JPH04104096A - Reactor container - Google Patents

Reactor container

Info

Publication number
JPH04104096A
JPH04104096A JP2219999A JP21999990A JPH04104096A JP H04104096 A JPH04104096 A JP H04104096A JP 2219999 A JP2219999 A JP 2219999A JP 21999990 A JP21999990 A JP 21999990A JP H04104096 A JPH04104096 A JP H04104096A
Authority
JP
Japan
Prior art keywords
hydrogen
reactor
nuclear reactor
reactor containment
curtain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219999A
Other languages
Japanese (ja)
Inventor
Kunio Nagashima
永嶋 国雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2219999A priority Critical patent/JPH04104096A/en
Publication of JPH04104096A publication Critical patent/JPH04104096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To enhance the safety of a nuclear reactor by preventing the generation of the combustion of hydrogen by adsorbing hydrogen generated at the time of the accident of the nuclear reactor on a hydrogen adsorbing substance. CONSTITUTION:A curtain rail 3 is arranged to the upper part in a reactor container 2 having a reactor pressure vessel 1 received therein and a large number of thin plate-shaped hydrogen adsorbing substances 5 are suspended from the rail 3 using curtain attaching jigs 4. The hydrogen absorbing apparatus consisting of the hydrogen adsorbing substances 5 has the same shape as the curtain of the room of a usual house and may have various shapes and, in short, the hydrogen adsorbing substances 5 are made large in their surface areas and arranged in the space of the reactor container 2 during the operation of a nuclear reactor and made easy to receive or detach so as not to generate trouble in the inspection work of the nuclear reactor at the time of shutdown. Hydrogen generated in the reactor container 2 comes into contact with the hydrogen adsorbing substances 5 to be immediately adsorbed thereon and does not rise to concn. generating the combustion of hydrogen.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は、原子炉の事故時に発生する水素を除去し得る
原子炉格納装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention 1 (Industrial Application Field) The present invention relates to a nuclear reactor containment system capable of removing hydrogen generated during a nuclear reactor accident.

(従来の技術) 原子炉の事故時には、軽水型原子炉では放射線による水
の分解および炉心に使用する一ジルコニウム合金と水の
化学反応によって水素か発生し、ナトリウム型原子炉で
は、ナトリウムと水が化学反応し水素か発生する。発生
した水素は原子炉格納容器の内部に充満していくが、水
素濃度か約4%以上になると水素燃焼が起こり、原子炉
格納容器の健全性が脅かされる。このような場合には、
原子炉格納容器内の水素濃度が4%にならないように水
素を除去する必要がある。
(Prior technology) In the event of a nuclear reactor accident, hydrogen is generated in light water reactors by the decomposition of water by radiation and the chemical reaction between the monozirconium alloy used in the reactor core and water, while in sodium reactors, sodium and water are generated. Chemical reaction generates hydrogen. The generated hydrogen fills the inside of the reactor containment vessel, but if the hydrogen concentration exceeds about 4%, hydrogen combustion will occur, threatening the integrity of the reactor containment vessel. In such a case,
It is necessary to remove hydrogen so that the hydrogen concentration within the reactor containment vessel does not reach 4%.

従来、原子炉の事故時に発生する水素は、第3図に示す
ような可燃性ガス濃度制御系で除去している。この可燃
性ガス濃度制御系は、原子炉圧力容器1を格納する原子
炉格納容器2にバルブ3を介して接続されるブロワ4、
加熱器5、再結合器6および冷却器7で構成されている
。これは、原子炉の事故時に原子炉格納容器2の内部に
充満した水素を、バルブ3を開きブロワ4を作動させる
ことによって加熱器5に送り込み、再結合器6て水にす
ることで水素を除去している。再結合器6て生成された
水は冷却器7を経て原子炉格納容器2内にバルブ3を介
して供給される。
Conventionally, hydrogen generated during a nuclear reactor accident is removed using a combustible gas concentration control system as shown in FIG. This combustible gas concentration control system includes a blower 4 connected via a valve 3 to a reactor containment vessel 2 that houses a reactor pressure vessel 1;
It is composed of a heater 5, a recombiner 6, and a cooler 7. This works by opening a valve 3 and operating a blower 4 to send the hydrogen that filled inside the reactor containment vessel 2 at the time of a nuclear reactor accident to a heater 5, and converting it into water through a recombiner 6. It is being removed. The water produced in the recombiner 6 is supplied to the reactor containment vessel 2 via the valve 3 via the cooler 7 .

