JP5916013B2 - Multi-stage electrochemical reactor - Google Patents

Multi-stage electrochemical reactor Download PDF

Info

Publication number
JP5916013B2
JP5916013B2 JP2012122187A JP2012122187A JP5916013B2 JP 5916013 B2 JP5916013 B2 JP 5916013B2 JP 2012122187 A JP2012122187 A JP 2012122187A JP 2012122187 A JP2012122187 A JP 2012122187A JP 5916013 B2 JP5916013 B2 JP 5916013B2
Authority
JP
Japan
Prior art keywords
layer
electrochemical
electrode layer
electrochemical reactor
multistage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012122187A
Other languages
Japanese (ja)
Other versions
JP2013247079A (en
Inventor
十志明 山口
十志明 山口
藤代 芳伸
芳伸 藤代
俊男 鈴木
俊男 鈴木
裕史 鷲見
裕史 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012122187A priority Critical patent/JP5916013B2/en
Publication of JP2013247079A publication Critical patent/JP2013247079A/en
Application granted granted Critical
Publication of JP5916013B2 publication Critical patent/JP5916013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は多段式電気化学反応器に関するものである。   The present invention relates to a multistage electrochemical reactor.

燃料電池や水蒸気電気分解セル、電気化学的NOx分解セルなどに代表される電気化学反応器において、従来、単セルをインターコネクトで接続した構造が知られている。
(特許文献1,2、非特許文献1)。
2. Description of the Related Art Conventionally, in an electrochemical reactor represented by a fuel cell, a steam electrolysis cell, an electrochemical NOx decomposition cell, etc., a structure in which single cells are connected by an interconnect is known.
(Patent Documents 1 and 2, Non-Patent Document 1).

また、中空支持体の表面に単セルを横縞状に直列接続する電気化学反応セル構造は合金系セパレータが不要という利点を有しており、現在、実証化検討が進められている。   In addition, the electrochemical reaction cell structure in which single cells are connected in series in the form of horizontal stripes on the surface of the hollow support has the advantage that an alloy-based separator is not required, and is currently under investigation.

このような構造では、電極材料を支持体として用いる電極支持型電気化学反応セル構造と比べ、単セルを細分化し、細分化された単セルが短距離で直列接続された構造を有しているため、電流密度を抑えることができ、インターコネクトとセル間の接続抵抗による抵抗損失を低減させることができる。   Such a structure has a structure in which single cells are subdivided and the subdivided single cells are connected in series at a short distance compared to an electrode-supported electrochemical reaction cell structure using an electrode material as a support. Therefore, the current density can be suppressed, and the resistance loss due to the connection resistance between the interconnect and the cell can be reduced.

横縞状の多段式電気化学反応器では、電解質膜を挟み、異種のガスをそれぞれの空間に流通させることで、発電や物質合成など種々の電気化学反応を引き起こす。   In a horizontal striped multistage electrochemical reactor, various kinds of electrochemical reactions such as power generation and material synthesis are caused by interposing an electrolyte membrane and allowing different gases to flow through each space.

ただ、上記のような先行技術では、例えば電気化学反応器のうち、固体電解質形燃料電池(以下、SOFCと呼ぶ。)の一般的な作動温度が700〜1000℃以上と高温のため、単セル間を接続するインターコネクトは融点や軟化点の高い導電性セラミックス材料のみで形成しなければならなかった。   However, in the prior art as described above, for example, among the electrochemical reactors, since the general operating temperature of a solid oxide fuel cell (hereinafter referred to as SOFC) is as high as 700 to 1000 ° C. or higher, a single cell The interconnects connecting them had to be formed only from conductive ceramic materials with high melting points and softening points.

この場合、例えば図8に示したように、単セル間を接続するインターコネクト(図1)は緻密性かつ導電性の材料で形成されているものの、単セルおよびインターコネクト界面のガスシール性が不十分なため、理論値よりも10〜20%低い開回路電圧、すなわち10〜20%のエネルギーを損失するという問題があった。   In this case, for example, as shown in FIG. 8, the interconnect (FIG. 1) for connecting the single cells is formed of a dense and conductive material, but the gas sealing property at the interface between the single cells and the interconnect is insufficient. Therefore, there is a problem that an open circuit voltage that is 10 to 20% lower than the theoretical value, that is, 10 to 20% of energy is lost.

また太陽光等に代表される未利用エネルギーを用いて、電気化学的な物質合成もしくは物質変換を行う試みが盛んな近年、反応効率を高めるには電解質とインターコネクトの気密性が必須であるが、接続界面におけるクロスリークは反応効率低下を招くという問題があった。   In recent years, attempts have been made to perform electrochemical material synthesis or material conversion using unused energy typified by sunlight, etc. In order to increase reaction efficiency, the airtightness of the electrolyte and interconnect is essential. The cross leak at the connection interface has a problem that the reaction efficiency is lowered.

特開平6−44983号公報JP-A-6-44983 特開平8−78041号公報JP-A-8-78041

“Effect of Cathode Sheet Resistance on Segmented-in-series SOFC Power Density,” Journal of Power Sources, 164 (2007) 742-745“Effect of Cathode Sheet Resistance on Segmented-in-series SOFC Power Density,” Journal of Power Sources, 164 (2007) 742-745

これまでに、同様な構造で電気化学反応セルを多孔質基板上に横縞状に配列し、各セルを直列に接続した構造が提案されている。SOFC等既存の電気化学反応を効率良く進行させるためには約800℃付近の高温作動が必要なため、接続部分を構成する材料としては、作動域でも軟化もしくは溶融せず、導電性かつ緻密性を両立、酸化および還元雰囲気でも化学的安定性の優れた導電性セラミックス材料が用いられてきた。しかしながら、このような材料は高価なものが多く、また、緻密化のプロセスが限定されるため、コストがかかるものであった。   So far, a structure has been proposed in which electrochemical reaction cells are arranged in a horizontal stripe pattern on a porous substrate in a similar structure, and the cells are connected in series. In order to advance the existing electrochemical reaction such as SOFC efficiently, high temperature operation around 800 ° C is required. Therefore, the material constituting the connection part is not softened or melted even in the operating region, and is conductive and dense. Thus, conductive ceramic materials having excellent chemical stability even in oxidizing and reducing atmospheres have been used. However, many of these materials are expensive, and the process for densification is limited, which is costly.

それに加えて、電気化学反応セルの電極が多孔質であり、導電性セラミックス材料によって接続層を形成しても、接続層と多孔質電極の界面を完全な接着(接合)をすることが非常に困難なため、接合界面のガスシール性が不十分となる。   In addition, the electrode of the electrochemical reaction cell is porous, and even if the connection layer is formed of a conductive ceramic material, the interface between the connection layer and the porous electrode can be completely bonded (bonded). Since it is difficult, the gas sealing property at the bonding interface becomes insufficient.

