JP5913073B2 - Reactor building hydrogen removal equipment - Google Patents

Reactor building hydrogen removal equipment Download PDF

Info

Publication number
JP5913073B2
JP5913073B2 JP2012270054A JP2012270054A JP5913073B2 JP 5913073 B2 JP5913073 B2 JP 5913073B2 JP 2012270054 A JP2012270054 A JP 2012270054A JP 2012270054 A JP2012270054 A JP 2012270054A JP 5913073 B2 JP5913073 B2 JP 5913073B2
Authority
JP
Japan
Prior art keywords
hydrogen
reactor building
ceiling
reactor
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012270054A
Other languages
Japanese (ja)
Other versions
JP2014115207A (en
Inventor
弘修 岩波
弘修 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2012270054A priority Critical patent/JP5913073B2/en
Publication of JP2014115207A publication Critical patent/JP2014115207A/en
Application granted granted Critical
Publication of JP5913073B2 publication Critical patent/JP5913073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は原子炉建屋水素除去設備に係り,特に原子炉格納容器外へ漏洩した水素を除去するための原子炉建屋水素除去設備に関する。   The present invention relates to a reactor building hydrogen removal facility, and more particularly to a reactor building hydrogen removal facility for removing hydrogen leaked out of a reactor containment vessel.

従来から,設計基準事故を越えた過酷事故時に原子炉格納容器内で発生した水素を除去するための水素除去設備が知られている。係る水素除去設備には,主に水素ガスと酸素ガスの再結合を促進させる触媒を用いた可燃性ガス処理設備と,静的な設備によって水素の再結合を促す触媒式水素除去装置がある。   Conventionally, hydrogen removal equipment for removing hydrogen generated in a containment vessel at the time of a severe accident exceeding a design standard accident is known. Such hydrogen removal facilities include a combustible gas treatment facility that mainly uses a catalyst that promotes recombination of hydrogen gas and oxygen gas, and a catalytic hydrogen removal device that promotes hydrogen recombination using static equipment.

このうち可燃性ガス処理設備では,原子炉格納容器内の雰囲気を,水素・酸素を反応させる再結合装置に導き,再結合後再び原子炉格納容器へ環流させる可燃性ガス濃度制御装置(以下FCSと称す)を設置している。FCSは,本体である可燃性ガス濃度制御器と,これに接続される配管および設備から構成されている。可燃性ガス処理設備の一例が特許文献1に記載されている。   Of these, the combustible gas treatment equipment introduces the atmosphere inside the containment vessel to a recombination device that reacts with hydrogen and oxygen, and then recirculates it to the reactor containment vessel after recombination (hereinafter referred to as FCS). Called). The FCS is composed of a combustible gas concentration controller, which is a main body, and piping and equipment connected thereto. An example of a combustible gas treatment facility is described in Patent Document 1.

静的触媒式水素除去装置は原子炉格納容器内に設置される。可燃性ガスの反応熱によって形成される原子炉格納容器内の循環流を利用して,触媒の反応を抑制する物質を捕獲・除去して,可燃性ガスを効率的に処理し,また水素燃焼を防止することによって原子炉格納容器の健全性を維持する。静的触媒式水素除去装置の一例が特許文献2に記載されている。   The static catalytic hydrogen removal device is installed in the reactor containment vessel. Using the circulating flow in the containment vessel formed by the reaction heat of the combustible gas, the material that suppresses the reaction of the catalyst is captured and removed, the combustible gas is efficiently processed, and hydrogen combustion To maintain the integrity of the containment vessel. An example of a static catalytic hydrogen removal apparatus is described in Patent Document 2.

なお,水素透過膜を用いて雰囲気から水素のみを抽出し,原子炉格納容器の外部に排出することにより,原子炉格納容器の内部の水素濃度を減少させるものとして,特許文献3が知られている。   Patent Document 3 is known to reduce the hydrogen concentration inside the reactor containment vessel by extracting only hydrogen from the atmosphere using a hydrogen permeable membrane and discharging it to the outside of the containment vessel. Yes.

特開平1−32198号公報JP-A-1-32198 特開平11−94992号公報Japanese Patent Laid-Open No. 11-94992 特開2000−75079号公報JP 2000-75079 A

上記説明の特許文献の技術は,いずれも発生した水素が原子炉格納容器内に存在していることを前提としている。過酷事故時に水素ガスが原子炉格納容器に発生していることを想定している。このためこの対応として,水素ガスを原子炉格納容器外へ排出するか,もしくは積極的に燃焼させることによって原子炉格納容器内雰囲気ガスから水素を除去し,原子炉格納容器内を可燃限界に至らしめないようにしている。   The techniques described in the above patent documents all assume that the generated hydrogen is present in the reactor containment vessel. It is assumed that hydrogen gas is generated in the reactor containment vessel at the time of a severe accident. For this reason, hydrogen gas is discharged from the reactor containment vessel or actively burned to remove hydrogen from the atmosphere gas in the reactor containment vessel, and the inside of the reactor containment vessel reaches the flammable limit. I try not to squeeze it.

これに対し本発明では,過酷事故時に原子炉格納容器内で発生した水素が原子炉建屋内に漏洩し,かつ外部電源喪失が発生した状態を想定している。係る状態においては,原子炉格納容器内の水素処理を行う上記説明の特許文献の技術では,原子炉建屋内に漏洩した水素を除去することができない。また外部電源を喪失しているため,電気機器を用いた対策が制限される。   On the other hand, in the present invention, it is assumed that hydrogen generated in the reactor containment vessel at the time of a severe accident leaks into the reactor building and an external power source is lost. In such a state, the hydrogen leaking into the reactor building cannot be removed by the technique of the above-described patent document that performs the hydrogen treatment in the reactor containment vessel. In addition, since the external power supply is lost, measures using electric equipment are limited.

この点に関し,例えば特許文献1では,原子炉格納容器内の雰囲気を,水素・酸素を反応させる再結合装置に導き,再結合後再び原子炉格納容器へ環流させることで水素燃焼の防止を図るが,水素燃焼に対する安全性をより高めるためには,原子炉格納容器外の水素を外部電源喪失時においても選択的に除去する方策が望まれる。   In this regard, for example, in Patent Document 1, the atmosphere in the reactor containment vessel is guided to a recombination device that reacts hydrogen and oxygen, and then recirculated to the reactor containment vessel after recombination to prevent hydrogen combustion. However, in order to further improve the safety against hydrogen combustion, a measure to selectively remove hydrogen outside the containment vessel even when the external power supply is lost is desired.

然るに従来においては,原子炉格納容器からの漏洩により原子炉建屋天井付近に水素が滞留する事態を想定しておらず,滞留した場合の特別な対策は取られていない。この状態で仮に滞留が生じれば,原子炉建屋天井付近で水素燃焼が起きる可能性が考えられる。   However, conventionally, it is not assumed that hydrogen stays near the ceiling of the reactor building due to leakage from the reactor containment vessel, and no special measures are taken when it stays. If stagnation occurs in this state, hydrogen combustion may occur near the reactor building ceiling.

このため,原子炉建屋天井付近に滞留した水素を除去することが新たな課題となる。原子炉建屋内に放出された放射性物質の環境への放出を抑制し,かつ,水素濃度を可燃限界以下に抑制することが必要である。さらに,外部電源喪失時においても水素を選択的に除去する設備を有することが必要である。   For this reason, it becomes a new subject to remove the hydrogen accumulated near the reactor building ceiling. It is necessary to suppress the release of radioactive materials released into the reactor building to the environment and to keep the hydrogen concentration below the flammable limit. Furthermore, it is necessary to have equipment for selectively removing hydrogen even when the external power supply is lost.

以上のことから本発明の目的は,過酷事故時に原子炉建屋の天井付近に多量に滞留した水素の濃度を外部電源喪失時においても水素濃度を可燃限界にいたらしめないようにすることにある。   In view of the above, an object of the present invention is to prevent the hydrogen concentration staying in the vicinity of the ceiling of the reactor building in a severe accident from causing the hydrogen concentration to reach the flammable limit even when the external power supply is lost.

以上のことから本発明においては,原子力発電所の過酷事故時に原子炉圧力容器で発生し原子炉格納容器を介して原子炉建屋の天井付近に滞留した水素ガスを,原子炉建屋の天井に設置した水素除去設備を通して原子炉建屋外へ放出することを特徴とする。   From the above, in the present invention, hydrogen gas generated in the reactor pressure vessel at the time of a severe accident at a nuclear power plant and staying near the ceiling of the reactor building through the reactor containment vessel is installed on the ceiling of the reactor building. It is characterized by being discharged to the outside of the reactor building through the hydrogen removal equipment.

ここで原子炉建屋の天井に設置された水素除去設備は,水素を透過させ放射性物質を透過させない水素透過膜であることを特徴とする。   Here, the hydrogen removal equipment installed on the ceiling of the reactor building is a hydrogen permeable membrane that does not allow permeation of hydrogen but permeation of radioactive materials.

また原子炉建屋の天井に設置された水素除去設備は,原子炉建屋天井の一部が開閉される開閉天井と,開閉天井近傍に取り付けられた水素濃度計測装置と,開閉天井と水素濃度計測装置に接続された遠隔操作システムと,遠隔操作システムの稼動を可能とする蓄電池システムによって構成されていることを特徴とする。   The hydrogen removal equipment installed on the ceiling of the reactor building consists of an open / close ceiling that opens and closes part of the reactor building ceiling, a hydrogen concentration measuring device installed near the open / closed ceiling, an open / close ceiling and a hydrogen concentration measuring device. And a storage battery system that enables operation of the remote operation system.

本発明の原子炉建屋水素除去設備は,過酷事故時に原子炉建屋の天井に滞留した水素に対して,水素濃度が可燃限界に到達する前に天井に取り付けた水素透過膜または,両面開閉可能な自動開閉天井により水素を効率的に外部に放出し,原子炉建屋の水素燃焼を未然に防止する効果がある。   The hydrogen removal equipment of the reactor building of the present invention can be opened and closed on both sides of the hydrogen permeable membrane attached to the ceiling before the hydrogen concentration reaches the flammable limit with respect to the hydrogen remaining on the ceiling of the reactor building at the time of severe accident The automatic opening and closing ceiling effectively releases hydrogen to the outside, and has the effect of preventing hydrogen combustion in the reactor building.

本発明の第1実施例に係る原子炉建屋水素除去設備を備えた原子炉建屋の全体構造を示す断面図。Sectional drawing which shows the whole structure of the reactor building provided with the reactor building hydrogen removal equipment which concerns on 1st Example of this invention. 図1の原子炉建屋の外観を示す図。The figure which shows the external appearance of the nuclear reactor building of FIG. 本発明の第2実施例に係る原子炉建屋水素除去設備を備えた原子炉建屋の全体構造を示す断面図。Sectional drawing which shows the whole reactor building structure provided with the reactor building hydrogen removal equipment which concerns on 2nd Example of this invention. 図2の原子炉建屋の外観を示す図。The figure which shows the external appearance of the nuclear reactor building of FIG. 本発明の第3実施例に係る原子炉建屋水素除去設備を備えた原子炉建屋の全体構造を示す断面図。Sectional drawing which shows the whole structure of the reactor building provided with the reactor building hydrogen removal equipment which concerns on 3rd Example of this invention.

以下,図面を用いて本発明の実施例を説明する。本発明は原子炉建屋に原子炉建屋水素除去設備を備えたものである。ここで原子炉建屋水素除去設備とは,第1実施例では天井付近に設置された水素透過膜であり,第2実施例と第3実施例では開閉天井である。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is a reactor building equipped with a reactor building hydrogen removal facility. Here, the reactor building hydrogen removal equipment is a hydrogen permeable membrane installed near the ceiling in the first embodiment, and is an open / close ceiling in the second and third embodiments.

本発明の第1実施例を,図1と図2を用いて説明する。図1は,本発明の第1実施例に係る原子炉建屋水素除去設備を備えた原子炉建屋の全体構造を示す断面図である。図2は,図1の原子炉建屋の外観を示す図である。第1実施例では,原子炉建屋水素除去設備として天井に設置された水素透過膜の例を示す。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing the overall structure of a reactor building equipped with a reactor building hydrogen removal facility according to a first embodiment of the present invention. FIG. 2 is a view showing an appearance of the reactor building of FIG. In the first embodiment, an example of a hydrogen permeable membrane installed on the ceiling as a reactor building hydrogen removal facility is shown.

図1に示すように,原子炉建屋1内には原子炉格納容器4が設置され,さらに原子炉格納容器4の内部には原子炉圧力容器3が収納されている。水素ガスは,原子力発電所の過酷事故時に原子炉圧力容器3内において,ジルコニウムによる水−金属反応や水の放射線分解により発生する。発生した水素ガスは,原子炉格納容器4内に拡散する。   As shown in FIG. 1, a reactor containment vessel 4 is installed in the reactor building 1, and a reactor pressure vessel 3 is housed inside the reactor containment vessel 4. Hydrogen gas is generated in the reactor pressure vessel 3 due to a water-metal reaction by zirconium or radiolysis of water in a severe accident at a nuclear power plant. The generated hydrogen gas diffuses into the reactor containment vessel 4.

従来においては,水素ガスは原子炉格納容器4内に留まるとの前提で,水素ガスを原子炉格納容器4外へ排出するか,もしくは積極的に燃焼させることによって原子炉格納容器4内雰囲気ガスから水素を除去し,原子炉格納容器4内を可燃限界に至らしめないように対策している。   Conventionally, on the premise that the hydrogen gas stays in the reactor containment vessel 4, the atmospheric gas in the reactor containment vessel 4 is discharged by discharging the hydrogen gas outside the reactor containment vessel 4 or by actively burning the gas. Measures are taken to remove hydrogen from the reactor containment vessel 4 so as not to reach the flammable limit.

本発明では,過酷事故によって原子炉格納容器4内の水素ガスが原子炉建屋2へ漏洩し,かつこの水素ガスが空気との密度差によって建物上部に向けて上昇し,原子炉建屋2の天井付近に滞留することを想定している。このようにして天井付近に滞留した大量の水素ガスは,可燃限界に到達すると,水素燃焼により水素爆発を引き起こす可能性がある。水素爆発を引き起こすと,原子炉建屋2自体が破壊される恐れがあるので,水素燃焼を防止することは放射性物質の閉じ込めの観点から重要である。   In the present invention, hydrogen gas in the reactor containment vessel 4 leaks to the reactor building 2 due to a severe accident, and the hydrogen gas rises toward the upper part of the building due to the density difference with air, and the ceiling of the reactor building 2 It is assumed to stay in the vicinity. If a large amount of hydrogen gas stays near the ceiling in this way reaches the flammable limit, hydrogen explosion may cause hydrogen explosion. If a hydrogen explosion is caused, the reactor building 2 itself may be destroyed. Therefore, prevention of hydrogen combustion is important from the viewpoint of confinement of radioactive materials.

以上述べた経緯により,設計基準事故を越えた過酷事故時に原子炉圧力容器3内で発生した水素は原子炉格納容器4を経由して原子炉建屋1の天井付近に滞留する。天井に滞留した水素の濃度が可燃限界を超えると水素燃焼を起こす危険があることから水素を原子炉建屋1の外部に放出する必要がある。   Due to the circumstances described above, hydrogen generated in the reactor pressure vessel 3 at the time of a severe accident exceeding the design standard accident stays near the ceiling of the reactor building 1 via the reactor containment vessel 4. If the concentration of hydrogen staying on the ceiling exceeds the flammability limit, there is a risk of causing hydrogen combustion, so it is necessary to release hydrogen to the outside of the reactor building 1.

本発明の第1実施例では,原子炉建屋1の天井に水素透過膜2を設置する。原子炉建屋1の天井付近に滞留した放射性物質を含む水素ガスは,原子炉建屋1の天井の水素透過膜2から建屋外部に水素ガス21のみが選択的に放出されるが,放射性物質は水素透過膜2を通過しない。このため放射性物質の原子炉建屋1内への閉じ込め効果が期待できる。なお本発明の第1実施例は,原子炉建屋1の天井に水素透過膜を設置するだけであるため,原子力発電の各種型式(沸騰水型原子炉のMarkI型やMarkII型,及びABWR,さらには加圧水型原子炉)にも適用できる。   In the first embodiment of the present invention, the hydrogen permeable membrane 2 is installed on the ceiling of the reactor building 1. Only hydrogen gas 21 is selectively released from the hydrogen permeable membrane 2 on the ceiling of the reactor building 1 to the outdoor part of the hydrogen gas containing the radioactive material staying near the ceiling of the reactor building 1, but the radioactive material is hydrogen. It does not pass through the permeable membrane 2. For this reason, the confinement effect of the radioactive substance in the reactor building 1 can be expected. In the first embodiment of the present invention, since only a hydrogen permeable membrane is installed on the ceiling of the reactor building 1, various types of nuclear power generation (MarkI type and MarkII type of boiling water reactor, ABWR, Can also be applied to pressurized water reactors.

本発明の第1実施例に適用可能な水素透過膜2は,具体的には以下のように構成されるのが良い。まず水素透過膜の材質は主に,金属,高分子,セラミックの3種類の材質に大別され,これ等材質での水素透過膜が形成され設置される。   Specifically, the hydrogen permeable membrane 2 applicable to the first embodiment of the present invention is preferably configured as follows. First, the material of the hydrogen permeable membrane is mainly divided into three types of materials, metal, polymer, and ceramic, and a hydrogen permeable membrane made of these materials is formed and installed.

このうち金属膜の水素透過膜は,金属で構成される膜であり,主成分は,パラジウム,ニオブ,バナジウムの3種類の膜に大別される。ニオブ膜やバナジウム膜は水素分離を解離・再結合させるために表面に薄いパラジウム層を持つ。金属膜の特徴は,金属パラジウムが水素ガスを吸着し,吸着した水素が解離し,解離によって生成した水素原子がパラジウム中に溶解し,水素原子が膜内を移動し,膜表面で水素原子が再結合する。ニオブやバナジウムは水素原子をよく透過させることができるが,水素溶解量が多く脆化しやすいため,チタンやニッケルなどの他の金属を添加している。金属膜は,使用温度が数百度程度と高く,耐熱性に優れており,水素透過速度も高いため水素透過膜に適した材料である。   Among these, the hydrogen permeable film of the metal film is a film made of metal, and the main component is roughly divided into three kinds of films of palladium, niobium, and vanadium. Niobium and vanadium membranes have a thin palladium layer on the surface to dissociate and recombine hydrogen separation. The characteristics of the metal film are that the metal palladium adsorbs hydrogen gas, the adsorbed hydrogen dissociates, the hydrogen atoms generated by the dissociation dissolve in the palladium, the hydrogen atoms move through the film, and the hydrogen atoms are Rejoin. Niobium and vanadium can permeate hydrogen atoms well, but the amount of hydrogen dissolved is high and they tend to become brittle, so other metals such as titanium and nickel are added. A metal film is suitable for a hydrogen permeable film because its operating temperature is as high as several hundred degrees, it has excellent heat resistance, and the hydrogen permeation rate is high.

高分子膜は,主成分がポリイミド,ポリスルホンとシリコンゴムで構成される膜が存在する。高分子膜の特徴は,分離層(緻密な層)と支持層の2層構造になっており,分離層中にガス分子が溶解して膜を透過する。成分が有機高分子のため,使用温度は150℃以下と低いものの,他の透過膜と比較すると水素透過速度が非常に高いため,設備容積を小さくすることができることを特徴としている。   The polymer membrane includes a membrane composed mainly of polyimide, polysulfone and silicon rubber. The polymer membrane has a two-layer structure of a separation layer (dense layer) and a support layer. Gas molecules dissolve in the separation layer and permeate the membrane. Since the component is an organic polymer, the operating temperature is as low as 150 ° C. or lower, but the hydrogen permeation rate is very high compared to other permeable membranes, so that the equipment volume can be reduced.

セラミック膜は,セラミックで構成される膜であり,主成分は,窒化ケイ素,シリカで構成される。セラミック膜の特徴は,分離層(緻密な層)と支持層の2層構造になっており,分離層中をガス分子が拡散して膜を透過する。材質がセラミックのため,800℃程度の高温環境でも使用が可能である。ただし,水素透過流速が他の膜と比較すると低いため,設備容量が大きくなる可能性がある。   The ceramic film is a film made of ceramic, and the main component is made of silicon nitride and silica. The ceramic membrane has a two-layer structure of a separation layer (dense layer) and a support layer, and gas molecules diffuse through the separation layer and permeate the membrane. Since the material is ceramic, it can be used even in a high temperature environment of about 800 ° C. However, since the hydrogen permeation flow rate is lower than other membranes, the equipment capacity may increase.

なお原子炉建屋1の天井に設置される水素透過膜の面積は,水素透過膜の材質によって変化するため,原子炉建屋1の天井の設備も水素透過膜の面積に合わせて設計される。   Since the area of the hydrogen permeable membrane installed on the ceiling of the reactor building 1 varies depending on the material of the hydrogen permeable membrane, the equipment on the ceiling of the reactor building 1 is also designed according to the area of the hydrogen permeable membrane.

さらに第1実施例で使用される水素透過膜は,電源がないパッシブな状態で機能するものであり,ここではガスと接触して水素分離する。この場合に原子炉建屋1内は,過酷事故発生により通常時の負圧から正圧に上昇しているので,正圧による膜浸透の促進が期待できる。但し,過酷事故後の建屋内圧力の具体的な数値は,事故の種類,時間変化などにより変化するが,少なくとも格納容器内圧力上昇の際には建屋内は正圧になっていると考えられる。また,上記各種透過膜の透過度は,圧力以外に膜の厚さ,温度条件などにより変化するが,一般的に物質の性質による透過度は高分子膜>金属膜>セラミック膜と言われている。   Further, the hydrogen permeable membrane used in the first embodiment functions in a passive state where there is no power source, and here, hydrogen separation is performed in contact with a gas. In this case, since the inside of the reactor building 1 has increased from a normal negative pressure to a positive pressure due to the occurrence of a severe accident, it can be expected that membrane permeation is promoted by the positive pressure. However, the specific value of the pressure inside the building after a severe accident varies depending on the type of accident and changes over time, but it is thought that the building is at a positive pressure at least when the pressure inside the containment vessel rises. . In addition, the permeability of each of the above-mentioned various permeable membranes varies depending on the thickness of the membrane, temperature conditions, etc. in addition to pressure. Yes.

図2は,図1の原子炉建屋の外観を示す図であり,原子炉建屋1と水素透過膜2の配置関係が図示されている。水素透過膜2を透過した放射性物質を含まない水素ガス21は建屋から大気に放出される。   FIG. 2 is a view showing the appearance of the reactor building of FIG. 1, and shows the arrangement relationship between the reactor building 1 and the hydrogen permeable membrane 2. The hydrogen gas 21 that does not contain radioactive material that has passed through the hydrogen permeable membrane 2 is released from the building to the atmosphere.

本発明は,上記のような第1実施例の構造にすることにより,以下のような機能と効果を期待することができる。   By adopting the structure of the first embodiment as described above, the present invention can be expected to have the following functions and effects.

過酷事故時に水素濃度が可燃限界に到達する前に,水素ガスのみを水素透過膜2から原子炉建屋1の外部に放出することにより,原子炉建屋1の水素燃焼を未然に防止する効果がある。   By releasing only hydrogen gas from the hydrogen permeable membrane 2 to the outside of the reactor building 1 before the hydrogen concentration reaches the flammable limit in a severe accident, there is an effect of preventing hydrogen combustion in the reactor building 1 in advance. .

原子炉建屋1天井に水素透過膜2を設置することによって,原子炉建屋1内で発生した水素を選択的に放出させて水素燃焼を防止すると共に放射性物質を原子炉建屋1内部に閉じ込める効果が期待できる。   By installing the hydrogen permeable membrane 2 on the ceiling of the reactor building 1, the hydrogen generated in the reactor building 1 is selectively released to prevent hydrogen combustion and to confine radioactive materials inside the reactor building 1. I can expect.

本設備は,外部からの電源を不要とする設備であることから外部電源喪失時にも水素の原子炉建屋1外への放出が可能である。さらに本設備は,原子炉建屋1天井に水素透過膜2を設置した静的安全設備であるため,過酷事故時の運転員操作を不要とする。   Since this facility does not require an external power source, hydrogen can be released outside the reactor building 1 even when the external power source is lost. Furthermore, since this equipment is a static safety equipment with a hydrogen permeable membrane 2 installed on the ceiling of the reactor building 1, no operator operation is required during severe accidents.

次に本発明の第2実施例を,図3と図4を用いて説明する。図3は本発明の第2実施例に係る原子炉建屋水素除去設備を備えた原子炉建屋の全体構造を示す断面図である。図4は,図2の原子炉建屋の外観を示す図である。第2実施例では,原子炉建屋水素除去設備として天井に設置された開閉天井の例を示す。   Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a cross-sectional view showing the overall structure of a reactor building equipped with a reactor building hydrogen removal facility according to a second embodiment of the present invention. FIG. 4 is a view showing the appearance of the reactor building of FIG. In the second embodiment, an example of an open / close ceiling installed on the ceiling as a reactor building hydrogen removal facility will be described.

図3に示すように,原子炉建屋1の天井付近には,自動開閉天井5,水素濃度計測装置6が備え付けられている。また自動開閉天井5,水素濃度計測装置6には,遠隔操作システム8が備え付けられている。また,自動開閉天井5,水素濃度計測装置6,遠隔操作システム8への電源を供給するシステムとして蓄電池システム7が備え付けられている。   As shown in FIG. 3, an automatic opening / closing ceiling 5 and a hydrogen concentration measuring device 6 are provided near the ceiling of the reactor building 1. The automatic opening / closing ceiling 5 and the hydrogen concentration measuring device 6 are provided with a remote operation system 8. A storage battery system 7 is provided as a system for supplying power to the automatic opening / closing ceiling 5, the hydrogen concentration measuring device 6, and the remote control system 8.

図3において,自動開閉天井5は,原子炉建屋1天井の内部に組み込まれており,通常運転時には,開閉扉は閉じられており,必要に応じて遠隔操作システム8による開閉操作が可能な設計となっている。自動開閉天井5には遠隔操作システム8が接続されており,運転員が水素濃度計測装置6により天井付近の水素濃度測定値を監視した上で,遠隔操作システム8から天井の開閉を自動で操作することが可能である。また,自動開閉天井5は,蓄電池システム7に何らかの不具合が発生する可能性を考慮して,運転員の手動操作によって開閉を行うことも可能な設計とされるのがよい。   In FIG. 3, the automatic opening / closing ceiling 5 is built in the ceiling of the reactor building 1, and the opening / closing door is closed during normal operation, and can be opened and closed by the remote control system 8 as necessary. It has become. A remote control system 8 is connected to the automatic opening / closing ceiling 5, and the operator monitors the hydrogen concentration measurement value near the ceiling with the hydrogen concentration measuring device 6, and then automatically opens and closes the ceiling from the remote control system 8. Is possible. The automatic opening / closing ceiling 5 is preferably designed so that it can be opened / closed manually by an operator in consideration of the possibility of some trouble occurring in the storage battery system 7.

原子炉建屋1の天井付近に設置される水素濃度計測装置6は,水素の可燃限界である4%程度の計測が可能な装置であり,原子炉建屋1天井付近の雰囲気中の水素濃度を計測できる。   The hydrogen concentration measuring device 6 installed near the ceiling of the reactor building 1 is a device capable of measuring about 4%, which is the flammability limit of hydrogen, and measures the hydrogen concentration in the atmosphere near the ceiling of the reactor building 1 it can.

蓄電池システム7は,外部電源喪失を想定して,電源を必要とする自動開閉天井5,水素濃度計測装置6,遠隔操作システム8に取り付けられており,交流電源喪失時にも本システムの操作が可能な設計となっている。また,蓄電池システム7の蓄電池は,過酷事故時に原子炉建屋1内へのアクセスが制限された場合を想定して,原子炉建屋1外のサービス建屋に備え付けられている。蓄電池システム7の機器並びに支持構造物は高耐震構造であり,多重化されているものとする。   The storage battery system 7 is attached to the automatic open / close ceiling 5 that requires power, the hydrogen concentration measuring device 6, and the remote control system 8 assuming the loss of the external power supply. The system can be operated even when the AC power is lost. Design. The storage battery of the storage battery system 7 is provided in a service building outside the reactor building 1 assuming that access to the reactor building 1 is restricted in a severe accident. It is assumed that the equipment and support structure of the storage battery system 7 have a high earthquake resistance structure and are multiplexed.

遠隔操作システム8は,原子炉建屋1以外の建屋に設けられている中央制御室と免震重要棟に備え付けられている。遠隔操作システム8の操作は,中央制御室からの操作を基本とするが,中央制御室が使用できない場合には,免震重要棟から操作するものとする。遠隔操作システム8には水素濃度計測装置6が接続されており,原子炉建屋1天井付近で水素濃度を計測し,中央制御室または免震重要棟で監視することができる。遠隔操作システム8は,自動開閉天井5の左右の扉につながっており,片側の扉の開閉を可能とする設計となっている。   The remote control system 8 is provided in a central control room and seismic isolation important buildings provided in buildings other than the reactor building 1. The remote operation system 8 is basically operated from the central control room, but if the central control room cannot be used, it is operated from the seismic isolated building. A hydrogen concentration measuring device 6 is connected to the remote control system 8, and the hydrogen concentration can be measured near the ceiling of the reactor building 1 and monitored in the central control room or the seismic isolated building. The remote control system 8 is connected to the left and right doors of the automatic opening / closing ceiling 5 and is designed to be able to open and close the door on one side.

なお天井開放の稼働条件について,ここでは水素濃度可燃限界の4%以上かつ酸素濃度5%以上の場合に開放するのがよい。従来においては格納容器内対応なので酸素濃度5%以下に保持している関係で酸素濃度5%以上を稼働条件にしているが,本発明は建屋内なので,水素濃度下限限界の4%以上を条件とするのがよい。   Regarding the operating conditions for opening the ceiling, here it is better to open it when the hydrogen concentration flammability limit is 4% or more and the oxygen concentration is 5% or more. Conventionally, the oxygen concentration of 5% or more is set as the operating condition because the oxygen concentration is kept at 5% or less because it corresponds to the inside of the containment vessel. However, since the present invention is a building, the hydrogen concentration lower limit of 4% or more is required. It is good to do.

上記の設備を用いて運転員は,水素濃度計測装置6が検知した水素濃度を中央制御室または免震重要棟から監視し,水素濃度が可燃限界に到達する前に遠隔操作システム8により自動開閉天井5を操作し,原子炉建屋1上部天井から放射性物質を含む水素ガス22を外部に放出する。   Using the above equipment, the operator monitors the hydrogen concentration detected by the hydrogen concentration measuring device 6 from the central control room or important seismic isolation building, and automatically opens and closes by the remote control system 8 before the hydrogen concentration reaches the flammable limit. The ceiling 5 is operated, and hydrogen gas 22 containing a radioactive substance is discharged from the upper ceiling of the reactor building 1 to the outside.

本設備は,原子炉建屋1上部及び原子炉建屋1外に機器を設置するため,沸騰水型原子炉でもMarkI型やMarkII型,及びABWRに適用できる上に,加圧水型原子炉にも適用できる。   Since this equipment is installed on the reactor building 1 and outside the reactor building 1, it can be applied to boiling water reactors as well as Mark I, Mark II, and ABWR, as well as pressurized water reactors. .

図4は図1の原子炉建屋の外観を示す図であり,自動開閉天井5の開放により放射性物質を含む水素ガスが大気放出される様子を示している。   FIG. 4 is a diagram showing the external appearance of the reactor building of FIG. 1, and shows how hydrogen gas containing a radioactive substance is released into the atmosphere by opening the automatic opening / closing ceiling 5.

本発明の第2実施例は,上記のような原子炉建屋1の構造にすることにより,以下のような機能と効果を期待することができる。   In the second embodiment of the present invention, the following functions and effects can be expected by using the structure of the reactor building 1 as described above.

過酷事故時に水素濃度が可燃限界に到達する前に遠隔操作システム8を作動させて,水素を原子炉建屋1の外部に放出することにより,原子炉建屋1の水素燃焼を未然に防止する効果がある。この場合に,放射性物質を含む水素ガス22が大気放出されることにはなるが,水素燃焼により原子炉格納容器4の内部あるいは原子炉圧力容器3の内部に存在する大量の放射性物質が外部放出される最悪の事態を事前に防ぐことができる。   By operating the remote control system 8 before the hydrogen concentration reaches the flammable limit in a severe accident and releasing hydrogen to the outside of the reactor building 1, it is possible to prevent hydrogen combustion in the reactor building 1 in advance. is there. In this case, the hydrogen gas 22 containing the radioactive substance is released into the atmosphere, but a large amount of radioactive substance existing inside the reactor containment vessel 4 or inside the reactor pressure vessel 3 is released to the outside by hydrogen combustion. Can prevent the worst situation to be done in advance.

電源は蓄電池システム7を採用することとし,外部電源喪失時にも使用が可能である。また,蓄電池は原子炉建屋1外のサービス建屋に設置することで過酷事故時並びに津波,溢水時の環境条件に対する電源への影響を緩和させる。また,機器並びに支持構造物は高耐震構造であり,多重化されているものとする。   The power source employs the storage battery system 7 and can be used even when the external power source is lost. In addition, the storage battery is installed in the service building outside the reactor building 1 to mitigate the influence of the power supply on environmental conditions during severe accidents, tsunamis, and flooding. In addition, the equipment and supporting structure shall be highly earthquake resistant and multiplexed.

天井扉の自動開閉では,遠隔操作システム8を採用することによって,中央制御室及び免震重要棟からの操作を可能とし,中央制御室が使用できない場合には,免震重要棟からの操作を期待できる。   In the automatic opening and closing of the ceiling door, the remote control system 8 can be used to enable operation from the central control room and the seismic isolation important building. I can expect.

本発明の第3実施例を,図5を用いて説明する。図5は,本発明の第3実施例に係る原子炉建屋水素除去設備を備えた原子炉建屋の全体構造を示す断面図である。   A third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view showing the overall structure of a reactor building equipped with a reactor building hydrogen removal facility according to a third embodiment of the present invention.

本発明の第3実施例は,第1実施例の水素ガスと放射性物質を分離する水素透過膜の機能と,第2実施例の水素ガスの建屋外放出機構を組み合わせたものである。第3実施例も,原子炉建屋水素除去設備として天井に設置された開閉天井の例を示している。   The third embodiment of the present invention combines the function of the hydrogen permeable membrane that separates the hydrogen gas and radioactive material of the first embodiment with the hydrogen gas outdoor discharge mechanism of the second embodiment. The third embodiment also shows an example of an open / close ceiling installed on the ceiling as a reactor building hydrogen removal facility.

図5では,第2実施例の水素ガスの建屋外放出機構が原子炉建屋1の天井(屋根)に設置されており,第1実施例の水素ガスと放射性物質を分離する水素透過膜2の機能が原子炉建屋1の最上階10の床11に設置されている。なお,最上階10の床11は原子炉格納容器4よりも上部に位置している。   In FIG. 5, the hydrogen gas outdoor release mechanism of the second embodiment is installed on the ceiling (roof) of the reactor building 1, and the hydrogen permeable membrane 2 for separating the hydrogen gas and the radioactive material of the first embodiment is shown. The function is installed on the floor 11 of the top floor 10 of the reactor building 1. The floor 11 of the top floor 10 is located above the reactor containment vessel 4.

この方式によれば,原子炉格納容器4から漏洩した放射性物質を含む水素ガスは最上階10の床11の下部(原子炉格納容器4よりも上部の)天井に滞留し,水素透過膜2の機能により放射性物質と水素ガスに分離される。放射性物質は水素透過膜2を透過しないので最上階10の床11の下部を構成する空間内に留まり,水素ガス21のみが最上階10に透過し,さらに上昇して原子炉建屋1の天井(屋根)付近に滞留する。   According to this method, hydrogen gas containing radioactive material leaked from the reactor containment vessel 4 stays in the lower part of the floor 11 of the top floor 10 (above the reactor containment vessel 4), and the hydrogen permeable membrane 2 It is separated into radioactive material and hydrogen gas by function. Since the radioactive material does not permeate the hydrogen permeable membrane 2, it stays in the space that forms the lower part of the floor 11 of the top floor 10, and only the hydrogen gas 21 permeates the top floor 10 and rises further to the ceiling of the reactor building 1 ( Stays near the roof.

原子炉建屋1の天井(屋根)付近に滞留した水素ガスが,運転員操作により大気放出されることは本発明の第2実施例と同じである。   The hydrogen gas staying in the vicinity of the ceiling (roof) of the reactor building 1 is released into the atmosphere by the operation of the operator, as in the second embodiment of the present invention.

本発明の第3実施例によれば,第1実施例による効果と,第2実施例による効果を兼ね備えて得ることができる。   According to the third embodiment of the present invention, the effects of the first embodiment and the effects of the second embodiment can be obtained.

1:原子炉建屋
2:水素透過膜
3:原子炉圧力容器
4:原子炉格納容器
5:自動開閉天井
6:水素濃度計測装置
7:蓄電池システム
8:遠隔操作システム
21:放射性物質を含まない水素ガス
22:放射性物質を含む水素ガス
1: Reactor building 2: Hydrogen permeable membrane 3: Reactor pressure vessel 4: Reactor containment vessel 5: Automatic open / close ceiling 6: Hydrogen concentration measuring device 7: Storage battery system 8: Remote control system 21: Hydrogen containing no radioactive substances Gas 22: Hydrogen gas containing radioactive material

Claims (4)

原子力発電所の過酷事故時に原子炉圧力容器で発生し原子炉格納容器を介して原子炉建屋の天井付近に滞留した水素ガスを,前記原子炉建屋の天井に設置した水素除去設備を通して原子炉建屋外へ放出するとともに、
前記原子炉格納容器を収納する部屋の上部は,第2の天井を介して前記原子炉建屋の天井に至るとともに,前記第2の天井には水素を透過させ放射性物質を透過させない水素透過膜を備えることを特徴とする原子炉建屋の水素除去設備。
Hydrogen gas generated in the reactor pressure vessel during a severe accident at a nuclear power plant and staying near the ceiling of the reactor building through the containment vessel is passed through the hydrogen removal equipment installed on the ceiling of the reactor building. While releasing to the outdoors ,
The upper part of the room for storing the reactor containment vessel reaches the ceiling of the reactor building through the second ceiling, and the second ceiling is provided with a hydrogen permeable membrane that does not allow permeation of hydrogen and permeation of radioactive substances. reactor building of the hydrogen removal system, characterized in that it comprises.
請求項1に記載の原子炉建屋の水素除去設備において,
前記原子炉建屋の天井に設置された水素除去設備は,水素を透過させ放射性物質を透過させない水素透過膜であることを特徴とする原子炉建屋の水素除去設備。
In the hydrogen removal equipment for a reactor building according to claim 1,
The hydrogen removal equipment for a reactor building, wherein the hydrogen removal equipment installed on the ceiling of the reactor building is a hydrogen permeable membrane that allows hydrogen to permeate and does not permeate radioactive materials.
請求項1に記載の原子炉建屋の水素除去設備において,
前記原子炉建屋の天井に設置された水素除去設備は,前記原子炉建屋天井の一部が開閉される開閉天井と,該開閉天井近傍に取り付けられた水素濃度計測装置と,前記開閉天井と前記水素濃度計測装置に接続された遠隔操作システムと,該遠隔操作システムの稼動を可能とする蓄電池システムによって構成されていることを特徴とする原子炉建屋の水素除去設備。
In the hydrogen removal equipment for a reactor building according to claim 1,
The hydrogen removal equipment installed on the ceiling of the reactor building includes an open / close ceiling in which a part of the reactor building ceiling is opened / closed, a hydrogen concentration measuring device attached in the vicinity of the open / close ceiling, the open / close ceiling, A hydrogen removal equipment for a nuclear reactor building comprising a remote control system connected to a hydrogen concentration measuring device and a storage battery system that enables the remote control system to operate.
請求項3に記載の原子炉建屋の水素除去設備において,
前記遠隔操作システムは,前記原子炉建屋とは別棟に設置された中央制御室及び免震重要棟の双方に設置されて前記原子炉建屋の開閉天井の開閉操作を行うことを特徴とする原子炉建屋の水素除去設備。
In the hydrogen removal equipment for a reactor building according to claim 3 ,
The remote control system is installed in both a central control room and a seismic isolation important building installed separately from the reactor building, and opens and closes the open / close ceiling of the reactor building. Hydrogen removal equipment in the building.
JP2012270054A 2012-12-11 2012-12-11 Reactor building hydrogen removal equipment Active JP5913073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270054A JP5913073B2 (en) 2012-12-11 2012-12-11 Reactor building hydrogen removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270054A JP5913073B2 (en) 2012-12-11 2012-12-11 Reactor building hydrogen removal equipment

Publications (2)

Publication Number Publication Date
JP2014115207A JP2014115207A (en) 2014-06-26
JP5913073B2 true JP5913073B2 (en) 2016-04-27

Family

ID=51171356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270054A Active JP5913073B2 (en) 2012-12-11 2012-12-11 Reactor building hydrogen removal equipment

Country Status (1)

Country Link
JP (1) JP5913073B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9742135B2 (en) 2012-11-07 2017-08-22 Wobben Properties Gmbh Slip ring transducer
US9909200B2 (en) 2014-09-29 2018-03-06 Hitachi Metals, Ltd. Method of manufacturing Ni-base superalloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754719B2 (en) * 2017-04-11 2020-09-16 日立Geニュークリア・エナジー株式会社 Reactor containment vent system
JP2019052918A (en) * 2017-09-14 2019-04-04 日立Geニュークリア・エナジー株式会社 Static nuclear reactor containment vessel heat removal system and nuclear power plant
JP7348814B2 (en) * 2019-11-08 2023-09-21 日立Geニュークリア・エナジー株式会社 nuclear power plant
JPWO2022230121A1 (en) * 2021-04-28 2022-11-03

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128495A (en) * 1980-03-14 1981-10-07 Hitachi Ltd Hydrogen processing system of nuclear reactor plant
JPS61241698A (en) * 1985-04-19 1986-10-27 株式会社東芝 Combustible gas concentration controller for nuclear reactorcontainer
JPH04104096A (en) * 1990-08-23 1992-04-06 Toshiba Corp Reactor container
JP5777051B2 (en) * 2011-04-21 2015-09-09 清水建設株式会社 Method and equipment for preventing hydrogen explosion in nuclear power generation facilities
JP2012233729A (en) * 2011-04-28 2012-11-29 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant and operation method thereof
JP2012235200A (en) * 2011-04-28 2012-11-29 Hitachi-Ge Nuclear Energy Ltd Emergency stop system of working device, emergency stop device and working device
JP5758692B2 (en) * 2011-04-28 2015-08-05 日立Geニュークリア・エナジー株式会社 Nuclear power plant supervisory control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9742135B2 (en) 2012-11-07 2017-08-22 Wobben Properties Gmbh Slip ring transducer
US9909200B2 (en) 2014-09-29 2018-03-06 Hitachi Metals, Ltd. Method of manufacturing Ni-base superalloy

Also Published As

Publication number Publication date
JP2014115207A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5913073B2 (en) Reactor building hydrogen removal equipment
US9443620B2 (en) Reactor containment vessel and nuclear power plant using the same
US9818495B2 (en) Containment vessel and nuclear power plant
US9502144B2 (en) Filter for a nuclear reactor containment ventilation system
JP6876447B2 (en) Nuclear power plant
JP6469137B2 (en) Fuel cell system
US20120294404A1 (en) Nuclear Power Plant and Method of Operating It
US20200343012A1 (en) Reactor Containment Vessel Vent System
TWI632560B (en) Operating floor confinement and nuclear plant
JP2010032526A (en) Reactor containment vessel and nuclear power plant using it
EP2955719B1 (en) Nuclear power plant and reactor building gas treatment system
JP2014510905A (en) Device for capturing flammable gases produced by radiolysis or pyrolysis in containment
JP6754719B2 (en) Reactor containment vent system
Schlueter et al. Filtered vented containments
JP6284889B2 (en) Radioactive substance removal filter device
JP2009245948A (en) Fuel cell device
KR20160038089A (en) Hydrogen getting apparatus for nuclear power plant
JP7285201B2 (en) Hydrogen treatment system
JP7348814B2 (en) nuclear power plant
JP2013246098A (en) Combustible gas processing system and method of nuclear reactor building
US20230070817A1 (en) Nuclear power plant
KR101636394B1 (en) Containment filtered venting system having hydrogen reduction unit
JPS63289488A (en) Pressure controller for containment vessel of nuclear reactor
KR100594842B1 (en) In-containment refueling water storage tank with partitions
CHEEVER NEW AIR CLEANING ACTIVITIES AT ARGONNE NATIONAL LABORATORY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5913073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150