(発明が解決しようとする課題) ところで、このような可燃性ガス濃度制御系は、装置が
複雑であるので価格が高い。また、装置を運転するには
、バルブ3、ブロワ4を作動させ、電力、冷却水を供給
する必要があることから、信頼性が低いという問題があ
った。
(Problems to be Solved by the Invention) Incidentally, such a combustible gas concentration control system is expensive because the device is complicated. Further, in order to operate the device, it is necessary to operate the valve 3 and the blower 4 and to supply electric power and cooling water, so there is a problem of low reliability.

本発明は、このような点に対処してなされたもので、複
雑な装置を必要とすることなく水素を除去することがで
きる原子炉格納装置を提供することを目的とする。
The present invention has been made in view of these problems, and an object of the present invention is to provide a nuclear reactor containment system that can remove hydrogen without requiring a complicated device.

[発明の構成コ (課題を解決するための手段) すなわち、本発明の原子炉格納装置は、水素吸着物質か
らなる水素吸収装置を原子炉格納容器内に配置、もしく
は水素透過膜を有する水素透過装置を原子炉格納容器に
配管接続してなるものである。
[Configuration of the Invention (Means for Solving the Problems) In other words, the reactor containment system of the present invention includes a hydrogen absorption device made of a hydrogen adsorption material disposed in the reactor containment vessel, or a hydrogen permeation device having a hydrogen permeation membrane. The device is connected to the reactor containment vessel via piping.

(作 用) 本発明の原子炉格納装置においては、原子炉の事故時に
発生する水素を水素吸着物質に吸着させることによって
、あるいは水素透過膜からなる水素透過装置により選択
的に原子炉格納容器外に透過させることよって、原子炉
格納容器内の水素の充満を防ぐことができる。これによ
り、水素燃焼の発生を防止し、原子炉の安全性を向上す
ることができる。
(Function) In the reactor containment system of the present invention, hydrogen generated during a nuclear reactor accident is selectively removed from the reactor containment vessel by being adsorbed by a hydrogen adsorbing material or by a hydrogen permeation device consisting of a hydrogen permeable membrane. By allowing hydrogen to pass through, it is possible to prevent the reactor containment vessel from being filled with hydrogen. This can prevent the occurrence of hydrogen combustion and improve the safety of the nuclear reactor.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
。なお、全ての図面において同一部分については同一符
号を付記した。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. In addition, the same reference numerals are added to the same parts in all the drawings.

実施例1 第1図に本発明の、原子炉格納容器内に水素吸着物質か
らなる水素吸収装置を配置した原子炉格納装置の一実施
例を示す。本実施例では、原子炉圧力容器1を格納する
原子炉格納容器2内の上部にカーテンレール3が設置さ
れ、このカーテンレール3にカーテン取付具4を用いて
薄板状の水素吸着物質5か多数吊り下げられることによ
り、カーテンのごとくカーテンレール3に沿って移動可
能に配置される。このような水素吸着物質5からなる水
素吸収装置の形態は、普通の家屋の部屋のカーテンと同
様、種々の形状であってもよく、要は水素吸収物質5の
表面積を大きくし、原子炉運転中は原子炉格納容器2内
の空間に配置し、原子炉停止時には原子炉の点検作業に
支障のないように収納する。か取外すことが容易なもの
とする。
Embodiment 1 FIG. 1 shows an embodiment of a reactor containment system according to the present invention, in which a hydrogen absorbing device made of a hydrogen adsorbing material is disposed inside the reactor containment vessel. In this embodiment, a curtain rail 3 is installed in the upper part of the reactor containment vessel 2 that houses the reactor pressure vessel 1, and a curtain rail 3 is attached to the curtain rail 3 using a curtain fixture 4. By being hung, it is movably arranged along the curtain rail 3 like a curtain. The form of the hydrogen absorbing device made of such a hydrogen absorbing material 5 may be in various shapes, similar to the curtains in a room in an ordinary house. The inside is placed in the space within the reactor containment vessel 2, and is stored so as not to interfere with reactor inspection work when the reactor is shut down. It shall be easy to remove.

