文献6)、Bi2 3 −B2 3 −ZnO系(特許文献7)、SnO−P2 5 −Cl系(特許文献8)、B2 3 −ZnO−BaO−SnO系(特許文献9)、B2 3 −ZnO−BaO−Na2 O系(特許文献10)、SiO2 −B2 3 −ZnO−BaO−アルカリ金属酸化物系(特許文献11)、B2 3 −Bi2 3 −BaO系(特許文献12)等が提案されている。
特開平5−132339号公報 特開平9−208259号公報 特開2001−302279号公報 特開2001−199740号公報 特開2003−183050号公報 特開2003−54987号公報 特開2003−128430号公報 特開2004−59366号公報 特開2005−15280号公報 特開2005−47778号公報 特開2005−145772号公報 特開2005−231923号公報
Therefore, in recent years, the development of lead-free low-melting glass materials that are free from toxic problems has been widely promoted. Then, it has already been reported many compositions of lead-free glass material, the patent art, for example, P 2 O 5 -ZnO- alkali metal oxide (Patent Document 1), P 2 O 5 -WO 3 - alkali metal oxide Physical system (Patent Document 2), SnO—P 2 O 5 —ZnO system (Patent Document 3), CuO—P 2 O 5 system (Patent Document 4), SnO—P 2 O 5 —B 2 O 3 system (Patent Document 3) Document 5), Bi 2 O 3 —B 2 O 3 —SiO 2 —Al 2 O 3 —CeO system (Patent Document 6), Bi 2 O 3 —B 2 O 3 —ZnO system (Patent Document 7), SnO— P 2 O 5 —Cl system (Patent Document 8), B 2 O 3 —ZnO—BaO—SnO system (Patent Document 9), B 2 O 3 —ZnO—BaO—Na 2 O system (Patent Document 10), SiO 2 2 -B 2 O 3 -ZnO-BaO- alkali metal oxide (Patent Document 11), B 2 O 3 -Bi 2 O 3 -BaO -based (JP Permissible documents 12) have been proposed.
JP-A-5-132339 Japanese Patent Laid-Open No. 9-208259 JP 2001-302279 A JP 2001-199740 A JP 2003-183050 A JP 2003-54987 A JP 2003-128430 A JP 2004-59366 A JP 2005-15280 A Japanese Patent Laid-Open No. 2005-47778 JP-A-2005-147572 JP-A-2005-231923

しかしながら、これら提案の無鉛ガラス材は、いずれも鉛系ガラス材に匹敵するほどの低融性、低熱膨張性、接着性、封止性、化学的耐久性を備えていないため、鉛系ガラス材に完全に代替させ得るものではない。   However, these proposed lead-free glass materials do not have low melting, low thermal expansion, adhesiveness, sealing properties, and chemical durability comparable to lead-based glass materials. Cannot be completely replaced.

本発明は、上述の情況に鑑み、低融性無鉛ガラス材として、非常に低い温度で加工を行え、鉛系ガラスに充分に代替し得る実用的性能を具備し、且つ既述した従来の無鉛系低融性ガラス材のような問題のないものを提供することを目的としている。   In view of the above-mentioned circumstances, the present invention has a practical performance that can be processed at a very low temperature as a low-melting lead-free glass material and can be sufficiently substituted for lead-based glass, and has already been described above. It aims at providing the thing without a problem like a system low-melting glass material.

上記目的を達成するために、本発明者らは、ガラス構成成分が、ガラスの基本骨格である三次元網目構造を形成する網目形成酸化物と、単独ではガラス形成能はないが、三次元網目構造中に入り込んでガラス性状に影響を及ぼす網目修飾酸化物と、単独ではガラス形成能はないが、網目形成酸化物の一部に置き換わって網目形成に加わったり、網目修飾酸化物としての役割も果たし得る中間酸化物の3種に分類されることに着目した。そして、これら各機能成分に属する数多い酸化物から前記3種の組合せを様々に設定し、鉛を実質的に含まない組成での加工用ガラス材としての適性を調べるために、綿密な実験研究によって種々の物理化学的特性を評価すると共に、様々な角度から検討を重ねた。   In order to achieve the above object, the inventors of the present invention have proposed that the glass constituent component is a network-forming oxide that forms a three-dimensional network structure, which is the basic skeleton of glass, and has no glass-forming ability alone, but a three-dimensional network. A network-modified oxide that penetrates into the structure and affects the glass properties, and has no glass-forming ability by itself, but replaces part of the network-forming oxide to participate in network formation, and also plays a role as a network-modified oxide Attention was paid to the classification into three types of intermediate oxides that can be achieved. In order to investigate the suitability as a glass material for processing with a composition that does not substantially contain lead, various combinations of the above-mentioned three kinds of oxides belonging to each of these functional components have been set. Various physicochemical properties were evaluated, and studies were made from various angles.

その結果、網目形成酸化物としてLi2 4 7 を、中間酸化物ないし網目修飾酸化物として鉛系ガラス材のPbOに代替する成分としてZnOを、更に網目修飾酸化物としてのBaOを、それぞれ選択し、これら酸化物を基本成分としたガラス材つまりLi2 4 7 −ZnO−BaO系ガラス材とすることにより、低融性無鉛ガラス材として特に好適な性能が得られることを見出し、本発明をなすに至った。 As a result, Li 2 B 4 O 7 as a network-forming oxide, ZnO as a component replacing PbO of a lead-based glass material as an intermediate oxide or network-modifying oxide, and BaO as a network-modifying oxide, respectively. By selecting and using a glass material containing these oxides as a basic component, that is, a Li 2 B 4 O 7 —ZnO—BaO-based glass material, it has been found that particularly suitable performance can be obtained as a low-melting lead-free glass material, It came to make this invention.

