JP5919948B2 - 画像形成装置およびプログラム - Google Patents

画像形成装置およびプログラム Download PDF

Info

Publication number
JP5919948B2
JP5919948B2 JP2012073824A JP2012073824A JP5919948B2 JP 5919948 B2 JP5919948 B2 JP 5919948B2 JP 2012073824 A JP2012073824 A JP 2012073824A JP 2012073824 A JP2012073824 A JP 2012073824A JP 5919948 B2 JP5919948 B2 JP 5919948B2
Authority
JP
Japan
Prior art keywords
image
image forming
unit
detection signal
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012073824A
Other languages
English (en)
Other versions
JP2013205585A (ja
Inventor
浩介 久保田
浩介 久保田
哲宏 井上
哲宏 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2012073824A priority Critical patent/JP5919948B2/ja
Priority to US13/591,786 priority patent/US8830521B2/en
Priority to CN201210369268.3A priority patent/CN103365142B/zh
Publication of JP2013205585A publication Critical patent/JP2013205585A/ja
Application granted granted Critical
Publication of JP5919948B2 publication Critical patent/JP5919948B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0178Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image
    • G03G15/0189Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image primary transfer to an intermediate transfer belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5054Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt
    • G03G15/5058Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt using a test patch
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0122Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt
    • G03G2215/0125Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted
    • G03G2215/0132Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted vertical medium transport path at the secondary transfer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0151Apparatus for electrophotographic processes for producing multicoloured copies characterised by the technical problem
    • G03G2215/0158Colour registration
    • G03G2215/0161Generation of registration marks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Color Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

本発明は、画像形成装置、プログラムに関する。
特許文献1には、イエローのレジストレーションマークでは、イエローの現像剤のみを転写して得られる一対の単色のパターンを、ブラックの単色のパターンを挟んで搬送ベルトの移動方向に沿って両側に形成し、マゼンタ、シアンのレジストレーションマークも同様であるレジストレーションマークが開示されている。
特許文献2には、位置検出用色画像パターンの検出を光学的センサのセンサ出力のピーク値の一定割合をしきい値とし、センサ出力がしきい値に到達したときに位置検出用色画像パターンの後縁を検出するようにした多色画像形成装置が開示されている。
特開2009−244505号公報 特開2010−160317号公報
ここで、複数の色を使用して画像を形成する画像形成装置において、各色画像の位置ずれは、より少ないことが望ましい。
請求項1に記載の発明は、予め定められた複数色を使用して画像を形成する画像形成部と、前記画像形成部にて形成される画像の位置ずれ補正を行うために用いる画像補正用指標を、1つの型について同色にて連続して2個以上当該画像形成部により形成させる指標形成手段と、前記画像形成部により形成された前記画像補正用指標が順次転写される像保持体と、前記画像補正用指標に向け光を出射する光源と、前記像保持体および当該画像補正用指標から反射された反射光を受光して当該画像補正用指標を検出するための検出信号とする受光部と、を備える検出手段と、前記検出手段の前記受光部より得られた検出信号から、連続する2個の画像補正用指標の間の位置を特定する位置特定手段と、前記位置特定手段により特定された前記2個の画像補正用指標の間の位置から、前記画像形成部にて形成される画像の位置ずれ補正を行なう位置ずれ補正部と、を備えることを特徴とする画像形成装置である。
請求項2に記載の発明は、前記指標形成手段は、前記連続して2個形成される画像補正用指標として黒色以外の色のものを形成させることを特徴とする請求項1に記載の画像形成装置である。
請求項3に記載の発明は、前記検出手段は、前記光の光路上に当該光を屈折させる光学素子を有しないことを特徴とする請求項1または2に記載の画像形成装置である。
請求項4に記載の発明は、前記位置特定手段は、前記検出信号の極大値を検知することで連続する2個の画像補正用指標の間の位置を特定することを特徴とする請求項1乃至3の何れか1項に記載の画像形成装置である。
請求項5に記載の発明は、コンピュータに、予め定められた複数色を使用して画像を形成する画像形成部にて形成される画像の位置ずれ補正を行うために用いる画像補正用指標を、1つの型について同色にて連続して2個以上当該画像形成部により形成させる機能と、前記画像形成部により形成された前記画像補正用指標を像保持体に順次転写させる機能と、前記画像補正用指標に向け光を出射する光源と、前記像保持体および当該画像補正用指標から反射された反射光を受光して当該画像補正用指標を検出するための検出信号とする受光部と、を備える検出手段から当該検出信号を取得する機能と、前記検出手段の前記受光部より得られた検出信号から、連続する2個の画像補正用指標の間の位置を特定する機能と、特定された前記2個の画像補正用指標の間の位置から、前記画像形成部にて形成される画像の位置ずれ補正を行なう機能と、を実現させるプログラムである。
請求項1の発明によれば、本発明を採用しない場合に比べ、各色画像の位置ずれが、より少ない画像形成装置を提供できる。
請求項2の発明によれば、拡散反射光を生ずる色を対象として1つの型について連続して2個以上の画像補正用指標を形成させることができる。
請求項3の発明によれば、本発明を採用しない場合に比べ、より安価に検知手段を構成することができる。
請求項4の発明によれば、1つの型について連続する2個の画像補正用指標の中央の位置を特定することができる。
請求項5の発明によれば、本発明を採用しない場合に比べ、画像形成部における各色画像の位置ずれを、より少なくする機能をコンピュータにより実現できる。
本実施の形態が適用される画像形成装置の構成を示した図である。 位置ずれ制御を実行するための構成を説明する図である。 検出センサ部における画質調整用パターンを読み取る読取機能部の構成を説明する図である。 主制御部、検出センサ部の機能を説明するブロック図である。 検出センサ部に備えられた検出回路の構成を説明する図である。 主制御部が各画像形成ユニットにて形成される画像に対する位置ずれ制御を実行する際の処理手順を示すフローチャートである。 (a)は、本実施の形態の画質調整用パターンの一例を示す図である。また(b)は、従来の画質調整用パターンの一例を示す図である。 検出センサ部が位置制御用マークを読み取ることで生成する信号について説明するタイミングチャートである。 (a)〜(c)は、本実施の形態のパターン検出信号について説明した図である。 (a)〜(c)は、従来の画質調整用パターンを使用したときのパターン検出信号について説明した図である。 位置制御用マークを用いた位置ずれ量の算出方法を説明する図である。 Y色、M色、C色、K色の各色のトナーについて、光の波長に対する分光反射率を示した図である。 LEDとして発光中心波長680nmのものを使用した場合の画質調整用パターンの一例を示す図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<画像形成装置の説明>
図1は、本実施の形態が適用される画像形成装置1の構成を示した図である。図1に示す画像形成装置1は、所謂タンデム型のデジタルカラープリンタであって、画像データに基づいてカラー画像を形成する画像形成プロセス部20と、画像形成プロセス部20の動作を制御する主制御部60とを備えている。
画像形成プロセス部20は、一定の間隔を置いて並列的に配置された、イエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)の各色トナー像をそれぞれ形成する画像形成部の一例としての4つの画像形成ユニット30Y、30M、30C、30K(以下、「画像形成ユニット30」とも総称する)を備えている。なお、それ以外に、例えばライトシアン(LC)、ライトマゼンタ(LM)、コーポレートカラーなどの各色トナー像を形成するものを加えて、5色以上の画像形成ユニットを備えた構成としてもよい。
画像形成ユニット30は、矢印A方向に回転しながら静電潜像が形成される感光体ドラム31と、感光体ドラム31の表面を帯電する帯電ロール32と、感光体ドラム31上に形成された静電潜像を現像する現像器33と、一次転写後の感光体ドラム31表面を清掃するドラムクリーナ34とを備えている。各画像形成ユニット30に配置された現像器33は、トナー容器35Y、35M、35C、35Kから供給されるY、M、C、Kの各色トナーにより、感光体ドラム31上の静電潜像を現像する。
また、画像形成プロセス部20は、各画像形成ユニット30に設けられた各感光体ドラム31を例えばレーザ光で露光する露光手段の一例としてのレーザ露光装置26と、各画像形成ユニット30の各感光体ドラム31上に形成された各色トナー像が多重転写され、多重転写された各色トナー像を保持しながら搬送する転写部材の一例としての中間転写ベルト41とを備えている。さらには、各画像形成ユニット30の各色トナー像を一次転写部Tr1にて中間転写ベルト41に順次転写(一次転写)する一次転写ロール42と、中間転写ベルト41上に転写された重畳トナー像を二次転写部Tr2にて記録材(記録紙)である用紙P(P1、P2)に一括転写(二次転写)する二次転写ロール40と、二次転写された画像を用紙P上に定着させる定着装置25とを備えている。
加えて、二次転写部Tr2(二次転写ロール40)からみて中間転写ベルト41の移動方向上流側であって、黒の画像形成ユニット30Kよりも下流側には、検出手段の一例としての検出センサ部80が配置されている。この検出センサ部80は、中間転写ベルト41の移動方向に直交する方向の端部側に配置されている(後段の図2参照)。そして、中間転写ベルト41の端部側の領域に形成された位置合わせを行うための画質調整用パターン(画質調整用トナー像)を読み取り、後段で説明する各色画質調整用トナー像の位置ずれ制御を行うための各画質調整用トナー像の位置を検出する。即ち中間転写ベルト41は、画像形成ユニット30により形成された各画質調整用トナー像が順次転写される像保持体として機能する。
レーザ露光装置26は、光源としての半導体レーザ27と、レーザ光を感光体ドラム31に走査露光する走査光学系(不図示)と、例えば正六角面体で形成された回転多面鏡(ポリゴンミラー)28と、半導体レーザ27の駆動を制御するレーザドライバ29とを備えている。レーザドライバ29は、画像処理された画像データや、主走査方向および副走査方向における露光タイミングを補正するための制御信号、レーザ光量を補正するための制御信号などを主制御部60から取得し、半導体レーザ27の点灯制御を行う。
一次転写ロール42は、一次転写電源(不図示)から一次転写バイアス電圧の供給を受け、中間転写ベルト41上に各色トナー像を一次転写する。また、二次転写ロール40は二次転写電源(不図示)から二次転写バイアス電圧の供給を受け、用紙P上に各色トナー像を二次転写する。
定着装置25は、内部に加熱源を備える定着ロールと加圧ロールとの間に未定着トナー像を保持した用紙Pを通過させて、用紙Pにトナー像を定着する。
なお、本実施の形態の画像形成装置1では、露光手段の一例としてレーザ露光装置26を用いたが、露光手段の一例としてLED(Light Emitting Diode)アレイを用いたもの、有機EL(Electro-Luminescence)を用いたものなどを用いてもよい。
<画像形成動作の説明>
画像形成装置1では、図示しないパーソナルコンピュータ(PC)や画像読取装置(スキャナ)などから画像データを取得し、取得した画像データに対して予め定められた画像処理を施して、各色毎に分解された画像データ(各色画像データ)を生成する。そして、生成した各色画像データを画像形成プロセス部20のレーザ露光装置26に供給する。
その間、感光体ドラム31は帯電ロール32により帯電される。そして、レーザ露光装置26は、各画像形成ユニット30にて帯電された感光体ドラム31を、供給された各色画像データや各種制御信号に基づき点灯制御されたレーザ光で走査露光する。それにより、感光体ドラム31各々には各色の静電潜像が形成される。形成された静電潜像は各現像器33により現像され、各感光体ドラム31上には各色トナー像が形成される。
各画像形成ユニット30で形成された各色トナー像は、一次転写ロール42により、図1の矢印B方向に循環移動する中間転写ベルト41上に順次、一次転写される。それにより、中間転写ベルト41上には各色トナー像が重ね合わされた重畳トナー像が形成される。この重畳トナー像は、中間転写ベルト41の移動に伴って二次転写ロール40とバックアップロール49とが配置された二次転写部Tr2に向けて搬送される。
一方、画像形成装置1には複数の例えば用紙保持部71A、71Bが配置されている。そして、例えば操作入力パネル(不図示)からのユーザによる指示入力に基づき、例えば用紙保持部71Aに保持された用紙P1が取り出される。取り出された用紙P1は、搬送経路R1に沿って1枚ずつ搬送され、中間転写ベルト41上を重畳トナー像が二次転写部Tr2に搬送されるタイミングに合わせて二次転写部Tr2に搬送される。そして、二次転写部Tr2に形成された転写電界の作用により、重畳トナー像は用紙P1上に一括して二次転写される。
なお、二次転写部Tr2への用紙Pの搬送は、用紙保持部71A、71Bに保持された用紙P1、P2が搬送される搬送経路R1の他に、用紙Pへの両面印刷時に使用される両面搬送路R2や用紙Pを手差しする際に使用される手差し用紙保持部75からの搬送経路R3からも行われる。
その後、二次転写部Tr2にて各色トナー像が静電転写された用紙P1は、中間転写ベルト41から剥離され、定着装置25に向けて搬送される。定着装置25では、各色トナー像が用紙P1に定着される。そして定着画像が形成された用紙P1は、画像形成装置1の排出部に設けられた用紙積載部79に搬出される。一方、二次転写後に中間転写ベルト41に付着しているトナー(転写残トナー)は、中間転写ベルト41に接触して配置されたベルトクリーナ45によって除去され、次の画像形成サイクルに備えられる。
このようにして、画像形成装置1での画像形成は、指定された枚数分だけ繰り返して実行される。
<位置ずれ制御の説明>
次に、各画像形成ユニット30にて形成される各色トナー像の位置ずれを補正する画像位置補正制御(所謂「レジストレーションコントロール」:以下、「位置ずれ制御」)について説明する。
画像形成ユニット30各々に配置された感光体ドラム31は、例えば環境温度の変動や機内昇温などによって、中間転写ベルト41との相対的な位置にばらつきが生じる。また、各画像形成ユニット30に配置された感光体ドラム31や現像器33内の現像剤などは、例えば画像形成装置1の累積動作時間や休止時間、使用履歴等の内部要因、さらには機内の温湿度環境等の外部要因によって状態が変化する。
そこで、本実施の形態の画像形成装置1においては、例えば機内温度が予め定められた温度を超えて変動した場合や、画像形成動作が予め定められた枚数分のサイクルを超えた場合、さらには、例えば画像形成装置1の主電源(不図示)がオンされた場合や画像形成装置1のフロントカバー(前扉)が開けられた場合などのように画像形成装置1での前回の画像形成動作から長い時間が経過し、画像形成装置1内の温度環境が変動していると想定される状況にある場合などにおいて、各色トナー像に関する中間転写ベルト41上での位置ずれを許容レベル内に調整し、画像の色ずれを抑制するための位置ずれ制御(画像位置調整制御、レジストレーションコントロール)を行っている。
<位置ずれ制御を実行するための構成の説明>
次の図2は、位置ずれ制御を実行するための構成を説明する図である。図2に示したように、本実施の形態の画像形成装置1では、二次転写部Tr2(二次転写ロール40)からみて中間転写ベルト41の移動方向上流側であって、黒(K)の画像形成ユニット30Kに配置された感光体ドラム31よりも下流側に、検出センサ部80を配置している。この検出センサ部80は、中間転写ベルト41の移動方向に直交する方向の端部側に配置されている。本実施の形態では、レーザ露光装置26によって感光体ドラム31上において走査露光が開始される領域と対向する中間転写ベルト41上の端部領域に検出センサ部80が配置される。なお、検出センサ部80は、中間転写ベルト41の移動方向に直交する方向の中央付近に配置してもよく、その主走査方向の位置は特に限定はされない。
主制御部60は、画像形成ユニット30Y、30M、30C、30Kに対し、中間転写ベルト41上の検出センサ部80が対向する一方の端部側の領域に、画質調整用パターンT(画質調整用トナー像)を形成するように指示する。それにより、中間転写ベルト41上に画質調整用パターンTが形成されると、検出センサ部80がそれを読み取って、各画質調整用パターンTに関する検出信号を主制御部60に送る。
主制御部60は、検出センサ部80からの検出信号に基づいて、各画像形成ユニット30に対する主走査方向および副走査方向の露光タイミングを補正するための制御信号を生成する。そして、レーザ露光装置26のレーザドライバ29に対し、これらの制御信号を送信する。
<検出センサ部の構成の説明>
次に、検出センサ部80における画質調整用パターンTを読み取る読取機能部の構成について説明する。
図3は、検出センサ部80における画質調整用パターンTを読み取る読取機能部の構成を説明する図である。図3に示したように、検出センサ部80は、中間転写ベルト41のトナー像保持面を照射し、画質調整用パターンTに向け、光を出射する光源の一例として発光中心波長940nmのLED(Light Emitting Diode)81と、LED81にて照射された中間転写ベルト41および中間転写ベルト41上に形成された画質調整用パターンTからの反射光を受光し、受光量に応じた強度の電流値を出力することでの一例としてのPD(Photo Diode)83とを備えている。即ち、PD83は、画質調整用パターンTから反射された反射光を受光して、画質調整用パターンTを検出するための検出信号とする受光部として機能する。
これらLED81およびPD83は、下向きの開口を有する支持部材の一例としてのケース84内にて、中間転写ベルト41の移動方向に直交する方向に配列されるように収容されている。そして、LED81による照射光は、ケース84に設けられた射出スリット84aを通過し、中間転写ベルト41の表面を例えば80°の角度で照らすように構成されている。また、ケース84には、中間転写ベルト41および中間転写ベルト41表面に形成された画質調整用パターンTからの反射光をPD83に向けて通過させるための入射スリット84cが設けられている。入射スリット84cは、中間転写ベルト41の表面に対し例えば100°の方向に設けられている。
すなわち、射出スリット84aおよび入射スリット84cは、中間転写ベルト41面に関する法線Nを中心として、それぞれが中間転写ベルト41の移動方向に直交する方向(中間転写ベルト41の両端部方向)に同一の傾斜角(ここでは10°)だけ傾けて形成されている。これにより、PD83には、LED81による中間転写ベルト41へ向けた照射光のうち、中間転写ベルト41および画質調整用パターンTで反射した反射光が入射することになる。
そして射出スリット84aおよび入射スリット84cは、LED81やPD83から遠ざかるにつれてその径が小さくなるように作成されている。そして射出スリット84aから光が出射される箇所である開口部(アパーチャ)および入射スリット84cに反射光が入射する箇所である開口部において、最もその径が小さくなる絞り形状となっている。これにより本実施の形態の射出スリット84a開口部および入射スリット84c開口部は、光の光路上の位置に配される絞り部として機能する。
入射スリット84c開口部の絞り部としての機能は、画質調整用パターンTにより反射される光のうち拡散光の入射を抑制するためである。つまりPD83は、上述の構成では正反射光が入射する位置に配されるが、拡散光についても入射しうる位置にある。そのため拡散光が入射されるとPD83により生成されるパターン検出信号が乱れ、画質調整用パターンTを正常に読み取れなくなるおそれがある。そのため入射スリット84cをPD83から遠ざかるにつれてその径が小さくなる絞り形状にして、拡散光の入射を抑制し、パターン検出信号が拡散光により乱れにくいようにしている。
拡散光の入射を抑制するために入射スリット84c開口部、即ち、画質調整用パターンTにより反射された光が入射スリット84cに入射する箇所の径は、1.5mm以下であることが好ましい。なお本実施の形態では、射出スリット84aおよび入射スリット84cの開口部の径は、双方とも約1.1mmとしている。ただし本実施の形態では、この形態でも拡散光の一部が入射するため、詳しくは後述する方法によりこの拡散光の影響を抑制している。
なお拡散光の入射を抑制するという観点から言えば、入射スリット84c開口部による絞り部としての機能は、必要であるが、射出スリット84a開口部による絞り部としての機能は、必ずしも必要ではない。ただし、射出スリット84a開口部にも絞り部としての機能を担わせることで、画質調整用パターンTに照射される光の光点をより小さくすることができる。そのため画質調整用パターンTの読み取り精度がより向上するとともに、拡散光がより発生しにくくなるという利点がある。
なお本実施の形態のように絞り部を設けなくても、レンズ等を入射スリット84cの内部に設けたり、射出スリット84aと入射スリット84cの内部の双方に設けることで、拡散光の入射を抑制することは、可能である。ただしその場合、レンズ等を別途設ける必要があるため、検出センサ部80の製造費用がより高くなる。本実施の形態の検出センサ部80は、製造費用がより廉価になるという点で優れている。本実施の形態の検出センサ部80は、光の光路上に光を屈折させる光学素子を有しないという点で特徴がある。
またケース84の図中下面である中間転写ベルト41と向き合う面には、射出スリット84a開口部および入射スリット84c開口部を覆うよう配される汚れ防止フィルム85が設けられている。汚れ防止フィルム85を配することで、射出スリット84aや入射スリット84cの内部にトナー等が侵入し、LED81やPD83を汚すことを抑制できる。
<位置ずれ制御を実行する主制御部などの機能の説明>
続いて、位置ずれ制御を実行する主制御部60、検出センサ部80の機能について説明する。
図4は、主制御部60、検出センサ部80の機能を説明するブロック図である。なお、図4においては、主制御部60が実行する複数の制御のうち、上述した位置ずれ制御に関連するブロックのみを示している。
主制御部60は、画像形成装置1による画像形成動作制御、位置ずれ制御などを実行する際の演算処理を実行するCPU(Central Processing Unit)61と、CPU61が実行する位置ずれ制御などのためのソフトウェアプログラムを記憶したROM(Read Only Memory)63と、各種カウンタ値やプログラム実行中に発生する一時的なデータを記憶するRAM(Random Access Memory)62とを備えている。
また、主制御部60は、CPU61からの命令に基づいて実際の画像形成動作における画像情報や、画質調整用パターンTを形成するための画像情報を出力する画像出力回路64と、画質調整用パターンTを形成するための画像情報(制御用マークの画像データ)を予め記憶した画質調整用パターンデータ記憶部65とを備えている。この画像出力回路64からは、各画像形成ユニット30に対応するレーザ露光装置26に対して、実際の画像形成動作における画像情報や画質調整用パターンTを形成するための画像情報が出力される。ここでの画像出力回路64と画質調整用パターンデータ記憶部65とは、指標形成手段として機能する。
さらに、主制御部60は、検出センサ部80に設けられたLED81の点灯を制御する光源駆動回路66を備えている。
一方、検出センサ部80は、画質調整用パターンTを読み取る上記図3、4にそれぞれ示した読取機能部の他に、検出回路89を備えている。検出回路89は、PD83(図3参照)から出力される受光量に応じた電流値を、その大きさに対応する電圧値に変換し、さらには増幅させてパターン検出信号を生成する。そして、生成したパターン検出信号の最小値や極大値を検知してピーク検知信号、およびそのパターン検出信号の最小値や極大値をホールドしたホールド信号をさらに生成し、これらを主制御部60に出力する。
次の図5は、検出センサ部80に備えられた検出回路89の構成を説明する図である。図5に示したように、検出回路89は、PD83から出力される受光量に応じた電流値を、その大きさに対応する電圧値に変換/増幅し、パターン検出信号として出力する増幅回路部181と、増幅回路部181から出力されるパターン検出信号の最小値や極大値を検知してピーク検知信号を出力するピーク検知回路部182と、増幅回路部181から出力されるパターン検出信号を取り込むとともにピーク検知回路部182からピーク検知信号が出力された際のパターン検出信号の最小値や極大値をホールドしたホールド信号を出力するサンプルホールド回路部183とを備えている。そして、検出回路89は、これらピーク検知信号およびホールド信号を主制御部60(CPU61)に向けて出力する。
<位置ずれ制御を実行する際の処理手順の説明>
図6は、主制御部60が各画像形成ユニット30Y、30M、30C、30Kにて形成される画像に対する位置ずれ制御を実行する際の処理手順を示すフローチャートである。
図6に示したように、主制御部60(画像出力回路64)は、黒(K)のトナー像で形成された各色の位置制御用マークMからなる画質調整用パターンTを、各画像形成ユニット30によって中間転写ベルト41上の予め定められた箇所に形成する(ステップ101)。なお、このときには、各画像形成ユニット30における位置ずれ量の補正値はリセットされている。
中間転写ベルト41上に形成された画質調整用パターンTは検出センサ部80によって(図2参照)、読み取られる(ステップ102)。
次に、主制御部60(CPU61)は、検出センサ部80による読取結果に基づいて、基準色となる黒(K)の位置制御用マークMKの主走査方向および副走査方向の目標値に対する絶対的な位置ずれ量、さらには、基準色であるKの位置制御用マークMKに対するY、M、Cの位置制御用マークM各々の主走査方向および副走査方向の相対的な位置ずれ量を演算する(ステップ103)。そして、各色に対して得られた主走査方向の位置ずれ量および副走査方向の位置ずれ量に基づいて、各画像形成ユニット30における感光体ドラム31上のトナー像(静電潜像)の形成位置、すなわち各レーザ露光装置26による各感光体ドラム31への露光タイミングを、主走査方向および副走査方向の双方について設定し直す(ステップ104)。これにより、各画像形成ユニット30における各色トナー像の形成位置を補正する。したがって、中間転写ベルト41上での各色トナー像の色ずれが抑えられる。即ちCPU61は、画像形成ユニット30にて形成される画像の位置ずれ補正を行なう位置ずれ補正部として機能する。
このように、上記したステップ101〜104によって、各画像形成ユニット30における位置ずれ補正(レジストレーションコントロール)が行われることになる。
<画質調整用パターンの説明>
次の図7(a)は、主制御部60の画像出力回路64によって画質調整用パターンデータ記憶部65から読み出され、各画像形成ユニット30Y、30M、30C、30Kによって中間転写ベルト41上に形成された本実施の形態の画質調整用パターンTの一例を示す図である。また図7(b)は、従来の画質調整用パターンTの一例を示す図である。
図7(a)〜(b)に示したように、検出センサ部80(図4参照)によって読み取られる画質調整用パターンTは、イエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)の各色トナー像からなる位置制御用マークMY、MM、MC、MK(以下、「位置制御用マークM」とも総称する)により、中間転写ベルト41の移動方向に(副走査方向)に沿って形成される。位置制御用マークMは、画像形成ユニット30にて形成される画像の位置ずれ補正を行うために用いる画像補正用指標とてして機能する。
位置制御用マークMに関しては、例えば基準となる黒(K)の位置制御用マークMKを挟むように交互に並ぶように形成されている。また、位置制御用マークMは、中間転写ベルト41の移動方向(副走査方向:プロセス方向)およびこれと直交する方向(主走査方向:ラテラル方向)の双方に対して斜めに形成されることで「ハ」の字となる第1の辺Maおよび第2の辺Mbで構成されている。そして、これら第1の辺Maおよび第2の辺Mbは、主走査方向に対してそれぞれ27°の傾斜角度を有しており、第1の辺Maと第2の辺Mbとは角度54°の角度をなす。このような構成により、位置制御用マークMは、主走査方向(ラテラル方向)および副走査方向(プロセス方向)双方の位置ずれ量を検出するための画像補正用指標(マーク)として機能する。
ただし図7(a)に示す本実施の形態の位置制御用マークMは、図7(b)に示す従来の位置制御用マークMに対して、位置制御用マークMY、MM、MCについて、第1の辺Maおよび第2の辺Mbの数が異なっている。つまり図7(b)に示す従来の画質調整用パターンTは、位置制御用マークMY、MM、MCの第1の辺Maおよび第2の辺Mbは1個ずつ形成されている。一方、図7(a)に示す本実施の形態の位置制御用マークMは、この数が同色のものについて2個ずつとなっている。ここではそれを位置制御用マークMa1、Ma2、Mb2、Mb1として図示している。つまり本実施の形態の位置制御用マークMは、第1の辺Ma、第2の辺Mbのそれぞれを1つのパターン(型)とし、この1つのパターンについてK色以外の色であるY色、M色、C色に対して、連続して2個形成されるようにしている。一方、K色に対しては、この1つのパターン毎に1個ずつ形成される。
<位置制御用マークを読み取る検出センサ部の動作の説明>
続いて、画質調整用パターンTの位置制御用マークMを読み取る検出センサ部80の動作について説明する。
図8は、検出センサ部80が位置制御用マークMを読み取ることで生成する信号について説明するタイミングチャートである。図8(a)は、検出センサ部80が画質調整用パターンTの位置制御用マークMを読み取ることで生成するパターン検出信号、(b)は、検出センサ部80がパターン検出信号の最小値や極大値(ピーク)を検知することで出力するピーク検知信号、をそれぞれ示している。
ここで例えばY色に関する位置制御用マークMYについてのピーク検知信号を見ると、図8(a)に示したように、検出センサ部80では、画質調整用パターンTの位置制御用マークMがPD83の視野領域R1に進入すると、まず、視野領域R1と位置制御用マークMの第1の辺Ma1との重複面積が拡大することにより、位置制御用マークMに関するパターン検出信号が徐々に下降する。そして、視野領域R1が位置制御用マークMの第1の辺Ma1によってほぼ覆われる位置において、位置制御用マークMによるパターン検出信号は最小となる。この場合に、各位置制御用マークMを構成する第1の辺Ma1の太さは、PD83の視野領域R1の直径よりもわずかに小さく設定されている。このため、位置制御用マークMの第1の辺Ma1のパターン検出信号を最小とする位置を通り過ぎると、その後は視野領域R1と位置制御用マークMとの重複面積が減少していき、パターン検出信号は徐々に上昇する。そして、位置制御用マークMの第1の辺Ma1がPD83の視野領域R1から完全に脱した位置において、パターン検出信号は最大となり、極大値をとる。
そして、位置制御用マークMがさらに移動し、PD83の視野領域R1に位置制御用マークMの第1の辺Ma2が進入してくると、パターン検出信号が再び変化を開始する。さらに位置制御用マークMが移動すると、視野領域R1と位置制御用マークMの第1の辺Ma2との重複面積が拡大していくので、パターン検出信号は徐々に下降する。そして、視野領域R1が第1の辺Ma2によってほぼ覆われる位置において、パターン検出信号は最小となる。その後は視野領域R1と位置制御用マークMの第1の辺Ma2との重複面積が減少していき、パターン検出信号は徐々に上昇して再び最大となる。
そして、図8(b)に示したように、位置制御用マークMの第1の辺Ma1の太さ方向の中心位置がPD83の視野領域R1の中心位置に合致した位置と、第1の辺Ma2の太さ方向の中心位置がPD83の視野領域R1の中心位置に合致した位置とにおいて、パターン検出信号における瞬間的な最小値が発生する。さらにこの間の位置にてパターン検出信号は、極大値となる箇所がある。そして、検出センサ部80に設けられた検出回路89のピーク検知回路部182(図5参照)は、位置制御用マークMに関するパターン検出信号における瞬間的な極大値(ピーク)を検出し、この極大値が生じる瞬間に同期させてローレベル(「L」)からハイレベル(「H」)に立ち上がるピーク検知信号を生成する。これにより、ピーク検知信号の立ち上がりエッジ部分が位置制御用マークMの第1の辺Ma1および第1の辺Ma2の間の位置を示していることになり、検出センサ部80は、かかる第1の辺Ma1および第1の辺Ma2の間の位置を検出する。そして、検出センサ部80は、生成したピーク検知信号を主制御部60に出力する。実際には、パターン検出信号の極大値を検知することで、第1の辺Ma1と第1の辺Ma2、および第2の辺Mb1と第2の辺Mb2のそれぞれ中央の位置を検知する。なおここで位置制御用マークMの箇所を読み取るときに、検出信号が下降するのは、中間転写ベルト41が、光沢を有し、光をよく反射するためである。即ち、中間転写ベルト41よりも位置制御用マークMの反射率が小さいため、位置制御用マークMの箇所を読み取るときには検出信号が下降する。また上述した例では、位置制御用マークMの第1の辺Ma1、Ma2について説明を行なったが、第2の辺Mb1、Mb2についても同様である。
なおK色に関する位置制御用マークMKについてのピーク検知信号は、図示するようにパターン検出信号の最小値が、位置制御用マークMの第1の辺Ma、第2の辺Mbについて1つずつ生じることになる。そのため位置制御用マークMKについては、パターン検出信号における最小値を検知し、第1の辺Maおよび第2の辺Mbの中央位置を検出する。
<パターン検出信号についての説明>
次に検出センサ部80が画質調整用パターンTの位置制御用マークMを読み取ることで生成するパターン検出信号についてさらに詳しく説明を行なう。
図9(a)は、本実施の形態のパターン検出信号について説明した図であり、図8(a)に示したパターン検出信号を拡大した図である。即ち、図示するパターン検出信号は、図7(a)の位置制御用マークMを使用したときのパターン検出信号である。ここでは、Y色に関する位置制御用マークMYを読み取った場合のパターン検出信号D1Yと、K色に関する位置制御用マークMKを読み取った場合のパターン検出信号D1Kを示している。
また図10(a)で図示したパターン検出信号は、図7(b)で示した従来の画質調整用パターンTを使用したときのパターン検出信号である。ここでは、Y色に関する位置制御用マークMYを読み取った場合のパターン検出信号D2Yと、K色に関する位置制御用マークMKを読み取った場合のパターン検出信号D2Kを示している。
図10(a)に図示するパターン検出信号D2Yとパターン検出信号D2Kとを比較すると、パターン検出信号D2Yは、中央に示す検出ピークの最小値が、パターン検出信号D2Kに対して大きい。また位置制御用マークMがない箇所についてもパターン検出信号D2Yは、パターン検出信号D2Kに対して高い検出値となっている。そしてパターン検出信号D2Yは、ピークの位置に対し左右対称とはならず、ピークの位置に対し図では右側の方が高い検出値となっている。
これは、検出センサ部80が、図10(b)に示す正反射成分に加え、図10(c)に示す拡散反射成分を捉えるためである。この拡散反射成分は、例えば、隣の位置制御用マークMに光が照射されることで拡散反射された光である。そしてこの拡散反射成分は、ピークの位置に対し、左右対称とはならないため、正反射成分と拡散反射成分が合成された図10(a)のパターン検出信号D2Yも左右対称とはならない。なおこれは、Y色のみならずM色、C色についても同様である。一方、パターン検出信号D2Kについてこのような現象が生じないのは、K色に関する位置制御用マークMが、K色については、拡散反射光がほとんど生じないためである。
このように従来の位置制御用マークMを読み取った場合は、K色とK色以外の他の色について、パターン検出信号の波形が異なることになる。そしてK色以外の他の色については、波形が左右対称とはならない拡散反射成分が入り込むため、ピーク位置が本来の位置からずれる。よってK色と他の色についてピークの検出位置が異なることになる。そのため位置ずれの補正を正常に行なうことができない。
対して、図9(a)で示したパターン検出信号D1Yとパターン検出信号D1Kとを比較すると、パターン検出信号D1Yは、極大値の位置に対し左右対称となっている。
パターン検出信号D1Yは、図9(b)に示す正反射成分と図9(c)に示す拡散反射成分が合成されたものである。ここで図9(c)に示す拡散反射成分は、図10(c)とは異なり、極大値の位置に対し左右対称となる。これはパターン検出信号D1Yが近い間隔で2個連続することにより拡散反射成分の波形がブロードになるためで、そのためパターン検出信号D1Yが極大値となる近辺では、拡散反射成分の波形は、ほぼフラットとなる。よって図9(a)で示したパターン検出信号D1Yは、極大値の位置に対し左右対称となる。即ち、拡散反射成分があったとしてもこの極大値の位置は、ほとんど変化しない。
以上の理由により、本実施の形態の位置制御用マークMを読み取った場合は、全ての色について、パターン検出信号の波形が双方とも左右対称となる。そして本実施の形態では、K色については、パターン検出信号D1Kが最小値となる位置を検出位置として位置ずれの補正を行なう。一方、Y色、M色、C色については、パターン検出信号の極大値の位置を検出位置として位置ずれの補正を行なう。これによりK色とK色以外の他の色について検出位置がずれることが生じにくく、そのため位置ずれの補正を正常に行なうことができる。なお図7(a)において説明を行なったように本実施の形態の位置制御用マークMは、1つのパターンについてK色以外の色であるY色、M色、C色に対しては、連続して2個形成される。一方、K色に対しては、この1つのパターン毎に1個ずつ形成される。これは、Y色、M色、C色に対しては、拡散反射光が生じやすいが、K色については、拡散反射光が生じにくく、従来の位置制御用マークMと同様のものでかまわないためである。
<位置ずれ量の検出およびその補正についての説明>
次に、検出センサ部80からのピーク検知信号による位置ずれ量の検出およびその補正について説明する。
図11は、位置制御用マークMを用いた位置ずれ量の算出方法を説明する図である。
なお以下の説明は、Y色、M色、C色に関する位置ずれ量の算出方法である。即ち、まずパターン検出信号の極大値の位置を求め、この極大値の位置を基に位置ずれ量を算出する。なお実際には、CPU61が、図9(b)のピーク検知信号から、極大値をとる位置を求め、以下の計算を行なう。よってこの場合、CPU61は、パターン検出信号から、連続する2個の位置制御用マークMの間の位置を特定する位置特定手段として機能する。
ここで図11では、実線で示した位置をパターン検出信号の極大値の位置とし、破線で示した位置を理想状態の位置(理想位置)とする。
図11に示したように、中間転写ベルト41上に予め設定されている基準位置から2本の第1の辺Maの間の検出位置Aまでの距離をDA、基準位置から2本の第2の辺Mbの間の検出位置Bまでの距離をDBとすると、位置制御用マークMの主走査方向(ラテラル方向)のずれ量(以下、「主走査ずれ量」)Lerrは、第1の辺Maと第2の辺Mbとが対称に形成されていることから、DAとDBとの差に対応する。すなわち、理想位置では2本の第1の辺Maの間が検出位置A′で検出され、2本の第2の辺Mbの間が検出位置B′で検出されるとして、この場合のDAとDBとの差をDWとすると、主走査ずれ量Lerrは、次の(1)式によって求められる。
Lerr=((DB−DA−DW)×0.5)×tanθ……(1)
ここで、θは、第1の辺Maおよび第2の辺Mbが副走査方向となす角度であり、本実施の形態では90°−27°=63°である。また、DWは、理想状態の位置の主走査方向中間位置に検出センサ部80のPD83の視野領域R1が設置されているとして、第1の辺Maまたは第2の辺Mbの長さにcosθを乗じることで算出される。
また、位置制御用マークMの副走査方向(プロセス方向)のずれ量(以下、「副走査ずれ量」)Perrについても、DAとDBとを基に求められる。すなわち、理想状態の位置を検出した場合の検出位置A′と検出位置B′との中間位置をC′、上記の基準位置から中間位置C′までの距離をDPとすると、副走査ずれ量Perrは、第1の辺Maと第2の辺Mbとが対称に形成されていることから、次の(2)式によって求められる。
Perr=0.5×(DA+DB)−DP……(2)
なお、理想状態の位置における基準位置から2本の第1の辺Maの間の検出位置A′までの距離をDA′、基準位置から2本の第2の辺Mbの間の検出位置B′までの距離をDB′とすると、DP=(DA′+DB′)/2である。
実際には、検出センサ部80は、2本の第1の辺Maの間の検出位置Aおよび2本の第2の辺Mbの間の検出位置Bにおけるピーク検知信号を主制御部60に出力する。これにより、主制御部60は、検出センサ部80から検出位置Aおよび検出位置Bでのピーク検知信号を受信するタイミングを用いて主走査ずれ量Lerr(1)および副走査ずれ量Perr(1)を算出する。すなわち、主制御部60は、検出位置Aおよび検出位置Bでのピーク検知信号の受信タイミングを、それぞれ基準位置からの時間TA、TBとして計測する。ここで、中間転写ベルト41の移動速度(プロセス速度)をVとすると、DA=TA×V、DB=TB×Vとなる。また、中間転写ベルト41が距離DWを移動するのに要する時間TWは、第1の辺Maまたは第2の辺Mbの長さにcosθを乗じたものをプロセス速度Vで除算することで得られる。
そのため、主制御部60は、基準位置を基準とした検出位置Aおよび検出位置Bでのピーク検知信号の受信タイミングTA、TBを用いて、主走査ずれ量Lerr(1)を次の(3)式、副走査ずれ量Perr(1)を(4)式によって求めることとなる。
Lerr(1)=((TB−TA−TW)×V×0.5)×tanθ……(3)
Perr(1)=(0.5×(TA+TB)−TP)×V……(4)
ここでの時間TPは、基準位置から上記の中間位置C′までの距離DPを中間転写ベルト41が移動するのに要する時間であり、TP=(DA′+DB′)/2Vである。
さらには、主制御部60は、(3)式および(4)式によって求めた理想状態の位置制御用マークM′を基準とした主走査ずれ量Lerr(1)および副走査ずれ量Perr(1)に基づいて、それぞれ基準とする黒(K)の位置制御用マークMKおよび位置制御用マークMY、MM、MCとの相対的な主走査ずれ量Lerr(1)′および副走査ずれ量Perr(1)′を算出する。
なお上述した例では、Y色、M色、C色の場合の位置ずれ量の算出方法について説明したが、K色の場合は、パターン検出信号が最小値となる位置について上記計算を行なうことで同様に位置ずれ量を算出することができる。
<他の画質調整用パターンの例についての説明>
なお画質調整用パターンTについては、図7に示したものに限られるものではない。例えば、LED81の波長により変更することが考えられる。
図12は、Y色、M色、C色、K色の各色のトナーについて、光の波長に対する分光反射率を示した図である。図12において、横軸は光の波長を表わし、縦軸は、分光反射率を表わす。
ここで図3で説明したような発光中心波長940nmのLED81により、上記各色のトナーにより形成される位置制御用マークMに光を照射したときは、Y色、M色、C色については、それぞれ分光反射率が約75%である。対してK色は、分光反射率がほぼ0%となる。この場合、LED81により位置制御用マークMに光を照射したときに、K色については、分光反射率が低いことより拡散反射光は、ほとんど生じない。一方、Y色、M色、C色については、分光反射率が高いことより拡散反射光が多く発生する。そのため図7に示したように、画質調整用パターンTの位置制御用マークMは、Y色、M色、C色については、1つのパターンについて連続して2個形成させる形態が有効である。またK色については、その必要はなく、1つのパターンについて1個ずつでよい。
ここでLED81として、例えば、発光中心波長680nmのLED81を使用する場合を考える。この場合は、上記各色のトナーにより形成される位置制御用マークMに光を照射したときは、M色、Y色については、それぞれ分光反射率が約75%である。対してC色、K色は、分光反射率がほぼ0%となる。よって画質調整用パターンTの位置制御用マークMは、Y色、M色については、1つのパターンについて連続して2個形成させる形態が有効であるが、C色、K色については、その必要はなく1つのパターンについて1個ずつでよい。
図13は、LED81として発光中心波長680nmのものを使用した場合の画質調整用パターンTの一例を示す図である。
図示するように、画質調整用パターンTは、Y色、M色の位置制御用マークである位置制御用マークMY、MMの第1の辺Maおよび第2の辺Mbは2個ずつ形成されている。ここではそれを位置制御用マークMa1、Ma2、Mb2、Mb1として図示している。一方、C色、K色の位置制御用マークである位置制御用マークMC、MKの第1の辺Maおよび第2の辺Mbは1個ずつ形成されている。
なお以上詳述した例では、位置制御用マークMは、1つのパターンについて2個形成していたが、3個以上形成されることを妨げるものではない。この場合、CPU61は、例えば、パターン検出信号から、最初の連続する2個の画像補正用指標の間の位置を特定し、主制御部60は、この検出位置に基づいて位置ずれ補正を行なえばよい。
また本実施の形態における主制御部60が行なう処理は、例えば、ソフトウェアとハードウェア資源とが協働することにより実現される。即ち、主制御部60に設けられた制御用コンピュータ内部の図示しないCPU61が、主制御部60の各機能を実現するプログラムをRAM62にロードして実行することにより行なわれる。
よって主制御部60が行なう処理は、コンピュータに、予め定められた複数色を使用して画像を形成する画像形成ユニット30にて形成される画像の位置ずれ補正を行うために用いる位置制御用マークMを、1つのパターンについて同色にて連続して2個以上画像形成ユニット30にて形成させる機能と、位置制御用マークMに向け光を出射するLED81と、中間転写ベルト41および位置制御用マークMから反射された反射光を受光して位置制御用マークMを検出するための検出信号とするPD83と、を備える検出センサ部80から検出信号を取得する機能と、検出センサ部80のPD83より得られた検出信号から、連続する2個の位置制御用マークMの間の位置を特定する機能と、特定された2個の位置制御用マークMの間の位置から、画像形成ユニット30にて形成される画像の位置ずれ補正を行なう機能と、を実現させるプログラムとして捉えることもできる。
なお、本実施の形態を実現するプログラムは、通信手段により提供することはもちろん、CD−ROM等の記録媒体に格納して提供することも可能である。
1…画像形成装置、26…レーザ露光装置、30(30Y、30M、30C、30K)…画像形成ユニット、41…中間転写ベルト、60…主制御部、61…CPU、64…画像出力回路、65…画質調整用パターンデータ記憶部、80…検出センサ部、81…LED、83…PD、T…画質調整用パターン、M…位置制御用マーク

Claims (5)

  1. 予め定められた複数色を使用して画像を形成する画像形成部と、
    前記画像形成部にて形成される画像の位置ずれ補正を行うために用いる画像補正用指標を、1つの型について同色にて連続して2個以上当該画像形成部により形成させる指標形成手段と、
    前記画像形成部により形成された前記画像補正用指標が順次転写される像保持体と、
    前記画像補正用指標に向け光を出射する光源と、前記像保持体および当該画像補正用指標から反射された反射光を受光して当該画像補正用指標を検出するための検出信号とする受光部と、を備える検出手段と、
    前記検出手段の前記受光部より得られた検出信号から、連続する2個の画像補正用指標の間の位置を特定する位置特定手段と、
    前記位置特定手段により特定された前記2個の画像補正用指標の間の位置から、前記画像形成部にて形成される画像の位置ずれ補正を行なう位置ずれ補正部と、
    を備えることを特徴とする画像形成装置。
  2. 前記指標形成手段は、前記連続して2個形成される画像補正用指標として黒色以外の色のものを形成させることを特徴とする請求項1に記載の画像形成装置。
  3. 前記検出手段は、前記光の光路上に当該光を屈折させる光学素子を有しないことを特徴とする請求項1または2に記載の画像形成装置。
  4. 前記位置特定手段は、前記検出信号の極大値を検知することで連続する2個の画像補正用指標の間の位置を特定することを特徴とする請求項1乃至3の何れか1項に記載の画像形成装置。
  5. コンピュータに、
    予め定められた複数色を使用して画像を形成する画像形成部にて形成される画像の位置ずれ補正を行うために用いる画像補正用指標を、1つの型について同色にて連続して2個以上当該画像形成部により形成させる機能と、
    前記画像形成部により形成された前記画像補正用指標を像保持体に順次転写させる機能と、
    前記画像補正用指標に向け光を出射する光源と、前記像保持体および当該画像補正用指標から反射された反射光を受光して当該画像補正用指標を検出するための検出信号とする受光部と、を備える検出手段から当該検出信号を取得する機能と、
    前記検出手段の前記受光部より得られた検出信号から、連続する2個の画像補正用指標の間の位置を特定する機能と、
    特定された前記2個の画像補正用指標の間の位置から、前記画像形成部にて形成される画像の位置ずれ補正を行なう機能と、
    を実現させるプログラム。
JP2012073824A 2012-03-28 2012-03-28 画像形成装置およびプログラム Active JP5919948B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012073824A JP5919948B2 (ja) 2012-03-28 2012-03-28 画像形成装置およびプログラム
US13/591,786 US8830521B2 (en) 2012-03-28 2012-08-22 Image forming apparatus and method, and non-transitory computer readable medium
CN201210369268.3A CN103365142B (zh) 2012-03-28 2012-09-27 图像形成设备和图像形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073824A JP5919948B2 (ja) 2012-03-28 2012-03-28 画像形成装置およびプログラム

Publications (2)

Publication Number Publication Date
JP2013205585A JP2013205585A (ja) 2013-10-07
JP5919948B2 true JP5919948B2 (ja) 2016-05-18

Family

ID=49234617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073824A Active JP5919948B2 (ja) 2012-03-28 2012-03-28 画像形成装置およびプログラム

Country Status (3)

Country Link
US (1) US8830521B2 (ja)
JP (1) JP5919948B2 (ja)
CN (1) CN103365142B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388726B (zh) * 2014-08-29 2018-08-17 京瓷办公信息系统株式会社 图像形成装置
JP2019207364A (ja) * 2018-05-30 2019-12-05 株式会社リコー 画像形成装置、画像形成方法、およびプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142895A (ja) * 1996-11-07 1998-05-29 Ricoh Co Ltd カラー画像形成装置
US7952774B2 (en) * 2006-08-21 2011-05-31 Ricoh Company, Limited Image forming apparatus, image formation control method, and computer program product
JP4815322B2 (ja) * 2006-10-06 2011-11-16 株式会社リコー 画像形成装置
JP4497223B2 (ja) 2008-03-31 2010-07-07 ブラザー工業株式会社 レジストレーションマーク及び画像形成装置
JP2010054577A (ja) * 2008-08-26 2010-03-11 Fuji Xerox Co Ltd 画像濃度制御装置及び画像形成装置
JP4873265B2 (ja) * 2008-09-29 2012-02-08 ブラザー工業株式会社 画像形成装置
JP5254815B2 (ja) * 2009-01-08 2013-08-07 スタンレー電気株式会社 多色画像形成装置及び位置検出用色画像パターン検出プログラム
JP2011059633A (ja) * 2009-09-14 2011-03-24 Ricoh Co Ltd 画像形成装置、位置検出制御方法及び位置検出制御プログラム

Also Published As

Publication number Publication date
CN103365142A (zh) 2013-10-23
CN103365142B (zh) 2018-04-17
US20130258363A1 (en) 2013-10-03
JP2013205585A (ja) 2013-10-07
US8830521B2 (en) 2014-09-09

Similar Documents

Publication Publication Date Title
JP4367085B2 (ja) フォトセンサ装置
JP2017090597A (ja) 光学センサ及び画像形成装置
US8811865B2 (en) Image forming apparatus
US9116453B2 (en) Image forming apparatus
US9686428B2 (en) Equipment to determine line width of check image and image-forming apparatus using the same
US9442413B2 (en) Image forming apparatus and exposure position adjusting method
US20140210927A1 (en) Light scanning unit, method of detecting failure of synchronization signal, and electrophotographic image forming apparatus using light scanning unit
JP2007156159A (ja) 色ずれ検出センサ及び色ずれ検出装置
US8811845B2 (en) Registration mark and image forming apparatus
US9170521B2 (en) Light beam detection circuit, light beam scan unit and image forming apparatus to detect light beam that changes light-amount thereof
US9235179B2 (en) Image forming apparatus for forming, detecting, and correcting sandwiched toner pattern
JP5919948B2 (ja) 画像形成装置およびプログラム
JP2013205449A (ja) 画像形成装置およびプログラム
JP2012027140A (ja) 画像形成装置、および画像検出装置
US8078076B2 (en) Image forming apparatus that controls width of correction pattern
JP2008209659A (ja) 画像形成装置及び制御方法
JP5636780B2 (ja) 画像形成装置
JP5928068B2 (ja) 画像補正用の検出装置および画像形成装置
JP2012027138A (ja) 画像形成装置、およびプログラム
JP6758906B2 (ja) 画像形成装置
JP6544530B2 (ja) 画像形成装置
US20120001998A1 (en) Image forming apparatus and control method of image forming apparatus
US9442412B2 (en) Image forming apparatus, method for controlling image forming conditions, and non-transitory computer-readable medium storing computer-readable instructions
JP6071535B2 (ja) 画像形成装置
JP2012103636A (ja) 光走査装置及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5919948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350