以上のように構成することによって、原子炉格納容器2
内に生じた水素は、水素吸着物質5に接触して直ちにこ
れに吸着されるため、水素燃焼が起こる濃度まで上昇す
ることはない。
By configuring as described above, the reactor containment vessel 2
Since the hydrogen generated in the hydrogen gas comes into contact with the hydrogen adsorption material 5 and is immediately adsorbed by it, the concentration does not rise to the point where hydrogen combustion occurs.

本発明で使用し得る水素を吸着する物質としては、チタ
ン合金、ニッケル合金等がある。現在開発されている水
素吸着合金は、合金1社当り 0,2m3の水素を吸着
できるから、事故時に発生する水素量を1000m 3
とすると、5ton必要である。今後さらに水素吸着特
性の優れた材料が開発されれば、その量を減少させるこ
とができる。なお、水素吸着合金に関する文献として、
松原豊著“水素吸蔵合金”NIKKEI MEC)IA
NICAL 19g9.4.3 PIIO〜112があ
る。
Examples of hydrogen adsorbing substances that can be used in the present invention include titanium alloys and nickel alloys. Currently developed hydrogen adsorption alloys can adsorb 0.2 m3 of hydrogen per alloy, so the amount of hydrogen generated in an accident can be reduced to 1000 m3.
Then, 5 tons are required. If materials with even better hydrogen adsorption properties are developed in the future, the amount can be reduced. In addition, as a literature regarding hydrogen adsorption alloys,
Yutaka Matsubara “Hydrogen storage alloy” NIKKEI MEC) IA
There is NICAL 19g9.4.3 PIIO~112.

このように本実施例においては、水素吸着物質5によっ
て水素を除去するという単純なシステムであるので、誤
動作の心配はなく信頼性が高い。
In this way, in this embodiment, since the system is simple in that hydrogen is removed by the hydrogen adsorbing material 5, there is no fear of malfunction and the system is highly reliable.

また、水素吸着物質5をカーテン状にすることによって
表面積を大きくとることができ、水素吸着効率が高い。
Further, by forming the hydrogen adsorbing material 5 into a curtain shape, the surface area can be increased, and hydrogen adsorption efficiency is high.

ll11m厚さの水素吸着合金は秒オーダーで水素を吸
着するのに対し、事故時の水素発生が日オーダーである
ことから、水素吸着合金を薄板とすることで、発生した
水素を十分早く除去することができる。さらに、水素吸
着合金をカーテン状にすることによって収納および取外
しが容易であり、原子炉の運転および保守点検時に支障
とはならない。
A hydrogen adsorption alloy with a thickness of 11 m can adsorb hydrogen in seconds, whereas hydrogen generation during an accident occurs on the order of a day, so by making the hydrogen adsorption alloy into a thin plate, the generated hydrogen can be removed quickly enough. be able to. Furthermore, by forming the hydrogen adsorption alloy into a curtain shape, it is easy to store and remove it, and it does not pose a problem during the operation and maintenance of the nuclear reactor.

実施例2 第2図に本発明の、原子炉格納容器に水素透過膜を有す
る水素透過装置を配管接続した原子炉格納装置の一実施
例を示す。この図に示すように、原子炉圧力容器1を格
納する原子炉格納容器2に水素透過装置11が配管12
によって接続される。
Embodiment 2 FIG. 2 shows an embodiment of the reactor containment system according to the present invention, in which a hydrogen permeation device having a hydrogen permeation membrane is connected to the reactor containment vessel through piping. As shown in this figure, a hydrogen permeation device 11 is connected to a pipe 12 in a reactor containment vessel 2 that houses a reactor pressure vessel 1.
connected by.

水素透過装置11の中には水素透過膜13があり、この
水素透過膜13を境にして水素透過装置11の原子炉格
納容器2側と反対側に水素排気管14が接続され、さら
に排気筒15に接続される。
Inside the hydrogen permeation device 11, there is a hydrogen permeation membrane 13, and a hydrogen exhaust pipe 14 is connected to the side of the hydrogen permeation device 11 opposite to the reactor containment vessel 2 side with this hydrogen permeation membrane 13 as a boundary, and an exhaust pipe 14 is connected to the hydrogen permeation device 11 on the side opposite to the reactor containment vessel 2 side. 15.