すなわち、本発明の請求項1に係る低融性無鉛ガラス材は、Li2 4 7 と、ZnO及びBaOの少なくとも一方とからなる酸化物を主成分としている。 That is, the low-melting lead-free glass material according to claim 1 of the present invention is mainly composed of an oxide composed of Li 2 B 4 O 7 and at least one of ZnO and BaO.

また、請求項2の発明は、上記請求項1の低融性無鉛ガラス材において、20〜85モル%のLi2 4 7 と、0〜50モル%のZnOと、0〜65モル%のBaOとを含有する構成としている。 The invention of claim 2 is the low fusible lead-free glass material of the first aspect, and Li 2 B 4 O 7 20 to 85 mol%, and 0 to 50 mol% of ZnO, 0 to 65 mol% It is set as the structure containing this BaO.

請求項3の発明は、上記請求項1の低融性無鉛ガラス材において、20〜40モル%のLi2 4 7 と、10〜40モル%のZnOと、40〜60モル%のBaOとを含有する構成としている。 The invention of claim 3 is the low-melting lead-free glass material of claim 1, wherein 20 to 40 mol% Li 2 B 4 O 7 , 10 to 40 mol% ZnO, and 40 to 60 mol% BaO. It is set as the structure containing these.

請求項1の発明によれば、低融性無鉛ガラス材として、Li2 4 7 −ZnO−BaO系であり、鉛系ガラス材のような毒性の問題がなく、しかも低い温度で封着加工や焼結造形が可能である上、低熱膨張性で且つ接着性及び封止性にも優れており、化学的耐久性も良好であり、鉛系ガラス材に代替し得る充分な実用的性能を具備し、また色調が白色を呈することから、プラズマディスプレイパネル内の白隔壁(リブ)や白色誘電体層に好ましく適用できると共に、顔料の配合による調色が容易なものが提供される。 According to the first aspect of the present invention, the low-melting lead-free glass material is Li 2 B 4 O 7 —ZnO—BaO-based, and has no toxicity problem as in the lead-based glass material, and is sealed at a low temperature. In addition to being able to process and sinter-mold, it has low thermal expansion, excellent adhesion and sealing properties, good chemical durability, and sufficient practical performance that can replace lead-based glass materials. In addition, since the color tone is white, it can be preferably applied to the white barrier ribs (ribs) and the white dielectric layer in the plasma display panel, and the color can be easily adjusted by blending the pigment.

請求項2の発明によれば、上記の低融性無鉛ガラス材として、Li2 4 7 とZnO及びBaOが特定のモル比範囲で存在することから、完全な非晶質で、ガラス転移点が475℃以下、軟化点が490℃以下であって、550℃以下といった低い温度での加工を確実に行えるものが提供される。 According to the second aspect of the present invention, Li 2 B 4 O 7 , ZnO and BaO are present in a specific molar ratio range as the low-melting lead-free glass material. Provided is a material having a point of 475 ° C. or lower, a softening point of 490 ° C. or lower, and capable of reliably processing at a low temperature of 550 ° C. or lower.

請求項3の発明によれば、上記の低融性無鉛ガラス材として、Li2 4 7 とZnO及びBaOがより好適なモル比範囲にあることから、ガラス転移点が380℃以下、軟化点が400℃前後であって、450℃以下といった非常に低い温度での加工を確実に行えるものが提供される。 According to the invention of claim 3, as a low fusible lead-free glass material described above, since the Li 2 B 4 O 7 and ZnO and BaO is in the more preferable molar ratio range, a glass transition point of 380 ° C. or less, the softening A material having a point of around 400 ° C. and capable of reliably processing at a very low temperature of 450 ° C. or less is provided.

本発明に係る低融性無鉛ガラス材は、基本的にはLi2 4 7 −ZnO−BaO系のガラス組成であるが、中間酸化物ないし網目修飾酸化物であるZnOと網目修飾酸化物であるBaOの一方を省略した組成、つまりLi2 4 7 −ZnOの2成分系、ならびにLi2 4 7 −BaOの2成分系を包含する。そして、いずれの組成でも鉛系ガラスのような毒性の問題がない上、ガラス転移点〔Tg〕が500℃以下となる組成、更には400℃以下となる組成も可能であり、封着加工や焼結造形等の加工を低温で行え、それだけ被加工物に対する熱影響を少なくできると共に、熱エネルギー消費を低減できる。 The low-melting lead-free glass material according to the present invention basically has a Li 2 B 4 O 7 —ZnO—BaO-based glass composition, but is an intermediate oxide or network-modified oxide ZnO and a network-modified oxide. This includes a composition in which one of BaO is omitted, that is, a binary system of Li 2 B 4 O 7 —ZnO and a binary system of Li 2 B 4 O 7 —BaO. In any composition, there is no problem of toxicity as in lead-based glass, and a glass transition point [Tg] is 500 ° C. or lower, and further 400 ° C. or lower is possible. Processing such as sinter molding can be performed at a low temperature, the thermal influence on the workpiece can be reduced, and the consumption of thermal energy can be reduced.

また、この無鉛ガラス材にあっては、熱膨張係数が小さく、被加工部との熱膨張特性を適合させることが容易である上、被加工物のガラス、セラミック、金属等よりなる表面に対する良好な接着性及び密着性が得られるから、被加工部での剥離やクラックが発生しににく、加工後のガラス層の化学的安定性及び強度にも優れるため、被加工部の耐久性が良好となる。更に、加工後のガラス層の色調が白色を呈するから、プラズマディスプレイパネル内の白隔壁(リブ)や白色誘電体層に好ましく適用できると共に、顔料の配合による調色も容易になる。   In addition, this lead-free glass material has a small coefficient of thermal expansion, and it is easy to adapt the thermal expansion characteristics with the part to be processed. In addition, the surface of the workpiece made of glass, ceramic, metal, etc. is good. Because it provides excellent adhesion and adhesion, it is difficult for peeling and cracks to occur in the processed part, and the chemical stability and strength of the glass layer after processing are excellent. It becomes good. Furthermore, since the color tone of the glass layer after processing exhibits white, it can be preferably applied to the white partition walls (ribs) and the white dielectric layer in the plasma display panel, and toning by blending of pigments is facilitated.

