JP5914618B2 - 回転電機及び電気自動車 - Google Patents

回転電機及び電気自動車 Download PDF

Info

Publication number
JP5914618B2
JP5914618B2 JP2014229398A JP2014229398A JP5914618B2 JP 5914618 B2 JP5914618 B2 JP 5914618B2 JP 2014229398 A JP2014229398 A JP 2014229398A JP 2014229398 A JP2014229398 A JP 2014229398A JP 5914618 B2 JP5914618 B2 JP 5914618B2
Authority
JP
Japan
Prior art keywords
rotor
magnetic
torque
magnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014229398A
Other languages
English (en)
Other versions
JP2015029421A (ja
Inventor
泰行 齋藤
泰行 齋藤
剛志 後藤
剛志 後藤
中山 健一
健一 中山
日野 徳昭
徳昭 日野
愼治 杉本
愼治 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014229398A priority Critical patent/JP5914618B2/ja
Publication of JP2015029421A publication Critical patent/JP2015029421A/ja
Application granted granted Critical
Publication of JP5914618B2 publication Critical patent/JP5914618B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、回転電機、およびその回転電機を備えた電気自動車に関する。
電気自動車やハイブリッド自動車に用いられる駆動用モータには大出力が求められるため、強力なエネルギーを保持する希土類の焼結磁石を用いた永久磁石式モータが一般に用いられている。駆動用モータには、永久磁石モータの内でも、低速大トルク、かつ、広範囲な回転速度領域という要求を満たすことができる埋込み磁石式モータが利用されている。
ところで、モータのトルク脈動は、騒音や振動の原因となり、特に、電気自動車では低速側におけるトルク脈動が乗り心地を悪化させるという問題がある。従来のモータでは、トルク脈動低減のために、スキューを施す対策が一般的に採用されている。例えば、埋め込んでいる磁石の外周側の電磁鋼板に溝を設け、この溝を軸方向にずらして配置したモータが知られている(例えば特許文献1参照)。
特開2005−176424号公報
上述した磁石の外周側に溝を設けたモータでは、例えば、非通電時および通電時のどちらの場合にも磁束が流れる場所に溝を設けているので、通電時の脈動が小さくなる位置に溝を設けるとコギングトルクが増加し、コギングトルクが減るような位置に溝を設けると通電時のトルク脈動が増加してしまうといった問題を有する。
本発明の目的は、モータの性能(例えば効率,信頼性,コストパフォーマンス、または生産性など)を向上することを目的とする。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、磁石が挿入される穴が形成された回転子鉄心を有し、前記穴に永久磁石が挿入され、前記永久磁石の極間に磁気的補助突極部が形成された回転子であって、前記永久磁石は、周方向に略等間隔に配置され、前記永久磁石の側面に磁気的空隙が設けられ、d軸に対して非対称かつq軸に対して対称に、前記回転子鉄心の磁気的補助突極部に第2の磁気的空隙が形成され、前記第2の磁気的空隙は、前記軸方向に垂直な断面において通電時のトルク脈動が打ち消されるように、q軸に対して周方向にずれて設けられており、前記第2の磁気的空隙は前記磁気的空隙とは独立して設けられ、前記永久磁石の極ピッチをτp、前記永久磁石とその側面に設けられた前記磁気的空隙とをあわせた角度をτgとしたとき、磁石穴極弧度τg/τpが0.5から0.9であることを特徴とする。
本発明によれば、モータの性能(例えば効率,信頼性,コストパフォーマンス、または生産性など)を向上することができる。
本発明の一実施の形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す。 図1の電力変換装置600の回路図を示す。 図1の回転電機200または回転電機202の断面図を示す。 図3の回転子鉄心252の斜視図を示す。 図3の回転子鉄心252の分解斜視図を示す。 図3の固定子230および回転子250のA−A断面図を示す。 図3の固定子230および回転子250のB−B断面図を示す。 図3の永久磁石254bの付近を拡大したA−A断面図を示す。 図3の永久磁石254bの付近を拡大したB−B断面図を示す。 リラクタンストルクの説明図を示す。 非通電時のA−A断面の磁束分布を示す。 領域401のみの回転電機の磁束分布を示す。 領域402のみの回転電機の磁束分布を示す。 非通電時のコンギングトルクの波形を示す。 非通電時の線間誘起電圧の波形を示す。 通電時のA−A断面の磁束分布を示す。 領域401のみの回転電機の磁束分布を示す。 領域402のみの回転電機の磁束分布を示す。 通電時のトルク脈動の波形を示す。 通電時の線間電圧の波形を示す。 コンギングトルク低減を説明する図であり、固定子鉄心232と回転子250の一部を示す断面図である。 磁石極弧度τm/τpの比とコンギングトルクとの関係を示す図である。 磁石極弧度τm/τpおよび磁石穴極弧度τg/τpを変化させた場合の最大トルクを示す図である。 本発明の他の実施形態をなす表面磁石タイプの回転電機の固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす複数の磁石をV時形状に配置したタイプの回転電機の固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す図であり、集中巻の回転電機を示す。 本発明の他の実施形態をなす回転子鉄心252の斜視図を示す。 本発明の他の実施形態をなす回転子鉄心252の分解斜視図を示す。 固定子230および回転子250のコア301の部分を通るA−A断面を示す。 固定子230および回転子250のコア302の部分を通るB−B断面を示す。 A−A断面の永久磁石254bの付近を拡大して示した図。 B−B断面の永久磁石254bの付近を拡大して示した図。 本発明の他の実施例をなす表面磁石タイプの回転電機を示す。 本発明の他の実施例をなす複数の磁石をV時形状に配置したタイプの回転電機を示す。 固定子230および回転子250の断面を示す図であり、磁気的空隙258を1つの補助突極部259ごとに2つ設けた回転電機を示す。 本発明の他の実施例をなす固定子230および回転子250の断面図を示す。 本発明の他の実施例をなす固定子230および回転子250の断面図を示す。 本発明の他の実施例をなす固定子230および回転子250の断面図を示す。 固定子230および回転子250の断面を示す図であり、集中巻の回転電機を示す。
以下、本発明の実施形態を図面に基づいて説明する。