以上のように構成することによって、原子炉の事故時に
原子炉格納容器2内に生じた水素は、水素透過膜13を
通って排気筒15から放出される。
With the above configuration, hydrogen generated in the reactor containment vessel 2 during a nuclear reactor accident passes through the hydrogen permeable membrane 13 and is released from the exhaust stack 15.

これによって、原子炉格納容器2内の水素濃度は水素燃
焼が起こるほど上昇することはない。また、本実施例は
水素透過物質によって水素のみを透過させるという単純
なシステムであるので経済的であると同時に、誤動作等
の恐れはなく、信頼性が非常に高い。
As a result, the hydrogen concentration within the reactor containment vessel 2 does not rise to the extent that hydrogen combustion occurs. Furthermore, this embodiment is a simple system in which only hydrogen permeates through a hydrogen-permeable substance, so it is economical, and at the same time, there is no fear of malfunction, and it is highly reliable.

本発明において、水素のみを透過する水素透過膜13と
してニッケル膜を使用することができる。
In the present invention, a nickel membrane can be used as the hydrogen permeable membrane 13 that only transmits hydrogen.

ニッケル膜の場合は、膜の厚さ 0.5龍、膜の面積は
10コ程度のものになる。このような水素透過装置11
をコンパクトなものにするため、水素透過膜13を第2
図に示すように波板とすることが実用的である。なお、
ニッケル膜は水素と同時にトリチウムも通過させるので
、排気筒15を通して大気中に放出することによって拡
散させ、水素排気による放射線被爆が問題とならないよ
うにすることができる。また、原子炉事故時にはトリチ
ウム以外に気体中に放射性物質が混合しているが、これ
らの放射性物質は透過することなく外部に漏れる恐れは
ない。
In the case of a nickel film, the thickness of the film is 0.5 mm, and the area of the film is about 10 mm. Such a hydrogen permeation device 11
In order to make the hydrogen permeable membrane 13 compact, the hydrogen permeable membrane 13 is
It is practical to use a corrugated plate as shown in the figure. In addition,
Since the nickel film allows tritium to pass through at the same time as hydrogen, it is possible to diffuse the tritium by releasing it into the atmosphere through the exhaust stack 15, so that radiation exposure due to hydrogen exhaust does not become a problem. Furthermore, during a nuclear reactor accident, radioactive substances other than tritium are mixed in the gas, but these radioactive substances do not pass through and there is no risk of them leaking outside.

[発明の効果] 以上の説明からも明らかなように、本発明によれば、簡
単な装置で原子炉の事故時に発生する水素を選択的に除
去することができ、原子炉格納容器内に水素か充満して
水素燃焼を起こすという危険性を排除することができる
。また、本発明は最近の目覚ましい材料技術の進歩を取
入れたもので、材料の性質をうまく活用したものである
。したがって、装置の誤動作の可能性が全くなく、信頼
性が非常に高い。さらに、簡単な装置であるため経済的
である。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, hydrogen generated during a nuclear reactor accident can be selectively removed with a simple device, and hydrogen can be removed in the reactor containment vessel. This eliminates the risk of hydrogen burning due to overfilling. Furthermore, the present invention incorporates recent remarkable advances in material technology and makes good use of the properties of the materials. Therefore, there is no possibility of malfunction of the device, and reliability is very high. Furthermore, since it is a simple device, it is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の、原子炉格納容器内に水素吸着物質か
らなる水素吸収装置を配置した原子炉格納装置の一実施
例を概略的に示す図、第2図は本発明の、原子炉格納容
器に水素透過膜を有する水素透過装置を配管接続した原
子炉格納装置の一実施例を概略的に示す図、第3図は従
来例を示すブロック図である。 1・原子炉圧力容器、2・・原子炉格納容器、3・・・
カーテンレール、4・・・カーテン取付具、5・・・水
素吸着物質、11・・・水素透過装置、13・・・水素
透過膜、14・水素排気管、15・・・排気筒代理人 
弁理士 則 近 憲 佑 第 1 ズ 第2図
FIG. 1 is a diagram schematically showing an embodiment of a nuclear reactor containment system according to the present invention, in which a hydrogen absorption device made of a hydrogen adsorbing material is disposed inside the reactor containment vessel, and FIG. FIG. 3 is a diagram schematically showing an embodiment of a nuclear reactor containment system in which a hydrogen permeation device having a hydrogen permeation membrane is connected to a containment vessel through piping, and FIG. 3 is a block diagram showing a conventional example. 1. Reactor pressure vessel, 2.. Reactor containment vessel, 3..
Curtain rail, 4...Curtain fixture, 5...Hydrogen adsorption material, 11...Hydrogen permeation device, 13...Hydrogen permeation membrane, 14.Hydrogen exhaust pipe, 15...Exhaust stack agent
Patent Attorney Rules Kensuke Chika Part 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉圧力容器を格納する原子炉格納容器内に水
素吸着物質からなる水素吸収装置を配置したことを特徴
とする原子炉格納装置。
(1) A reactor containment system characterized in that a hydrogen absorption device made of a hydrogen adsorption material is disposed within a reactor containment vessel that stores a reactor pressure vessel.
(2)原子炉圧力容器を格納する原子炉格納容器に水素
透過膜を有する水素透過装置を配管接続したことを特徴
とする原子炉格納装置。
(2) A reactor containment system, characterized in that a hydrogen permeation device having a hydrogen permeation membrane is connected via piping to a reactor containment vessel that stores a reactor pressure vessel.
JP2219999A 1990-08-23 1990-08-23 Reactor container Pending JPH04104096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219999A JPH04104096A (en) 1990-08-23 1990-08-23 Reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219999A JPH04104096A (en) 1990-08-23 1990-08-23 Reactor container

Publications (1)

Publication Number Publication Date
JPH04104096A true JPH04104096A (en) 1992-04-06

Family

ID=16744348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219999A Pending JPH04104096A (en) 1990-08-23 1990-08-23 Reactor container

Country Status (1)

Country Link
JP (1) JPH04104096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JP2014115207A (en) * 2012-12-11 2014-06-26 Hitachi-Ge Nuclear Energy Ltd Hydrogen removal facility for nuclear reactor building
JP2021085716A (en) * 2019-11-26 2021-06-03 日立Geニュークリア・エナジー株式会社 Hydrogen processing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JP2014115207A (en) * 2012-12-11 2014-06-26 Hitachi-Ge Nuclear Energy Ltd Hydrogen removal facility for nuclear reactor building
JP2021085716A (en) * 2019-11-26 2021-06-03 日立Geニュークリア・エナジー株式会社 Hydrogen processing system

Similar Documents

Publication Publication Date Title
JP6876447B2 (en) Nuclear power plant
JP6798912B2 (en) Reactor containment vent system
WO2021227466A1 (en) Passive hydrogen elimination device and hydrogen elimination system for nuclear power plant
CN103890858B (en) Trap the equipment of the fuel gas produced by the radiolysis in confined space or pyrolysis
US3041134A (en) Method of removing gaseous fission products from gases
JPH04104096A (en) Reactor container
US3993542A (en) Process and apparatus for extraction of gases produced during operation of a fused-salt nuclear reactor
US4687625A (en) Piping of nuclear reactor containment vessel
EP0360240B1 (en) Method of restraining diffusion of tritium and apparatus for same
JP2005003371A (en) Method and device for removing hydrogen in reactor containment vessel
JPH08184689A (en) Power reactor provided with hydrogen producing mechanism
KR101494074B1 (en) Complex Apparatus Removable for Airborne Radioactive Materials
EP0730279A1 (en) Method and apparatus for non-catalytic oxidation of tritium, and system for removing tritium
Penzhorn Tritium storage
JP2743087B2 (en) Reactor
Moore Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities
JPH0293399A (en) Tritium remover
Pierce et al. Handling of tritium at TFTR
JPH1194979A (en) Containment vent equipment
Haroldsen HERMETIC SEALING PROBLEMS IN A SMALL BOILING WATER REACTOR
JPH04299300A (en) Chamber for housing fusion reactor or tritium handling device
JPS58210598A (en) Emergency tritium absorbing device
Kirch et al. Control of the tritium path in process heat HTR's
Caldwell-Nichols et al. Decontamination, dismantling and refurbishing of the PETRA glove box at the tritium laboratory, karlsruhe
CHEEVER NEW AIR CLEANING ACTIVITIES AT ARGONNE NATIONAL LABORATORY