しかして、このLi2 4 7 −ZnO−BaO系の無鉛ガラス材では、20〜85モル%のLi2 4 7 と、0〜50モル%のZnOと、0〜60モル%のBaOとを含み、且つZnO及びBaOの少なくとも一方を必須成分とするガラス組成が好ましい。このようなガラス組成では、後述する実施例の封着試験で示されるように、溶融によって良好なガラス状態が得られ、軟化点〔Tf〕は490℃以下、ガラス転移点〔Tg〕は475℃以下となるため、550℃以下といった低い温度での加工を確実に行え、且つガラス回収率つまり原料とする酸化物粉末からの溶融によるガラスの収率も略80%以上と良好になる。 Thus, in this Li 2 B 4 O 7 —ZnO—BaO-based lead-free glass material, 20 to 85 mol% Li 2 B 4 O 7 , 0 to 50 mol% ZnO, and 0 to 60 mol% A glass composition containing BaO and containing at least one of ZnO and BaO as an essential component is preferable. In such a glass composition, as shown in the sealing test of Examples described later, a good glass state is obtained by melting, the softening point [Tf] is 490 ° C. or less, and the glass transition point [Tg] is 475 ° C. Therefore, processing at a low temperature of 550 ° C. or less can be performed reliably, and the glass recovery rate, that is, the yield of glass by melting from the oxide powder as a raw material can be as good as about 80% or more.

更に、より好適な無鉛ガラス材としては、20〜40モル%のLi2 4 7 と、10〜40モル%のZnOと、40〜60モル%のBaOとからなるガラス組成のものが挙げられる。すなわち、このようなガラス組成では、軟化点が400℃前後、ガラス転移点が380℃以下であって、450℃以下といった非常に低い温度での加工を確実に行えるものとなる。 Furthermore, more suitable lead-free glass material, include a Li 2 B 4 O 7 20 to 40 mol%, 10 to 40 mol% of ZnO, those glass composition consisting of 40 to 60 mol% of BaO It is done. That is, in such a glass composition, the softening point is around 400 ° C., the glass transition point is 380 ° C. or lower, and processing at a very low temperature such as 450 ° C. or lower can be reliably performed.

なお、網目形成酸化物であるLi2 4 7 は、リチウムとホウ素の複合酸化物であり、Li2 O・2B2 3 としてLi2 Oの1モルとB2 3 の2モルとの化合物に相当する。しかるに、Li2 4 7 に代えてLi2 OとB2 3 とをモル比1:2の割合で用いた場合は、Li2 4 7 を用いた本発明の無鉛ガラス材に比較して熱的安定性(ΔT=結晶化開始温度Tx−ガラス転移点Tg)が低下すると共に、加工後のガラス層が茶褐色になるという欠点を生じることが判明している。 The network-forming oxide Li 2 B 4 O 7 is a composite oxide of lithium and boron. As Li 2 O · 2B 2 O 3 , 1 mol of Li 2 O and 2 mol of B 2 O 3 It corresponds to the compound of However, Li 2 B 4 O 7 molar ratio between Li 2 O and B 2 O 3 in place of the 1: If used in a proportion of 2, the lead-free glass material of the present invention using Li 2 B 4 O 7 In comparison, it has been found that the thermal stability (ΔT = crystallization start temperature Tx−glass transition point Tg) is lowered and that the glass layer after processing becomes brown.

本発明の低融性無鉛ガラス材を製造するには、原料の粉末混合物を白金るつぼ等の容器に入れ、これを電気炉等の加熱炉内で所定時間焼成して溶融させてガラス化し、この溶融物をアルミナボート等の適当な型枠に流し込んで冷却し、得られたガラスブロックを粉砕機によって適当な粒度まで粉砕すればよい。そのガラス粉末の粒度は0.05〜100μmの範囲が好適であり、上記粉砕による粗粒分は分級して除去すればよい。   In order to produce the low-melting lead-free glass material of the present invention, a powder mixture of raw materials is put into a container such as a platinum crucible, and this is baked and melted for a predetermined time in a heating furnace such as an electric furnace to be vitrified. The melt may be poured into an appropriate formwork such as an alumina boat and cooled, and the obtained glass block may be pulverized to an appropriate particle size by a pulverizer. The particle size of the glass powder is preferably in the range of 0.05 to 100 μm, and the coarse particles by the pulverization may be classified and removed.

また、このような低融性無鉛ガラス材は、封着や焼結造形等の加工に供する際、その粉末単独で用いればよいが、特に立体的に盛り付けて焼結造形する場合、ガラス粉末を焼結用母材として充填材や骨材の如きフィラーを混合した混合物形態で用いることが好ましい。このような混合物形態では、低融性ガラス材がフィラーの粒子同士を結着するバインダーとして機能するから、立体的な造形を容易に行え、高強度で緻密なセラミック形態の焼結体が得られる。また、このガラス材は溶融して無色透明のガラスになるから、充填材や骨材の配合によって焼結体を光反射性の高い白色に設定でき、発光部位に用いた際の光取出し効果を大きくできるという利点もある。   In addition, such a low-melting lead-free glass material may be used alone when subjected to processing such as sealing and sintering modeling, but in particular, when three-dimensionally placing and sintering modeling, glass powder is used. It is preferable to use in the form of a mixture in which fillers such as fillers and aggregates are mixed as a sintering base material. In such a mixture form, the low-melting glass material functions as a binder for binding the filler particles to each other, so that three-dimensional shaping can be easily performed, and a high-strength and dense ceramic sintered body can be obtained. . In addition, since this glass material melts to become colorless and transparent glass, the sintered body can be set to a highly light-reflective white by blending filler and aggregate, and the light extraction effect when used in the light emitting part There is also an advantage that it can be enlarged.