その結果、本来、電解質及び接続層により完全に分離されるべき空気極ガスと燃料極ガスが接続界面でクロスリークしてしまい、理論値よりも10〜20%低い開回路電圧、つまり10〜20%エネルギーを損失し、また、セル界面の劣化モードを促進させるなど電気化学セルの安定性を損なうといった問題があった。また、電気化学反応を利用した電気化学反応器では、クロスリークにより反応生成物の純度低下に繋がり、結果として反応効率が低くなるといった課題があった。   As a result, the air electrode gas and the fuel electrode gas that should be completely separated from each other by the electrolyte and the connection layer cross-leak at the connection interface, and the open circuit voltage is 10 to 20% lower than the theoretical value, that is, 10 to 20 % Energy is lost, and the stability of the electrochemical cell is impaired, for example, by promoting the deterioration mode of the cell interface. Moreover, in the electrochemical reactor using an electrochemical reaction, the purity of the reaction product is reduced due to cross leak, and as a result, there is a problem that the reaction efficiency is lowered.

本発明は、上記のとおりの課題を解決するために、電解質層が燃料極層と空気極層に挟まれた構造を有する電気化学反応セルが、管状構造を有する多孔質体の表面に複数、独立して形成され、独立したそれぞれの電気化学反応セルの燃料極層が隣接する電気化学反応セルの空気極層と多孔質の導電層で電気的に直列に接続され、その多孔質の導電層にガスシール層が積層されていることを特徴とする多段式電気化学反応器を提供する。 In order to solve the problems as described above, the present invention provides a plurality of electrochemical reaction cells having a structure in which an electrolyte layer is sandwiched between a fuel electrode layer and an air electrode layer on the surface of a porous body having a tubular structure, independently formed, are electrically connected in series with a conductive layer of the air electrode layer and the porous electrochemical reaction cells where the fuel electrode layer independent respective electrochemical reaction cells are adjacent, electrically conductive layer of the porous A multi-stage electrochemical reactor is provided in which a gas seal layer is laminated on.

また、これらの多段式電気化学反応器を用いて、300〜700℃、好ましくは500℃〜650℃で作動させる反応方法を提供する。   Moreover, the reaction method operated at 300-700 degreeC using these multistage electrochemical reactors, Preferably it is 500 to 650 degreeC is provided.

本発明の電気化学反応器セルの接続構造は、横縞状に並ぶ電気化学セルを導電材料で直列に接続配線した後、該当箇所にシール材料で気密層を形成することができるため、理論的な開回路電圧からの低下を最小限におさえ、安定した運転を行うことができる利点がある。   The connection structure of the electrochemical reactor cell of the present invention is theoretically because an airtight layer can be formed with a sealing material at a corresponding place after connecting and wiring the electrochemical cells arranged in a horizontal stripe shape in series with a conductive material. There is an advantage that stable operation can be performed while minimizing the drop from the open circuit voltage.

また、電導材料に緻密性を求める必要がなくなるため、電導性のよい電導材料を選択できるので抵抗損失による性能低下が抑えられ、かつ電導材料の選択肢が広がり、低コストの材料の適用が可能となることから、工業的に優位であり、発電性能や電解性能に優れた電気化学反応器が提供される。   In addition, since it is no longer necessary to determine the density of the conductive material, it is possible to select a conductive material with good conductivity, so that the performance loss due to resistance loss can be suppressed, and the choice of conductive material is widened, so that low-cost materials can be applied. Therefore, an electrochemical reactor that is industrially superior and excellent in power generation performance and electrolysis performance is provided.

本発明の反応方法によれば比較的低温で効率よく電気化学反応を行うことができる。   According to the reaction method of the present invention, an electrochemical reaction can be performed efficiently at a relatively low temperature.

本発明における接続構造Connection structure in the present invention 本発明において作製過程の基材2の構造Structure of the substrate 2 in the production process in the present invention 本発明において、導電材料層を形成した後の構造In the present invention, the structure after the conductive material layer is formed 多段式電気化学反応器の評価方法Evaluation method for multistage electrochemical reactor 非特許文献と本発明における1セルあたりの発電性能Non-patent literature and power generation performance per cell in the present invention 本発明における発電及び電解サイクリックボルタンメトリー性能Power generation and electrolytic cyclic voltammetry performance in the present invention 本発明における発電及び電解サイクル性能Power generation and electrolytic cycle performance in the present invention 従来技術における接続構造Connection structure in the prior art

<多段式電気化学反応器の構成>
本発明は、多段式電気化学反応器における複数の電気化学反応セルの接続方法として導電材料とシール材料の積層構造を適用することを最も主要な特徴とする。
<Configuration of multi-stage electrochemical reactor>
The main feature of the present invention is that a laminated structure of a conductive material and a sealing material is applied as a method for connecting a plurality of electrochemical reaction cells in a multistage electrochemical reactor.

本発明に係る多段式電気化学反応器の構成について説明する。図4は、本発明に係る多段式電気化学反応器の一部を例示した概略図である。図1は、この図4に例示した多段式電気化学反応器の長手方向の一部断面図である。管状の多孔質体である基材1に燃料極層1,2と電解質層1,2、そして空気極層1、2が積層されている。   The configuration of the multistage electrochemical reactor according to the present invention will be described. FIG. 4 is a schematic view illustrating a part of a multistage electrochemical reactor according to the present invention. FIG. 1 is a partial cross-sectional view in the longitudinal direction of the multistage electrochemical reactor illustrated in FIG. The fuel electrode layers 1 and 2, the electrolyte layers 1 and 2, and the air electrode layers 1 and 2 are laminated on a base material 1 that is a tubular porous body.

燃料極層1と空気極層2とが導電材料層で接続され、導電材料層はガスシール層で覆われている。このようにして電気化学反応器(セル)1と電気化学反応器(セル)2が電気的に接続され、導電材料層は空気との接触が防止され、導電材料層の酸化劣化が抑制される。図2では電気化学反応器(セル)が2個結合されているが、目的に応じて3個以上の結合が可能である。   The fuel electrode layer 1 and the air electrode layer 2 are connected by a conductive material layer, and the conductive material layer is covered with a gas seal layer. In this way, the electrochemical reactor (cell) 1 and the electrochemical reactor (cell) 2 are electrically connected, the conductive material layer is prevented from coming into contact with air, and the oxidative deterioration of the conductive material layer is suppressed. . In FIG. 2, two electrochemical reactors (cells) are connected, but three or more can be combined depending on the purpose.

例えば前記の基材1となる多孔質体の材料としては絶縁性の高い(特に電子絶縁性は必須)材料を使用する必要があり、ジルコニアやマグネシアに代表される酸化物であることが望ましい。   For example, it is necessary to use a material having a high insulating property (especially an electronic insulating property is essential) as the material of the porous body used as the substrate 1, and is preferably an oxide typified by zirconia or magnesia.