本実施形態による回転電機は、以下に説明するように、非通電時におけるコンギングトルクと通電時におけるトルク脈動とをそれぞれ抑えることができ、小型,低コスト,低トルク脈動が実現できる。そのため、例えば、電気自動車の走行用モータとして好適であり、低振動,低騒音で乗り心地の良い電気自動車を提供することができる。本実施形態による回転電機は、回転電機のみによって走行する純粋な電気自動車や、エンジンと回転電機の双方によって駆動されるハイブリッド型の電気自動車にも適用できるが、以下ではハイブリッド型の電気自動車を例に説明する。
図1は、本発明の一実施形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す図である。車両100には、エンジン120と第1の回転電機200と第2の回転電機202とバッテリ180とが搭載されている。バッテリ180は、回転電機200,202による駆動力が必要な場合には回転電機200,202に直流電力を供給し、回生走行時には回転電機200,202から直流電力を受ける。バッテリ810と回転電機200,202との間の直流電力の授受は、電力変換装置600を介して行われる。また、図示していないが、車両には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されており、以下に説明する制御回路に直流電力を供給する。
エンジン120および回転電機200,202による回転トルクは、変速機130とデファレンシャルギア132を介して前輪110に伝達される。変速機130は変速機制御装置134により制御され、エンジン120はエンジン制御装置124により制御される。バッテリ180は、バッテリ制御装置184により制御される。変速機制御装置134,エンジン制御装置124,バッテリ制御装置184,電力変換装置600および統合制御装置170は、通信回線174によって接続されている。
統合制御装置170は、統合制御装置170より下位の制御装置である、変速機制御装置134,エンジン制御装置124,電力変換装置600およびバッテリ制御装置184から、それぞれの状態を表す情報を、通信回線174を介して受け取る。統合制御装置170は、これらの情報に基づき各制御装置の制御指令を演算する。演算された制御指令は通信回線174を介してそれぞれの制御装置へ送信される。
高電圧のバッテリ180はリチウムイオン電池あるいはニッケル水素電池などの2次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力が出力される。バッテリ制御装置184は、バッテリ180の放電状況やバッテリ180を構成する各単位セル電池の状態を、通信回線174を介して統合制御装置170に出力する。
統合制御装置170は、バッテリ制御装置184からの情報に基づいてバッテリ180の充電が必要と判断すると、電力変換装置600に発電運転の指示を出す。また、統合制御装置170は、主に、エンジン120および回転電機200,202の出力トルクの管理、エンジン120の出力トルクと回転電機200,202の出力トルクとの総合トルクやトルク分配比の演算処理、その演算処理結果に基づく変速機制御装置134,エンジン制御装置124および電力変換装置600への制御指令の送信を行う。電力変換装置600は、統合制御装置170からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように回転電機200,202を制御する。
電力変換装置600には回転電機200,202を運転するためにインバータを構成するパワー半導体が設けられている。電力変換装置600は、統合制御装置170からの指令に基づきパワー半導体のスイッチング動作を制御する。このようなパワー半導体のスイッチング動作により、回転電機200,202が電動機としてあるいは発電機として運転される。
回転電機200,202を電動機として運転する場合は、高電圧のバッテリ180からの直流電力が電力変換装置600のインバータの直流端子に供給される。電力変換装置600は、パワー半導体のスイッチング動作を制御することにより、供給された直流電力を3相交流電力に変換し回転電機200,202に供給する。一方、回転電機200,202を発電機として運転する場合には、回転電機200,202の回転子が外部から加えられる回転トルクで回転駆動され、回転電機200,202の固定子巻線に3相交流電力が発生する。発生した3相交流電力は電力変換装置600で直流電力に変換され、その直流電力が高電圧のバッテリ180に供給されることにより充電が行われる。
図2は、図1の電力変換装置600の回路図を示す。電力変換装置600には、回転電機200のための第1のインバータ装置と、回転電機202のための第2のインバータ装置とが設けられている。第1のインバータ装置は、パワーモジュール610と、パワーモジュール610の各パワー半導体21のスイッチング動作を制御する第1の駆動回路652と、回転電機200の電流を検知する電流センサ660とを備えている。駆動回路652は駆動回路基板650に設けられている。一方、第2のインバータ装置は、パワーモジュール620と、パワーモジュール620における各パワー半導体21のスイッチング動作を制御する第2の駆動回路656と、回転電機202の電流を検知する電流センサ662とを備えている。駆動回路656は駆動回路基板654に設けられている。制御回路基板646に設けられた制御回路648,コンデンサモジュール630およびコネクタ基板642に実装された送受信回路644は、第1のインバータ装置と第2のインバータ装置とで共通に使用される。
パワーモジュール610,620は、それぞれ対応する駆動回路652,656から出力された駆動信号によって動作する。パワーモジュール610,620は、それぞれバッテリ180から供給された直流電力を三相交流電力に変換し、その電力を対応する回転電機200,202の電機子巻線である固定子巻線に供給する。また、パワーモジュール610,620は、回転電機200,202の固定子巻線に誘起された交流電力を直流に変換し、高電圧バッテリ180に供給する。
パワーモジュール610,620は図2に記載のごとく3相ブリッジ回路を備えており、3相に対応した直列回路が、それぞれバッテリ180の正極側と負極側との間に電気的に並列に接続されている。各直列回路は上アームを構成するパワー半導体21と下アームを構成するパワー半導体21とを備え、それらのパワー半導体21は直列に接続されている。パワーモジュール610とパワーモジュール620とは、図2に示す如く回路構成がほぼ同じであり、ここではパワーモジュール610で代表して説明する。
本実施形態では、スイッチング用パワー半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)21を用いている。IGBT21は、コレクタ電極,エミッタ電極及びゲート電極の3つの電極を備えている。IGBT21のコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBT21のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT21のコレクタ電極に、アノード電極がIGBT21のエミッタ電極にそれぞれ電気的に接続されている。
なお、スイッチング用パワー半導体素子として、MOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極,ソース電極及びゲート電極の3つの電極を備えている。MOSFETの場合には、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、図2のダイオード38を設ける必要がない。
各相のアームは、IGBT21のソース電極とIGBT21のドレイン電極とが電気的に直列に接続されて構成されている。尚、本実施形態では、各相の各上下アームのIGBTを1つしか図示していないが、制御する電流容量が大きいので、実際には複数のIGBTが電気的に並列に接続されて構成されている。以下では、説明を簡単にするため、1個のパワー半導体として説明する。
図2に示す例では、各相の各上下アームはそれぞれ3個のIGBTによって構成されている。各相の各上アームのIGBT21のドレイン電極はバッテリ180の正極側に、各相の各下アームのIGBT21のソース電極はバッテリ180の負極側にそれぞれ電気的に接続されている。各相の各アームの中点(上アーム側IGBTのソース電極と下アーム側のIGBTのドレイン電極との接続部分)は、対応する回転電機200,202の対応する相の電機子巻線(固定子巻線)に電気的に接続されている。
駆動回路652,656は、対応するインバータ装置610,620を制御するための駆動部を構成しており、制御回路648から出力された制御信号に基づいて、IGBT21を駆動させるための駆動信号を発生する。それぞれの駆動回路652,656で発生した駆動信号は、対応するパワーモジュール610,620の各パワー半導体素子のゲートにそれぞれ出力される。駆動回路652,656には、各相の各上下アームのゲートに供給する駆動信号を発生する集積回路がそれぞれ6個設けられており、6個の集積回路を1ブロックとして構成されている。
制御回路648は各インバータ装置610,620の制御部を構成しており、複数のスイッチング用パワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成されている。制御回路648には、上位制御装置からのトルク指令信号(トルク指令値)、電流センサ660,662のセンサ出力、回転電機200,202に搭載された回転センサのセンサ出力が入力される。制御回路648はそれらの入力信号に基づいて制御値を演算し、駆動回路652,656にスイッチングタイミングを制御するための制御信号を出力する。
コネクタ基板642に実装された送受信回路644は、電力変換装置600と外部の制御装置との間を電気的に接続するためのもので、図1の通信回線174を介して他の装置と情報の送受信を行う。コンデンサモジュール630は、IGBT21のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するもので、第1のパワーモジュール610や第2のパワーモジュール620における直流側の端子に電気的に並列に接続されている。
図3は、図1の回転電機200あるいは回転電機202の断面図を示す。回転電機200と回転電機202とはほぼ同じ構造であり、以下では回転電機200の構造を代表例として説明する。尚、以下に示す構造は、回転電機200,202の双方に採用されている必要は無く、少なくとも一方に採用されていても良い。
ハウジング212の内部には固定子230が保持されており、固定子230は固定子鉄心232と固定子巻線238とを備えている。固定子鉄心232の内側には、回転子250が空隙222を介して回転可能に保持されている。回転子250は回転子鉄心252と永久磁石254と非磁性体のあて板226を備えており、回転子鉄心252はシャフト218に固定されている。ハウジング212は軸受216が設けられた一対のエンドブラケット214を有しており、シャフト218はこれらの軸受216により回転自在に保持されている。
図3に示すように、シャフト218には、回転子250の極の位置や回転速度を検出するレゾルバ224が設けられている。このレゾルバ224からの出力は、図2に示す制御回路648に取り込まれる。制御回路648は、取り込まれた出力に基づいて制御信号を駆動回路653に出力する。駆動回路653は、その制御信号に基づく駆動信号をパワーモジュール610に出力する。パワーモジュール610は、制御信号に基づきスイッチング動作を行い、バッテリ180から供給される直流電力を3相交流電力に変換する。この3相交流電力は図3に示す固定子巻線238に供給され、回転磁界が固定子230に発生する。3相交流電流の周波数はレゾルバ224の検出値に基づいて制御され、3相交流電流の回転子250に対する位相も同じくレゾルバ224の検出値に基づいて制御される。
図4(a)は、回転子250の回転子鉄心252を示す斜視図である。回転子鉄心252は、図4(b)に示すような2つのコア301,302から成る。コア302の軸方向長さH2は、コア301の軸方向長さH1のほぼ同じに設定されている。図5(a),図5(b)は固定子230および回転子250の断面を示す図であり、図5(a)はコア301の部分を通るA−A断面図(図3参照)であり、図5(b)はコア302の部分を通るB−B断面図(図3参照)である。なお、図5(a),図5(b)では、ハウジング212,シャフト218および固定子巻線238の記載を省略した。
固定子鉄心232の内周側には、多数のスロット24とティース236とが全周に渡って均等に配置されている。尚、図5(a),図5(b)では、スロットおよびティースの全てに符号を付すことはせず、代表して一部のティースとスロットにのみに符号を付した。スロット24内にはスロット絶縁(図示省略)が設けられ、固定子巻線238を構成するu相〜w相の複数の相巻線が装着されている。本実施例では、固定子巻線238の巻き方として分布巻を採用している。
分布巻とは、複数のスロット24を跨いで離間した2つのスロットに相巻線が収納されるように、相巻線が固定子鉄心232に巻かれる巻線方式である。本実施例では、巻線方式として分布巻を採用しているので、形成される磁束分布は正弦波状に近く、リラクタンストルクを得やすい。そのため、弱め界磁制御やリラクタンストルクを活用して、低回転速度だけでなく高回転速度までの広い回転数範囲についての制御が可能であり、電気自動車などのモータ特性を得るのに適している。
また、回転子鉄心252の各コア301,302には、矩形の磁石が挿入される穴310が開けられており、その穴310には永久磁石254が埋め込まれ接着剤などで固定されている。穴310の円周方向の幅は、永久磁石254の円周方向の幅よりも大きく設定されており、永久磁石254の両側には磁気的空隙257が形成されている。この磁気的空隙257は接着剤を埋め込んでも良いし、整形樹脂で永久磁石254と一体に固めても良い。永久磁石254は回転子250の界磁極として作用する。
永久磁石254の磁化方向は径方向を向いており、界磁極毎に磁化方向の向きが反転している。すなわち、永久磁石254aの固定子側面がN極、軸側の面がS極であったとすれば、隣の永久磁石254bの固定子側面はS極、軸側の面はN極となっている。そして、これらの永久磁石254a,254bが円周方向に交互に配置されている。本実施の形態では、各永久磁石254は等間隔に12個配置されており、回転子250は12極になっている。
永久磁石254は、磁化した後に回転子鉄心252に埋め込んでも良いし、磁化する前に回転子鉄心252に挿入した後に強力な磁界を与えて磁化するようにしても良い。磁化後の永久磁石254は強力な磁石であり、回転子250に永久磁石254を固定する前に磁石を着磁すると、永久磁石254の固定時に回転子鉄心252との間に強力な吸引力が生じ、この求心力が作業の妨げとなる。また強力な吸引力により、永久磁石254に鉄粉などのごみが付着する恐れがある。そのため、永久磁石254を回転子鉄心252に挿入した後に磁化する方が、回転電機の生産性が向上する。
永久磁石254には、ネオジウム系,サマリウム系の焼結磁石やフェライト磁石,ネオジウム系のボンド磁石などを用いることができる。永久磁石254の残留磁束密度はほぼ0.4〜1.3T程度である。
図6(a)は、図5(a)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア301には、永久磁石254の両側に形成される磁気的空隙257の他に、回転子250の表面に磁気的空隙258を構成する溝が設けられている。磁気的空隙257はコギングトルク低減のために設けられたものであり、磁気的空隙258は通電時のトルク脈動を低減するために設けられたものである。回転子250内周側から見て、永久磁石254aの左側の磁石間の中心軸をq軸a、永久磁石254bの左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aはq軸aに対して右側に、磁気的空隙258bはq軸bに対して左側にずれて配置される。さらに、磁気的空隙258aと磁気的空隙258bは、磁極の中心軸であるd軸に対称に配置されている。
一方、図6(b)は、図5(b)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア302の場合には、磁気的空隙258a,258bの代わりに磁気的空隙258c,258dが形成されている。回転子250内周側から見て、磁気的空隙258cはq軸aに対して左側に、磁気的空隙258dはq軸bに対して右側にずれて配置されている。図5,図6から分かるように、コア301とコア302の断面形状は、磁気的空隙258a,258bと258c,258dの位置が異なるだけでその他の部分は同一である。
ここで、磁気的空隙258aと258d,258bと258cはそれぞれ電気角で180度ずれた位置に配置される。すなわち、コア301を磁極1ピッチ分回転させることでコア302を形成することが出来る。これにより、コア301とコア302は同じ型で製作でき、製作コストを削減することが出来る。また、各コア301,302の穴310の周方向位置は、ずれることなく一致している。その結果、各穴310に装着される各永久磁石254は軸方向に分割されることなく、一体に各コア301,302を貫通している。もちろん、複数に分割された永久磁石254を、穴310の軸方向に積層するように設けても構わない。
3相交流電流により回転磁界が固定子230に発生すると、この回転磁界が回転子250の永久磁石254a,254bに作用して磁石トルクが生じる。さらに、回転子250には、この磁石トルクに加えてリラクタンストルクが作用する。
図7はリラクタンストルクを説明する図である。一般に、磁束が磁石中心を通る軸をd軸、磁束が磁石の極間から極間へ流れる軸をq軸と呼ぶ。このとき、磁石の極間中心にある鉄心部分を補助突極部259と呼ぶ。回転子250に設けられた永久磁石254の透磁率は空気とほぼ同じであるため、固定子側から見た場合、d軸部は磁気的に凹んでおり、q軸部は磁気的に凸になっている。そのため、q軸部の鉄心部分は突極と呼ばれる。リラクタンストルクは、このd軸とq軸の磁束の通り易さの差、すなわち、突極比によって生じる。
このように、本実施形態が適用される回転電機は、磁石トルクと、補助突極リラクタンストルクの両方を利用する回転電機である。そして、磁石トルクとリラクタンストルクのそれぞれからトルク脈動が発生する。トルク脈動には通電しない場合に発生する脈動成分と通電によって発生する脈動成分があり、通電しない場合に発生する脈動成分は一般的にコギングトルクと呼ばれており、実際に回転電機を負荷状態で使う場合には、コギングトルクと通電時の脈動成分が合わさったトルク脈動が発生する。
このような回転電機のトルク脈動を低減する方法として述べられている方法は、ほとんどがコギングトルクの低減のみに言及し、通電によって発生するトルク脈動に関しては述べられていない場合が多い。しかし、回転電機の騒音は、無負荷時ではなく負荷時に生じることが多い。つまり、回転電機の低騒音化には負荷時のトルク脈動を低減することが大事であり、コギングトルクだけの対策では不十分である。
次に、本実施形態におけるトルク脈動の低減方法について説明する。
最初に、非通電時における磁気的空隙258の影響について説明する。図8(a)は、固定子巻線238に電流を流さない場合の磁束、すなわち、永久磁石254による磁束の分布のシミュレーション結果を示したものであり、永久磁石254aで構成される領域401と永久磁石254bで構成される領域402の2極を表している。つまり、領域401と領域402が交互に周方向に配置されている回転電機をシミュレーションした結果であり、A−A断面について示している。本実施例の回転電機は12極であるから、各々6極ずつ交互に周方向に配置される。極単位に注目すると、領域401には磁気的空隙258aと258bが補助突極部259に配置されており、領域402の補助突極部259には磁気的空隙258がない。
非通電時には、永久磁石254の磁束は磁石端部を短絡している。そのため、q軸には磁束は全く通らない。また、磁石端部の磁気的空隙257から少しずれた位置に設けられた磁気的空隙258a,258bの部分にも、磁束が殆ど通らないことがわかる。固定子鉄心232を通る磁束は、永久磁石254の固定子側の鉄心部分を通ってティース236へと至っている。このため、磁気的空隙258a,258bは、コンギングトルクに関係する非通電時の磁束にほとんど影響を与えないので、磁気的空隙258a,258bはコギングトルクには影響を与えないことがわかる。
図8(b)は領域401のみ、図8(c)は領域402のみのシミュレーション結果であり、それぞれ(b)は領域401のみ、(c)は領域402のみが周方向に永久磁石254の磁化方向が極毎に反転するように12極配置された回転電機を示している。図8(b),図8(c)も図8(a)同様の磁束分布となり、q軸には磁束は通らない。
図9(a)はコギングトルクの波形を示したものであり、図9(b)は回転子250が回転したときに固定子側に発生する線間の誘起電圧の波形を示したものである。横軸は回転子の回転角度であり、電気角で示している。ラインL11は磁気的空隙258を有する領域401と磁気的空隙258がない領域402が交互に配置される図8(a)の回転子の場合を示し、ラインL12は磁気的空隙258を有する領域401のみが配置される図8(b)の回転電機の場合を示し、ラインL13は磁気的空隙258がない領域402のみが配置される図8(c)の回転電機の場合を示す。図9(a)の結果から、磁気的空隙258の有無はコギングトルクにほとんど影響のないことがわかる。
また、誘起電圧は回転する回転子250の磁石磁束が固定子巻線238と鎖交することにより発生する電圧であるが、図9(b)に示すように誘起電圧波形も磁気的空隙258の有無に影響しないことがわかる。誘起電圧は図8(a)(b)(c)に示したシミュレーション結果における磁石の磁束の反映であり、誘起電圧が変化していないということは、磁気的空隙258は磁石磁束に対してほとんど影響を与えていないことになる。
次に、通電時における磁気的空隙258の影響について説明する。図10は、固定子巻線238に通電した場合の磁束分布のシミュレーション結果を示したものであり、図8(a)の本実施例のA−A断面を示したものが図10(a),図8(b)のモータを示したものが図10(b),図8(c)のモータを示したものが図10(c)である。本実施例の回転電機は1極あたり6スロットあるモータであって、固定子鉄心232のスロット24に設けられている固定子巻線238のコイル233は、スロット深さ方向に対して2層に分かれている。スロット底側に配置されたコイル233は、隣のスロットを1スロットと数えると、1スロットから5スロットまでを跨いで6スロット離れたスロット24の回転子側に挿入される短節巻である。短節巻は固定子起磁力の高調波を少なくでき、かつ、コイルエンドが短く、銅損が少なくなることが特徴である。また、この高調波低減の巻き方によって、三相モータに特有な6次のトルク脈動を少なくすることができ、ほぼ12次の成分だけが残る。
図10を見ると、いずれのシミュレーション結果もq軸に磁束が流れている。これは、固定子230の電流が、q軸に磁束を作るためである。図10(a)及び図10(b)では補助突極部259の磁束の流れを磁気的空隙258が変えていることが、磁気的空隙258のない図10(c)の結果との比較よりわかる。従って、補助突極部259にある磁気的空隙258は、通電時のみに磁気的な影響があるといえる。
図11(a)は通電時のトルク波形を示したものであり、図11(b)は通電時の線間電圧の波形を示したものである。横軸は回転子の回転角度であり、電気角で示している。ラインL21は磁気的空隙258を有する領域401と磁気的空隙258がない領域402が交互に配置される図10(a)の回転子の場合を示し、ラインL22は磁気的空隙258を有する領域401のみが配置される図10(b)の回転電機の場合を示し、ラインL23は磁気的空隙258がない領域402のみが配置される図10(c)の回転電機の場合を示す。
図11(a)を見ると、本実施形態の回転電機は12次のトルク脈動成分、すなわち電気角で30deg周期の成分が支配的であって、6次成分はほとんど無いことがわかる。また、磁気的空隙258を形成しない、すなわち領域402のみの場合のトルク脈動L23に対して、L21,L22ともにトルク脈動の波形が変化していることがわかる。これは、通電時の磁束が、磁気的空隙258の影響を受けていることを示している。さらに、領域401のみの回転電機のトルク脈動L22と領域402のみの回転電機のトルク脈動L23とは、位相がほぼ正反対になっている。図10(a)に示したように本実施例の回転電機は領域401と領域402とを交互に配置する構成になっており、トルク脈動L21に示すように回転子全体が受けるトルク脈動の合計は、トルク脈動L22とトルク脈動L23の平均値となる。
このように、本実施形態では、上述したような磁気的空隙258a,258bを設けたことにより、通電時のトルク脈動を低減することができる。なお、このような効果を得るためには、磁気的空隙258を構成する溝の幅角度(周方向角度)を、ティース236のピッチ角の1/4から1/2の範囲に設定するのが好ましい。なお、補助突極部259に形成する磁気的空隙258を2種類以上としても良い。それにより、トルク脈動低減の自由度が増し、より詳細に脈動低減を行うことができる。
さらに、磁気的空隙を設けない場合に比べてトルクが下がらないという特徴も有している。従来、トルク脈動低減のために行われているスキューという構造の場合には、スキューすることでトルクが下がってしまい、小型化の妨げになるという欠点があった。しかし、本実施形態では、コギンギングトルクと独立して、通電時のトルク脈動だけを低減することができるだけでなく、トルクそのものが下がらないという利点を有している。これは、もともとの溝無しロータの場合のトルク脈動が、12次成分が支配的だったためで、これは、ステータ巻線を短節巻にしていたことも功を奏している。
また、通電時の電圧であるが、図11(b)に示すように磁気的空隙258の有無に影響していることがわかる。この場合、領域401で回転子250に対向する固定子巻線238の各相巻線と、領域402で回転子250に対向する固定子巻線238の各相巻線との間に電位差が生じ、各相それぞれに巻線を並列につないだ場合、循環電流が流れて損失が増加する。図6で示したように本実施例の回転電機はコア301を磁極1ピッチ分回転させることで形成したコア302を有しており、また図4(b)で示したようにコア301とコア302の軸長をほぼ等しく設定しているため、各極に対向する固定子巻線238の各相巻線に発生する電圧をほぼ等しくすることが出来、ほとんど循環電流は流れない。但し、領域401,領域402で回転子250に対向する固定子巻線238の各相巻線を直列につないだ場合、循環電流はほとんど流れないため、コア301のみ、もしくはコア302のみの構成でも問題ない。
上述したように、磁気的空隙258a,258bの形成は非通電時のコギングトルクに対して影響を与えない。そのため、従来行われているようなコギングトルクの低減方法を適用することで、通電時トルク脈動の低減とは別個にコギングトルクの低減を図ることができる。本実施の形態では、以下のような構成とすることでコギングトルクの低減を図るようにしている。
図12,図13は、コギングトルクの低減方法を説明するための図である。図12は、回転子250と固定子鉄心232の一部を示す断面図である。図12において、τpは永久磁石254の極ピッチ、τmは永久磁石254の幅角度である。また、τgは永久磁石254とその両側に設けられた磁気的空隙257とをあわせた角度、すなわち、図4に示した穴310の幅角度である。これらの角度の比τm/τp,τg/τpを調節することで、コギングトルクを小さくすることができる。本実施形態では、τm/τpを磁石極弧度、τg/τpを磁石穴極弧度と呼ぶことにする。
図13は、磁石極弧度τm/τpの比とコンギングトルクとの関係を示す図である。なお、図13に示した結果は、τm=τgとした場合であり、また永久磁石254と磁気的空隙257を回転子250の外周と同心の扇形とした場合である。これを本実施例のように矩形の磁石とした場合には若干最適値が変わるが、考え方として同じであることは言うまでもない。図13において、縦軸はコンギングトルクの振幅を表し、横軸は回転子250の電気角で示した回転角を表している。脈動の振幅の大きさは、比τm/τpの大きさによって変化しており、τm=τgの場合、τm/τpを0.75程度に選ぶとコンギングトルクを小さくすることができる。また、図9(a)に示した磁気的空隙258によってコギングトルクが変わらない傾向は、図13の磁石幅と極ピッチの比τm/τpがいかなるところでも同じように適用できる。そのため、上記条件のもとで回転子250の形状を図5に示すような形状とすることで、コギングトルクと通電時のトルク脈動の両方を小さくすることができる。
図13に示す例では、τm=τgとして説明したが、補助突極部259の効果であるリラクタンストルクを効率よく利用するためには、磁石穴極弧度τg/τpを0.5〜0.9程度、より好ましくは0.7〜0.8程度に設定するのが良い。
図14は磁石極弧度τm/τpおよび磁石穴極弧度τg/τpを変化させた場合の最大トルクの計算例である。図13同様、永久磁石254と磁気的空隙257を回転子250の外周と同心の扇形とした場合である。横軸は、磁石穴極弧度τg/τpを示しており、この値が0.7ということは、極間ピッチに対する補助突極部259の比が0.3であることを示している。ここで、磁石幅τmは磁石穴の開き角τgよりも大きくできないので、τg≧τmとなる。τmが増えると永久磁石254の幅が増えるから、トルクが増える。一方、τmが一定の場合、τgには最適値があり、τg/τpが0.7〜0.8程度において最大トルクが最も大きくなる。これは、補助突極部259の大きさには適当な値があり、それよりもτgを大きくしすぎたり、小さくしすぎたりするとリラクタンストルクが小さくなってしまうためである。τmが0.75よりも大きい場合には、なるべく補助突極部259が大きくなるように、τm=τgが望ましいことになる。
このように、τg/τpを0.7〜0.8程度としたときにリラクタンストルクを最も効率よく利用することができ、永久磁石254を小さくすることができる。永久磁石254に希土類の焼結磁石を用いる場合、磁石は他の材料に比べてきわめて高価なので、磁石量を最も効果的に使うことが求められる。また、永久磁石254が小さくなることから、永久磁石254の磁束による誘起電圧を小さくすることができ、回転電機をより高速に回転させることができる。そのため、電気自動車には、本実施の形態のようなリラクタンストルクを利用した回転電機が一般的に用いられる。
図15(a),図15(b)は、本発明の他の実施形態をなす回転子を示す。以下で説明する事項以外は実施例1と同様である。
図15(a)は表面磁石タイプの回転子であり、図15(b)は複数の磁石をV時形状に配置した回転子である。どの回転子においても永久磁石254間には補助突極部259が設けられており、補助突極部259には磁気的空隙258が配置されている。磁気的空隙258はそれぞれ、回転子250内周側から見て永久磁石254aの左側の磁石間の中心軸をq軸a、永久磁石254bの左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aがq軸aに対して右側に、磁気的空隙258bがq軸bに対して左側にずれて配置される。さらに、磁気的空隙258aと磁気的空隙258bは、磁極の中心軸であるd軸に対称に配置されている。図15は回転子のA−A断面を示したものであり、上述した実施の形態と同様に、B−B断面は、A−A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。図8で説明したように本実施例におけるトルク脈動の低減は、磁石の磁束に影響されるものではないため、磁石の形状に依存しない。
図16は本実施例の磁気的空隙258を1つの補助突極部259ごとに2つ設けることによりトルク脈動低減を実現したものである。
この形状はそれぞれ、回転子250内周側から見て永久磁石254aの左側の磁石間の中心軸をq軸a、永久磁石254bの左側の磁石間の中心軸をq軸bとすると、q軸aに対して右側の磁気的空隙258aが大きく、q軸aに対して左側の磁気的空隙258eが小さく、q軸bに対して右側の磁気的空隙258bが大きく、q軸bに対して左側の磁気的空隙258fが小さく配置される。さらに、磁気的空隙258aと258b、磁気的空隙258eと258fは磁極の中心軸であるd軸に対称に配置されている。図16は回転子のA−A断面を示したものであり、上述した実施の形態と同様に、B−B断面は、A−A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。これ以外の事項は実施例1で説明した内容を同様である。
図5,図15,図16に示す例では磁気的空隙258を回転子250の外周に設けられた溝としていたが、図17(a)に示すように補助突極259内にある穴としてもよく、また図17(b)に示すように磁気的空隙257と磁気的空隙258を一体としてもよい。さらには図17(c)に示すように、補助突極部259に透磁率の違う部位を設けることでも実現できる。図17(c)では補助突極部259aの透磁率が補助突極部259bの透磁率よりも低く設定されている。これ以外の事項は実施例1で説明した内容と同様である。
図18は、図5に示す固定子巻線238を集中巻きにした場合を示す。本実施形態におけるトルク脈動は回転子250の形状に依存するものなので、固定子側の巻線方式が異なる集中巻の場合も、上述した場合と同様にトルク脈動の低減を図ることができる。これ以外の事項は実施例1で説明した内容を同様である。
図19(a)は、本発明の他の実施例をなす回転子250の回転子鉄心252を示す斜視図である。以下で説明する事項以外は実施例1と同様である。
回転子鉄心252は、図19(b)に示すような2つのコア301,302から成る。コア302の軸方向長さH2は、コア301の軸方向長さH1のほぼ同じに設定されている。図20は固定子230および回転子250の断面を示す図であり、図20(a)はコア301の部分を通るA−A断面図(図3参照)であり、図20(b)はコア302の部分を通るB−B断面図(図3参照)である。なお、図20では、ハウジング212,シャフト218および固定子巻線238の記載を省略した。
固定子鉄心232の内周側には、多数のスロット24とティース236とが全周に渡って均等に配置されている。尚、図20では、スロットおよびティースの全てに符号を付すことはせず、代表して一部のティースとスロットにのみに符号を付した。スロット24内にはスロット絶縁(図示省略)が設けられ、固定子巻線238を構成するu相〜w相の複数の相巻線が装着されている。本実施例では、固定子巻線238の巻き方として分布巻を採用している。
また、回転子鉄心252の各コア301,302には、矩形の磁石が挿入される穴310が開けられており、その穴310には永久磁石254が埋め込まれ接着剤などで固定されている。穴310の円周方向の幅は、永久磁石254の円周方向の幅よりも大きく設定されており、永久磁石254の両側には磁気的空隙257が形成されている。この磁気的空隙257は接着剤を埋め込んでも良いし、整形樹脂で永久磁石254と一体に固めても良い。永久磁石254は回転子250の界磁極として作用する。
永久磁石254の磁化方向は径方向を向いており、界磁極毎に磁化方向の向きが反転している。すなわち、永久磁石254aの固定子側面がN極、軸側の面がS極であったとすれば、隣の永久磁石254bの固定子側面はS極、軸側の面はN極となっている。そして、これらの永久磁石254a,254bが円周方向に交互に配置されている。本実施形態では、各永久磁石254は等間隔に12個配置されており、回転子250は12極になっている。
図21(a)は、図20(a)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア301には、永久磁石254の両側に形成される磁気的空隙257の他に、回転子250の表面に磁気的空隙258を構成する溝が設けられている。磁気的空隙257はコギングトルク低減のために設けられたものであり、磁気的空隙258は通電時のトルク脈動を低減するために設けられたものである。回転子250内周側から見て、永久磁石254aの左側の磁石間の中心軸をq軸a、永久磁石254bの左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aはq軸aに対して右側に、磁気的空隙258bはq軸aに対して左側にずれて配置され、q軸bの左右には磁気的空隙はない。さらに、磁気的空隙258aと磁気的空隙258bは、磁石間の中心軸であるq軸に対称に配置されている。
一方、図21(b)は、図20(b)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア302の場合には、磁気的空隙258a,258bの代わりに磁気的空隙258c,258dが形成されている。回転子250内周側から見て、磁気的空隙258cはq軸bに対して右側に、磁気的空隙258dはq軸bに対して左側にずれて配置され、q軸aの左右には磁気的空隙はない。図20,図21から分かるように、コア301とコア302の断面形状は、磁気的空隙258a,258bと258c,258dの位置が異なるだけでその他の部分は同一である。
ここで、磁気的空隙258aと258c,258bと258dはそれぞれ電気角で180度ずれた位置に配置される。すなわち、コア301を磁極1ピッチ分回転させることでコア302を形成することが出来る。これにより、コア301とコア302は同じ型で製作でき、製作コストを削減することが出来る。また、各コア301,302の穴310の周方向位置は、ずれることなく一致している。その結果、各穴310に装着される各永久磁石254は軸方向に分割されることなく、一体に各コア301,302を貫通している。もちろん、複数に分割された永久磁石254を、穴310の軸方向に積層するように設けても構わない。
図21(a)に示される回転電機は、領域403と領域404とを交互に配置する構成になっている。ここで、図21(a)の領域403は図8(a)の領域401と等価、図21(a)の領域404は図8(a)の領域402と等価であり、図21に示される実施例の回転電機は、磁気的空隙258の配置される位置は違うものの、図6に示される実施例の回転電機と電気的,磁気的に等価であると言える。すなわち、本実施例の場合も、領域403と領域404とでは異なるトルク脈動が発生し、それらが相殺し合うように作用することでトルク脈動を低減することができる。また、実施例1と同様に、磁気的空隙258は補助突極部259の部分に形成されているため、コギングトルクにはほとんど影響を与えることはない。すなわち、磁気的空隙258を設けることで、コギングトルクの脈動への影響は抑え、ほぼ独立して通電時トルク脈動の低減を図ることができる。
また、図21で示したように本実施例の回転電機はコア301を磁極1ピッチ分回転させることで形成したコア302を有しており、また図19(b)で示したようにコア301とコア302の軸長をほぼ等しく設定しているため、各極に対向する固定子巻線238の各相巻線に発生する電圧をほぼ等しくすることが出来、ほとんど循環電流は流れない。但し、領域403,領域404で回転子250に対向する固定子巻線238の各相巻線を直列につないだ場合、循環電流はほとんど流れないため、コア301のみ、もしくはコア302のみの構成でも問題ない。
図22は、本発明の他の実施例をなす回転子を示す。以下で説明する事項以外は上記実施例と同様である。
図22(a)は表面磁石タイプの回転子であり、図22(b)は複数の磁石をV時形状に配置した回転子である。どの回転子においても永久磁石254間には補助突極部259が設けられており、補助突極部259には磁気的空隙258が配置されている。磁気的空隙258はそれぞれ、回転子250内周側から見て永久磁石254aの左側の磁石間の中心軸をq軸a、永久磁石254bの左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aがq軸aに対して右側に、磁気的空隙258bがq軸aに対して左側にずれて配置され、q軸bの左右には磁気的空隙はない。さらに、磁気的空隙258aと磁気的空隙258bは、磁石間の中心軸であるq軸に対称に配置されている。図22は回転子のA−A断面を示したものであり、上述した実施の形態と同様に、B−B断面は、A−A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。図8で説明したように本実施例におけるトルク脈動の低減は、磁石の磁束に影響されるものではないため、磁石の形状に依存しない。
図23は本実施例の磁気的空隙258を1つの補助突極部259ごとに2つ設けることによりトルク脈動低減を実現したものであり、その形状はそれぞれ、回転子250内周側から見て永久磁石254aの左側の磁石間の中心軸をq軸a、永久磁石254bの左側の磁石間の中心軸をq軸bとすると、q軸aの左右の磁気的空隙258a,258bは大きく、q軸bの左右の磁気的空隙258e,258fは小さく配置される。さらに、磁気的空隙258aと258b、磁気的空隙258eと258fは磁石間の中心軸であるq軸に対称に配置されている。図23は回転子のA−A断面を示したものであり、上述した実施の形態と同様に、B−B断面は、A−A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。
なお、図20,図22,図23に示す例では磁気的空隙258を回転子250の外周に設けられた溝としていたが、図24(a)に示すように補助突極部259内にある穴としてもよく、また図24(b)に示すように磁気的空隙257と磁気的空隙258を一体としてもよい。さらには図24(c)に示すように、補助突極部259に透磁率の違う部位を設けることでも実現できる。図24(c)では補助突極部259aの透磁率が補助突極部259bの透磁率よりも低く設定されている。
図25は、図20に示す固定子巻線238を集中巻きにした場合を示す。本実施形態におけるトルク脈動は回転子250の形状に依存するものなので、固定子側の巻線方式が異なる集中巻の場合も、上述した場合と同様にトルク脈動の低減を図ることができる。
上記した種々の実施例は、次のような作用効果を奏する。
(1)補助突極部259に磁気的空隙258a,258bを設け、各磁気的空隙258a,258bにより生じる通電時のトルク脈動が互いに打ち消されるように、磁気的空隙258aと磁気的空隙258bを補助突極部259ごとにずらして配置した。その結果、通電時における回転電機のトルク脈動の低減を図ることができる。特に、通電時のトルク脈動を低減できる本実施の形態の回転電機を電気自動車等の車両走行用モータとして適用した場合、低速加速時の振動や騒音を低減することができ、乗り心地がよく、静粛性の高い電気自動車を提供することができる。
(2)非通電時には、磁気的空隙258は磁石磁束に対して影響を殆ど与えない。そのため、永久磁石254の磁束に起因するコンギングトルクの低減対策と、通電時のトルク脈動の低減対策とを独立して個別に行うことができる。その結果、コンギングトルクが小さく、かつ、通電時のトルクが大きくなるような磁石トルクの最適化と、通電時のトルク脈動の低減との両立を図ることができる。従来は、トルクが最大となるように磁石を構成してから、コンギングトルクが小さくなるようにスキュー等を施していたので、それによってトルク(磁石トルク)が小さくなる欠点があったが、本実施の形態ではトルク脈動低減に伴うトルク低下を避けることができる。
(3)上述したように、トルク脈動低減に伴う磁石トルクの低下を防止できるので、磁石を極力小さくすることができ、回転電機の小型化およびコスト低減を図ることができる。(4)補助突極部259に設けられた磁気的空隙258a,258bの位置をずらすことで、通電時のトルク脈動の低減を図るようにしているので、従来のスキュー構造のように永久磁石254を軸方向に関して複数に分割したり、着磁をスキューさせたりする必要がない。永久磁石254には、例えばネオジウム系に代表される希土類磁石が用いられるが、希土類磁石では磁石整形を研磨加工で行うため、製造誤差の精度を上げることはコスト増に直結する。そのため、磁石を軸方向に分割する必要のない本実施の形態によれば、回転電機の低コスト化を図ることができる。また、磁石公差の積み上げで性能ばらつきが増えたり、歩留まりが悪くなったりするという心配がない。このように、本実施の形態によれば、回転電機の生産性および生産コストの低減を図ることができる。
上記の実施例によれば、コギングトルクの低減と通電時のトルク脈動の低減とを図ることが可能である。磁気抵抗を変化させた部位に起因する通電時のトルク脈動が打ち消されるように、磁気抵抗を変化させた部位のq軸から周方向へのずれ量を磁気的補助突極部ごとに異ならせることで、トルク脈動の低減を図ることができる。
尚、上記実施例では、車両駆動用のモータを例に説明したが、車両駆動用に限らず種々のモータにも適用することができる。さらに、モータに限らず、オルタネータのような発電機などの種々の回転電機に適用が可能である。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。
100 車両
180 バッテリ
200,202 回転電機
212,214 ハウジング
230 固定子
232 固定子鉄心
236 ティース
238 固定子巻線
250 回転子
252 回転子鉄心
254 永久磁石
257,258 磁気的空隙
259 補助突極部
301,302 コア
310 穴

Claims (4)

  1. 磁石が挿入される穴が形成された回転子鉄心を有し、
    前記穴に永久磁石が挿入され、
    前記永久磁石の極間に磁気的補助突極部が形成された回転子であって、
    前記永久磁石は、周方向に略等間隔に配置され、
    前記永久磁石の側面に磁気的空隙が設けられ、
    d軸に対して非対称かつq軸に対して対称に、前記回転子鉄心の磁気的補助突極部に第
    2の磁気的空隙が形成され、
    前記第2の磁気的空隙は、前記軸方向に垂直な断面において通電時のトルク脈動が打ち
    消されるように、q軸に対して周方向にずれて設けられており、
    前記第2の磁気的空隙は前記磁気的空隙とは独立して設けられ、
    前記永久磁石の極ピッチをτp、前記永久磁石とその側面に設けられた前記磁気的空隙
    とをあわせた角度をτgとしたとき、
    磁石穴極弧度τg/τpが0.5から0.9である回転子。
  2. 請求項1記載の回転子であって、
    磁石穴極弧度τg/τpが0.7から0.8である回転子。
  3. 請求項1又は2に記載の回転子であって、
    前記第2の磁気的空隙が、前記回転子鉄心の外周に設けられた溝である回転子。
  4. 請求項1乃至3のいずれかに記載の回転子を備えた回転電機。
JP2014229398A 2014-11-12 2014-11-12 回転電機及び電気自動車 Active JP5914618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229398A JP5914618B2 (ja) 2014-11-12 2014-11-12 回転電機及び電気自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229398A JP5914618B2 (ja) 2014-11-12 2014-11-12 回転電機及び電気自動車

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013097271A Division JP5650276B2 (ja) 2013-05-07 2013-05-07 回転子及びこれを備えた回転電機

Publications (2)

Publication Number Publication Date
JP2015029421A JP2015029421A (ja) 2015-02-12
JP5914618B2 true JP5914618B2 (ja) 2016-05-11

Family

ID=52492739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229398A Active JP5914618B2 (ja) 2014-11-12 2014-11-12 回転電機及び電気自動車

Country Status (1)

Country Link
JP (1) JP5914618B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012912B4 (de) * 2015-10-07 2017-05-18 Thyssenkrupp Presta Teccenter Ag Rotoraufbau mit formschlüssig befestigten Blechpaketen
JP6712518B2 (ja) * 2016-08-31 2020-06-24 株式会社ダイドー電子 極異方磁石及びその製造方法、並びに、永久磁石型モータジェネレータ
JP7442954B2 (ja) 2017-10-02 2024-03-05 株式会社日立インダストリアルプロダクツ 永久磁石同期機及びこれを備えた電動機車両
CN113890230A (zh) * 2021-10-29 2022-01-04 上海电机学院 一种内置式永磁同步电机不对称磁障转子结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134841A (ja) * 1998-10-20 2000-05-12 Hitachi Ltd 回転電機
JP3708855B2 (ja) * 2000-09-13 2005-10-19 山洋電気株式会社 永久磁石内蔵型同期モータ
JP2004088846A (ja) * 2002-08-23 2004-03-18 Toshiba Corp 永久磁石回転子
JP4311182B2 (ja) * 2003-12-08 2009-08-12 日産自動車株式会社 回転電機の回転子
JP4449035B2 (ja) * 2004-03-10 2010-04-14 日立オートモティブシステムズ株式会社 電動車両用の永久磁石回転電機

Also Published As

Publication number Publication date
JP2015029421A (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5433198B2 (ja) 回転電機及び電気自動車
JP4708448B2 (ja) 回転電機および電気自動車
JP5723524B2 (ja) 回転電機及び電気自動車
JP5948061B2 (ja) 回転電機、およびその回転電機を備えた車両
JP5730736B2 (ja) 永久磁石式回転電機および永久磁石式回転電機を備えた車両
JP6263551B2 (ja) 回転電機、およびその回転電機を備えた電動車両
JP6111327B2 (ja) 回転電機および回転電機の回転子
JP6227712B2 (ja) 回転電機、およびその回転電機を備えた車両
WO2018159181A1 (ja) 回転電機の回転子及びこれを備えた回転電機
JP5147928B2 (ja) 回転電機および電気自動車
JP5914618B2 (ja) 回転電機及び電気自動車
JP2020174529A (ja) 回転電機の回転子、回転電機、及び車両
JP5650276B2 (ja) 回転子及びこれを備えた回転電機
JPWO2019087747A1 (ja) 回転電機の回転子、及び、それを用いた回転電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250