上記のフィラーとしては、低融性無鉛ガラス材よりも高融点で、加工時の焼成温度では溶融しないものであればよく、特に種類は制約されないが、例えば珪酸ジルコニウム、コジェライト、リン酸ジルコニル、β・ユークリプタート、β・スポジュメン、ジルコン、アルミナ、ムライト、シリカ、β−石英固溶体、ケイ酸亜鉛、チタン酸アルミニウム等の粉末が好適である。しかして、これらフィラーの配合量は、低融性無鉛ガラス材/フィラーの重量比で95/5〜55/45程度の範囲とするのがよく、多過ぎてはガラス組成物による結着力が不足して強固な焼結体を形成できない。   The filler is not particularly limited as long as it has a higher melting point than the low-melting lead-free glass material and does not melt at the firing temperature during processing. For example, zirconium silicate, cordierite, zirconyl phosphate, β -Powders such as eucryptate, β-spodumene, zircon, alumina, mullite, silica, β-quartz solid solution, zinc silicate, and aluminum titanate are suitable. Therefore, the blending amount of these fillers should be in the range of about 95/5 to 55/45 in terms of the weight ratio of low-melting lead-free glass material / filler, and if it is too much, the binding force due to the glass composition is insufficient. Thus, a strong sintered body cannot be formed.

更に、本発明の低融性無鉛ガラス材、ならびに該ガラス材に上記フィラーを混合した混合物には、必要に応じて種々の顔料を配合することができる。しかして、この無鉛ガラス材は、既述のように溶融して白色を呈するから、顔料の配合による調色が容易である。   Furthermore, various pigments can be blended in the low-melting lead-free glass material of the present invention and the mixture obtained by mixing the glass material with the filler as necessary. Since this lead-free glass material melts and exhibits a white color as described above, it is easy to adjust the color by blending the pigment.

本発明の低融性無鉛ガラス材の粉末、ならびに該粉末に前記フィラーや顔料を混合した混合粉末は、焼結造形では粉末のまま成形型に充填して加圧成形し、得られた成形物を被加工物の所要部位に配置して焼成する場合もあるが、一般的には粉末を有機バインダー溶液に高濃度分散させたペーストとし、これを被加工物の所要部位に塗工したり盛り付けて焼成に供するから、予めペースト形態として製品化してもよい。   The powder of the low-melting lead-free glass material of the present invention, and the mixed powder obtained by mixing the filler and the pigment with the powder are filled in a molding die in the form of powder in the sintering molding and pressure-molded, and the molded product obtained May be placed and fired at the required part of the work piece, but in general, the paste is made by dispersing the powder in an organic binder solution at a high concentration, and this is applied or placed on the required part of the work piece. Since it is used for baking, it may be commercialized as a paste form in advance.

上記ペーストに用いる有機バインダー溶液としては、特に制約はないが、例えばニトロセルロースやエチルセルロースの如きセルロース類のバインダーを、パインオイル、ブチルジグリコールアセテート、芳香族炭化水素系溶剤、シンナーの如き混合溶剤等の溶剤に溶解させたもの、アクリル系樹脂バインダーをケトン類、エステル類、低沸点芳香族等の溶剤に溶解させたものがある。しかして、ペーストの粘度は、塗工作業性面より、100〜2000dPa・sの範囲とするのがよい。   The organic binder solution used for the paste is not particularly limited. For example, a cellulose binder such as nitrocellulose or ethyl cellulose, a mixed solvent such as pine oil, butyl diglycol acetate, an aromatic hydrocarbon solvent, or thinner. And those obtained by dissolving an acrylic resin binder in solvents such as ketones, esters and low-boiling aromatics. Therefore, the viscosity of the paste is preferably in the range of 100 to 2000 dPa · s from the viewpoint of coating workability.

封着加工では、上記のペーストを封着対象物品の被封着部に塗着し、この物品を電気炉等の加熱炉内で焼成することにより、ガラス粉末を溶融一体化して封着ガラス層を形成すればよい。しかして、この焼成は、一回で行うことも可能であるが、封着品質を高める上では仮焼成と本焼成の2段階で行うのがよい。すなわち、2段階焼成では、まず封着加工用無鉛ガラス材のペーストを封着対象物品の被封着部に塗着し、この塗着した物品を該ペーストに含まれる無鉛ガラスの軟化点〔Tf〕付近で仮焼成することにより、ペーストのビークル成分(バインダーと溶媒)を揮散・熱分解させてガラス成分のみが残る状態とし、次いで当該無鉛ガラスの結晶化開始温度〔Tx〕付近で本焼成を行ってガラス成分が完全に溶融一体化した封着ガラス層を形成する。   In the sealing process, the above paste is applied to the sealed portion of the article to be sealed, and the article is baked in a heating furnace such as an electric furnace to melt and integrate the glass powder to form a sealed glass layer. May be formed. Thus, this firing can be performed once, but in order to improve the sealing quality, it is preferable to perform the firing in two stages of temporary firing and main firing. That is, in the two-stage baking, first, a paste of a lead-free glass material for sealing is applied to the sealed portion of the article to be sealed, and this coated article is softened by the softening point [Tf of the lead-free glass contained in the paste. ] Preliminary firing in the vicinity causes the vehicle components (binder and solvent) of the paste to be volatilized and thermally decomposed to leave only the glass component, and then the firing is performed near the crystallization start temperature [Tx] of the lead-free glass. A sealing glass layer in which the glass components are completely melted and integrated is formed.

このような2段階焼成によれば、仮焼成の段階でビークル成分が揮散除去され、本焼成ではガラス成分同士が融着することになるから、封着ガラス層中に気泡や脱気によるピンホールが生じるのを防止でき、もって封止の信頼性及び封止部の強度を高めることができる。また、封着対象物品が真空パッケージのように複数の部材を封着にて接合したり封着部分に電極やリード線、排気管等を挟んで封着固定するものである場合は、組立前の部材単位で前記仮焼成を行ったのち、加熱炉から取り出した部材を製品形態に組み立て、この組立状態で本焼成を行うようにすればよい。   According to such two-stage firing, the vehicle components are volatilized and removed at the preliminary firing stage, and the glass components are fused to each other in the main firing. Therefore, there is a pinhole due to bubbles or deaeration in the sealing glass layer. Can be prevented, and thus the reliability of sealing and the strength of the sealing portion can be increased. Also, if the article to be sealed is one that joins multiple members by sealing, such as a vacuum package, or is sealed and fixed with electrodes, lead wires, exhaust pipes, etc. in the sealed part, before assembly After performing the preliminary firing for each member, the member taken out from the heating furnace is assembled into a product form, and the main firing is performed in this assembled state.

なお、仮焼成の特に好適な温度範囲は前記軟化点〔Tf〕−10℃から+40℃、本焼成の特に好適な温度範囲は結晶化開始温度〔Tx〕−20℃から+50℃である。また、仮焼成では、内部に生じた気泡を層中から確実に離脱させるために緩やかな昇温速度とするのがよく、室温からガラス転移点〔Tg〕付近までは0.1〜30℃/分程度、ガラス転移点〔Tg〕付近から軟化点〔Tf〕付近までは0.1〜10℃/分程度が好ましい。一方、本焼成では、室温から結晶化開始温度〔Tx〕付近まで0.1〜50℃/分程度で昇温させ、結晶化開始温度〔Tx〕付近で一定に保持するのがよい。   A particularly preferable temperature range for the pre-baking is the softening point [Tf] -10 ° C. to + 40 ° C., and a particularly preferable temperature range for the main baking is a crystallization start temperature [Tx] -20 ° C. to + 50 ° C. Further, in the pre-baking, it is preferable to set a moderate temperature increase rate in order to surely remove bubbles generated in the layer from the room temperature, and from room temperature to the vicinity of the glass transition point [Tg], 0.1-30 ° C. / It is preferably about 0.1 to 10 ° C./minute from about the glass transition point [Tg] to the softening point [Tf]. On the other hand, in the main firing, it is preferable that the temperature is raised from room temperature to around the crystallization start temperature [Tx] at about 0.1 to 50 ° C./min and kept constant near the crystallization start temperature [Tx].

本発明の低融性無鉛ガラス材による加工対象は特に制約はなく、例えば封着加工では電子管、蛍光表示管、蛍光表示パネル、プラズマディスプレイパネル、液晶ディスプレイ用バックライトパネル、半導体パッケージ等の各種電子部品・電気製品の開口部や接合部、焼結造形では高真空部の隔壁や電極包囲部等が挙げられるが、本発明は特に内部を10-6Torr以上の高真空とする真空パッケージのように高度な封止性を要する被封着物品への適用性に優れる。 There are no particular restrictions on the object to be processed with the low-melting lead-free glass material of the present invention. For example, in sealing processing, various types of electronic devices such as electron tubes, fluorescent display tubes, fluorescent display panels, plasma display panels, liquid crystal display backlight panels, and semiconductor packages are used. Openings and joints of parts and electrical products, and high-vacuum partition walls and electrode enclosures are used for sintered molding. The present invention is particularly like a vacuum package that has a high vacuum of 10 −6 Torr or more inside. It is excellent in applicability to sealed articles that require a high degree of sealing performance.

以下に、本発明を実施例によって具体的に説明する。なお、以下において使用した原料酸化物はいずれも和光純薬社製の特級試薬であり、その他の分析試薬等についても同様に特級試薬を用いた。   Hereinafter, the present invention will be specifically described by way of examples. In addition, all the raw material oxides used in the following are special grade reagents manufactured by Wako Pure Chemical Industries, and the special grade reagents were similarly used for the other analysis reagents and the like.

〔無鉛ガラス材の製造〕
原料酸化物としてLi2 4 7 粉末、ZnO粉末、BaO粉末を後記表1及び表2に記載の比率(モル%)で混合したもの(全量15g)を白金るつぼに収容し、電気炉内で約1000℃にて60分間焼成したのち、その溶融物をアルミナポートに流し込んでガラスバーを作成し、大気中で冷却後に該ガラスバーを自動乳鉢にて粉砕し、この粉砕物を分級して粒径100μm以下のものを採取し、無鉛ガラス材G1〜G41を製造した。
[Manufacture of lead-free glass]
A mixture of Li 2 B 4 O 7 powder, ZnO powder, and BaO powder as raw material oxides in the proportions (mol%) described in Table 1 and Table 2 (total amount 15 g) is placed in a platinum crucible and placed in an electric furnace. After baking at about 1000 ° C. for 60 minutes, the melt is poured into an alumina port to prepare a glass bar. After cooling in the air, the glass bar is pulverized in an automatic mortar, and the pulverized product is classified. Samples having a particle size of 100 μm or less were collected to produce lead-free glass materials G1 to G41.

上記実施例で製造した無鉛ガラス材G1〜G41について、ガラス回収率、ガラス転移点〔Tg〕、軟化点〔Tf〕、結晶化開始温度〔Tx〕、熱的安定性〔ΔT〕、結晶化状態、熱膨張係数〔a〕を調べた。その結果を後記表1及び表2に示す。なお、各項目の測定方法は次の通りである。   For the lead-free glass materials G1 to G41 produced in the above examples, the glass recovery rate, glass transition point [Tg], softening point [Tf], crystallization start temperature [Tx], thermal stability [ΔT], crystallization state The thermal expansion coefficient [a] was examined. The results are shown in Tables 1 and 2 below. The measurement method for each item is as follows.

〔ガラス回収率〕
前記の製造工程において、白金るつぼから溶融物をアルミナボートに流し込んだ際の収量より回収率を算定した。なお、回収率は、焼成後の全重量に対するアルミナボート流入量の重量%であり、残余は白金るつぼ内に残った量に相当する。
[Glass recovery rate]
In the above production process, the recovery rate was calculated from the yield when the melt was poured into the alumina boat from the platinum crucible. The recovery rate is the weight percentage of the inflow amount of the alumina boat with respect to the total weight after firing, and the remainder corresponds to the amount remaining in the platinum crucible.

〔ガラス転移点、軟化点、結晶化開始温度、熱的安定性〕
示差熱分析装置(島津製作所社製DT−40)により、リファレンス(標準サンプル)としてα−アルミナを用い、加熱速度10℃/分、温度範囲25℃(室温)〜600℃の測定条件でサンプルのガラス転移点〔Tg〕、軟化点〔Tf〕、結晶化開始温度〔Tx〕を測定すると共に、その結果から熱的安定性〔ΔT=Tx−Tg〕を算出した。なお、前記ガラス回収率が0のものは当然に測定不能であるが、該回収率が低い一部のものについても測定を省略した。
(Glass transition point, softening point, crystallization start temperature, thermal stability)
Using a differential thermal analyzer (DT-40 manufactured by Shimadzu Corporation), α-alumina was used as a reference (standard sample), the heating rate was 10 ° C / min, and the sample was measured under the measurement conditions of a temperature range of 25 ° C (room temperature) to 600 ° C. The glass transition point [Tg], softening point [Tf], and crystallization start temperature [Tx] were measured, and thermal stability [ΔT = Tx−Tg] was calculated from the results. In addition, although the thing with the said glass recovery rate of 0 cannot be measured naturally, the measurement was abbreviate | omitted also about the one part with this low recovery rate.

〔ガラス化状態〕
粉末X線解析装置(理学電気社製ガイガーフレックス 2013型)により、走査速度:2°/分、測定角度:2θ=60°→20°の条件でガラス粉末の構造解析を行い、非晶質(完全な無定形ガラスの状態)を○、一部結晶化(ガラス状の部分と結晶部分に分相化した状態)を△、結晶化(殆どガラス化していない状態)を×として区分した。なお、封着や焼結造形等の加工のためには非晶質であることが望ましい。
[Vitrification state]
Using a powder X-ray analyzer (Geiger Flex 2013 model manufactured by Rigaku Denki Co., Ltd.), the glass powder was subjected to structural analysis under the conditions of scanning speed: 2 ° / min, measurement angle: 2θ = 60 ° → 20 °, and amorphous ( A state of complete amorphous glass) was classified as ◯, a part of crystallization (a state of phase separation into a glassy part and a crystal part) was represented by Δ, and a part of crystallization (a state of almost no vitrification) was classified as x. In addition, it is desirable that it is amorphous for processing such as sealing and sintering modeling.

〔熱膨張係数〕
前記の粉末X線解析装置による構造解析で非晶質であった無鉛ガラス材の一部を対象として、熱機械分析装置(理学電気社製TMA8310)により、熱膨張係数を測定した。この測定は、無鉛ガラス材粉末を再度溶融し、これを5×5×20mm(縦×横×高さ)の四角柱に成形し、上底面が平行に成形されたものを測定試料として用い、25〜200℃まで5℃/分で昇温させ、平均熱膨張係数αを求めた。また、標準サンプルには、α−Al2 3 を用いた。







































[Coefficient of thermal expansion]
The thermal expansion coefficient was measured by a thermomechanical analyzer (TMA8310 manufactured by Rigaku Corporation) for a part of the lead-free glass material that was amorphous in the structural analysis by the powder X-ray analyzer. In this measurement, the lead-free glass material powder is melted again, and this is formed into a square column of 5 × 5 × 20 mm (length × width × height), and the upper bottom surface is formed in parallel and used as a measurement sample. The temperature was increased from 25 to 200 ° C. at 5 ° C./min, and the average thermal expansion coefficient α was determined. Furthermore, the standard sample was used α-Al 2 O 3.







































Figure 0004836075
Figure 0004836075


Figure 0004836075
Figure 0004836075


図1の三角線図に、前記実施例で製造したLi2 4 7 −ZnO−BaO系の無鉛ガラス材No.1〜36について、ガラス組成(原料酸化物の配合比)とガラス化状態との関係をプロットすると共に、非晶質のガラス化状態になる領域Zを仮想線により、更にガラス転移点〔Tg〕が380℃以下になる最も好ましい領域Gを破線により、それぞれ囲んで示した。なお、○は非晶質、△は一部結晶化、×は結晶化のガラス組成である。 In the triangular diagram of FIG. 1, the Li 2 B 4 O 7 —ZnO—BaO-based lead-free glass materials Nos. 1 to 36 manufactured in the above-described examples have a glass composition and a vitrification state. A region Z that is in an amorphous vitrified state is surrounded by an imaginary line, and a most preferable region G having a glass transition point [Tg] of 380 ° C. or lower is surrounded by a broken line. . In addition, (circle) is an amorphous, (triangle | delta) is a partially crystallized glass, and x is a glass composition of crystallization.

表1及び表2の結果と図1より、Li2 4 7 −ZnO−BaO系の無鉛ガラス材において完全な非晶質のガラス状態が得られるのは、Li2 4 7 が20〜85モル%、ZnOが0〜50モル%、BaOが0〜60モル%の範囲のガラス組成であることが判る。そして、このようなガラス組成の無鉛ガラス材は、ガラス転移点が475℃以下、軟化点が490℃以下であって、熱膨張係数も小さく、550℃以下といった低い温度での加工を確実に行えるものとなる。更に、図1の破線で示す最も好ましい領域Gの無鉛ガラス材は、20〜40モル%のLi2 4 7 と、10〜40モル%のZnOと、40〜60モル%のBaOとからなるガラス組成を有し、ガラス転移点が380℃以下、軟化点が400℃前後であって、450℃以下といった非常に低い温度での加工を確実に行えるから、従来の鉛ガラス材に匹敵する性能を具備していると言える。 From the results of Tables 1 and 2 and FIG. 1, the Li 2 B 4 O 7 has a Li 2 B 4 O 7 of 20 in which a completely amorphous glass state can be obtained in a Li 2 B 4 O 7 —ZnO—BaO-based lead-free glass material. It can be seen that the glass composition is in the range of ˜85 mol%, ZnO of 0 to 50 mol%, and BaO of 0 to 60 mol%. The lead-free glass material having such a glass composition has a glass transition point of 475 ° C. or lower, a softening point of 490 ° C. or lower, a small coefficient of thermal expansion, and can be reliably processed at a low temperature of 550 ° C. or lower. It will be a thing. Furthermore, the most preferable lead-free glass material in the region G shown by the broken line in FIG. 1 is composed of 20 to 40 mol% Li 2 B 4 O 7 , 10 to 40 mol% ZnO, and 40 to 60 mol% BaO. Since the glass composition has a glass transition point of 380 ° C. or lower, a softening point is around 400 ° C., and processing at a very low temperature of 450 ° C. or lower can be performed reliably, it is comparable to conventional lead glass materials. It can be said that it has performance.

前記実施例で製造したLi2 4 7 −ZnO−BaO系の無鉛ガラス材について、各酸化物成分の含有率(モル%)とガラス転移点〔Tg〕との関係を図2(A)〜(C)に、各酸化物成分の含有率(モル%)と熱膨張係数α(×10-6-1)との関係を図3(A)〜(C)に、それぞれ示す。図2より、ガラス転移点〔Tg〕は、Li2 4 7 の含有率が低くなるほど、またBaOの含有率が高くなるほど、低下する傾向が認められるが、ZnOの含有率には余り影響されないことが判る。一方、図3より、熱膨張係数αについては、各成分の含有率との明瞭な相関関係は認められない。 Regarding the Li 2 B 4 O 7 —ZnO—BaO-based lead-free glass material produced in the above example, the relationship between the content of each oxide component (mol%) and the glass transition point [Tg] is shown in FIG. FIGS. 3A to 3C show the relationship between the content (mol%) of each oxide component and the thermal expansion coefficient α (× 10 −6 K −1 ) in FIGS. From FIG. 2, the glass transition point [Tg] tends to decrease as the Li 2 B 4 O 7 content decreases and the BaO content increases. However, the glass transition point [Tg] has a great influence on the ZnO content. It turns out not to be. On the other hand, from FIG. 3, there is no clear correlation between the thermal expansion coefficient α and the content of each component.

なお、ガラスは割れやすい材料であるから、ガラスと被封着体との熱膨張係数を適合させて封着部の応力(ストレス)を制御し、強固な封着体とする必要があるため、封着材の熱膨張係数αは低いことが望ましい。この点、本発明の無鉛ガラス材における7〜11×10-6-1という熱膨張係数は非常に低い値であり、それだけ封着材として優れることが判る。 Since glass is a fragile material, it is necessary to control the stress (stress) of the sealing part by adapting the thermal expansion coefficient between the glass and the object to be sealed, and to make a strong sealing body. It is desirable that the thermal expansion coefficient α of the sealing material is low. In this respect, the thermal expansion coefficient of 7 to 11 × 10 −6 K −1 in the lead-free glass material of the present invention is a very low value, and it can be seen that it is excellent as a sealing material.

〔封着試験〕
前記実施例における無鉛ガラス材No.27の粉末にエチルセルロースのシンナー溶液を加え、十分に混練してガラスペーストを調製し、このガラスペーストをソーダライム板ガラスの片面に均一に塗布し、これを電気炉内で加熱速度10℃/分で230℃まで昇温させ、この温度で5分間保持したのち、更に加熱速度4℃/分で軟化点〔Tf〕(375.5℃)付近である390℃まで昇温させ、この温度で10分間保持する仮焼成を行った。その後、電気炉から取り出した板ガラスにガラスペーストを塗布していない板ガラスを重ねて、クリップで固定し、再度電気炉に入れ、加熱速度40℃/分で結晶化開始温度〔Tx〕(439.4℃)附近である450℃まで昇温し、この温度で20分間保持する本焼成を行った。その結果、封着部には応力による剥離やクラックは発生せず、封着加工用ガラス材として十分な機密性を確保できることが判明した。
[Sealing test]
The lead-free glass material No. in the said Example. A glass paste is prepared by adding a thinner solution of ethyl cellulose to 27 powder and sufficiently kneaded. The glass paste is uniformly applied to one side of soda lime plate glass, and this is heated at a heating rate of 10 ° C./min in an electric furnace. The temperature was raised to 230 ° C., held at this temperature for 5 minutes, and further heated to 390 ° C. near the softening point [Tf] (375.5 ° C.) at a heating rate of 4 ° C./minute, and at this temperature for 10 minutes. Pre-baking was performed. Thereafter, the plate glass not coated with the glass paste is overlapped on the plate glass taken out from the electric furnace, fixed with clips, put again into the electric furnace, and the crystallization start temperature [Tx] (439.4) at a heating rate of 40 ° C./min. C.) The main calcination was performed by raising the temperature to 450 ° C., which is close to the temperature, and holding at this temperature for 20 minutes. As a result, it has been found that peeling and cracking due to stress do not occur in the sealing portion, and sufficient confidentiality can be secured as a glass material for sealing processing.

実施例で製造したLi2 4 7 −ZnO−BaO系無鉛ガラス材のガラス組成をガラス化状態と共に示す三角線図である。The glass composition of Li 2 B 4 O 7 -ZnO- BaO -based lead-free glass material manufactured in Example is a triangular diagram showing with vitrified state. 同無鉛ガラス材の各酸化物成分の含有率とガラス転移点との相関を示し、(A)はLi2 4 7 の相関図、(B)はZnOの相関図、(C)はBaOの相関図である。The correlation between the content of each oxide component of the lead-free glass material and the glass transition point is shown, (A) is a correlation diagram of Li 2 B 4 O 7 , (B) is a correlation diagram of ZnO, (C) is BaO. FIG. 同無鉛ガラス材の各酸化物成分の含有率と熱膨張係数との相関を示し、(A)はLi2 4 7 の相関図、(B)はZnOの相関図、(C)はBaOの相関図である。The correlation between the content of each oxide component of the lead-free glass material and the thermal expansion coefficient is shown, (A) is a correlation diagram of Li 2 B 4 O 7 , (B) is a correlation diagram of ZnO, (C) is BaO. FIG.

Claims (3)

Li2 4 7 と、ZnO及びBaOの少なくとも一方とからなる酸化物を主成分とする低融性無鉛ガラス材。 A low-melting lead-free glass material mainly composed of an oxide composed of Li 2 B 4 O 7 and at least one of ZnO and BaO. 20〜85モル%のLi2 4 7 と、0〜50モル%のZnOと、0〜60モル量%のBaOとを含有する請求項1記載の低融性無鉛ガラス材。 And 20-85 mol% of Li 2 B 4 O 7, and 0 to 50 mol% of ZnO, low fusible lead-free glass material according to claim 1, further comprising a 0-60 molar amount% of BaO. 20〜40モル%のLi2 4 7 と、10〜40モル%のZnOと、40〜60モル%のBaOとを含有する請求項1記載の低融性無鉛ガラス材。
20 to 40 mol% of Li 2 B 4 O 7, and 10 to 40 mol% of ZnO, low fusible lead-free glass material according to claim 1, further comprising a 40 to 60 mole% BaO.
JP2006026615A 2006-02-03 2006-02-03 Low-melting lead-free glass material Expired - Fee Related JP4836075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026615A JP4836075B2 (en) 2006-02-03 2006-02-03 Low-melting lead-free glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026615A JP4836075B2 (en) 2006-02-03 2006-02-03 Low-melting lead-free glass material

Publications (2)

Publication Number Publication Date
JP2007204328A JP2007204328A (en) 2007-08-16
JP4836075B2 true JP4836075B2 (en) 2011-12-14

Family

ID=38484116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026615A Expired - Fee Related JP4836075B2 (en) 2006-02-03 2006-02-03 Low-melting lead-free glass material

Country Status (1)

Country Link
JP (1) JP4836075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213221B2 (en) 2007-08-06 2013-06-19 パナソニック株式会社 Flow rate measuring device, communication system, flow rate measuring method, flow rate measuring program, and fluid supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945939A (en) * 1982-09-08 1984-03-15 Agency Of Ind Science & Technol Glass for exo-electron dosimeter and its preparation
JPS6275240A (en) * 1985-09-30 1987-04-07 Nippon Kokan Kk <Nkk> Flux for hardly meltable sample

Also Published As

Publication number Publication date
JP2007204328A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
KR100981620B1 (en) Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
JP5713993B2 (en) Lead-free glass material for sealing organic EL, organic EL display using the same, and method for manufacturing the display
JP3914245B2 (en) Lead-free glass material for sealing, sealing processed material using the same, and sealing processing method
JP6022070B2 (en) Vanadium-based glass material for local heating sealing, flat display using the same, and method for manufacturing the display
JP6357937B2 (en) Sealing material and sealing package
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP4766444B2 (en) Bismuth-based lead-free sealing material
JP2012106891A (en) Lead-free glass for sealing, sealing material and sealing material paste
JP5083706B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2003192378A (en) Lead-free low-melting glass for sealing
WO2007132754A1 (en) Bismuth-based sealing material and bismuth-base paste material
KR101220443B1 (en) Crystallizable glass for sealing, crystallizable glass composition for sealing comprising the same, crystallizable glass paste, and oled panel
JP4941880B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2008214152A (en) Glass paste composition
JP5920513B2 (en) Lead-free glass for sealing, sealing material, sealing material paste
JP4836075B2 (en) Low-melting lead-free glass material
JP2008308393A (en) Lead-free low softening point glass, lead-free low softening point glass composition, lead-free low softening point glass paste, and fluorescent display tube
JP4840980B2 (en) Low-melting lead-free glass material
JP4154732B2 (en) Sealing bismuth glass mixture
JP2007161524A (en) Bismuth-based glass composition
KR101028340B1 (en) Frit composition having softening characteristics at low temperature
JP2007169162A (en) Bismuth-based glass composition and bismuth-based material
KR20240017761A (en) Glass composition, glass paste, sealing package, and organic electroluminescence element
JP2016108164A (en) Sealing glass and sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees