JP5919432B2 - Separation of mineral salt containing magnesium salt and calcium salt from electrolyzed alkaline water of seawater and method for producing mineral beverage using the same - Google Patents

Separation of mineral salt containing magnesium salt and calcium salt from electrolyzed alkaline water of seawater and method for producing mineral beverage using the same Download PDF

Info

Publication number
JP5919432B2
JP5919432B2 JP2015503096A JP2015503096A JP5919432B2 JP 5919432 B2 JP5919432 B2 JP 5919432B2 JP 2015503096 A JP2015503096 A JP 2015503096A JP 2015503096 A JP2015503096 A JP 2015503096A JP 5919432 B2 JP5919432 B2 JP 5919432B2
Authority
JP
Japan
Prior art keywords
water
mineral
salt
calcium
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015503096A
Other languages
Japanese (ja)
Other versions
JP2015513899A (en
Inventor
徳洙 文
徳洙 文
鉉周 金
鉉周 金
昇遠 李
昇遠 李
東浩 鄭
東浩 鄭
虎生 李
虎生 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Ocean Science and Technology KIOST
Original Assignee
Korea Institute of Ocean Science and Technology KIOST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120057337A external-priority patent/KR101367477B1/en
Priority claimed from KR1020120057345A external-priority patent/KR101295445B1/en
Application filed by Korea Institute of Ocean Science and Technology KIOST filed Critical Korea Institute of Ocean Science and Technology KIOST
Publication of JP2015513899A publication Critical patent/JP2015513899A/en
Application granted granted Critical
Publication of JP5919432B2 publication Critical patent/JP5919432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/72Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration
    • A23L2/74Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/026Treating water for medical or cosmetic purposes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

本発明は、海水または海洋深層水と海水濃縮水の電気分解を通じて製造されたアルカリ水の水素イオン濃度を調整して、水素イオン濃度別にカルシウム塩とマグネシウム塩の沈殿物を形成し、沈殿槽で海水または海洋深層水と濃縮水を、低エネルギー高効率で分離することにより、カルシウム塩とマグネシウム塩を分離抽出すると共にこれを用いたミネラル塩とミネラル飲料の製造方法に関するものである。   The present invention adjusts the hydrogen ion concentration of alkaline water produced through electrolysis of seawater or deep sea water and seawater concentrated water to form calcium salt and magnesium salt precipitates according to the hydrogen ion concentration. The present invention relates to a method for producing a mineral salt and a mineral beverage using the same by separating and extracting calcium salt and magnesium salt by separating seawater or deep sea water and concentrated water with low energy and high efficiency.

一般海水1.0 kgは平均して965 g(96.5%)が水であり、塩素イオンは、18.98 g(1.9%)、ナトリウムイオンは10.556 g(Na+、1.1%)、硫酸イオンは、2.649 g(SO42-、0.3%) 、マグネシウムイオンは、1.272 g(Mg2+、0.1%)、カルシウムイオンは、0.400 g(Ca2+、0.04%)、カリウムイオンは0.38 g(K+、0.04%)、重炭酸イオンは、0.14 g(HCO3-、0.01%)であり、以上のような主成分イオンが3.4%溶存されており、残りの0.1%は、微量金属が溶解されており、合計92種の溶存物質が海水に存在することが知られている。
特に、海洋深層水は太陽の光が到達していない水深200m以上の深いところに存在している海水で、沿岸から遠く離れており、表層水とは水温、密度の違いによって大気や地表水(川)と混合されない海洋物理的な構造によって、海洋深層水は、人類の起源、化学汚染物質(病原体や肥料、農薬などの有機化合物)のような汚染流入源から構造的に遮断され、清淨な特性を長い間維持した海洋資源として知られている。特に、海洋深層水には、清浄な4大ミネラル(マグネシウム、カルシウム、カリウム、ナトリウム)をはじめ、亜鉛などの各種ミネラル成分が含まれていることから、水質調整淡水化過程を通じて天然ミネラルの原料源として有用であると知られている。
ミネラルの欠乏と過剰は、さまざまな病気を引き起こす原因となり身体的、精神的発達を阻害することから、体内のミネラルバランス(Mineral balance)を維持することは重要である。カルシウム、マグネシウム、カリウムなどのミネラルは、体の構成、身体機能調節などの役割を担当する重要な要素として、人間に必要な5大栄養素の一つである。ミネラル成分の中でカルシウム(calcium、Ca2+)は、骨や歯の形成、筋肉、神経や心臓の機能調節、血液凝固促進などの機能をして、不足すると便秘、骨粗しょう症、発達障害、痙攣、虫歯、神経不安症などの症状が発生する。マグネシウム(magnesium、Mg2+)は、エネルギー生成、神経機能調節、ビタミンB、E代謝の促進などの機能を担当し、不足すると心臓病、高血圧、不眠症、不整脈、低血圧、食欲不振、筋肉痛、貧血などが発生する。カリウム(potassium、K+)は、細胞内の酸塩基平衡の調節、水分調節、神経機能の維持、細胞機能維持、血管拡張、脳の酸素供給などの機能を担当し、不足すると不整脈、食欲減退、筋肉のけいれん、便秘、疲労、無力症、低血糖症などが発生する.
海水(海洋深層水)に含まれるミネラル成分は、間違った食習慣、環境汚染などにより、ミネラルバランスが崩れた現代人には非常に有用なミネラルの供給源になる。しかし、海水の場合、相当量の塩分(NaCl)を含むことから、塩分を除去する淡水化の過程で、有用なミネラル成分であるカリウム、カルシウム、マグネシウムなどが一緒に除去される問題がある。
海水の淡水化方法としては、蒸発法、逆浸透膜法、電気透析法などがある。蒸発法は、海水を蒸発させて溶媒である水は、蒸発し、溶質は残留させる原理を利用するものであり、逆浸透膜法は、水に溶解しているイオン性物質を透過膜を利用して塩は排除して、純粋な水だけを通過させる方法であり、電気透析法は、陰イオン膜と陽イオン膜を交互に配置した後、陰イオン膜と陽イオン膜の両端に位置する電極に直流電圧をかけて、陽イオンと陰イオンを除去して、純粋な淡水を得る方法である。
また、既存の海水中のミネラルを抽出分離する方法は、海水(海洋深層水)を蒸発濃縮して、溶解度の差を利用して、カルシウム塩やマグネシウム塩などのようなミネラル塩を分離する方法で海水中のミネラルを抽出する方法であった。しかし、これらの淡水化方法を使用する場合には、海水に含まれる各種ミネラル成分の中でカルシウムとマグネシウムを効率的に分離することは難しく、ミネラル成分の回収率が低く、エネルギーがかかる欠点がある。また、上記のような淡水化方式とミネラル抽出方法で抽出されたミネラル塩は、陰イオンである塩素イオン(Cl-)と硫酸イオン(SO 2-)除去されず、陽イオンと結合して塩を形成するため、これらのミネラル塩を再溶解して、ミネラル水を製造する際には飲用水の水質基準項目である塩素イオンと硫酸イオンが再溶解されるので、硬度400以上の高硬度ミネラルウォーターの製造が不可能な欠点がある。
In general, 1.0 kg of general seawater is 965 g (96.5%) water, chlorine ions are 18.98 g (1.9%), sodium ions are 10.556 g (Na +, 1.1%), and sulfate ions are 2.649 g (SO42 -, 0.3%), magnesium ion 1.272 g (Mg2 +, 0.1%), calcium ion 0.400 g (Ca2 +, 0.04%), potassium ion 0.38 g (K +, 0.04%), bicarbonate ion 0.14 g (HCO3-, 0.01%), 3.4% of the main component ions as described above are dissolved, the remaining 0.1% is dissolved in trace metals, and a total of 92 dissolved substances are present in seawater. It is known to do.
In particular, deep ocean water is seawater that exists at a depth of 200m or more, where the sun does not reach. It is far from the coast, and it differs from surface water by the difference in water temperature and density. The ocean physical structure that is not mixed with the river) makes the deep ocean water structurally isolated from clean inflow sources such as human origin, chemical pollutants (organic compounds such as pathogens, fertilizers, pesticides, etc.) It is known as a marine resource that has maintained its characteristics for a long time. In particular, deep sea water contains various mineral components such as zinc, as well as four clean major minerals (magnesium, calcium, potassium, sodium), so the source of natural minerals through the water quality adjustment desalination process. It is known as useful.
It is important to maintain the mineral balance in the body because deficiency and excess of minerals can cause various diseases and interfere with physical and mental development. Minerals such as calcium, magnesium, and potassium are one of the five major nutrients required by humans as an important factor responsible for body composition and regulation of body function. Among the mineral components, calcium (calcium, Ca 2+ ) functions such as bone and tooth formation, muscle, nerve and heart function regulation, blood coagulation promotion, and lack of constipation, osteoporosis, developmental disorder Symptoms such as convulsions, decayed teeth, and anxiety occur. Magnesium (Mg 2+ ) is responsible for functions such as energy generation, regulation of nerve function, promotion of vitamin B and E metabolism, and heart disease, hypertension, insomnia, arrhythmia, hypotension, loss of appetite, muscles Pain, anemia, etc. occur. Potassium (potassium, K + ) is responsible for the regulation of intracellular acid-base balance, water regulation, maintenance of nerve function, maintenance of cell function, vasodilation, brain oxygen supply, etc. If it is insufficient, arrhythmia, decreased appetite , Muscle cramps, constipation, fatigue, asthenia, hypoglycemia, etc. occur.
Mineral components contained in seawater (deep ocean water) become a very useful source of minerals for modern people who have lost their mineral balance due to incorrect eating habits and environmental pollution. However, since seawater contains a considerable amount of salt (NaCl), there is a problem that useful mineral components such as potassium, calcium, and magnesium are removed together during the desalination process of removing salt.
Seawater desalination methods include the evaporation method, reverse osmosis membrane method, and electrodialysis. The evaporation method uses the principle of evaporating seawater to evaporate the water, which is a solvent, and leave the solute, and the reverse osmosis membrane method uses a permeable substance for ionic substances dissolved in water. Then, the salt is excluded and only pure water is allowed to pass through, and the electrodialysis method is located at both ends of the anion membrane and the cation membrane after alternately arranging the anion membrane and the cation membrane. This is a method for obtaining pure fresh water by applying a DC voltage to an electrode to remove cations and anions.
In addition, existing minerals in seawater can be extracted and separated by evaporating and concentrating seawater (deep ocean water) and using the difference in solubility to separate mineral salts such as calcium salts and magnesium salts. It was a method of extracting minerals in seawater. However, when these desalination methods are used, it is difficult to efficiently separate calcium and magnesium from various mineral components contained in seawater, and the recovery rate of mineral components is low and energy is disadvantageous. is there. In addition, the mineral salt extracted by the desalination method and mineral extraction method as described above does not remove the negative ions chloride ion (Cl ) and sulfate ion (SO 4 2− ), but binds to the cation. In order to form salt, these mineral salts are redissolved, and when producing mineral water, chlorine and sulfate ions, which are water quality standard items for drinking water, are redissolved. There is a disadvantage that it is impossible to produce mineral water.

韓国特許登録第10-732066号Korean Patent Registration No. 10-732066 韓国公開特許2001-102137号Korean open patent 2001-102137 韓国特許番号第10-06630840号Korean Patent No. 10-06630840

先行文献として、韓国特許登録第10-732066号には、海洋深層水から低温真空法を用いた高純度ミネラルの効率的抽出方法が開示されており、韓国特許登録第10-0885175号には、減圧制御型蒸気再圧縮蒸発システムを利用して、海洋深層水蒸発結晶化させて、ミネラル塩を分離し、これらのミネラルを使用する、ミネラルウォーターの製造方法が開示されている。
また、韓国公開特許2001-102137号には、海水を脱塩処理して、水とマグネシウムやカルシウムや鉄などの必須ミネラルとビタミン類などを十分に含有する濃縮液に分離した水に、前記濃縮液を、または別に海水濃縮液から得られた水溶性のマグネシウムやカルシウムや鉄などの必須ミネラル成分を添加することにより、飲料を製造する方法と、健康機能性を向上させるための飲み物を提供する技術が開示されている。
韓国特許番号第10-06630840号は、海洋深層水または地下の岩盤海水から高硬度・ミネラル混合飲料の製造方法と、これを製造するための製造装置に関するもので、a)海洋深層水や地下の岩盤海水を取り、前処理して、1次ナノ濾過膜で濾過して、2価イオン成分が減少されたナノろ過生産水を製造する段階; b)上記a)段階で濾過された前記ナノ濾過生産水を、逆浸透膜による1価イオンが減少した逆浸透生産水を製造する段階; c)上記a)段階で濾過されたナノろ過の生産水を2次ナノ濾過膜で濾過して、2価イオンが濃縮された高硬度のミネラル濃縮水を製造する段階; d)上記b)段階で製造された逆浸透生産水とc)段階で製造された ミネラル濃縮水を混合する段階からなる構成が開示されている。
しかし、上記の先行技術などは本発明の技術的特徴とするアルカリ水製造時に電流量を調節して、水素イオン濃度(pH)10から13の間のアルカリ水を生産し、水素イオン濃度10から13の間のアルカリ水を生成して沈殿槽でpH別に、それぞれカルシウム塩、マグネシウム塩を生産して沈殿分離する構成は開示されていない。
As prior literature, Korean Patent Registration No. 10-732066 discloses an efficient extraction method of high-purity minerals from deep ocean water using a low-temperature vacuum method, and Korean Patent Registration No. 10-0885175, Disclosed is a method for producing mineral water using a decompression-controlled vapor recompression evaporation system to separate the mineral salts by evaporating and crystallization from deep ocean water and using these minerals.
In addition, Korean Patent No. 2001-102137 describes that the seawater is desalted and then concentrated into water and separated into a concentrate sufficiently containing essential minerals such as magnesium, calcium and iron, and vitamins. By adding essential mineral components such as water-soluble magnesium, calcium and iron obtained from seawater concentrate or separately from the liquid, a method for producing a beverage and a drink for improving health functionality are provided. Technology is disclosed.
Korean Patent No. 10-06630840 relates to a method for producing a high hardness / mineral mixed beverage from deep ocean water or underground rock seawater and a production apparatus for producing the same. Taking the bedrock seawater, pretreating and filtering with primary nanofiltration membrane to produce nanofiltration product water with reduced divalent ion components; b) nanofiltration filtered in step a) above C) producing reverse osmosis production water with reduced monovalent ions by the reverse osmosis membrane; c) filtering the nanofiltration production water filtered in step a) above through a secondary nanofiltration membrane; A step of producing a mineral hardened water having a high concentration of valence ions; d) mixing the reverse osmosis product water produced in step b) and the mineral concentrated water produced in step c) It is disclosed.
However, the above prior art and the like adjust the amount of current during the production of alkaline water, which is a technical feature of the present invention, to produce alkaline water having a hydrogen ion concentration (pH) of 10 to 13, and from the hydrogen ion concentration of 10 There is no disclosure of a configuration in which alkaline water of 13 is generated, calcium salts and magnesium salts are produced and separated by precipitation in the precipitation tank according to pH.

本発明は、海水または海洋深層水から塩素イオンと硫酸イオンを排除して、カルシウム、マグネシウム、カリウムなどの有用ミネラルをナトリウム分離抽出するとともに、有用なミネラル成分の回収率を高め、エネルギーを低減しながら、純度を高める方法でミネラル塩の効率的な分離抽出方法およびこれを用いた飲用水の水質基準を満たした高硬度ミネラル飲料の製造方法に関するものである。   The present invention eliminates chloride ions and sulfate ions from seawater or deep ocean water, and separates and extracts useful minerals such as calcium, magnesium, potassium, etc., and increases the recovery rate of useful mineral components, thereby reducing energy. However, the present invention relates to a method for efficiently separating and extracting mineral salts by a method for increasing purity and a method for producing a high-hardness mineral beverage that satisfies the water quality standards of drinking water using the same.

上記課題を解決するために、本発明は、海水の電気分解方法によって水素イオン濃度(pH)を調整したアルカリ水から水素イオン濃度別にカルシウム塩とマグネシウムの沈殿物を生成して、ミネラル塩の生産エネルギーコストを削減しながら、飲用水の水質基準に適合した純度の高い高硬度ミネラル飲み物を製造する方法を提供するものであり、下記発明構成のミネラル飲料の製造方法である
「a)海水または海洋深層水を前処理した後、1次処理して濃縮水と、生産水を製造する段階;
b)前記濃縮水を電流量を複数種の電流量に調節して電気分解して、酸性水と水素イオン濃度(pH)10から13の間の複数種の水素イオン濃度(pH)のアルカリ水を製造する段階;
c)前記水素イオン濃度10から13の間の複数種の水素イオン濃度(pH)のアルカリ水を沈殿槽で、複数種のpH別にカルシウム塩とマグネシウム塩を異なった比率で含有する複数種の沈殿物として生成して沈殿分離する段階;
d)前記分離されたカルシウム塩とマグネシウム塩を異なった比率で含有する複数種の沈殿物を一定の割合で混合して、カルシウムとマグネシウムのミネラル含有量が調整された有用ミネラル塩として製造する段階;
e)上記a)の生産水に前記d)段階の有用ミネラル塩を溶解させ、マグネシウム塩とカルシウム塩の成分が調整されて含有するミネラル飲料を製造する段階;とからなることを特徴とするミネラル飲料の製造方法
In order to solve the above-mentioned problems, the present invention produces mineral salt by producing calcium salt and magnesium precipitates according to hydrogen ion concentration from alkaline water whose hydrogen ion concentration (pH) is adjusted by seawater electrolysis. while reducing energy costs, there is provided a method for producing a high high hardness minerals drink of purity suitable for the water quality standards of drinking water, it is a method for producing a mineral drink following invention configuration.
“A) pre-treating seawater or deep ocean water, followed by primary treatment to produce concentrated water and product water;
b) The concentrated water is electrolyzed by adjusting the amount of current to a plurality of types of current, so that acidic water and alkaline water having a plurality of types of hydrogen ions (pH) between 10 and 13 are used. Producing the stage;
c) A plurality of types of precipitates containing alkaline water having a plurality of types of hydrogen ion concentrations (pH) between 10 to 13 in the above-described manner, and containing calcium salts and magnesium salts in different ratios according to the plurality of types of pH. Produced as a product and separated by precipitation;
d) A step of producing a useful mineral salt in which the mineral content of calcium and magnesium is adjusted by mixing a plurality of types of precipitates containing the separated calcium salt and magnesium salt in different ratios at a certain ratio. ;
e) dissolving the useful mineral salt of step d) in the production water of a) to prepare a mineral beverage containing adjusted magnesium and calcium salts ; A method for producing a mineral beverage .

本発明によれば、海水や海洋深層水から、各種比率で含有するカルシウム塩及びマグネシウム塩の混合物を低コストのエネルギーで分離抽出することができ、飲用水の水質基準に適合した有用なミネラルのマグネシウム塩とカルシウム塩の成分が調整されて含有する高硬度ミネラルウォーターを製造することができる。 According to the present invention, it is possible to separate and extract a mixture of calcium salt and magnesium salt contained in various ratios from seawater and deep sea water with low-cost energy, and useful minerals suitable for drinking water quality standards . A high-hardness mineral water containing adjusted magnesium salt and calcium salt components can be produced.

本発明の電気分解アルカリ水からミネラルの含有量を調整ミネラル塩とミネラルウォーターの製造方法を示す全体工程図である。It is a whole process figure which shows the manufacturing method of the mineral salt and mineral water which adjust mineral content from the electrolysis alkaline water of this invention. 電解水の生成と水素イオン濃度(pH)を調整するための電解水生成用無隔膜電解装置の模式図である。It is a schematic diagram of the electrolysis water production | generation diaphragmless electrolyzer for adjusting the production | generation of electrolyzed water and a hydrogen ion concentration (pH). 水素イオン濃度の調整アルカリ水から生成されたミネラル塩を分離するための沈殿分離槽である。It is a precipitation separation tank for separating the mineral salt produced | generated from the adjustment alkaline water of hydrogen ion concentration. ミネラル塩の生成収率を向上させるためのNF-RO-ED工程とMVR-沈殿分離工程を組み合わせた工程図である。It is a process diagram combining the NF-RO-ED process and the MVR-precipitation separation process for improving the production yield of mineral salts. 電解水生成用無隔膜電解分解装置を示す。1 shows a diaphragm electrolysis apparatus for electrolyzed water generation. 電解水生成用無隔膜電解分解装置各部の構造を示す。The structure of each part of the electrolysis apparatus for electrolyzed water production is shown. 水素イオン濃度別に形成されているミネラル塩でのマグネシウムとカルシウムの濃度変化を示す。Changes in the concentration of magnesium and calcium in mineral salts formed according to hydrogen ion concentration are shown. 水素イオン濃度の調整により形成されたミネラル塩のXRD Spectrum(@ pH=10)を示す。The XRD spectrum (@ pH = 10) of the mineral salt formed by adjusting the hydrogen ion concentration is shown.

本発明の目的を達成するために、本発明は、海水(海洋深層水原水または濃縮水)を電気分解して生成されたアルカリ水のpHを調整してマグネシウム塩とカルシウム塩の沈殿物を生成して濃縮分離して天然ミネラルの食品原料と飲用海洋深層水のミネラル添加原料の製造方法に関するものである。すなわち本発明は、
a)海水または海洋深層水を前処理した後、1次処理して濃縮水と生産水を製造する段階;
b)前記濃縮水を電流量を複数種の電流量に調節して与えて電気分解して、酸性水と水素イオン濃度(pH)10から13の間の複数種の水素イオン濃度(pH)のアルカリ水を製造する段階;
c)前記水素イオン濃度10から13の間の複数種の水素イオン濃度(pH)のアルカリ水を沈殿槽で、複数種のpH別にカルシウム塩とマグネシウム塩を異なった比率で含有する複数種の沈殿物として生成して沈殿分離する段階;
d)前記分離されたカルシウム塩とマグネシウム塩を異なった比率で含有する複数種の沈殿物を一定の割合で混合して、カルシウムとマグネシウムが調整された有用ミネラル塩を製造する段階;
e)上記a)の生産水に前記d)段階の有用ミネラル塩を溶解させ、マグネシウム塩とカルシウム塩の成分が調整されて含有するミネラル飲料を製造する段階;とからなることを特徴とするミネラル飲料の製造方法、である
また、上記a)のステップの前処理は、砂ろ過、急速ろ過膜、マイクロフィルター(MF)、浸漬フィルタ(SMF)、ウルトラフィルター(UF)の中から選択されるいずれか一つ
またはひとつ以上の方法が使用可能で、1次処理は、逆浸透膜(RO)を利用して濃縮水と生産水を生産する工程に加えて、電気透析膜、NF-RO膜を使用して生産水とミネラル濃縮水を製造する工程で選択することができる。
上記b)の段階で逆浸透膜(RO)や電気透析膜などの1次処理後の濃縮水を電気分解して酸性水とアルカリ水を製造する工程で濃縮水の代わりに海水と海洋深層水の原水やNF-ROを利用した濃縮水と減圧蒸発蒸法により、生産されたミネラル濃縮水を使用して電気分解した後、酸性水とアルカリ水を製造する段階を加えることができる。
本発明の一実施例として、係るミネラル成分が調整されたミネラル塩の製造方法では、上記e)の段階の生産水にクエン酸を溶解したり、オレンジエキスを溶解してミネラルのサプリメント飲料を製造する方法を追加することができる。
一方、本発明の一実施形態に係るミネラル飲料の製造方法において、上記c)の段階の前記アルカリ水製造時に電流量を調節して、水素イオン濃度(pH)10から13の間のアルカリ水を生産する段階で副産物として生産される酸性水を殺菌消毒剤として使用することができる段階に変形することも可能である。
他の一実施例として、上記d)の段階のカルシウム塩とマグネシウム塩を混合して、カルシウムとマグネシウム濃度が調整された有用ミネラル塩の製造方法にクエン酸、ビタミン製剤、オレンジ粉末などを添加してミネラルのサプリメント錠剤または粉末製品の製造方法として変形することもできる。
また、a)の段階の濃縮水の製造は、海水や海洋深層水を前処理した後、逆浸透膜(RO)に通過させて1次濃縮水と1次生産水を製造する段階; 1次濃縮水を再びイオン交換膜(ED)に通過させて高濃度の二次濃縮水を製造することも可能であり、b)段階の電気分解時に流す電流量は50-260 mAと260 mAを超える電流量の間の複数種の電流量に調節して与えられることを特徴とする。
また、上記a)段階の濃縮水は、ナノフィルター(NF)、ウルトラフィルター(UF)膜を用いて、前処理過程を経て硫酸イオン(SO4)のみを除去し、残りのナトリウム、マグネシウム、カルシウム、カリウム、塩素イオンは透過された生産水を再び逆浸透膜(RO)を介して濾過して濃縮することができ、a)の段階の生産水にクエン酸、植物または果実抽出物の中から選択される1つ以上の抽出物とd)段階の有用ミネラル塩を溶解させ、マグネシウム塩とカルシウム塩の成分が調整されたミネラル飲料の製造方法が提供される。
以下、本発明を図面と共に詳細に説明する。図1は、本発明の電気分解アルカリ水により、ミネラルの含有量を調整ミネラル塩とミネラルウォーターの製造方法を示す全体工程図であり、図2は、電解水の生成と水素イオン濃度(pH)を調整するための電解水生成用無隔膜電気分解装置の模式図を示す。
また、本発明のミネラルウォーターは、生水と各種飲料を含む意味であり、本発明のミネラルウォーターの製造方法は、海水(海洋深層水)を前処理した後、1次RO(逆浸透膜)に通過させて1次濃縮水と1次生産水を製造する段階と、1次濃縮水をED(イオン交換膜)に通過させて高濃度の二次濃縮水を製造する段階を含む。
本発明の全工程の流れは、海水や海洋深層水を前処理(砂ろ過、急速ろ過膜、マイクロフィルター(MF)、浸漬メンブレフィルタ(SMF)、ウルトラフィルター(UF)などでろ過)した後、RO(逆浸透膜)、NF-RO膜(ナノフィルター - 逆浸透複合膜)、電気透析膜(ED)を通過させて濃縮水生産水を製造して濃縮水をそのまま電気分解するか、ED(電気透析膜)、またはMVR(減圧蒸気再圧縮蒸発法)方法で濃縮水を再濃縮して高濃度濃縮水を製造し、電気分解して酸性水とアルカリ水を製造する(図1)。電解水生成用無隔膜分解装置を用いて濃縮水と高濃度濃縮水を電気分解して酸性水とアルカリ水を製造する。アルカリ水の製造時に電流量設定を調整して、アルカリ水のpHを調整して、各pH別にカルシウムとマグネシウムの成分調整が異なるミネラル塩を生成製造する(図2)。
In order to achieve the object of the present invention, the present invention adjusts the pH of alkaline water generated by electrolyzing seawater (deep ocean water or concentrated water) to produce magnesium salt and calcium salt precipitates. The present invention relates to a method for producing a natural mineral food material and a mineral-added raw material for drinking deep sea water. That is, the present invention
a) pre-treating seawater or deep ocean water, followed by primary treatment to produce concentrated water and product water;
b) The concentrated water is electrolyzed by adjusting the amount of current to a plurality of types of currents, so that a plurality of types of hydrogen ions (pH) between acid water and hydrogen ion concentrations (pH) of 10 to 13 are obtained. Producing alkaline water;
c) A plurality of types of precipitates containing alkaline water having a plurality of types of hydrogen ion concentrations (pH) between 10 to 13 in the above-described manner, and containing calcium salts and magnesium salts in different ratios according to the plurality of types of pH. Produced as a product and separated by precipitation;
d) mixing a plurality of types of precipitates containing the separated calcium salt and magnesium salt in different ratios at a certain ratio to produce a useful mineral salt with adjusted calcium and magnesium;
e) dissolving the useful mineral salt of step d) in the production water of a) to prepare a mineral beverage containing adjusted magnesium and calcium salts ; the method of manufacturing mineral drink is,.
In addition, the pre-treatment in the step a) is any one or more selected from sand filtration, rapid filtration membrane, microfilter (MF), immersion filter (SMF), and ultrafilter (UF). In addition to the process of producing concentrated water and product water using reverse osmosis membrane (RO), the primary treatment is produced water and minerals using electrodialysis membrane and NF-RO membrane. It can select in the process of manufacturing concentrated water.
In step b) above, seawater and deep ocean water are used instead of concentrated water in the process of producing acidic water and alkaline water by electrolyzing concentrated water after primary treatment such as reverse osmosis membrane (RO) and electrodialysis membrane. After the electrolysis using the concentrated mineral water produced and the concentrated water using NF-RO and the concentrated water using NF-RO, the step of producing acidic water and alkaline water can be added.
As an embodiment of the present invention, in the method for producing a mineral salt in which the mineral component is adjusted, a mineral supplement beverage is produced by dissolving citric acid in the production water at the stage e) or by dissolving an orange extract. You can add a way to do it.
On the other hand, in the method for producing a mineral beverage according to an embodiment of the present invention, the amount of current is adjusted during the alkaline water production in the step c) , so that alkaline water having a hydrogen ion concentration (pH) of 10 to 13 is obtained. It is also possible to change to a stage where acidic water produced as a by-product in the production stage can be used as a disinfectant.
As another example, citric acid, vitamin preparation, orange powder, etc. are added to the method for producing a useful mineral salt in which the calcium and magnesium concentrations are adjusted by mixing the calcium salt and the magnesium salt in the above step d). It can also be modified as a method of manufacturing mineral supplement tablets or powder products.
In addition, the production of concentrated water in step a) is a stage in which seawater and deep sea water are pretreated and then passed through a reverse osmosis membrane (RO) to produce primary concentrated water and primary production water; It is also possible to produce concentrated secondary concentrated water by passing the concentrated water again through the ion exchange membrane (ED). B) The amount of current that flows during the electrolysis in the stage exceeds 50-260 mA and 260 mA. It is characterized by being provided by adjusting to a plurality of kinds of current amounts between the current amounts .
Further, the concentrated water in the above step a) uses a nanofilter (NF) or ultrafilter (UF) membrane to remove only sulfate ions (SO4) through a pretreatment process, and the remaining sodium, magnesium, calcium, Potassium and chloride ions can be concentrated again by filtering the permeated production water through a reverse osmosis membrane (RO). Select from citric acid, plant or fruit extract for the production water of step a) There is provided a method for producing a mineral beverage in which one or more extracts obtained and the useful mineral salt of step d) are dissolved and the components of magnesium salt and calcium salt are adjusted.
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall process diagram showing a method for producing a mineral salt and mineral water by adjusting the mineral content with the electrolyzed alkaline water of the present invention, and FIG. 2 shows the generation of electrolytic water and the hydrogen ion concentration (pH). The schematic diagram of the electrolysis apparatus for electrolyzed water production | generation for adjusting water is shown.
In addition, the mineral water of the present invention is meant to include fresh water and various beverages, and the method for producing mineral water of the present invention is a primary RO (reverse osmosis membrane) after pretreatment of seawater (deep ocean water). And producing a primary concentrated water and a primary production water, and producing a high concentration secondary concentrated water by passing the primary concentrated water through an ED (ion exchange membrane).
The flow of the entire process of the present invention is after pretreatment of seawater and deep seawater (sand filtration, rapid filtration membrane, microfilter (MF), immersion membrane filter (SMF), ultrafilter (UF), etc.), RO (reverse osmosis membrane), NF-RO membrane (nanofilter-reverse osmosis composite membrane) and electrodialysis membrane (ED) are passed through to produce concentrated water production water and electrolyze the concentrated water as it is, or ED ( The concentrated water is re-concentrated by an electrodialysis membrane) or MVR (reduced-pressure vapor recompression evaporation method) to produce highly concentrated concentrated water, and electrolyzed to produce acidic water and alkaline water (FIG. 1). Acidified water and alkaline water are produced by electrolyzing concentrated water and high-concentrated concentrated water using an electrolyzed water-free membrane decomposition apparatus. The current amount is adjusted during the production of the alkaline water, the pH of the alkaline water is adjusted, and mineral salts with different calcium and magnesium component adjustments are produced and produced for each pH (FIG. 2).

図3は、水素イオン濃度調整アルカリ水から生成されたミネラル塩を分離するための沈殿分離槽を示す。海水や海洋深層水濃縮水の電気分解アルカリ水を水素イオン濃度を調整することにより、各pHでのカルシウムとマグネシウムの成分含有量組成が異なるミネラル塩を生成することができ、これを沈殿槽に移して生成されたミネラル塩を沈殿させ、海水または海洋深層水濃縮水と分離した。沈殿槽の容量は約100リットルであり、円錐形であるため、形成されるミネラル塩沈殿物は、沈殿槽の円錐底に集まるようになり、沈殿槽の円錐底から15センチメートル上部に上澄み液除去排出装置を利用して、底に沈殿したミネラル塩を除いて沈殿槽の上澄み海水または海洋深層水濃縮水と分離した(図3)。
沈殿分離槽で分離されたミネラル沈殿物は、遠心分離器を用いて遠心分離した後、熱風乾燥機で乾燥した後粉末化して、ミネラル塩を製造した。 pHごとに分離、乾燥されたミネラル塩は、pH10以下でマグネシウム:カルシウム比が0.01-0.4、pH11でマグネシウム:カルシウム比が0.4-1.8、pH12でマグネシウム:カルシウム比が1.8-3.8、pH13以上では、マグネシウム:カルシウム比3.8 - 40.72のカルシウムとマグネシウムの分離が発生する

Figure 0005919432
FIG. 3 shows a precipitation separation tank for separating the mineral salt produced from the hydrogen ion concentration-adjusted alkaline water. By adjusting the hydrogen ion concentration of the electrolyzed alkaline water of seawater and deep sea water concentrated water, mineral salts with different calcium and magnesium component content compositions at each pH can be generated, and this can be added to the precipitation tank. The mineral salt produced by the transfer was precipitated and separated from seawater or deep sea water concentrate. Since the capacity of the settling tank is about 100 liters and is conical, the mineral salt precipitate that is formed will collect at the conical bottom of the settling tank and the supernatant liquid 15 cm above the conical bottom of the settling tank Using the removal and discharge device, the mineral salt precipitated at the bottom was removed and separated from the supernatant seawater or deep sea water concentrate (Fig. 3).
The mineral precipitate separated in the precipitation separation tank was centrifuged using a centrifuge, dried with a hot air dryer and then pulverized to produce a mineral salt. Mineral salt separated and dried for each pH at pH 10 or less, magnesium: calcium ratio 0.01-0.4, pH 11 at magnesium: calcium ratio 0.4-1.8, pH 12 at magnesium: calcium ratio 1.8-3.8, pH 13 or higher, Magnesium: calcium separation occurs with a calcium ratio of 3.8-40.72
Figure 0005919432

この時のミネラル塩の陰イオンはほとんど炭酸イオンや水酸化物イオンであるため、飲用水の水質基準項目である塩素と硫酸イオンと分離される。上記のように水素イオン濃度(pH)に応じて、マグネシウムとカルシウムの濃度が、それぞれ異なるミネラル塩を混合調整してマグネシウム対カルシウムの濃度比が異なるミネラル塩を製造する。

Figure 0005919432
Since the anion of the mineral salt at this time is almost carbonate ion or hydroxide ion, it is separated from chlorine and sulfate ions which are water quality standard items of drinking water. As described above, mineral salts having different concentrations of magnesium and calcium are prepared by mixing and adjusting mineral salts having different concentrations of magnesium and calcium according to the hydrogen ion concentration (pH).
Figure 0005919432

たとえば、純度90%以上のカルシウム塩、マグネシウム対カルシウム比が0.1から50範囲のミネラル塩、マグネシウムの濃度が98%以上のマグネシウム塩などを製造する。上記のようなカルシウム塩、カルシウム/マグネシウム混合塩、マグネシウム塩などを混合してミネラルの含有量が調整されたミネラル塩をクエン酸粉末、ビタミン粉末、フルーツエキスパウダー、緑茶粉末などと混合して、錠剤(tablet)または粉末形態で製造する。
水素イオン濃度別に製造されたカルシウム塩、カルシウム/マグネシウム混合塩、マグネシウム塩などを混合してミネラルの含有量が調整されたミネラル塩を脱塩水に溶解させ、カルシウムとマグネシウムの組成が調整された硬度1200までの高硬度ミネラルウォーターを製造する。すでにミネラル塩の製造時にナトリウムイオン、塩素イオン、硫酸イオンなど飲用水の水質基準項目のイオンなどは分離除去されたため、これらのミネラル塩を用いて製造された高硬度のミネラルウォーターは飲用水法で規定された飲用水の水質基準を満足する高硬度ミネラルウォーターを製造する

Figure 0005919432
For example, a calcium salt having a purity of 90% or more, a mineral salt having a magnesium to calcium ratio in the range of 0.1 to 50, and a magnesium salt having a magnesium concentration of 98% or more are produced. Mix the calcium salt, calcium / magnesium mixed salt, magnesium salt etc. and mineral salt whose mineral content is adjusted with citric acid powder, vitamin powder, fruit extract powder, green tea powder etc. Manufactured in tablet or powder form.
Hardness in which calcium salt, calcium / magnesium mixed salt, magnesium salt, etc. manufactured according to hydrogen ion concentration are mixed to dissolve mineral salt with adjusted mineral content in demineralized water, and the composition of calcium and magnesium is adjusted Produces high hardness mineral water up to 1200. Already during the production of mineral salts, ions of drinking water quality standards such as sodium ion, chloride ion, sulfate ion, etc. have been separated and removed, so the high hardness mineral water produced using these mineral salts is the drinking water method. Produce high-hardness mineral water that satisfies the specified drinking water quality standards
Figure 0005919432

上記製造過程の脱塩水と一緒にクエン酸、オレンジエキス、緑茶エキス、複数の植物またはフルーツのエキスなどを添加してミネラルが補強されたミネラル混合飲料の製造も可能である。
本発明の前処理過程の中で、ナノフィルター(NF)、ウルトラフィルター(UF)膜を用いて、硫酸イオン(SO 2-)のみが削除され、残りの塩(ナトリウム、マグネシウム、カルシウム、カリウム、塩素イオンなど)は透過された生産水を再度逆浸透膜を介して濾過すると、SO 2-だけが削除され、残りの塩(ナトリウム、カリウム、カルシウム、マグネシウムなど)が濃縮された濃縮水を製造する段階を含む。
既存の工程である逆浸透膜工程は簡単ではあるが、濃縮水の濃度が低く、また、濃縮水中の硫酸イオン(SO 2-)の含有などの問題があり、イオン交換膜工程(ED)は、濃縮水の濃度を、逆浸透膜工程に比べて向上させることができるが、ミネラル分離のような純度の問題があった。この両方の問題を解決し、生産歩留まりを向上させるために、ナノフィルター膜(NF) - 逆浸透膜(RO) - 電気透析膜(ED)工程を組み合わせて高効率のミネラル塩と高硬度ミネラルウォーター製造する段階を含む。図4は、ミネラル塩の生成収率を向上させるためのNF-RO-ED工程とMVR-沈殿分離工程を組み合わせた工程を示す。
1次ナノフィルター膜を介して硫酸イオンが除去された生産水を得て、2次逆浸透膜工程を通じて、高純度の生産水(脱塩水)と7%以上の硫酸イオンが除去された濃縮水を製造し、3次ED(イオン交換膜)工程を介して(SO 2-)が除去された14%以上の高濃度濃縮水を製造する。この濃縮水をMVR(減圧蒸発蒸留方式)方式を使用して蒸発結晶化した後、マグネシウムが高濃度に濃縮されている上澄み液を分離精製して、ミネラル濃縮水を(硬度10万以上)製造する。また、イオン交換膜(ED)工程を経て製造された14〜30%の濃縮液を電気分解して水素イオン濃度(pH)を調整して沈殿分離法を使用して、ミネラル成分の中でカルシウム、マグネシウムなどを分離抽出する方法でミネラル塩を選択的に分離して高純度のミネラル塩(カルシウム塩、マグネシウム塩、カルシウム/マグネシウム成分の割合が調整されたミネラル塩)を製造する工程と、製造された高純度ミネラル塩を脱塩水に混合してミネラルウォーターを製造する工程を含む。
硫酸イオン(SO 2-)がどの位含まれているのかと塩分除去、そしてカリウム、カルシウム、マグネシウムの含有量のバランスによって製造された水の品質が決まる。NF工程を加えることにより、硫黄成分が大幅に減少した高濃縮水をミネラル抽出に使用することができ、結晶化過程中にカルシウムの結晶が一部しか行われず、ミネラル濃縮水おして残ることがわった。硫酸イオンを除去することにより、結晶化の過程の中でカルシウムを結晶化してまた溶解する必要がある不便がない利点がある。また、電気分解を介して沈殿分離工程を経て、ミネラル成分組成の調整も可能で、カリウム、カルシウム、マグネシウムを任意に調整することができ、用途に適したミネラルバランスのとれたミネラル塩の製造が可能であり、これらのミネラル塩を使用して、水質基準に適切なミネラルウォーターの製造が可能である。
本発明のミネラル塩とミネラルウォーターの製造方法は、二次濃縮水を電気分解した後、沈殿分離システムを利用して、ミネラル(カルシウム、マグネシウム、カリウム)成分を調整して結晶化させて、ミネラル塩を製造する段階を含む。既存の蒸発濃縮を行う方法には、熱エネルギーを直接加えて蒸発する方式(平釜式)とスチームなどを発生させ、これを活用して、間接的に蒸発させる方法とスチームを利用して、間接蒸発するMVR(Mechanical Vapor Recompressor)方式を介してエネルギー効率を最大化する方法がある。濃縮水を蒸発濃縮して、ミネラル塩を製造するには平釜式が10,750,000kcal、蒸気利用式が5,750,000kcal、多段真空式1,380,000kcal、MVR方式が500,000kcalのエネルギーを使用する。
MVR方式は、蒸気投入 - 蒸発濃縮に使用 - 機械的再圧縮(温度上昇) - 蒸発濃縮に使用 - 機械再圧縮(温度上昇) - 蒸発濃縮に使用する方式で、初期投入蒸気を少ない電気を利用して、再圧縮して温度を上昇再利用することにより、低コストで、繰り返して使用が可能である。
しかし、電気分解方式沈殿分離工程で必要とされるエネルギーは、電気分解時に必要とされる電力が約1.0 kwであるため、エネルギー単位に換算すると1,700 kcalが消費される。現存最小のエネルギーがかかると評価されたMVR方式に比べて、電気分解沈殿分離法を適用することにより、ミネラル塩を製造する工程の中で必要とされるエネルギーを大幅に削減することができる。
It is also possible to produce a mineral mixed beverage in which minerals are reinforced by adding citric acid, orange extract, green tea extract, a plurality of plant or fruit extracts, etc. together with the desalted water in the above production process.
In the pretreatment process of the present invention, only sulfate ions (SO 4 2− ) are removed using a nano filter (NF) or ultra filter (UF) membrane, and the remaining salts (sodium, magnesium, calcium, potassium) When the permeated product water is filtered through the reverse osmosis membrane again, only SO 4 2- is removed and the remaining salt (sodium, potassium, calcium, magnesium, etc.) is concentrated. Including the step of manufacturing.
The reverse osmosis membrane process, which is an existing process, is simple, but the concentration of concentrated water is low, and there are problems such as the inclusion of sulfate ions (SO 4 2− ) in the concentrated water, ion exchange membrane process (ED) Although the concentration of concentrated water can be improved as compared with the reverse osmosis membrane process, there is a problem of purity such as mineral separation. In order to solve both of these problems and improve the production yield, high-efficiency mineral salt and high-hardness mineral water are combined by combining nanofilter membrane (NF)-reverse osmosis membrane (RO)-electrodialysis membrane (ED) processes. Including manufacturing. FIG. 4 shows a process combining the NF-RO-ED process and the MVR-precipitation separation process for improving the production yield of mineral salts.
Production water from which sulfate ions have been removed is obtained through the primary nanofilter membrane, and high-purity production water (demineralized water) and concentrated water from which 7% or more of sulfate ions have been removed through the secondary reverse osmosis membrane process. And 14% or more highly concentrated water from which (SO 4 2− ) has been removed through a third ED (ion exchange membrane) process. This concentrated water is evaporated and crystallized using the MVR (vacuum evaporation distillation system) method, and then the supernatant liquid in which magnesium is concentrated at a high concentration is separated and purified to produce mineral concentrated water (hardness of 100,000 or more). To do. In addition, the 14-30% concentrate produced through the ion exchange membrane (ED) process is electrolyzed to adjust the hydrogen ion concentration (pH), and using precipitation separation method, calcium in mineral components The process of producing high-purity mineral salts (calcium salts, magnesium salts, mineral salts with adjusted ratios of calcium / magnesium components) by selectively separating mineral salts by a method of separating and extracting magnesium, etc., and manufacturing A step of producing mineral water by mixing the purified high-purity mineral salt with demineralized water.
The amount of sulfate ion (SO 4 2− ) contained, salt removal, and the balance of potassium, calcium, and magnesium contents determine the quality of the water produced. By adding the NF process, highly concentrated water with significantly reduced sulfur content can be used for mineral extraction, and only a portion of the calcium crystals are formed during the crystallization process, leaving it as mineral concentrated water. It was. By removing sulfate ions, there is an advantage that there is no inconvenience that the calcium needs to be crystallized and dissolved in the crystallization process. In addition, the composition of mineral components can be adjusted through a precipitation separation process via electrolysis, and potassium, calcium, and magnesium can be adjusted arbitrarily, making it possible to produce mineral salts with balanced minerals suitable for the application. Yes, these mineral salts can be used to produce mineral water suitable for water quality standards.
In the method for producing mineral salt and mineral water according to the present invention, after the secondary concentrated water is electrolyzed, a mineral component (calcium, magnesium, potassium) is adjusted and crystallized using a precipitation separation system, Producing a salt. The existing methods of evaporating and concentrating use the method of directly adding heat energy to evaporate (flat kettle type) and steam, etc., and using this, indirectly evaporating method and steam, There is a method of maximizing energy efficiency through an indirect evaporation MVR (Mechanical Vapor Recompressor) method. To produce mineral salts by evaporating and concentrating concentrated water, the energy of the flat pot type is 10,750,000 kcal, the steam type is 5,750,000 kcal, the multistage vacuum type is 1,380,000 kcal, and the MVR type is 500,000 kcal.
MVR method is steam input-used for evaporative concentration-mechanical recompression (temperature increase)-used for evaporative concentration-mechanical recompression (temperature increase)-used for evaporative concentration, using less electricity for initial input steam Then, by re-compressing and increasing the temperature and reusing, it can be used repeatedly at low cost.
However, the energy required for the electrolysis-type precipitation separation process requires about 1,700 kcal when converted to energy units because the electric power required for electrolysis is about 1.0 kw. Compared to the MVR method, which is estimated to require the least amount of existing energy, the energy required in the process of producing the mineral salt can be greatly reduced by applying the electrolytic precipitation separation method.

以下、本発明の各工程の実施例を説明する。
実施例1:電気分解工程を利用した水素イオン濃度(pH)の調整
電解水生成装置は、電解水を生成するためのコントロールパネルと電解水生成無隔膜電解槽、海水と濃縮水供給ラインと、循環ポンプ、アルカリ水と酸性水生成槽、強アリカリ酸性水排出ライン、水槽の水位センサなどで構成される。図5は、電解水生成用無隔膜電解分解装置を示し、図6は、電解水生成用無隔膜電解分解装置各部の構造を示す。
電解装置で強アルカリを必要とするほど最低水位センサー(図2参照)を高くする方がいい。装置でpH13以上を要求する場合、電流計の値が260 mA以上でなければならない。しかし、最低水位が低すぎると、運行設定時間の間に作動し、捨てられる排出水の量が多くなり、電流計の値を高めるために多くの時間が要求される。逆に最低水位センサーが高すぎると捨てられる水の量が少ないので、補充水の量も少なく無隔膜で塩素イオンを奪ってくる量が少なく、pH値がむしろ低下する場合がある。電流量に応じて、次のように水素イオン濃度(pH)の値を調整することができる。
電解装置の動作時間を30分、定量ポンプに流入する時間間隔を10分として設定すると、デバイスは30分動作した後のアクリル水槽に水が最低水位まで排出され、最高水位まで水が補充後に動作される。定量ポンプは、30分の間に3回作動して、1回のアルカリ水の生成量は400 ml程度生成される。
実施例2:沈殿槽を用いたミネラル塩の分離
海水や海洋深層水濃縮水の電気分解アルカリ水を水素イオン濃度を調整することにより、各pHことにカルシウムとマグネシウムの成分の含量組成が異なるミネラル塩を生産することができ、これを沈殿槽に移して生成されたミネラル塩を沈殿させ、海水または海洋深層水濃縮水と分離した。
沈殿槽(図3参照)の容量は約100リットルであり、上部は円筒形であり、下部は円錐形であるため、形成されるミネラル塩沈殿物は、沈殿槽の円錐底に集まるようになり、沈殿槽の円錐底の中間上部から上澄み液除去排出装置を利用して床に沈殿されたミネラル塩を妨げない沈殿槽の上澄み海水または海洋深層水濃縮水と分離する。特に沈殿槽の下部円錐形の中間に逆U字型のチューブを設置し、その下に、上澄み液排出口に接続させることにより、上澄み液排出口のコックを開くと、逆U字管チューブの入口まで上澄み液が排出される。逆U字管の高さを調節することにより、沈殿物の量に応じて、上澄み液分離の深さまで調節が可能である。
また、沈澱槽の外部に撹拌(stir)を設置できる棒を製作することにより、撹拌(stir)を利用して、沈殿槽の中でミネラル塩の反応がよく起こるようにシステムを製作する。最終的に生成されたミネラル塩は、沈殿槽の円錐底に集まるようになり、これを沈殿槽排出口を通じて簡単に回収することができる。図3は、水素イオン濃度の調整アルカリ水から生成されたミネラル塩を分離するための沈殿分離槽を示す。
実施例3:水素イオン濃度(pH)別ミネラル塩の成分組成
沈殿分離槽で分離されたミネラル沈殿物は、遠心分離器を用いて遠心分離した後、熱風乾燥機で乾燥した後粉末化して、ミネラル塩を製造した。 pH10で生成されて分離、乾燥されたミネラル塩には、マグネシウムが9.24%、カルシウム23.1%で、マグネシウム/カルシウム比が0.4として形成されたミネラルの中の大部分がカルシウムであった。 pH11で形成されたミネラル塩には、マグネシウムが21%、カルシウムが12%で構成され、マグネシウム/カルシウム比が2.0になった。 pH12で形成されたミネラル塩には、マグネシウムが26.7%、カルシウムが7.2%でマグネシウム:カルシウム比が3.7になった。 pH13で形成されたミネラル塩には、マグネシウムが30.7%、カルシウムが4.4%で、マグネシウム:カルシウム比が7.0でカルシウムとマグネシウムの分離が発生して全体の陽イオンミネラル中のマグネシウムが82%を占めている。
水素イオン濃度の調整に応じて形成されたミネラル塩でpHに応じたマグネシウムとカルシウムの濃度変化を図7に示した。マグネシウムは水素イオン濃度が10から13に高くなるほど濃度が増加した一方、カルシウムの濃度は減少した。したがって、アルカリ水の水素イオン濃度(pH)を調整することにより、生産されるミネラル塩の中でのマグネシウムとカルシウムの比を調整することができる。
生産されるミネラル塩をMulti purpose X-ray Diffractometer(MP-XRD)を用いてミネラル鉱物結晶を分析した。分析条件は、X-ray powerが45 KV/30mAであり、Scan Modeはθ/2θであり、scan rangeは10〜100 deg(2θ)であった。形成された鉱物結晶のほとんどは、炭酸カルシウム、水酸化マグネシウムおよび水酸化カルシウムの形態であるため、飲用水の水質基準項目である塩素イオンと硫酸イオンのほとんどが分離された結晶形である(図8)。結果的に、pHごとにミネラル塩の構成成分のうち、塩素イオンの濃度は、3%台であり、硫酸イオンの濃度は、1%台で構成される。したがって、水素イオン濃度によるミネラル含量調整ミネラル塩を使用して、飲用水を製造する場合、塩素イオンと硫酸イオンが除去されたため、飲用水水質基準を満たしながら、高硬度水が製造可能であった。図8は、水素イオン濃度の調整に応じて形成されたミネラル塩のXRD Spectrum(@ pH=10)を示す。
実施例4:カルシウムとマグネシウムの成分調整を通じたミネラル塩粉末と錠剤の製造
上記のように水素イオン濃度(pH)に応じて、マグネシウムとカルシウムの濃度が、それぞれ異なるミネラル塩を混合調整してマグネシウム対カルシウムの濃度比を調整したミネラル塩を製造した。例えば、水素イオン濃度(pH)10で形成されるMg/ Ca比が0.40であるカルシウムが主成分であるカルシウム・ミネラル塩23%と水素イオン濃度(pH)13で形成されるMg/Ca比が6.9であるマグネシウムが主成分であるマグネシウムミネラル塩77%を混合してマグネシウムの含有量は25.7%であり、カルシウムの含有量は8.7%であり、Mg/ Ca比が3.0であるミネラル塩の製造が可能であった。また、上記のようなカルシウムミネラル塩、カルシウム/マグネシウム混合ミネラル塩、マグネシウム、ミネラル塩などを混合してミネラルの含有量が調整されたミネラル塩をクエン酸粉末、ビタミン粉末、フルーツエキスパウダー、緑茶粉末などと混合して、錠剤(tablet)または粉末砲の製造可能であった。
実施例5:ミネラル塩を用いた高硬度ミネラルウォーターの製造
水素イオン濃度別に製造されたカルシウム塩、カルシウム/マグネシウム混合塩、マグネシウム塩などを混合してMg/ Ca比が2.0に調整されたミネラル含有量調整ミネラル塩10.0 gramを1リットル脱塩水(硬度80)に溶解させて調整された硬度4,350までのミネナル脱塩水を製造した。これを再び2リットル脱塩水で希釈して、高硬度ミネラルミネラルウォーター3リットルを製造する。すでにミネラル塩の製造の際に、ストロンチウム、ホウ素イオン、塩素イオン、硫酸イオンなど飲用水の水質基準項目のイオンなどは分離除去されたため、これらのミネラル塩を脱塩水に溶解して製造された高硬度のミネラルウォーターは硬度1000以上飲用水管理法で規定された飲用水の水質基準を満足している。飲用水の水質基準については、表4に示した。
上記製造過程の脱塩水と一緒にクエン酸、オレンジエキス、緑茶エキス、複数の植物やフルーツのエキスなどを添加してミネラルが補強されたミネラル混合飲料の製造も可能である。
Examples of each step of the present invention will be described below.
Example 1: Adjustment of hydrogen ion concentration (pH) using electrolysis process
The electrolyzed water generating device includes a control panel for generating electrolyzed water, an electrolyzed water generating non-diaphragm electrolyzer, a seawater and concentrated water supply line, a circulation pump, an alkaline water and acidic water generating tank, a strong antari acid water discharge line, Consists of a water level sensor in the aquarium. FIG. 5 shows a diaphragm electrolysis apparatus for generating electrolyzed water, and FIG. 6 shows the structure of each part of the electrolysis apparatus for generating electrolyzed water.
It is better to raise the minimum water level sensor (see Fig. 2) so that the electrolyzer requires strong alkali. If the instrument requires a pH of 13 or higher, the ammeter value must be 260 mA or higher. However, if the minimum water level is too low, it will operate during the set operation time and the amount of discharged water will be increased, requiring more time to increase the ammeter value. Conversely, if the minimum water level sensor is too high, the amount of water discarded is small, so the amount of replenishing water is small and the amount of chloride ions taken away by the non-transparent membrane is small, and the pH value may rather decrease. Depending on the amount of current, the value of the hydrogen ion concentration (pH) can be adjusted as follows.
If the electrolyzer operating time is set to 30 minutes and the time interval to flow into the metering pump is set to 10 minutes, the device is discharged after 30 minutes of operation, the water is discharged to the lowest water level, and the device is operated after the water is refilled to the highest water level. Is done. The metering pump operates three times in 30 minutes, and about 400 ml of alkaline water is generated at one time.
Example 2: Separation of mineral salts using a precipitation tank
By adjusting the hydrogen ion concentration of the electrolyzed alkaline water of seawater and deep sea water concentrated water, it is possible to produce mineral salts with different content compositions of calcium and magnesium for each pH. The mineral salt produced by the transfer was precipitated and separated from seawater or deep sea water concentrate.
The capacity of the sedimentation tank (see Fig. 3) is about 100 liters, the upper part is cylindrical and the lower part is conical, so that the mineral salt precipitates that are formed will collect at the conical bottom of the sedimentation tank. From the middle upper part of the conical bottom of the settling tank, it is separated from the supernatant seawater or the deep sea water concentrated water that does not interfere with the mineral salts precipitated on the floor by using a supernatant removing and discharging device. In particular, when an inverted U-shaped tube is installed in the middle of the lower cone of the sedimentation tank and connected to the supernatant liquid discharge port below it, the cock of the supernatant liquid discharge port is opened. The supernatant liquid is discharged to the inlet. By adjusting the height of the inverted U-tube, it is possible to adjust the depth of the supernatant liquid according to the amount of the precipitate.
In addition, by making a rod that can be equipped with a stir outside the precipitation tank, the system is manufactured so that the reaction of mineral salts frequently occurs in the precipitation tank using the stir. The finally produced mineral salt collects at the conical bottom of the settling tank and can be easily recovered through the settling tank outlet. FIG. 3 shows a precipitation separation tank for separating mineral salts produced from alkali water adjusted for hydrogen ion concentration.
Example 3: Component composition of mineral salt according to hydrogen ion concentration (pH)
The mineral precipitate separated in the precipitation separation tank was centrifuged using a centrifuge, dried with a hot air dryer and then pulverized to produce a mineral salt. The mineral salt produced, separated and dried at pH 10 contained 9.24% magnesium, 23.1% calcium, and most of the minerals formed with a magnesium / calcium ratio of 0.4. The mineral salt formed at pH 11 consisted of 21% magnesium and 12% calcium with a magnesium / calcium ratio of 2.0. The mineral salt formed at pH 12 had 26.7% magnesium, 7.2% calcium and a magnesium: calcium ratio of 3.7. The mineral salt formed at pH 13 contains 30.7% magnesium and 4.4% calcium, with a magnesium: calcium ratio of 7.0 and the separation of calcium and magnesium occurs, accounting for 82% of the total cation mineral. ing.
FIG. 7 shows changes in the concentrations of magnesium and calcium according to pH in the mineral salt formed according to the adjustment of the hydrogen ion concentration. Magnesium increased in concentration as the hydrogen ion concentration increased from 10 to 13, while the calcium concentration decreased. Therefore, the ratio of magnesium and calcium in the produced mineral salt can be adjusted by adjusting the hydrogen ion concentration (pH) of alkaline water.
The mineral salts produced were analyzed for mineral mineral crystals using a Multi purpose X-ray Diffractometer (MP-XRD). The analysis conditions were X-ray power of 45 KV / 30 mA, Scan Mode of θ / 2θ, and scan range of 10 to 100 deg (2θ). Since most of the formed mineral crystals are in the form of calcium carbonate, magnesium hydroxide and calcium hydroxide, it is a crystal form in which most of the chlorine and sulfate ions, which are the water quality standard items of drinking water, are separated (Fig. 8). As a result, among the constituent components of the mineral salt for each pH, the chlorine ion concentration is in the 3% range, and the sulfate ion concentration is in the 1% range. Therefore, when producing potable water using mineral salt whose mineral content is adjusted by hydrogen ion concentration, chloride water and sulfate ion were removed, so that high hardness water could be produced while satisfying potable water quality standards. . FIG. 8 shows an XRD spectrum (@ pH = 10) of the mineral salt formed in accordance with the adjustment of the hydrogen ion concentration.
Example 4: Manufacture of mineral salt powder and tablets through adjustment of calcium and magnesium ingredients
As described above, according to the hydrogen ion concentration (pH), mineral salts having different magnesium and calcium concentrations were mixed to prepare a mineral salt in which the concentration ratio of magnesium to calcium was adjusted. For example, the Mg / Ca ratio formed at a hydrogen ion concentration (pH) of 10 is 23% calcium / mineral salt, which is mainly composed of calcium with a Mg / Ca ratio of 0.40, and a hydrogen ion concentration (pH) of 13. Manufacture of mineral salt with 77% magnesium mineral salt, the main component of which is 6.9, magnesium content is 25.7%, calcium content is 8.7%, Mg / Ca ratio is 3.0 Was possible. In addition, the mineral salts whose calcium content is adjusted by mixing calcium mineral salt, calcium / magnesium mixed mineral salt, magnesium, mineral salt, etc. as described above, citric acid powder, vitamin powder, fruit extract powder, green tea powder It was possible to manufacture tablets or powder guns.
Example 5: Production of high hardness mineral water using mineral salt
Calcium salt, calcium / magnesium mixed salt manufactured according to hydrogen ion concentration, mixed with magnesium salt, etc., Mg / Ca ratio adjusted to 2.0 Mineral content adjusted mineral salt 10.0 gram 1 liter demineralized water (hardness 80) Mineral demineralized water with a hardness of 4,350 adjusted to be dissolved in was prepared. This is diluted again with 2 liters of demineralized water to produce 3 liters of hard mineral water. Already during the production of mineral salts, ions of drinking water quality standards such as strontium, boron ions, chlorine ions, and sulfate ions have been separated and removed. Hardness mineral water satisfies the water quality standards of drinking water specified by the Drinking Water Management Act with a hardness of 1000 or more. Table 4 shows the drinking water quality standards.
It is also possible to produce a mineral mixed beverage in which minerals are reinforced by adding citric acid, orange extract, green tea extract, a plurality of plant and fruit extracts, etc. together with the desalted water in the above production process.

海水や海洋深層水から純度の高いミネラル、カルシウム塩やマグネシウム塩を低コストのエネルギーで分離抽出可能で、ミネラル塩と塩素イオンと硫酸イオンを分離することにより、飲用水の水質基準に適合した、高硬度ミネラル飲料の製造も可能である。また、カルシウムやマグネシウムのように有用ミネラルを含むさまざまな製品のミネラル原料を海水から効率的に生産することが可能で、飲み物とミネラルを原料とする関連産業の付加価値を高めることが可能である。   High-purity minerals, calcium salts and magnesium salts can be separated and extracted from seawater and deep ocean water with low-cost energy, and the mineral water, chloride ions and sulfate ions are separated to meet the water quality standards for drinking water. High hardness mineral beverages can also be manufactured. In addition, it is possible to efficiently produce mineral raw materials for various products containing useful minerals such as calcium and magnesium from seawater, and it is possible to increase the added value of related industries using drinks and minerals as raw materials. .

Claims (9)

a)海水または海洋深層水を前処理した後、1次処理して濃縮水と、生産水を製造する段階;
b)前記濃縮水を電流量を複数種の電流量に調節して電気分解して酸性水と水素イオン濃度(pH)10から13の間の複数種の水素イオン濃度(pH)のアルカリ水を製造する段階;
c)前記水素イオン濃度10から13の間の複数種の水素イオン濃度(pH)のアルカリ水を沈殿槽で、複数種のpH別にカルシウム塩マグネシウム塩を異なった比率で含有する複数種の沈殿物として生成して沈殿分離する段階;
d)前記分離されたカルシウム塩とマグネシウム塩を異なった比率で含有する複数種の沈殿物を一定の割合で混合して、カルシウムとマグネシウムのミネラル含有量が調整された有用ミネラル塩として製造する段階;
e)上記a)の生産水に前記d)段階の有用ミネラル塩を溶解させ、マグネシウム塩とカルシウム塩の成分が調整されて含有するミネラル飲料を製造する段階;とからなることを特徴とするミネラル飲料の製造方法。
a) pre-treating seawater or deep sea water, followed by primary treatment to produce concentrated water and product water;
b) The concentrated water is electrolyzed by adjusting the amount of current to a plurality of types of current, so that acidic water and alkaline water having a plurality of types of hydrogen ions (pH) between 10 and 13 are used. Producing the stage;
c) A plurality of types of precipitates containing alkaline water having a plurality of types of hydrogen ion concentrations (pH) between 10 to 13 in the above-described manner, and containing calcium salts and magnesium salts in different ratios according to the plurality of types of pH. Produced as a product and separated by precipitation;
d) A step of producing a useful mineral salt in which the mineral content of calcium and magnesium is adjusted by mixing a plurality of types of precipitates containing the separated calcium salt and magnesium salt in different ratios at a certain ratio. ;
e) dissolving the useful mineral salt of step d) in the production water of a) to prepare a mineral beverage containing adjusted magnesium and calcium salts ; A method for producing a mineral beverage.
a)段階の1次処理は、逆浸透膜(RO)処理工程、電気透析膜処理工程、NF-RO膜処理工程の中から選択されるいずれか一つ以上の方法を使用することを特徴とする請求項1記載のミネラル飲料の製造方法。 The primary treatment of step a) uses any one or more methods selected from a reverse osmosis membrane (RO) treatment step, an electrodialysis membrane treatment step, and an NF-RO membrane treatment step. The method for producing a mineral beverage according to claim 1 . a)段階の前処理は、砂ろ過、急速ろ過膜、マイクロフィルター(MF)、浸漬メンブレフィルタ(SMF)、ウルトラフィルター(UF)の中から選択されるいずれか一つ以上の方法を使用することを特徴とする請求項1記載のミネラル飲料の製造方法。 a) The pre-treatment of the step should use at least one method selected from sand filtration, rapid filtration membrane, microfilter (MF), immersion membrane filter (SMF), and ultrafilter (UF). The method for producing a mineral beverage according to claim 1 . b)段階で製造される水素イオン濃度(pH)10から13の間の複数種の水素イオン濃度(pH)のアルカリは電流量を50-260 mAと260 mAを超える電流量の間の複数種の電流量に調節して製造され、かつc)段階では、前記水素イオン濃度(pH)は、pH10、pH11、pH12及びpH13から選ばれる複数種の水素イオン濃度(pH)のアルカリ水を沈殿槽で、前記複数種のpH別にカルシウム塩とマグネシウム塩を異なった比率で含有する沈殿物を生成して沈殿分離することを特徴とする請求項1記載のミネラル飲料の製造方法。 b) Alkaline water with multiple hydrogen ion concentrations (pH) between 10 and 13 produced in the step has a current amount between 50-260 mA and a current amount exceeding 260 mA. In step c), the hydrogen ion concentration (pH) is precipitated with alkaline water having a plurality of hydrogen ion concentrations (pH) selected from pH 10, pH 11, pH 12, and pH 13. The method for producing a mineral beverage according to claim 1 , wherein a precipitate containing calcium salt and magnesium salt at different ratios is generated and separated in a tank according to the plurality of types of pH . 前記b)段階の電気分解に使用される濃縮水は、海水または海洋深層水、NF-ROまたはNF-RO-EDを用いた濃縮水、減圧蒸発蒸留によって製造されたミネラル濃縮水の中で選択されたいずれか一つ以上を利用することを特徴とする請求項1記載のミネラル飲料の製造方法。 The concentrated water used for the electrolysis in step b) is selected from seawater or deep ocean water, concentrated water using NF-RO or NF-RO-ED, and mineral concentrated water produced by vacuum evaporation. The method for producing a mineral beverage according to claim 1 , wherein any one or more of them are used. 前記a)段階の濃縮水の製造は、海水または海洋深層水を前処理した後、逆浸透膜(RO)に通過させて1次濃縮水と1次生産水を製造する段階; 1次濃縮水を再イオン交換膜(ED)に通過させて高濃度の二次濃縮水を製造することを特徴とする請求項1記載のミネラル飲料の製造方法。 In step a), the concentrated water is prepared by pretreating seawater or deep ocean water and then passing through a reverse osmosis membrane (RO) to produce primary concentrated water and primary produced water; The method for producing a mineral beverage according to claim 1, wherein a high-concentration secondary concentrated water is produced by passing the water through a reion exchange membrane (ED). 前記a)段階の濃縮水は、ナノフィルター(NF)、ウルトラフィルター(UF)膜を用いて、前処理過程を経て硫酸イオンのみを除去し、残りのナトリウム、マグネシウム、カルシウム、カリウム、塩素イオンが透過された生産水を再び逆浸透膜(RO)を通じて濾過し、濃縮することを特徴とする請求項1記載のミネラル飲料の製造方法。 The concentrated water in step a) uses a nanofilter (NF) or ultrafilter (UF) membrane to remove only sulfate ions through a pretreatment process, and the remaining sodium, magnesium, calcium, potassium, and chlorine ions are removed. The method for producing a mineral beverage according to claim 1 , wherein the permeated product water is again filtered through a reverse osmosis membrane (RO) and concentrated. 前記d)段階のカルシウム塩とマグネシウム塩を異なった比率で含有する複数種の沈殿物を混合する一定の割合は、マグネシウム/カルシウム比が0.4-7.0の間の割合であることを特徴とする請求項1記載のミネラル飲料の製造方法。 Certain percentage of mixing plural kinds of precipitate containing at different ratios of calcium salt and magnesium salt of the d) step, wherein the magnesium / calcium ratios is characterized in that the ratio between 0.4-7.0 Item 2. A method for producing a mineral beverage according to Item 1 . 上記a)の生産水にクエン酸、植物または果実抽出物の中から選択される1つ以上の抽出物とd)段階の有用ミネラル塩を溶解させ、マグネシウム塩、カルシウム塩の成分が調整されたミネラル飲料を製造することを特徴とする請求項1記載のミネラル飲料の製造方法。 One or more extracts selected from citric acid, plant or fruit extract and useful mineral salt in step d) were dissolved in the production water of a) above, and the components of magnesium salt and calcium salt were adjusted. The method for producing a mineral beverage according to claim 1, wherein a mineral beverage is produced.
JP2015503096A 2012-05-30 2012-12-26 Separation of mineral salt containing magnesium salt and calcium salt from electrolyzed alkaline water of seawater and method for producing mineral beverage using the same Active JP5919432B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020120057337A KR101367477B1 (en) 2012-05-30 2012-05-30 Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
KR10-2012-0057345 2012-05-30
KR1020120057345A KR101295445B1 (en) 2012-05-30 2012-05-30 Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral purification
KR10-2012-0057337 2012-05-30
PCT/KR2012/011424 WO2013180368A1 (en) 2012-05-30 2012-12-26 Method for separating mineral salts including magnesium salt and calcium salt from electrolyzed alkaline seawater, and method for using same to manufacture mineral beverage

Publications (2)

Publication Number Publication Date
JP2015513899A JP2015513899A (en) 2015-05-18
JP5919432B2 true JP5919432B2 (en) 2016-05-18

Family

ID=49673529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015503096A Active JP5919432B2 (en) 2012-05-30 2012-12-26 Separation of mineral salt containing magnesium salt and calcium salt from electrolyzed alkaline water of seawater and method for producing mineral beverage using the same

Country Status (2)

Country Link
JP (1) JP5919432B2 (en)
WO (1) WO2013180368A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787965B (en) * 2015-03-30 2017-03-22 上海明诺环境科技有限公司 Treatment method of pharmaceutical industry wastewater
CN105174530A (en) * 2015-07-20 2015-12-23 湖州吉昌丝绸有限公司 Texture industry wastewater decoloring treatment method and novel compound decolorant
JP2018014978A (en) * 2016-07-29 2018-02-01 室戸海洋深層水株式会社 As mineral component magnesium and calcium-containing soft drink
JP2019076827A (en) * 2017-10-24 2019-05-23 住友電気工業株式会社 Water treatment equipment and water treatment method
KR102036125B1 (en) * 2019-05-29 2019-10-24 송성은 Low-density Small Molecule Ionized Mineral Composition and Manufacturing Method Thereof
JP6739680B1 (en) * 2020-01-22 2020-08-12 健司 反町 Carbon dioxide fixing method, immobilized carbon dioxide production method, and carbon dioxide fixing device
CN112811698A (en) * 2021-01-14 2021-05-18 清钰环保科技(上海)有限公司 Steel strong brine treatment process
WO2023143672A1 (en) * 2022-01-28 2023-08-03 Harry Hoffmann Method and device for recovering resources from seawater

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607164B2 (en) * 1998-02-18 2011-01-05 赤穂化成株式会社 Beverage production method
JP2001299295A (en) * 2000-04-28 2001-10-30 Kyodo:Kk Mineral water and method for producing the same
JP2005087894A (en) * 2003-09-18 2005-04-07 Goshu Yakuhin Kk Hardness-regulated natural water
JP4031789B2 (en) * 2004-11-24 2008-01-09 高知県 Manufacturing method and manufacturing apparatus for high-concentration mineral liquid
KR200400448Y1 (en) * 2005-08-10 2005-11-08 한국수자원공사 A Manufacturing Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water
KR100751581B1 (en) * 2006-06-19 2007-08-22 (주)블루오션월드 Method for producing mineral water from deep ocean water with active control of mineral balances
KR100850378B1 (en) * 2006-10-16 2008-08-04 서희동 A manufacturing method of alkaline reduced ionized water for drinking, from the deep sea water
JP5062728B2 (en) * 2006-12-25 2012-10-31 室戸海洋深層水株式会社 Seawater treatment method and mineral water obtained by the seawater treatment method
KR100881584B1 (en) * 2007-04-12 2009-02-03 서희동 A method to produce electrolysis oxidation water and electrolysis reduction water from deep sea water
KR100885175B1 (en) * 2008-08-05 2009-02-23 한국해양연구원 Method for producing mineral water and mineral salts comprising mineral isolated from deep ocean water
KR101007332B1 (en) * 2008-11-21 2011-01-13 김충래 Preparation Method of High Concentrated Mineral Water Using Deep-Sea Water
KR100992428B1 (en) * 2009-08-17 2010-11-08 주식회사 파나블루 Method of mineral water manufacture through efficient mineral control and removal of anion by nf membrane
KR100944538B1 (en) * 2009-12-30 2010-03-03 (주) 오씨아드 Method for producing high hardness mineral water containing mineral using sea water

Also Published As

Publication number Publication date
WO2013180368A1 (en) 2013-12-05
JP2015513899A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP5919432B2 (en) Separation of mineral salt containing magnesium salt and calcium salt from electrolyzed alkaline water of seawater and method for producing mineral beverage using the same
KR100885175B1 (en) Method for producing mineral water and mineral salts comprising mineral isolated from deep ocean water
KR100732066B1 (en) Method for extracting minerals of high purity from deep ocean water by using low temperature vacuum crystallization
KR100944538B1 (en) Method for producing high hardness mineral water containing mineral using sea water
KR101639848B1 (en) The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
KR101367477B1 (en) Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
KR100945682B1 (en) Method for producing mineral water from deep sea water with mineral component and anion exchange resin
CN102272053A (en) Water desalination plant and system for the production of pure water and salt
CN104085956B (en) A kind of preparation method of ocean nanofiltration concentrate
CN106379919B (en) A kind of method of comprehensive utilization of the waste liquid containing lithium
WO2008153274A1 (en) Preparation method of mineral water and mineral salt from deep ocean water
de Nicolás et al. Reject brine management: Denitrification and zero liquid discharge (ZLD)—Current status, challenges and future prospects
CN103253818A (en) Seawater desalination, resource comprehensive utilization and zero discharge processing system
CN107935264A (en) A kind of sea water desalination salt manufacturing comprehensive technological method
KR20160004063A (en) Removal system of sulfate in seawater using ion exchange resin
KR100751581B1 (en) Method for producing mineral water from deep ocean water with active control of mineral balances
KR20140145309A (en) The manufacturing process development of Processed deep seawater using NF/RO/ED membrane connection system
KR101689059B1 (en) Removal of anions and conversion technology of carbonate ions from seawater
CN203229436U (en) Seawater desalination, resources comprehensive utilization and zero discharge treatment system
KR101153438B1 (en) Method for producing mineral salt by control of contents and sorts of deep seawater minerals
TW201639794A (en) Method for electrolyzing sea water to produce mineral beverage and disinfecting water, and mineral beverage, and disinfecting water manufactured by the same
KR101574327B1 (en) (Method for Separation of High Purity Minerals from Magma Seawater
KR101295445B1 (en) Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral purification
CN106006881A (en) Method and device for preparing bactericide
KR100759983B1 (en) Method for producing mineral water from deep ocean water with active control of mineral balances

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5919432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250