その中でも、イットリア(Y)、カルシア(CaO)、マグネシア(MgO)、イッテルビア(Yb)、エルビア(Er)等の安定化剤で安定化された安定化ジルコニアやマグネシアなどが好適な例として挙げられる。なお、安定化ジルコニアは、その他の1種又は2種以上の安定化剤により安定化させることができ、また、アルミナ(Al)との複合体とすることもできる。 Among them, stabilized zirconia stabilized with a stabilizer such as yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO), ytterbia (Yb 2 O 3 ), erbia (Er 2 O 3 ), etc. A suitable example is magnesia. Stabilized zirconia can be stabilized by one or more other stabilizers, and can also be a composite with alumina (Al 2 O 3 ).

例えば電解質層1、2となる電解質材料としては、高いイオン導電性を有する材料を使用することが必要であり、セリア系酸化物:Ce1−xLn2−x/2(ただし、LnはLa,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yのうち少なくとも1種類を含み、xが0.05以上0.50以下)、イットリア安定化ジルコニア酸化物:5〜10mol%イットリア添加、スカンジア安定化ジルコニア酸化物:a mol% Sc−b mol% CeO−c mol% ZrO(ただし、aが8以上15以下、bが0以上2以下、かつa+b+c=100)、ランタンガレート酸化物:La1−mSrGa1−nMg(ただし、mが0.05以上0.3以下、nが0以上0.3以下)の1種類、もしくは2種類以上の複合体であることが望ましい。 For example, it is necessary to use a material having high ionic conductivity as the electrolyte material for forming the electrolyte layers 1 and 2, and a ceria-based oxide: Ce 1-x Ln x O 2−x / 2 (however, Ln Includes at least one of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and x is 0.05 to 0.50), yttria stable zirconia oxide: 5 to 10 mol% yttria, scandia-stabilized zirconia oxide: a mol% Sc 2 O 3 -b mol% CeO 2 -c mol% ZrO 2 ( where, a is 8 to 15, b is 0 to 2, and a + b + c = 100) , lanthanum gallate oxide: La 1-m Sr m Ga 1-n Mg n O 3 ( provided that, m is 0.05 to 0.3, n is 0 or more One .3 or less), or a two or more complex it is desirable.

具体的には、水蒸気電解に対しても分解等の欠損が生じない安定化ジルコニアが特に好ましい。   Specifically, stabilized zirconia that does not cause defects such as decomposition even with respect to steam electrolysis is particularly preferable.

サーメット電極材料は例えば前記燃料極層1、2として考慮することもできる。これらの材料については、前述の電解質材料とNi、Cu,Co,Mn,Fe,Ag,Pt,Pd,Rh,Ir,La,Sr,Tiの元素およびこれらの元素1種類以上を含む複合体またはサーメットが好適な代表例として挙げられる。   The cermet electrode material can be considered as the fuel electrode layers 1 and 2, for example. For these materials, the above-described electrolyte material and a composite containing Ni, Cu, Co, Mn, Fe, Ag, Pt, Pd, Rh, Ir, La, Sr, Ti and one or more of these elements or Cermet is a suitable representative example.

具体的には、酸化還元サイクルに対して広い安定領域を有する(Ni,Fe,Cu)−安定化ジルコニアが特に好ましい。   Specifically, (Ni, Fe, Cu) -stabilized zirconia having a wide stable region with respect to the redox cycle is particularly preferable.

そして、例えば前記の空気極層1、2を構成する空気極材料としては、Ag,La,Sr,Mn,Co,Fe,Sm,Ca,Ba,Ni,Mgの元素およびこれらの元素1種類以上を含む酸化物が好適な代表例として挙げられる。   For example, the air electrode materials constituting the air electrode layers 1 and 2 include Ag, La, Sr, Mn, Co, Fe, Sm, Ca, Ba, Ni, Mg, and one or more of these elements. A typical example is a suitable oxide.

具体的には、酸化反応および還元反応共に有効に作用する(LaSr)(CoFe)O3系酸化物が特に好ましい。   Specifically, a (LaSr) (CoFe) O 3 oxide that effectively acts on both the oxidation reaction and the reduction reaction is particularly preferable.

また、上記空気極や燃料極の電極反応活性を向上させるために、補助材料を組み合わせることも可能である。組み合わせ方法として、燃料極電極材料中へ直接活性補助材料を混ぜ合わせる、もしくは燃料極電極と電解質の間に活性補助材料を含む中間層を挿入するなど目的に応じて適宜の方法を選択することができる。   Moreover, in order to improve the electrode reaction activity of the said air electrode or a fuel electrode, it is also possible to combine an auxiliary material. As a combination method, an appropriate method may be selected according to the purpose, such as mixing the active auxiliary material directly into the fuel electrode material or inserting an intermediate layer containing the active auxiliary material between the fuel electrode and the electrolyte. it can.

なお、燃料極電極材料に直接混ぜ合わせる反応活性補助材料として、Pt,Pd,Ag,Ba,Sr,Ca,Mg,K,Na,Mn,Fe,Co,Ni,Cu,Zn,Ti,Al,Ga,Nb,Ta,V,Laの元素を少なくとも1種類以上含む金属、もしくはこれら元素を1種類以上含む酸化物であることが望ましい。空気極と電解質の間に挿入する活性層としては、空気極材料に対し、上述の電解質材料もしくは上述の反応活性補助材料のうち1種類以上を含む複合体であることが好ましい。   In addition, as a reaction activity auxiliary material directly mixed with the fuel electrode material, Pt, Pd, Ag, Ba, Sr, Ca, Mg, K, Na, Mn, Fe, Co, Ni, Cu, Zn, Ti, Al, A metal containing at least one element of Ga, Nb, Ta, V, and La, or an oxide containing one or more of these elements is desirable. The active layer inserted between the air electrode and the electrolyte is preferably a composite containing one or more of the above-described electrolyte material or the above-described reaction activity auxiliary material with respect to the air electrode material.

具体的には、Pt,Pd,Ag,Mn,Cu,Feが特に好ましい。   Specifically, Pt, Pd, Ag, Mn, Cu, and Fe are particularly preferable.

導電材料層としては、Ag,Pt,Pd,La,Sr,Ti,Nbの元素およびこれらの元素1種類以上を含む複合体、又は、フェライト系ステンレス、インコネル等の耐熱性合金のうち1種類以上を含む材料であることが好ましい。   As the conductive material layer, one or more of Ag, Pt, Pd, La, Sr, Ti, Nb and a composite containing one or more of these elements, or a heat-resistant alloy such as ferritic stainless steel, Inconel, etc. It is preferable that it is a material containing.

ガスシール層としては、空気などのガスの透過率が低い材料であればよいが、ケイ酸塩ガラスは、その軟化挙動を利用することで導電材料層および電極層の気孔を封じることができるため好適な代表例となる。さらにB,Na,K,P等に代表される電極劣化を促進する元素を含まないケイ酸塩ガラスがより好適である。なお、当該多段式電気化学反応器の作動温度に応じて、適した構成成分を選択し、適宜軟化温度を制御することができる。   As the gas seal layer, any material having a low gas permeability such as air may be used. However, silicate glass can seal pores of the conductive material layer and the electrode layer by utilizing its softening behavior. This is a suitable representative example. Furthermore, a silicate glass that does not contain an element that promotes electrode deterioration such as B, Na, K, and P is more preferable. In addition, according to the operating temperature of the said multistage electrochemical reactor, a suitable structural component can be selected and softening temperature can be controlled suitably.

中でも、熱膨張係数が9×10−6〜12×10−6(℃−1)の範囲、軟化温度が600℃以上のケイ酸塩ガラスを使用することにより、残留応力破壊を防ぎ、燃料極と空気極間のクロスガスリークを10%以下にできる。
<多段式電気化学反応器の作製方法>
以上のような構成を有する本発明の多段式電気化学反応器は一般的には、例えば次のような方法によって作成することができる。
Among them, by using a silicate glass having a thermal expansion coefficient in the range of 9 × 10 −6 to 12 × 10 −6 (° C. −1 ) and a softening temperature of 600 ° C. or higher, residual stress destruction is prevented, and the fuel electrode The cross gas leak between the air electrode and the air electrode can be reduced to 10% or less.
<Production method of multi-stage electrochemical reactor>
In general, the multistage electrochemical reactor of the present invention having the above-described configuration can be produced, for example, by the following method.

上記多孔質体材料に、セルロース系の結合剤、炭素粉末等の気孔生成剤を加えて、水で練り、得られた塑性混合物を、押し出し成形法等を用いて、所定の管径、管長さ、管厚みの管状成形体に成形する。通常、管外径は2〜5mm、管内径は0.5〜4.5mmである。   To the porous material, a pore-forming agent such as a cellulose-based binder and carbon powder is added, and the mixture is kneaded with water. The obtained plastic mixture is extruded into a predetermined tube diameter and tube length. The tube is formed into a tubular molded body having a thickness. Usually, the tube outer diameter is 2 to 5 mm, and the tube inner diameter is 0.5 to 4.5 mm.

次いで、管状成形体にサーメット燃料極材料を横縞状に成膜、積層する。次にサーメット燃料極の一部を除き燃料極上に電解質材料を成膜、積層する(図2参照)。成膜方法として、ディップコート法、溶射法、インクジェット法、転写法、印刷法などが代表例として挙げられる。   Next, a cermet fuel electrode material is formed in a horizontal stripe pattern on the tubular molded body and laminated. Next, an electrolyte material is formed and laminated on the fuel electrode except for a part of the cermet fuel electrode (see FIG. 2). Typical examples of the film forming method include a dip coating method, a thermal spraying method, an ink jet method, a transfer method, and a printing method.

たとえば、ディップコート成膜では、成膜しない領域をマスクし、0.1mm/sec〜3mm/secの範囲で引き上げ速度を調整することにより各層の膜厚を制御することができる。コートに用いる燃料極材料および電解質材料の粒子分散スラリーは、各層を構成する材料粉末をエタノール主溶媒とともにボールミル混合し、市販のPVBバインダー、界面活性剤をさらに混合することによって調製すればよい。その他の成膜方法においても、適宜好適な方法を選択すればよい。   For example, in dip coat film formation, the film thickness of each layer can be controlled by masking a region where no film is formed and adjusting the pulling speed within a range of 0.1 mm / sec to 3 mm / sec. The particle dispersion slurry of the fuel electrode material and the electrolyte material used for the coating may be prepared by ball mill mixing the material powder constituting each layer together with an ethanol main solvent and further mixing a commercially available PVB binder and a surfactant. Also in other film forming methods, a suitable method may be selected as appropriate.

サーメット燃料極層および電解質層を積層した管状成形体を1000℃〜1600℃好ましくは1200℃〜1400℃にて焼成し、管状多孔質体を得る(図2参照)。   The tubular molded body in which the cermet fuel electrode layer and the electrolyte layer are laminated is fired at 1000 ° C. to 1600 ° C., preferably 1200 ° C. to 1400 ° C. to obtain a tubular porous body (see FIG. 2).

ここで、多孔質体の気孔率について説明する。管状多孔質体の開気孔率は10%〜50%、特に30〜40%が好ましい。10%未満では気体の透過係数が不十分となり、50%を超えると支持体としての機械的強度が不十分となる。形成される全ての電気化学反応セルが機能発現するためには、図2の基材1を原料ガス(SOFC用燃料極なら燃料ガス)が通過し、燃料極層で反応し、反応生成物(SOFC用燃料極材料なら水蒸気やCO,COガス)と原料ガスとがスムーズかつ連続的に相互拡散する必要がある。 Here, the porosity of the porous body will be described. The open porosity of the tubular porous body is preferably 10% to 50%, particularly preferably 30 to 40%. If it is less than 10%, the gas permeability coefficient becomes insufficient, and if it exceeds 50%, the mechanical strength as a support becomes insufficient. In order for all the formed electrochemical reaction cells to function, the raw material gas (or fuel gas in the case of the SOFC fuel electrode) passes through the base material 1 in FIG. 2, reacts in the fuel electrode layer, and the reaction product ( In the case of a fuel electrode material for SOFC, water vapor, CO, and CO 2 gas) and the raw material gas must smoothly and continuously interdiffuse.

多孔質支持体壁にはガス透過性が求められ、30%以上の気孔率を有していることが好ましい。同時に、多孔質支持体が多段式電気化学反応器の基本骨格を形成することになるため、その強度保持を達成するためには、最大気孔率として50%以下、特に20〜40%となることが好ましい。50%を超えると支持管壁強度が不十分となる。   The porous support wall is required to have gas permeability, and preferably has a porosity of 30% or more. At the same time, since the porous support forms the basic skeleton of the multistage electrochemical reactor, the maximum porosity should be 50% or less, particularly 20 to 40% in order to achieve the strength retention. Is preferred. If it exceeds 50%, the support tube wall strength will be insufficient.

面内導電抵抗を考慮し、横縞状に形成する各セル幅としては長さが0.01〜5cmの範囲内であることが好ましく、接続抵抗削減の観点から、各セル間の距離が0.01〜0.5mmの範囲内であることが好ましい。   In consideration of the in-plane conductive resistance, the width of each cell formed in a horizontal stripe shape is preferably within a range of 0.01 to 5 cm. From the viewpoint of reducing the connection resistance, the distance between the cells is 0. It is preferable to be within the range of 01 to 0.5 mm.

電気化学反応セル間の距離は0.01〜5mmの範囲が好ましいが、0.01mm未満では燃料極層および電解質層、導電材料層のコーティングに高い位置精度が必要となり製造コスト高に繋がり、また5mmを超えると接続部の電気抵抗増に繋がる。特には、0.5〜2mmが好ましい。   The distance between the electrochemical reaction cells is preferably in the range of 0.01 to 5 mm. However, if the distance is less than 0.01 mm, high positional accuracy is required for coating of the fuel electrode layer, the electrolyte layer, and the conductive material layer, leading to high manufacturing costs. If it exceeds 5 mm, it leads to an increase in electrical resistance of the connecting portion. In particular, 0.5-2 mm is preferable.

ついで燃料極層1および予定する空気極層2間に、有機溶剤系でスラリー化した導電材料を成膜して導電層を形成し、燃料極層1および空気極層2が電気的に直列接続されるようにする(図3参照)。成膜方法としては、前述と同様に、ディップコート法、溶射法、インクジェット法、転写法、印刷法などが代表例として挙げられる。導電層1の厚みは1ミクロン以上、好ましくは10ミクロン以上である。10ミクロン未満では膜厚不足のため電気抵抗増に繋がる。   Next, a conductive material slurryed with an organic solvent system is formed between the fuel electrode layer 1 and the planned air electrode layer 2 to form a conductive layer. The fuel electrode layer 1 and the air electrode layer 2 are electrically connected in series. (See FIG. 3). As a film forming method, as described above, a dip coating method, a thermal spraying method, an ink jet method, a transfer method, a printing method, and the like can be given as representative examples. The thickness of the conductive layer 1 is 1 micron or more, preferably 10 microns or more. If it is less than 10 microns, the electrical resistance increases due to insufficient film thickness.

そして予定の位置に空気極層を成膜して、800℃〜1300℃好ましくは1000℃〜1200℃にて焼成する(図3参照)。成膜方法としては、前述と同様に、ディップコート法、溶射法、インクジェット法、転写法、印刷法などが代表例として挙げられる。導電層に対し、溶媒系でスラリー化したガスシール層材料を成膜し、600℃以上、好ましくは作動予定温度以上の800℃〜900℃にて焼き付ける。   Then, an air electrode layer is formed at a predetermined position and fired at 800 ° C. to 1300 ° C., preferably 1000 ° C. to 1200 ° C. (see FIG. 3). As a film forming method, as described above, a dip coating method, a thermal spraying method, an ink jet method, a transfer method, a printing method, and the like can be given as representative examples. A gas seal layer material slurried in a solvent system is formed on the conductive layer and baked at 600 ° C. or higher, preferably 800 ° C. to 900 ° C., which is higher than the expected operating temperature.

こうして、燃料極層1と空気極層2が導電材料層で電気的に接続され、ガスシール層が導電材料層を覆うように成膜、積層された積層構造からなる接続構造を有する多段式電気化学反応器を作製することができる(図1、4参照)。なお、前述しているが、サーメット燃料極層、電解質層、空気極層、導電材料層、ガスシール層の成膜方法として、ディップコーティングや印刷、転写、溶射、スプレーコート等が例示されるが、それに限定されるものではない。   In this way, the fuel electrode layer 1 and the air electrode layer 2 are electrically connected by the conductive material layer, and the multistage electric circuit having a connection structure formed of a laminated structure in which the gas seal layer is formed and laminated so as to cover the conductive material layer. A chemical reactor can be made (see FIGS. 1 and 4). As described above, the cermet fuel electrode layer, the electrolyte layer, the air electrode layer, the conductive material layer, and the gas seal layer may be formed by dip coating, printing, transfer, spraying, spray coating, etc. It is not limited to that.

このように、電気化学反応セルを複数直列に結合することで目的とする性能が得られる。たとえば燃料電池作動条件では、単セル電圧×直列接続数の電圧が得られる。また、電気分解反応に関しても同様に、単セル電圧×直列接続数の電圧付与により、対象物質の電気分解反応を行うことができる。   Thus, the target performance is obtained by combining a plurality of electrochemical reaction cells in series. For example, under fuel cell operating conditions, a voltage of single cell voltage × number of series connections is obtained. Similarly, regarding the electrolysis reaction, the electrolysis reaction of the target substance can be performed by applying a voltage of single cell voltage × the number of series connections.

従来、インターコネクト層が緻密である必要があったのに対し、本発明では、導電材料層を多孔質とすることにより、導電材料が還元雰囲気になるため、合金等の金属材料を用いた場合でも酸化抑制、つまり導電材料の保護層としての効果がある。また、シール材料層は、導電材料層だけでなく、隣接する空気極層にも浸透し、空気極の一部がガスバリヤー層として機能させることができる。   Conventionally, the interconnect layer had to be dense, but in the present invention, the conductive material layer is made porous so that the conductive material becomes a reducing atmosphere, so even when a metal material such as an alloy is used. There is an effect of suppressing oxidation, that is, as a protective layer of a conductive material. Further, the sealing material layer penetrates not only the conductive material layer but also the adjacent air electrode layer, and a part of the air electrode can function as a gas barrier layer.

以下に、実施例の詳細について説明するが、本発明は以下の実施例に限定されるものではない。   Details of the examples will be described below, but the present invention is not limited to the following examples.

本発明では、先ず、以下の手順に従い、多孔質成形体からなる基材1(図2)を作製した。電子絶縁性セラミック材料の一種である安定化剤として3mol%のイットリアを添加したイットリア安定化ジルコニア(以下、3YSZと呼ぶ。)を、水および市販のエチルセルロースと混練し、加圧押出して管外径5.8mm、管内径5.0mmの管状成形体を得た。管状成形体を約6cmの長さに切断し、管状多孔質成形体を得た。   In the present invention, first, a substrate 1 (FIG. 2) made of a porous molded body was produced according to the following procedure. Yttria-stabilized zirconia (hereinafter referred to as 3YSZ) to which 3 mol% of yttria is added as a stabilizer, which is a kind of electronic insulating ceramic material, is kneaded with water and commercially available ethyl cellulose, and pressure-extruded to obtain a tube outer diameter. A tubular molded body having a diameter of 5.8 mm and a tube inner diameter of 5.0 mm was obtained. The tubular molded body was cut into a length of about 6 cm to obtain a tubular porous molded body.

燃料極材料としてNiOおよび8mol%イットリア安定化ジルコニア(以下、8YSZと呼ぶ。)混合体を選択し、電解質材料として8YSZを選択し、材料粉末をエタノール主溶媒とともにボールミル混合し、市販のPVBバインダー、界面活性剤をさらに混合することによって、それぞれの粒子分散スラリーを調製した。   NiO and 8 mol% yttria-stabilized zirconia (hereinafter referred to as 8YSZ) mixture is selected as the fuel electrode material, 8YSZ is selected as the electrolyte material, the material powder is ball milled with ethanol main solvent, a commercially available PVB binder, Each particle-dispersed slurry was prepared by further mixing the surfactant.

次いで、管状成形体の成膜しない領域をマスクし、サーメット燃料極材料の粒子分散スラリーに浸漬したのちディップコート(引き上げ速度:1mm/sec)により燃料極層を横縞状に成膜、積層した。次にサーメット燃料極層の一部をマスクした管状成形体を、電解質材料の粒子分散スラリーに浸漬したのちディップコート(引き上げ速度:2mm/sec)により成膜、積層した(図2参照)。   Next, the non-film-formed region of the tubular molded body was masked, immersed in a particle-dispersed slurry of cermet fuel electrode material, and then the fuel electrode layer was formed and laminated in a horizontal stripe pattern by dip coating (pickup speed: 1 mm / sec). Next, the tubular molded body masked with a part of the cermet fuel electrode layer was immersed in a particle-dispersed slurry of electrolyte material, and then formed and laminated by dip coating (pickup speed: 2 mm / sec) (see FIG. 2).

サーメット燃料極層および電解質層を積層した管状成形体を1300℃にて焼成し、多孔質体にサーメット燃料極層および電解質層を積層した基材2(多孔質基体の気孔率は36%)を得た(図2参照)。   A tubular molded body in which the cermet fuel electrode layer and the electrolyte layer are laminated is fired at 1300 ° C., and the base material 2 (porosity of the porous substrate is 36%) in which the cermet fuel electrode layer and the electrolyte layer are laminated on the porous body. Obtained (see FIG. 2).

ついで燃料極層1および予定する空気極層2間に電気的に直列接続されるように金属ペースト(金属はPt)を印刷塗布して導電材料層を形成した。次に、導電材料層上の空気極層を印刷塗布して、導電材料層および空気極層を1000℃にて焼成した。ついで、電極層の一部も含め導電材料層を覆うように、ガスシール層を印刷塗布し、850℃で焼き付けることで、管状二段式電気化学反応器(図1参照)を得た。   Subsequently, a metal paste (metal is Pt) was printed and applied so as to be electrically connected in series between the fuel electrode layer 1 and the planned air electrode layer 2 to form a conductive material layer. Next, the air electrode layer on the conductive material layer was printed and applied, and the conductive material layer and the air electrode layer were baked at 1000 ° C. Next, a gas seal layer was printed and applied so as to cover the conductive material layer including a part of the electrode layer, and baked at 850 ° C. to obtain a tubular two-stage electrochemical reactor (see FIG. 1).

サーメット燃料極層、電解質層、および空気極層の膜厚はそれぞれ100ミクロン、10ミクロン、50ミクロンであった。導電層の熱膨張係数は約11×10−6(℃−1)かつ面積抵抗は300(mΩ/cm)であった。 The thicknesses of the cermet fuel electrode layer, the electrolyte layer, and the air electrode layer were 100 microns, 10 microns, and 50 microns, respectively. The thermal expansion coefficient of the conductive layer was about 11 × 10 −6 (° C. −1 ) and the sheet resistance was 300 (mΩ / cm 2 ).

シール層の熱膨張係数は10.5×10−6(℃−1)、軟化温度は約700℃であった。
<比較例1>
The thermal expansion coefficient of the sealing layer was 10.5 × 10 −6 (° C. −1 ), and the softening temperature was about 700 ° C.
<Comparative Example 1>

実施例1と同様の手法にて、多孔質基体管上に、サーメット燃料極層および電解質層、導電材料層、空気極層を成膜、焼成し得られたサンプルの様子を図3に示す。実施例1で得られる図1と比べ、比較例1ではガスシール層が成膜されていない。   FIG. 3 shows a state of a sample obtained by forming and firing a cermet fuel electrode layer, an electrolyte layer, a conductive material layer, and an air electrode layer on a porous substrate tube in the same manner as in Example 1. Compared to FIG. 1 obtained in Example 1, the gas seal layer is not formed in Comparative Example 1.

次に、実施例1および比較例1により作製した多段式電気化学反応器の電気化学的評価結果について述べる。   Next, the electrochemical evaluation results of the multistage electrochemical reactor produced by Example 1 and Comparative Example 1 will be described.

接続部のガスリークの程度を判断する手法の一つに、SOFCモードで評価し、理論開回路電圧からの低下量を把握するものがある。今回は、図4に示すように、管内に室温加湿水素を流量20cc/minで、管外には空気を100cc/minで供給し、末端の燃料極層と空気極層に電位線を接続して、550℃および600℃で電気化学的評価を行った。   One of the methods for determining the degree of gas leakage at the connection is to evaluate in the SOFC mode and grasp the amount of decrease from the theoretical open circuit voltage. This time, as shown in FIG. 4, room temperature humidified hydrogen is supplied into the tube at a flow rate of 20 cc / min, and air is supplied to the outside of the tube at 100 cc / min, and a potential line is connected to the terminal fuel electrode layer and the air electrode layer. The electrochemical evaluation was performed at 550 ° C and 600 ° C.

なお、接続部のシール性を評価しやすくするために、5直列電気化学セルとし、実施例、比較例ともに接続部が4箇所含まれている。   In addition, in order to make it easy to evaluate the sealing performance of the connection portion, a 5-series electrochemical cell is used, and four connection portions are included in both the examples and the comparative examples.

燃料極および空気極へ所定のガスを流通させ、室温から550℃への昇温過程で計測した燃料極の還元時における開回路電圧変化を表1にまとめた。既存技術を用いた比較例1では、最大で2.4Vであり、かつ、約100分あたりから電圧の乱れも生じた。   Table 1 summarizes changes in the open circuit voltage during the reduction of the fuel electrode, measured in the process of raising the temperature from room temperature to 550 ° C. by passing a predetermined gas through the fuel electrode and the air electrode. In Comparative Example 1 using the existing technology, the maximum voltage was 2.4 V, and voltage disturbance occurred from about 100 minutes.

それに対し、実施例1の場合、昇温とともに順調に開回路電圧が上昇し、500℃付近で最大の開回路電圧5.55V(1セルあたり1.11V)に到達し、表1に示したように、550℃では開回路電圧5.45V(1セルあたり1.09V)で安定した。   In contrast, in the case of Example 1, the open circuit voltage steadily increased as the temperature increased, and reached a maximum open circuit voltage of 5.55 V (1.11 V per cell) at around 500 ° C., as shown in Table 1. Thus, at 550 ° C., the open circuit voltage was stable at 5.45 V (1.09 V per cell).

理論的な開回路電圧は500℃では1.12V、550℃では1.11Vなため、ガスシール層の付与により大幅にガスリークが改善されたことが分かる。また、先行比較例の開回路電圧でも、図5に見られるように、1セルあたりの開回路電圧は1V以下であり、ガスシールが不完全であることから、本発明のセル信頼性の向上効果が明白である。 Since the theoretical open circuit voltage is 1.12 V at 500 ° C. and 1.11 V at 550 ° C., it can be seen that the gas leak is greatly improved by applying the gas seal layer. Further, even in the open circuit voltage of the preceding comparative example, as shown in FIG. 5, the open circuit voltage per cell is 1 V or less, and the gas seal is incomplete, so that the cell reliability of the present invention is improved. The effect is obvious.

実施例1の5段直列接続セルについて、600℃にて計測した電流−電圧曲線を図5に示すが、1セルあたりの開回路電圧約1.1Vから電流密度の増加に伴って発電出力密度が上昇し、0.125A/cmで最大となる出力密度90mW/cmを得た(先行比較例では、最大70mW/cm)。 FIG. 5 shows a current-voltage curve measured at 600 ° C. for the five-stage series-connected cell of Example 1, and the power generation output density increases with increasing current density from an open circuit voltage of about 1.1 V per cell. There rises, to obtain a power density 90 mW / cm 2 with a maximum at 0.125 a / cm 2 (in the preceding comparative example, the maximum 70mW / cm 2).

実施例1により作製した多段式電気化学反応器の水蒸気電解特性について述べる。   The steam electrolysis characteristics of the multistage electrochemical reactor produced in Example 1 will be described.

実施例2と同様の評価セッティングをし、管内に室温加湿水素を流量50cc/minで、管外には空気を100cc/minで供給し、末端の燃料極層と空気極層に電位線を接続して、600℃で発電及び電解サイクリックボルタンメトリー評価を行った。なお、実施例2と同様に、接続部のシール性を評価しやすくするために、5直列電気化学セルとした。   The same evaluation setting as in Example 2 was performed, room temperature humidified hydrogen was supplied into the tube at a flow rate of 50 cc / min, and air was supplied to the outside of the tube at 100 cc / min, and a potential line was connected to the terminal fuel electrode layer and the air electrode layer. Then, power generation and electrolytic cyclic voltammetry evaluation were performed at 600 ° C. In addition, in order to make it easy to evaluate the sealing performance of the connection part as in Example 2, a 5-series electrochemical cell was used.

図6に示すように、開回路電圧5.4Vを境界に、5.4V以下の電位では発電が、5.4V以上の電位では水蒸気分解反応が理想的に作動している。理論的な開回路電圧が600℃では5.5Vなのに対し、作製した5段直列接続セルでは5.4Vが得られ、本発明のセル信頼性の向上効果が現れている。   As shown in FIG. 6, with the open circuit voltage of 5.4 V as a boundary, power generation is ideally operated at a potential of 5.4 V or lower, and the steam decomposition reaction is ideally operated at a potential of 5.4 V or higher. While the theoretical open circuit voltage is 5.5 V at 600 ° C., the fabricated five-stage series-connected cell obtains 5.4 V, and the effect of improving the cell reliability of the present invention appears.

さらに、600℃にて計測した発電及び電解サイクリックボルタンメトリーを100サイクル繰り返した電流および電圧の時間変化を図7に示す。初期から約10サイクル経過後に電流密度が安定し、発電モード及び電解モードともに5.4Vを境界に安定した性能を得ることに成功した。   Furthermore, the time change of the electric current and voltage which repeated the power generation measured at 600 degreeC and the electrolysis cyclic voltammetry 100 cycles is shown in FIG. After about 10 cycles from the beginning, the current density became stable, and both the power generation mode and the electrolysis mode succeeded in obtaining stable performance at 5.4V as a boundary.

以上詳述したように、本発明は、多孔質基材上に横縞状で形成された電気化学セルを導電材料層及びシール層の積層構造にて直列接続した多段式電気化学反応器に係わるものであり、本発明記載の製造方法にて電気化学反応器の高効率化が実現できる。   As described above in detail, the present invention relates to a multistage electrochemical reactor in which electrochemical cells formed in a horizontal stripe pattern on a porous substrate are connected in series with a laminated structure of a conductive material layer and a seal layer. Thus, the electrochemical reactor can be made highly efficient by the production method described in the present invention.

横縞状に形成する各セル幅として0.01〜5cmの範囲、また接続抵抗削減の観点から、各セル間の距離を0.01〜0.5mmの範囲とすることで従来技術よりも低温作動化が行えると同時に、材料系およびセル構造の最適化によってさらなる高性能電気化学反応器の実現が可能となる。本発明は、固体酸化物燃料電池等の電気化学反応システムに関する新技術・新製品を提供するものとして有用である。   The width of each cell to be formed in a horizontal stripe is in the range of 0.01 to 5 cm, and from the viewpoint of reducing connection resistance, the distance between each cell is in the range of 0.01 to 0.5 mm, so that it operates at a lower temperature than the prior art. At the same time, by optimizing the material system and cell structure, it becomes possible to realize a further high-performance electrochemical reactor. INDUSTRIAL APPLICABILITY The present invention is useful for providing new technologies and new products related to electrochemical reaction systems such as solid oxide fuel cells.

Claims (8)

電解質層が燃料極層と空気極層に挟まれた構造を有する電気化学反応セルが、管状構造を有する多孔質体の表面に複数、独立して形成され、独立したそれぞれの電気化学反応セルの燃料極層が隣接する電気化学反応セルの空気極層と多孔質の導電層で電気的に直列に接続され、その多孔質の導電層にガスシール層が積層されていることを特徴とする多段式電気化学反応器。 A plurality of electrochemical reaction cells having a structure in which an electrolyte layer is sandwiched between a fuel electrode layer and an air electrode layer are independently formed on the surface of a porous body having a tubular structure. A fuel electrode layer is electrically connected in series by an air electrode layer and a porous conductive layer of an adjacent electrochemical reaction cell, and a gas seal layer is laminated on the porous conductive layer. Type electrochemical reactor. 電気化学反応セルの燃料極層が多孔質体に接していることを特徴とする請求項1記載の多段式電気化学反応器。   2. The multistage electrochemical reactor according to claim 1, wherein the fuel electrode layer of the electrochemical reaction cell is in contact with the porous body. 多孔質体が、30%以上50%以下の気孔率を有し、電子絶縁性であることを特徴とする請求項1または2記載の多段式電気化学反応器。 The multistage electrochemical reactor according to claim 1 or 2, wherein the porous body has a porosity of 30% or more and 50% or less and is electronically insulating. 電気化学反応セルの直列方向長さが、0.01〜5cmの範囲を有することを特徴とする請求項1から3のうちのいずれか一項記載の多段式電気化学反応器。   The multistage electrochemical reactor according to any one of claims 1 to 3, wherein the electrochemical reaction cell has a length in a series direction of 0.01 to 5 cm. 電気化学反応セル間の距離が0.01〜5mmの範囲であることを特徴とする請求項1から4のうちのいずれか一項記載の多段式電気化学反応器。   The multistage electrochemical reactor according to any one of claims 1 to 4, wherein a distance between the electrochemical reaction cells is in a range of 0.01 to 5 mm. 電気化学反応セルの外径が0.2〜5cm、内径が0.1〜4.9cmであることを特徴とする請求項1から5のうちのいずれか一項記載の多段式電気化学反応器。   The multistage electrochemical reactor according to any one of claims 1 to 5, wherein the electrochemical reaction cell has an outer diameter of 0.2 to 5 cm and an inner diameter of 0.1 to 4.9 cm. . 前記ガスシール層が珪酸塩ガラスから構成される請求項1から6のうちのいずれか一項記載の多段式電気化学反応器。 The multistage electrochemical reactor according to any one of claims 1 to 6, wherein the gas seal layer is made of silicate glass. 請求項1から7のうちのいずれか一項の多段式電気化学反応器を用いて、300〜700℃で作動させることを特徴とする電気化学反応方法。It operates at 300-700 degreeC using the multistage electrochemical reactor as described in any one of Claim 1 to 7, The electrochemical reaction method characterized by the above-mentioned.
JP2012122187A 2012-05-29 2012-05-29 Multi-stage electrochemical reactor Expired - Fee Related JP5916013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012122187A JP5916013B2 (en) 2012-05-29 2012-05-29 Multi-stage electrochemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012122187A JP5916013B2 (en) 2012-05-29 2012-05-29 Multi-stage electrochemical reactor

Publications (2)

Publication Number Publication Date
JP2013247079A JP2013247079A (en) 2013-12-09
JP5916013B2 true JP5916013B2 (en) 2016-05-11

Family

ID=49846677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012122187A Expired - Fee Related JP5916013B2 (en) 2012-05-29 2012-05-29 Multi-stage electrochemical reactor

Country Status (1)

Country Link
JP (1) JP5916013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721740B1 (en) * 2019-02-28 2020-07-15 三菱日立パワーシステムズ株式会社 Fuel cell stack, fuel cell module, power generation system, and method for producing fuel cell stack

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677161U (en) * 1993-04-07 1994-10-28 三菱重工業株式会社 Porous tube supporting device using solid electrolyte
JPH0785881A (en) * 1993-09-16 1995-03-31 Nippon Telegr & Teleph Corp <Ntt> Interconnector for solid electrolytic fuel cell and manufacture thereof
JP3453283B2 (en) * 1997-08-08 2003-10-06 三菱重工業株式会社 Solid oxide fuel cell
JP3553378B2 (en) * 1998-02-19 2004-08-11 三菱重工業株式会社 Cylindrical solid oxide fuel cell
JP5234554B2 (en) * 2001-03-22 2013-07-10 独立行政法人産業技術総合研究所 Solid oxide fuel cell stack structure
JP4681149B2 (en) * 2001-04-27 2011-05-11 三菱重工業株式会社 Manufacturing method of fuel cell tube
JP2004087353A (en) * 2002-08-28 2004-03-18 Mitsubishi Heavy Ind Ltd Substrate tube for solid electrolyte fuel cell
US7989113B2 (en) * 2003-03-13 2011-08-02 Tokyo Gas Co., Ltd. Solid-oxide shaped fuel cell module
EP1624521B1 (en) * 2003-03-31 2013-04-24 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JP4647901B2 (en) * 2003-10-30 2011-03-09 三菱重工業株式会社 Solid oxide fuel cell and method for producing solid oxide fuel cell
JP3914990B2 (en) * 2003-11-18 2007-05-16 独立行政法人産業技術総合研究所 Cylindrical fuel cell
JP4761104B2 (en) * 2004-05-13 2011-08-31 独立行政法人産業技術総合研究所 Cylindrical fuel cell
JP4781823B2 (en) * 2006-01-13 2011-09-28 三菱重工業株式会社 Cylindrical horizontal stripe fuel cell
JP5111793B2 (en) * 2006-06-20 2013-01-09 東京瓦斯株式会社 Solid oxide fuel cell stack and manufacturing method thereof
JP5173524B2 (en) * 2007-03-28 2013-04-03 三菱重工業株式会社 Solid oxide fuel cell and water electrolysis cell
JP2009230929A (en) * 2008-03-19 2009-10-08 Hosokawa Funtai Gijutsu Kenkyusho:Kk Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
JP5444022B2 (en) * 2010-01-28 2014-03-19 京セラ株式会社 Horizontally-striped solid oxide fuel cell stack and fuel cell

Also Published As

Publication number Publication date
JP2013247079A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
US8900759B2 (en) Electrochemical reactor bundles, stacks, and electrochemical reactor systems consisting of these components
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP4718959B2 (en) Horizontal stripe fuel cell
US20070141423A1 (en) Tubular electrochemical reactor cell and electrochemical reactor system which is composed of the cell
JP5105392B2 (en) Electrochemical reactor tube cell and electrochemical reaction system comprising them
JP5674035B2 (en) Medium / low temperature high efficiency electrochemical cell and electrochemical reaction system composed of them
KR101260856B1 (en) Dual layer interconnect for solid oxide fuel cell, solid oxide fuel cell therewith and preparation method thereof
JP2012074306A (en) Power generation cell for solid oxide fuel cell
JP2012028299A (en) Solid oxide fuel cell and manufacturing method thereof
US20080299436A1 (en) Composite ceramic electrolyte structure and method of forming; and related articles
JP2007157370A (en) Lateral stripe type fuel cell, and fuel cell
JP5560511B2 (en) Electrochemical reactor
JP5179131B2 (en) Horizontal stripe fuel cell and fuel cell
JP5935220B2 (en) Electrochemical reactor cell
JP5916013B2 (en) Multi-stage electrochemical reactor
JP6879456B2 (en) Method for manufacturing solid electrolyte member, solid oxide fuel cell, water electrolyzer, hydrogen pump and solid electrolyte member
US20210399325A1 (en) Membrane electrode assembly, electrochemical device, and electrochemical system
JP5483013B2 (en) Flat tube electrochemical cell and electrochemical reaction system
JP5198109B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP5198108B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP4690755B2 (en) Horizontal stripe fuel cell, cell stack, and fuel cell
JP5401405B2 (en) Horizontally Striped Solid Oxide Fuel Cell Stack, Horizontally Striped Solid Oxide Fuel Cell Bundle, and Fuel Cell
JP2008226762A (en) Solid oxide type fuel battery cell and solid oxide type fuel battery
JP5248177B2 (en) Horizontally-striped solid oxide fuel cell stack and manufacturing method thereof
JP2012074305A (en) Power generation cell for solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R150 Certificate of patent or registration of utility model

Ref document number: 5916013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees